CN100488872C - 碳簇合成装置 - Google Patents

碳簇合成装置 Download PDF

Info

Publication number
CN100488872C
CN100488872C CNB2006100081767A CN200610008176A CN100488872C CN 100488872 C CN100488872 C CN 100488872C CN B2006100081767 A CNB2006100081767 A CN B2006100081767A CN 200610008176 A CN200610008176 A CN 200610008176A CN 100488872 C CN100488872 C CN 100488872C
Authority
CN
China
Prior art keywords
reaction
vacuum
water
electrode
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006100081767A
Other languages
English (en)
Other versions
CN1810633A (zh
Inventor
廖照江
钱卓真
谢素原
黄荣彬
郑兰荪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CNB2006100081767A priority Critical patent/CN100488872C/zh
Publication of CN1810633A publication Critical patent/CN1810633A/zh
Application granted granted Critical
Publication of CN100488872C publication Critical patent/CN100488872C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

碳簇合成装置,涉及一种制备富勒烯的装置,尤其是涉及一种用电弧法制备C60、C70、C84以及通过向装置中引入氯溴的方法稳定富勒烯中间体,形成较稳定的中间体氯化、溴化产物,起到捕捉富勒烯中间体作用的装置。提供一种碳簇合成装置。设有进排气通道、气压测试与显示装置、2个液封器、反应腔体、真空泵、水冷系统和电路部分,进气通道设3个并联的真空两通活塞和将真空两通活塞相连接的管路;排气通道设1个三通活塞和连接管路;气压测试与显示装置为两端开口的U形管,在U形管中装有汞柱;液封器串联在进排气通道中;反应腔体设于2个液封器中间;真空泵通过接口与排气通道连接;水冷系统包括电极水冷系统和反应腔体水冷系统。

Description

碳簇合成装置
技术领域
本发明涉及一种制备富勒烯的装置,尤其是涉及一种采用电弧法制备C60、C70、C84以及通过向装置中引入氯、溴等元素的方法来稳定富勒烯形成过程中的富勒烯中间体,形成相对比较稳定的中间体氯化、溴化产物,起到捕捉富勒烯中间体的作用。
背景技术
自1985年富勒烯发现以来,对其合成方法的探索从来没有间断过。作为经典的合成方法,
Figure C200610008176D0003111819QIETU
(W.
Figure C200610008176D0003111844QIETU
,L D.Lamb,K.Fostiropoulos,D.R.Huffman,Nature 1990,347:354)发明的电弧法,一直是富勒烯合成的主要方法。
尽管到目前为止,富勒烯的合成方法已经有多种不同的选择,有的方法已经商品化。但是,富勒烯的研究者们一直在试图对其形成机理进行探索,探索不同条件下电弧法生产富勒烯的产率。试图了解富勒烯的生成条件对诸如缓冲气体的种类与分压、电源种类、电流和电压的大小、正负电极的直径和外形、反应腔体容积的大小等多个参数的依赖性,从而根据这些参数对富勒烯种类及各种富勒烯的产率大小的影响程度,对其形成机理进行合理的推测和判断,从物理学和化学的角度去探索富勒烯的形成机理。
现有的关于富勒烯的形成机理有五元环道路、富勒烯道路、大环道路及融合与异构化道路等。这几种形成机理有一个共同之处就是:都要求富勒烯的前驱体在形成之后要有一个退火阶段,而且退火阶段也应该是分步进行的。正是有了这个过程,研究者们想到了在富勒烯的合成体系中引入不同于碳元素的比较活泼的元素,如氯元素。这些元素在富勒烯形成的退火阶段不同程度地参与反应,与富勒烯的前驱体结合而部分终止了富勒烯的继续生成,从而捕捉到富勒烯中间体。以此作为进一步推测富勒烯形成机理的依据。
于是,一种能方便地改变以上提到的各个参数并能引入不同元素的富勒烯电弧合成装置就显得十分必要。
最早的能产生富勒烯的装置应该是1985年Kroto等人(H.W.Kroto,J.R.Heath,S.C.O’Brien,R.F.Curl,R.E.Smalley,Nature 1985,318:162.)为了探索宇宙空间中长链含碳分子的形成过程时所用的脉冲激光束蒸发仪,它导致了C60的首次发现,也使这个应用石墨激光汽化法的装置成为早的C60的制取设备。由于当时产生C60的量太少,无法作进一步的研究。他们又不断改进实验方法,发现在炉中预加热石墨靶到1200℃,可大大提高C60的产率,但还是收集不到常量的样品。D.V.Afanas’ev等(D.V.Afanas’ev,G.A.Baranov,A.A.Belyaev,G.A.Dyuzhev,A.K.Zinchenko,Tech.Phys.Lett.,2001,27:408-410.)用高能持续CO2激光透过KCl视窗辐射氦气氛中的石墨圆柱体,得到了常量的富勒烯。但是,与石墨电弧法相比,富勒烯的产率仍然不高。
随着对富勒烯形成机理的认识的不断加深,利用石墨放电以外的方法合成富勒烯引起了人们的兴趣,分别发展了利用太阳能加热石墨法、高频电炉加热蒸发石墨法、火焰燃烧法和萘热裂解法等方法。这些方法为富勒烯的合成提供了诸多选择,也为我们研究富勒烯的形成开辟了道路。
但是以上的这些方法也有它们各自的缺点,一是这些方法的产率都不高,如果要用这些方法进行大量生产还有很长的路要走。二是设备趋于复杂,不管是在实验室制备还是工业生产都不适合。所以廉价地合成富勒烯仍然是富勒烯作为新型碳材料及其它用途的主要工作。
除了以上介绍的电弧放电等离子体合成方法以外,还有一些使用其它低温等离子体合成富勒烯的方法。这些低温等离子体技术用于富勒烯的合成可以为富勒烯的形成机理的探索提供不同来源的实验素材。其中,以氯仿为原料,利用微波等离子体可以得到约2.5%的富勒烯(C60)及其它多种氯化的富勒烯碎片。辉光等离子体合成法同样以氯仿为起始物,得到约0.5%的富勒烯(C60)及丰富的全氯代芳香烃。液相电弧法同样也可以用于生成富勒烯。另外,脉冲激光溅射置于四氯化碳蒸汽的石墨可以得到富勒烯,以全氯代苊烯为反应物进行脉冲激光溅射也可以合成出富勒烯,这种方法还可以说明,富勒烯的形成并非从小的碳簇(如C1,C2)开始,而可能是直接从全氯代苊烯开始。Wang等人(C.Wang,A.Inazaki,T.Shirai,Y.Tanaka,T.Sakuta,H.Takikawa,H.Matsuo,Thin Solid Films 2003,425:41-48.)将无线电波与热等离子体技术结合起来,直接蒸发C-Si混合粉,得到了C60、C70及其它富勒烯。
这些利用等离子体合成富勒烯的方法,丰富了人们以富勒烯形成机理的认识,作为方法的创新对富勒烯形成机理的研究有着很重要的作用,但是存在着不少缺陷,主要是产率不高、装置构成过于复杂、对腐蚀性反应源的引入有很大的限制。
还有一种富勒烯制备装置是电弧放电装置,该装置由不锈钢材料制成,其中放电反应腔是带有水冷夹套的不锈钢圆柱型筒,其直径约为30cm,高约为50cm,在放电腔体中安装有两个石墨电极,阳极为石墨棒,由与反应腔成45°角的带水冷的铜管夹住,并且可以螺旋伸缩;阴极为石墨圆盘,盘的直径为15cm,厚度为1.5cm,固定在带有水冷系统的圆形铜盘上。在不锈钢钢体的侧面设有两个观察窗,用以观察反应进行时的情况,该装置有3个进气口,可以分别与氦气瓶、CCl4及水银测压计相连,有一个与真空泵相连的抽气口,并配备一个真空压力表。反应腔的上部配有一个水冷却接收盘,用来收集产物。真空系统主要由旋片式机械真空泵、真空测量仪和真空表组成。冷却系统由4部分组成,以分别实现对放电反应器、产物接收盘、阳极和阴极的冷却,这4个部分的冷却部件均采用夹套式水冷装置。为了防止电极和放电发生器过分发热,以上各部分的冷却系统相对独立,使整个系统得以比较充分的冷却,以保证设备的安全运行,防止过早老化。电极电源利用直流电弧焊机,将交流电转换为低压大电流直流电。采用恒流工作方式,电压和电流可在一定范围内调控。
上述装置的缺点是作为反应腔体的金属很容易受到被引入的氯所产生的酸性物质的腐蚀,时常使反应过程中断,需进行必要的修理。
基于以上装置的缺点,已经有人对金属容器进行了改进,转而使用玻璃材质的器皿作为放电的反应腔体。使用的装置由一个两端开口的玻璃容器作为反应腔体,两个电极由玻璃容器的两个开口插入,并用橡皮套筒进行密封,玻璃的反应容器和电极均采用外冷式水冷降温,反应腔体内的气流和气压控制采用动态的方法。
但是,这套装置存在气密性不好、需要在反应过程一直抽真空等缺点,这样一是使得价格昂贵的高纯氦消耗量非常大;二是因为反应过程中的排气量很大,不能对体系进行加氯、氟等有毒的反应物;三是合成的物质随抽空的气流流走,不便收集。
发明内容
本发明为了能有效地克服以上所述的现有富勒烯制备装置存在的诸多缺点,提供一种碳簇合成装置。本发明的技术方案是:采用玻璃体系以克服腐蚀性的问题;采用静态真空以便于引入氯、氟等各种元素并使反应产物很方便收集,同时还能大大节约作为反应辅气的高纯氦;采用内冷式水冷电极使得高达3000℃以上的等离子体火焰既能安全持续地放电反应,又能形成富勒烯及其碎片所赖以生成的温度梯度。
本发明设有
进气通道,用于向装置引入电弧放电所需的气体,进气通道设3个并联的真空两通活塞和将3个并联的真空两通活塞相连接的管路,其中3个真空两通活塞分别用于向装置内引入反应气体、缓冲气体和其它气体;
排气通道,用于反应完成后排出残余气体和对装置抽真空,排气通道设1个三通活塞和连接管路;
气压测试与显示装置,用于测试反应体系内的气体压力并显示其气压值,气压测试与显示装置为两端开口的U形管,在U形管中装有汞柱,汞柱的高度>760mm,也可以很方便地加装电子真空测试系统;
2个液封器,用于除去电弧放电反应过程中可能产生的固体烟灰和固体颗粒物,以及对反应本系中气体流向的观察,2个液封器分别串联在进气通道和排气通道中;
反应腔体,反应腔体用于电弧放电的场所和产物的容器,设于2个液封器中间;
真空泵,真空泵通过接口与排气通道连接;
水冷系统,用于对电极和反应腔体(电弧放电的容器)进行冷却,水冷系统包括电极水冷系统和反应腔体水冷系统;
电路部分,电路部分设有电极、电弧焊机和电源,电极包括紫铜电极、石墨电极(石墨头套)和石墨棒,2个电极由电缆与电弧焊机的输出端连接。
液封器设有底座、外管、内管和厚壁真空橡胶管,外管设于底座上部,内管设于外管内腔,内管的下端设开口,在内管的下部设气泡逸出孔,外管开口和内管开口接厚壁真空橡胶管。
反应腔体采用带有两个磨口的玻璃烧瓶,反应腔体是电弧放电的场所,例如采用4000mL容积的玻璃烧瓶,以便为电弧产生的等离子体火焰提供半径为10cm的退火空间,反应腔体也是产物的容器;
电极水冷系统设1根一端封口的中空紫铜管和1根两端开口的不锈钢管,不锈钢管插入紫铜管的开口端,设于不锈钢管上的封水螺母与紫铜管螺纹连接。反应腔体水冷系统为反应冷却水桶,反应腔体设于反应冷却水桶中,电极水冷系统与反应腔体水冷系统由橡胶管道串联。
与现有的富勒烯制备装置相比,本发明的突出优点在于:
1)制造价格十分低廉;
2)反应腔体由玻璃材质构成,对于观察反应进行的情况十分方便;
3)由于装置的真空度的保持能力很好,因此本发明可以在静态真空或接近真空的条件下工作;
4)与诸多的电弧法富勒烯制备装置相比,本发明体积小、质量轻,操作十分方便;
5)本装置主要为玻璃材质,解决了以前各种富勒烯制备装置普遍存在的腐蚀性问题,在本发明中可以添加氯、溴等可能产生腐蚀性物质的各种元素,可以用于捕捉富勒烯形成过程中的活性中间体。
附图说明
图1为本发明实施例的结构示意图。
图2为本发明实施例的液封器的结构组成及其工作状态示意图。
图3为本发明实施例的内冷式水冷电极及冷却水流向图。
图4为本发明实施例的电极组合装置和电极在其中运动时的密封剖面图。
具体实施方式
以下实施例将结合附图对本发明作进一步的说明。
参见图1,本发明由进气通道、排气通道、气压测试和显示装置、液封器、反应腔体、真空泵、水冷系统和电路部分等组成。
(一)进气通道和排气通道:
进气通道是为引入各种缓冲气体和不同的气体分压而提供的通道,通过进气通道可以引入电弧放电所需要的某种气体,并可以引入不同分压的这种气体。排气通道是反应完成之后残气排出的通道和对系统抽真空时的通道。
氦气、氩气、氮气等缓冲气体由进气通道引入。而排气通道用于排出残余气体和抽真空,整个反应体系通过排气通道与真空系统相联,可以将系统抽到必要的真空。排气通道与真空系统之间由玻璃三通相连或阻断。进入反应状态之后,玻璃三通就将排气通道与真空系统阻断。
进气通道设有3个并接的真空两通活塞1以及将3个并接的真空两通活塞1相连接的管路。3个真空两通活塞1的作用是:其中两个分别用于向系统内引入反应气体和缓冲气体,另一个用于引入其它气体。排气通道设有一个真空三通活塞20和相应的管路,真空三通活塞20的作用:一是在对反应腔体(参见图1中的玻璃烧瓶16)进行抽真空时让系统只与外接的真空泵(在图1中未画出)相通;二是真空泵停止工作之后对真空泵进行放空(防止真空泵停止工作后旋片所在腔体存在负压而造成单向阀处于承受压力状态)。
(二)气压测试和显示装置:
在向反应体系中引入反应气体和缓冲气体时,在研究不同分压的反应气体对反应产物的影响时,都需要对反应体系内的气体压力进行测试并显示。在反应过程中也要对玻璃烧瓶内的总压力进行观察和控制,这需要显示反应体系中的气压值。气压测试和显示装置就是要起到一个引入气体时进行气压测试,在反应过程中实时监控的作用。
气压测试和显示装置设有一个高度为1米的两端开口的U型管2,在U型管2中装有金属汞。高度为1米的汞柱远远高出测量一个大气压的需要,这是因为:在对反应体系抽真空时,或者在向反应体系引入气体时,以及在反应进行的过程中,反应体系中的气压都会发生变化,有时这种变化很剧烈,这样,气压测试和显示装置中的汞柱就会激剧地上升或者下降,激剧上升或者下降的汞柱很容易冲出管外或者串入反应腔内,为了避免这种情况发生,因此本发明采用的1米汞柱其高度比760mm要高出许多,在气压测试过程中,急剧上升或下落的汞就不会串入玻璃烧瓶或溢出U型管2之外。
(三)液封器:
2个液封器4分别串联在进气通道和排气通道中,用于除去在放电反应过程中可能产生的固体颗粒物,而气体可以由正反两个方向通过液封器。
液封器4的作用是:(1)防止反应过程中生成的固体烟灰和固体颗粒物串入真空两通活塞1、U型管2和真空泵等部位。(2)便于观察反应体系中的气体流向。在对体系进行抽真空时,可以从反应腔体中被抽出的气体气泡的产生速度来判断真空泵的工作状态,因为当真空泵工作状态良好时,总是有气泡不断冒出。在反应过程中,由于反应腔体内温度升高,腔体内的气体体积膨胀,这时可看到液封器中液面会升降或者有气泡冒出,籍此可以大致判断反应温度的高低。(3)当发现系统漏气时,能有效地将系统分成几大部分,然后再逐一排除。因为气体总是从漏气的部位流向其它部位,通过气体流向和流速可以判断漏气的部位和漏气的速度。
液封器的构造和工作原理参见图2,液封器设有底座23、外管26、内管25和厚壁真空橡胶管3,外管26设于底座23上部,内管25设于外管26内腔,内管25的下端设开口22,在内管25的下部设气泡逸出孔24,外管开口27和内管开口28接厚壁真空橡胶管3。在图2中,标出了平衡时液面29、气体流向箭头30、有气体通过时的下液面31、气泡32和有气体通过时的上液面33。当气体通过液封器时,都以气泡的形式通过其中的液体,液封器中的液体对通过它的气体进行洗涤,用以除去放电反应过程中产生的固体颗粒物。
液封器由玻璃制成。
(四)真空泵:
真空泵通过真空泵接口21与真空三通活塞20相连接。实际上真空泵与进气通道和排气通道中的4个真空活塞(3个真空两通活塞和1个真空三通活塞)以及液封器组成本发明的真空系统。与进气端液封器相连是4个并联的气体通道,其中3个气体通道分别与3个真空两通活塞相连,由这3个真空两通活塞控制气体流入以及气体的流量。3个活塞分别用于向反应腔体中引入不同的气体。另外1个气体通道用于与气压测试和显示装置相通,气压测试和显示装置通过液封器始终与进行反应的内腔相通,中间没有开关或者活塞。在对系统进行抽空时可以从此装置上看到真空的情况,当向系统中引入反应气体和辅助气体时,从气压测试和显示装置上可以读出引入气体的分压。当拆卸反应装置进行产物收集,需要对反应腔体放入空气、氮气、氩气或氦气等气体对产物进行保护时,均可由气压测试和显示装置上看到反应腔体内的气压值。排气口直接与排气端液封器相连,排气端液封器再与真空三通活塞20相连,真空三通活塞20再由橡胶管与机械真空泵相连。进气端液封器和排气端液封器的构造完全一样。
(五)水冷系统:
参见图1和图3,水冷系统分为两部分。一部分是对电极进行冷却,另一部分是对反应腔体(电弧放电的容器)进行冷却。这两个部分呈串联的关系,冷却水首先通过电极,对电极进行冷却,然后通过冷却水导出管8注入到盛水的反应冷却水桶9内,对放置在反应冷却水桶9内的反应腔体(玻璃烧瓶16)进行冷却,在反应冷却水桶9的上部设于冷却水溢出口19。
自来水经过T型金属三通管分支以后分别进入两个电极对电极进行冷却,冷却水首先由φ5mm×1mm×430mm的不锈钢管流入φ10mm×1.5mm×400mm紫铜电极的封口端,再从不锈钢管和紫铜电极之间的通道流过,这个过程就是对电极的冷却过程。从电极流出的冷却水再由橡胶管导出,聚集到反应冷却水桶内,对安装在反应冷却水桶内的反应腔体进行冷却。
紫铜电极11由1根一端封口的中空紫铜管组成,规格为φ10mm×1.5mm,长度为400mm。
电极冷却水入口端设一根两端开口的不锈钢管5,规格为φ5mm×1mm,长度为430mm。不锈钢管5由紫铜电极11的开口端插入,二者同轴。二者结合部在紫铜电极11的开口端,由封水螺母35将二者固定,冷却水由不锈钢管5内流入,通过不锈钢管5外壁和紫铜电极11内壁之间的通道,再由固定在封水螺母35外端的出水侧管7流出,由橡胶管接至反应冷却水桶9(参见图1)内对电弧放电单元进行冷却。
(六)电路部分:
电路部分包括电源、电缆、电极电源接头和电极组成,电极又由紫铜电极11、石墨电极(石墨头套)17、石墨棒18等组成(见图1、图3)。电弧放电的电源由市售的直流或交流电弧焊机提供。利用电弧焊机的电流可调部分进行放电电流大小的调控。通常的市售电弧焊机有两种调控模式:一是对电流强度的大小进行调控,二是对输出电压进行调节。这两种调控模式都可对电弧放电进行有效的调控,在紫铜电极11的两端设于电极电源接头6。
参见图3,冷却水流的方向34由不锈钢管一直通到紫铜电极11的封口端,再从紫铜电极11与不锈钢管之间的通道流出,由于水流单向器36的作用,水流方向是单向进行的,通过紫铜管的热交换作用将反应热带走,水的流量最大可达3L/min,经过计算,可以对功率5000W的反应进行有效的冷却而水温不会超过40℃。
石墨套头17既有良好的导电性能,又能有效防止反应过程中添加的氯溴等元素所产生的腐蚀性物质的腐蚀。石墨固有的润滑性能可使消耗性石墨棒的更换十分简单顺利。不锈钢管的作用是让冷却水在能通过其内部和它与紫铜管之间通过,加上水流单向器36的作用来实现对系统的冷却。水流单向器36是由一段带有出水侧管7的紫铜管材料和固定在封水螺母中的O型圈组成。封水螺母35的作用一是对不锈钢管和紫铜管进行物理固定以便使二者同轴,二是固定封水的O型圈。
电弧焊机的输出端用25mm2的电缆分别连接到紫铜电极和石墨电极,能有效地降低路耗,使电流的能量集中在电弧部分,增加了反应的效率。
(七)反应腔体:
反应腔体设计为一个4000mL的玻璃烧瓶16,其容积大小可在1000~4000mL之间选择,此部分承载着石墨电弧等离子体所产生的高温和整个系统实现真空时所带来的负压。电弧放电形成的等离子体的热量释放产生的最高温度可以达到3000℃以上,这些热量通过热辐射和热传导的形式向四周扩散,最终以冷却水作为介质与环境进行交换,使反应体系中的各个部件不至于因为高温或剧烈的热膨胀而损坏。玻璃烧瓶16的外部由玻璃材质的球面烧瓶与冷却水相接触,玻璃烧瓶16的两端通过玻璃磨口(塞)14分别与电极玻璃外套10连接,在玻璃磨口14一侧还设有封水橡胶塞12和聚四氟乙烯卡套13,反应中心部位所产生的高温到玻璃球面的距离为10cm,反应所产生的高温在这个距离内由3000℃以上降至水温(40℃左右),形成了反应过程中所必要的温度梯度,在其高温区域,等离子体得以发生。由于密集的能量释放引起各种粒子之间进行强烈的碰撞和能量交换,从而引发粒子间的激发、电离、复合和辐射等物理化学过程。粒子之间的长程库仑相互作用以及等离子体的运动与磁场和运动的紧密耦合使各种粒子之间存在极其丰富的集体效应和集体运动模式。而温度梯度的存在又为在核心温度区形成的粒子有可能通过向低温区扩散的退火过程中的不同温度下的不同反应以及各种生成物的再次组合与异构化提供条件。退火过程的重要性还体现在不断变化的温度为产物的多样性提供了可能,从而对形成具备完美对称结构的富勒烯提供了条件。
在本发明中,玻璃烧瓶中的放电过程产生的固体颗粒物通常会随着管路扩散到由管路相接连的各个单元,可能串入到真空系统的各个部位,可能淤积进气通道和排气通道的管路,可能堵塞进气通道和排气通道的各个活塞,可能进一步串入真空泵,还可能聚集在真空计的汞柱的上表面,使真空系统的通气性能恶化,也使得真空计读数的准确性下降。所以加入液封器可以明显改善反应过程中的真空测试系统的性能,对真空泵进行必要的保护。
进气通道和排气通道与外部环境相通,进气通道由3个真空活塞和相应的管线组成,进气通道位于整个装置的上游,而排气通道位于整个装置的下游。两个液封器中的一个串联在进气通道中,另一个串联在排气通道中,置反应体系于两个液封器中间,反应过程中可能产生的固体颗粒物可以有效地被两个液封器除去,液封器中的油可以很方便地进行更换,可以采用蒸汽压比较低的硅油或泵油。
液封器连接在作为反应腔体的玻璃烧瓶两端。这样,放电时所产生的烟灰既不会串入真空活塞,也不会串入真空泵前的真空两通活塞和真空泵。液封器的存在不仅起到除去反应中所产生固体颗粒物的作用,还对可能发生的漏气部位的检测有很好的排查作用。
两个液封器把整个体系分成了三大部分。通过观察液封器中内外液面的高低就很明显地知道被三大部分中的哪一部分漏气,液面低的就有一边是漏气的。整个体系中容易漏气的主要是(1)进气通道中的真空活塞与管路(采用厚壁真空橡胶管或聚胺输气管)的接口;(2)盛金属汞的U型管与管路(采用厚壁真空橡胶管或聚胺输气管)的接口;(3)液封器与管路(采用厚壁真空橡胶管或聚胺输气管)的接口;(4)玻璃烧瓶与管路(采用厚壁真空橡胶管或聚胺输气管)的接口,(5)排气系统与管路(采用厚壁真空橡胶管或聚胺输气管)的接口等。
在液封器中,气体的流向是可以双向进行的,这是气路畅通的基础。在检测真空度的好坏时,液封器中气体的流向是单向的,因为泵油的密度大约是金属泵的5%,所以液封器中内外两个液面之差对被液封器分割的几个部分中气压的变化十分敏感,所以液封器中液面的上升和下降是两边的真空度微小差别的标志,如果真空度相差达到了使气体流动的程度,那么液面的上升下降或者气泡逸出也是气体流动的标志。当有气体流动时,通过气泡产生的快慢速度很容易判断漏气的程度。
真空系统担负着将玻璃烧瓶和用管线将各个部分连接在一起的多个空腔部分中的空气除去的任务。在进行真空操作时,进气通道和排气通道合并入真空系统并为其服务。对真空系统的要求是(1)真空活塞足够好,能支持静态真空至少数小时,才能在反应腔体中进行所设计的反应。(2)玻璃烧瓶、管路和多个真空活塞之间的连接必须足够紧密。(3)真空泵提供真空的驱动力,必须要有足够的功率才能对整个反应体系进行抽空。
气压测试和显示装置独立地与体系相连,它在液封器的前端。在对反应腔体进行抽空、引入反应气体和辅助气体、放电进行电弧反应和排除反应后的气体等几个过程中,气压测试和显示装置始终处于开放状态。(1)在对反应腔体进行抽空的过程中,通过气压计显示的示数读出气压数值,这时,残留在反应腔体中空气量的多少直接关系到真空的好坏,进而影响到电弧放电反应的质量。通过观测气压检测系统中的示数再辅以液封中两个液面的升降可以方便地判断真空的好坏。(2)在引入反应气体和辅助气体过程中,直接从气压计示数读出反应气体和辅助气体的压力指数。(3)在电弧放电反应过程中,气压会随着反应的进行而波动,动态监测玻璃烧瓶中压力的变化便于对反应进行必要的控制,建立表观压力与反应产物之间的关系。(4)排除反应后的气体过程是用真空泵再次抽空反应体系的过程,气体排除的程度关系下次反应的品质。
水冷系统通过冷却水串行在两个承担高热的电极中,然后在反应冷却水桶中会聚,对电极的冷却使得电极在3000℃以上的高温下也不会过热,100A左右的电流流经电极时所产生的热也被水冷系统带走。对玻璃烧瓶的冷却获得了3000℃到室温之间大跨度的温度梯度,为各种可能的笼状富勒烯碳簇和氯化碳簇的产生提供了可能,这个被称之为退火过程的扩散产生了奇异的变化,是各种新奇碳簇生成的场所。
相对简单的电路起到向反应体系传递能量的作用,包括电弧焊机、大截面电缆和电极。反应在进行时的电流强度在100A左右,电路中因衔接而产生的任何一个小的电阻都可能会产生相对比较大的热量,所以电路中每个衔接处的电阻值应该尽量小。电极截面积的计算和设计应保证在100A左右的电流强度下不会产生太多的热,电极的放热被水冷系统带走。
反应腔体和部分伸入反应腔体的电极是整个体系的核心部分,在反应过程中,从3000℃到室温大跨度的温度梯度,反应气体,反应辅助气体的离子态相互作用,石墨的高温原子化以及原子化之后的电离、复合、辐射等物理化学过程,粒子之间库仑相互作用以及等离子体中丰富的集体效应和运动模式都是在这个场所进行的。反应后产生的热量由水冷系统带走,反应所产生的紫外辐射通过玻璃的强吸收和水的强吸收后得以降到完全无害的程度,操作者可以通过窗口观察反应进行的情况。
电极在整个装置中起着至关重要的作用。电极本身是一个组合装置(见图3),它由石墨部分和金属部分组成。石墨部分(石墨头套):外尺寸φ16×70mm,一端打φ10×30mm的孔,用于插入直径为φ10的金属部分。另一端打有φ6×20mm的孔,用于插入反应过程中将消耗掉的、可以更换的、直径为φ10×200的石墨棒。金属部分:一端封口另一端开口的紫铜管、不锈钢管、封水螺母、水流单向器。
紫铜管既是大电流直流电的导体,也是反应热的导体,同时也是热交换的场所之一。反应热通过辐射和石墨的传导到达紫铜管,由紫铜管再传导给管内的冷却水。
紫铜管的热膨胀系数比石墨大,因而在反应过程中适当的温度上升会使紫铜管存在小线度膨胀,于是石墨套头与紫铜管之间能衔合更紧,有利于减小紫铜管与石墨套头之间的接触电阻,从而降低因二者之间电阻的发热量,使电路部分的路耗更小,反应过程中的供能更为集中。
以下给出本发明的使用方法。
1)检查液封器中液位的高低和反应冷却水桶中的水位;
2)关闭所有真空两通活塞;
3)打开与真空泵相连的真空三通活塞;
4)打开真空泵开始对体系进行抽空直至所需要的真空度;
5)关闭真空三通活塞;
6)向反应腔体中放入反应气体至所要求的分压;
7)向反应腔体中引入辅助气体至所要求的总压;
8)打开冷却水;
9)打开电弧焊机,并调节电极,使石墨棒(图1中的标记18)与石墨电极(图1中的标记17)接触,此时即可形成电弧,再适当调节电极间距,使电弧达到白炽状态;
10)根据实际情况调节冷却水的流速;
11)反应完成之后放干反应冷却水桶(图1中的标记9)中的水;
12)向玻璃烧瓶(图1中的标记16)中引入辅助气体至常压;
13)取出(或者溶出)反应产物。
图4中所示的电极组合装置在本发明中起着比较关键的作用。随着反应的不断进行,石墨棒18就会不断被消耗而生成反应产物,这样,石墨棒18与石墨电极17之间的间隙就会不断增大。间隙的增大会改变电弧的状态,就是说使维持电弧所需的电压值和电流值发生改变,电弧中心区的温度也会发生变化,这样就可能使反应产物的物种和各个物种的相对含量发生变化;而且当间隙增大到一定程度时,电弧就会熄灭,导致反应停止。
电极组合装置的作用是使整个装置在保持真空的条件下,电极可以方便地进行轴向运动,这样,在反应过程中,就可以根据电路中的电压和电流数值,不断对石墨棒18与石墨电极17之间的间隙进行调整,使间隙保持所希望的数值。
图4中所示的电极玻璃外套10是与玻璃烧瓶16相配套的具有磨口塞的部件,在反应中起着密封的作用。
图4中所示的硅橡胶环41共有6道,把5段真空脂42密封在电极玻璃外套10和紫铜11之间。这样既使运动的电极得到充分的润滑,又使整个装置在电极运动时也能有很好的密封性能,同时也使得紫铜电极11与电极玻璃外套10之间有良好的同轴性,使紫铜电极11不至于在运动过程中发生方向改变。硅橡胶具有比较好的弹性和耐油脂性,既能起到密封作用又可以让电极顺利通过。真空脂的蒸气压为10-4Pa,而本发明的真空度为10-2Pa,完全可以满足需要。
不锈钢弹簧44是对使真空脂42保持一定的压力,以便在电极的来回运动中真空脂能始终充满每一个可能产生的缝隙而不至于漏气。
聚四氟乙烯环43是为了将不锈钢弹簧44的压力传递给硅橡胶环41和真空脂42,避免硅橡胶环41的机械强度不够而被不锈钢弹簧44压坏。压簧螺母46是用于压住弹簧并与电极玻璃外套10结合。

Claims (3)

1、碳簇合成装置,其特征在于设有
进气通道,用于向装置引入电弧放电所需的气体,进气通道设3个并联的真空两通活塞和将3个并联的真空两通活塞相连接的管路,其中3个真空两通活塞分别用于向装置内引入反应气体、缓冲气体和其它气体;
排气通道,用于反应完成后排出残余气体和对装置抽真空,排气通道设1个三通活塞和连接管路;
气压测试与显示装置,用于测试反应体系内的气体压力并显示其气压值,气压测试与显示装置为两端开口的U形管,在U形管中装有汞柱,汞柱的高度>760mm;
2个液封器,用于除去电弧放电反应过程中可能产生的固体烟灰和固体颗粒物以及对反应本系中气体流向的观察,2个液封器分别串联在进气通道和排气通道中,液封器为玻璃液封器;
反应腔体,反应腔体用于电弧放电的场所和产物的容器,反应腔体设于2个液封器中间,反应腔体为带有2个磨口的玻璃烧瓶;
真空泵,真空泵通过真空泵接口与真空三通活塞相连接,真空泵与排气通道和排气通道中的4个真空活塞以及液封管组成的真空系统连接;
水冷系统,用于对电极和反应腔体进行冷却,水冷系统包括电极水冷系统和反应腔体水冷系统,反应腔体水冷系统为反应冷却水桶,电极水冷系统与反应冷却水桶串联,冷却水依次通过电极和冷却水导出管,并注入到盛水反应冷却水桶内,对设于冷却水桶内的反应腔体进行冷却,在反应冷却水桶的上部设有冷却水溢出口;
电路部分,电路部分设有电极、电弧焊机和电源,电极包括紫铜电极、石墨电极和石墨棒,2个电极由电缆与电弧焊机的输出端连接。
2、如权利要求1所述的碳簇合成装置,其特征在于液封器设有底座、外管、内管和真空橡胶管,外管设于底座上部,内管设于外管内腔,内管的下端设开口,在内管的下部设气泡逸出孔,外管开口和内管开口接真空橡胶管。
3、如权利要求1所述的碳簇合成装置,其特征在于电极水冷系统设1根一端封口的中空紫铜管和1根两端开口的不锈钢管,不锈钢管插入紫铜管的开口端,设于不锈钢管上的封水螺母与紫铜管螺纹连接。
CNB2006100081767A 2006-02-24 2006-02-24 碳簇合成装置 Expired - Fee Related CN100488872C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100081767A CN100488872C (zh) 2006-02-24 2006-02-24 碳簇合成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100081767A CN100488872C (zh) 2006-02-24 2006-02-24 碳簇合成装置

Publications (2)

Publication Number Publication Date
CN1810633A CN1810633A (zh) 2006-08-02
CN100488872C true CN100488872C (zh) 2009-05-20

Family

ID=36843782

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100081767A Expired - Fee Related CN100488872C (zh) 2006-02-24 2006-02-24 碳簇合成装置

Country Status (1)

Country Link
CN (1) CN100488872C (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100556803C (zh) * 2008-02-29 2009-11-04 厦门大学 含相邻五元环富勒烯的合成方法
CN102001645B (zh) * 2010-12-16 2012-08-29 中国科学院高能物理研究所 用于制备富勒烯纳米材料的旋转电弧合成炉
CN102757032B (zh) * 2012-07-02 2014-10-22 江西金石高科技开发有限公司 一种采用燃烧法制备富勒烯的工艺及设备
CN103072971B (zh) * 2013-03-04 2014-07-09 南京航空航天大学 Scdd及cdc制备装置
CN108483424B (zh) * 2018-04-28 2019-11-19 厦门福纳新材料科技有限公司 一种富勒烯电加热合成装置
CN112798884B (zh) * 2020-12-15 2021-11-30 珠海格力电器股份有限公司 一种便捷燃弧装置、控制方法、电弧发生器及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227038A (en) * 1991-10-04 1993-07-13 William Marsh Rice University Electric arc process for making fullerenes
US5273729A (en) * 1991-05-24 1993-12-28 Massachusetts Institute Of Technology Combustion method for producing fullerenes
US5985232A (en) * 1994-03-30 1999-11-16 Massachusetts Institute Of Technology Production of fullerenic nanostructures in flames
CN1259105A (zh) * 1997-06-06 2000-07-05 伊凡·施沃布 制备富勒烯的方法和设备
US20030044342A1 (en) * 2001-08-30 2003-03-06 Alford J. Michael Burners and combustion apparatus for carbon nanomaterial production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5273729A (en) * 1991-05-24 1993-12-28 Massachusetts Institute Of Technology Combustion method for producing fullerenes
US5227038A (en) * 1991-10-04 1993-07-13 William Marsh Rice University Electric arc process for making fullerenes
US5985232A (en) * 1994-03-30 1999-11-16 Massachusetts Institute Of Technology Production of fullerenic nanostructures in flames
CN1259105A (zh) * 1997-06-06 2000-07-05 伊凡·施沃布 制备富勒烯的方法和设备
US20030044342A1 (en) * 2001-08-30 2003-03-06 Alford J. Michael Burners and combustion apparatus for carbon nanomaterial production

Also Published As

Publication number Publication date
CN1810633A (zh) 2006-08-02

Similar Documents

Publication Publication Date Title
CN100488872C (zh) 碳簇合成装置
US20130064750A1 (en) Method and device to synthesize boron nitride nanotubes and related nanoparticles
JP5727362B2 (ja) 化学気相蒸着反応器内にガスを流通させるためのシステムおよび方法
US4636292A (en) Electrode for electrochemical measurements in aqueous solutions of high temperatures
CN104407042B (zh) 一种监测水合物生成的方法
CN214458357U (zh) 一种用于氟化氢电解的新型电解槽
CN108956443B (zh) 熔盐温差腐蚀试验装置
CN112164556B (zh) 一种具有防渗警示功能的变压器油箱
Kannuluik et al. The Pressure Dependence of the Thermal Conductivity of Polyatomic Gases at 0° c
Gnanasekaran et al. An electrochemical hydrogen meter for measurement of dissolved hydrogen in liquid sodium
US5380467A (en) Composition for extracting oxygen from fluid streams
CN206420726U (zh) 气体吸附脱附测试装置
CN217005300U (zh) 气氛炉
CN111272219A (zh) 一种液态金属锂物性参数测试系统及其测试方法
CN111175193A (zh) 一种sf6混合绝缘气体试验装置及试验方法
CN107478567B (zh) 模拟发电机空芯铜导线在内冷水中腐蚀的试验装置及方法
CN114839233B (zh) 一种用于模拟大型管道流动及腐蚀的试验管路系统及方法
CN111505047B (zh) 测量高温高压多元气体混合物热导率的装置
CN211347828U (zh) 一种sf6混合绝缘气体试验装置
CN113421668A (zh) 一种模拟失水事故的实验系统
CN113720973A (zh) Gis设备内部sf6气体监测系统以及监测方法
CN208383565U (zh) 一种六氟化硫气体分解产物富集、解析装置
CN109200737B (zh) 臭氧提纯装置和臭氧提纯系统
CN106970066B (zh) 一种基于Raman光谱法测量高温熔盐体系中气体溶解量的显微热台装置
CN208916826U (zh) 一种78对棒多晶硅还原炉

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090520

Termination date: 20120224