CN100481709C - 振荡电路 - Google Patents

振荡电路 Download PDF

Info

Publication number
CN100481709C
CN100481709C CN200610067889.0A CN200610067889A CN100481709C CN 100481709 C CN100481709 C CN 100481709C CN 200610067889 A CN200610067889 A CN 200610067889A CN 100481709 C CN100481709 C CN 100481709C
Authority
CN
China
Prior art keywords
frequency
oscillation
bypass resistance
resonance
resonance mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200610067889.0A
Other languages
English (en)
Other versions
CN1835386A (zh
Inventor
小林浩纪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Publication of CN1835386A publication Critical patent/CN1835386A/zh
Application granted granted Critical
Publication of CN100481709C publication Critical patent/CN100481709C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/18Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance
    • H03B5/1841Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a strip line resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1203Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier being a single transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1231Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device the amplifier comprising one or more bipolar transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/08Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance
    • H03B5/12Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device
    • H03B5/1237Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator
    • H03B5/124Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance
    • H03B5/1243Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising lumped inductance and capacitance active element in amplifier being semiconductor device comprising means for varying the frequency of the generator the means comprising a voltage dependent capacitance the means comprising voltage variable capacitance diodes

Landscapes

  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

一种振荡电路,具备:集电极或者基极被高频接地的振荡晶体管(21);和将所述振荡晶体管(21)的发射极直流地接地的旁路电阻(27),将振荡频率中阻抗最大的谐振机构(28)介插到旁路电阻(27)与地之间,从旁路电阻(27)与谐振机构(28)之间的连接点取出振荡信号。从而提供一种能在取出振荡信号的阶段,有效地抑制高次谐波、尤其是大小比较大的二次谐波的振荡电路。

Description

振荡电路
技术领域
本发明涉及输出抑制了二次谐波的振荡信号的振荡电路。
背景技术
现有的振荡电路如图5所示,具备:控制(control)端子C;输出端子P;根据施加在控制端子C上的控制电压Vc而改变谐振频率的谐振电路1;决定该谐振电路1的谐振频率的振荡频率的振荡段2;以及输出匹配段4,其用于放大从振荡段2输出的信号,并取得缓冲段3和与输出段P连接的次段电路之间的匹配,同时抑制高次谐波。所述缓冲段3用于防止由负载变动而引起的振荡频率的变动。
谐振电路1具备:耦合电容器(coupling capacitor)C1;可变电容二极管(diode)VD;谐振电感L1;谐振用电容器(capacitor)C2。施加在控制端子C上的控制电压Vc,介由扼流圈(choke coil)L2,提供给可变电容二极管VD。控制端子C,由高频旁路电容器C3高频接地。
振荡段12具备:振荡用晶体管Q1;旁路电阻R1~R3;科耳皮兹(Colpitts)电容C4、C5;高频旁路电容器C6;与旁路电阻R3串联的微带线(microstrip line)SL;与微带线SL并联的芯片电容器Cc。振荡段12,介由耦合电容器C7与谐振电路1连接。旁路电阻R3,规定作为振荡用晶体管Q1的电路输出端子的发射极(emitter)的直流偏置量。芯片电感器(chip inductor)L1具有,在振荡频带中成为比旁路电阻R3足够大的阻抗的电感。微带线SL和芯片电容器Cc形成并联谐振电路21。
缓冲段3具备缓冲用晶体管Q2、旁路电阻R4、R5。缓冲段3,介由耦合电容器C8与振荡段12连接。输出匹配段4,具备扼流圈L3、耦合电容器C10、高频旁路电容器C11和输出端子P。驱动用电源端子B,通过高频旁路电容器C12接地。
现有的振荡电路,具有由输出匹配段4抑制高次谐波的结构,但从振荡用晶体管Q1的发射极输出的振荡信号中所包括的高次谐波大小(level)较大时,不能充分抑制该高次谐波。
发明内容
本发明提供一种能在输出振荡信号的阶段有效地抑制高次谐波尤其是大小较大的二次谐波的振荡电路。
第一解决方案,具备:振荡晶体管,其集电极或者基极被高频接地;和旁路电阻,其将所述振荡晶体管的发射极直流接地,将振荡频率中阻抗最大的谐振机构介插于所述旁路电阻与地之间,从所述旁路电阻与所述谐振机构之间的连接点,取出振荡信号。
此外,第2解决方案,所述谐振机构,由电感元件与电容元件的并联电路构成。
此外,第3解决方案,振荡晶体管,其集电极或者基极被高频接地;和旁路电阻,其将所述振荡晶体管的发射极直流接地,将振荡频率中阻抗最大的谐振机构介插于所述旁路电阻与地之间,从所述旁路电阻与所述谐振机构之间的连接点,取出振荡信号,所述谐振机构,由第1电感元件与电容元件的并联电路,以及与所述并联电路串联的第2电感元件构成,在所述振荡频率的两倍频率下进行串联谐振。
此外,第4解决方案,具备:振荡晶体管,其集电极或者基极被高频接地;和旁路电阻,其将所述振荡晶体管的发射极直流接地,将振荡频率中阻抗最大的谐振机构介插于所述旁路电阻与地之间,从所述旁路电阻与所述谐振机构之间的连接点,取出振荡信号,所述谐振机构,由第1电感元件与电容元件的串联电路,以及与所述串联电路并联的第2电感元件构成,在所述振荡频率的两倍频率下进行串联谐振。
此外,第5解决方案,所述谐振机构,由具有与所述振荡频率对应的波长的1/4的长度的微带线构成。
根据第1解决方案,由于具备:振荡晶体管,其集电极或者基极被高频接地;和旁路电阻,将所述振荡晶体管的发射极直流接地,将振荡频率中阻抗最大的谐振机构介插于所述旁路电阻与地之间,从旁路电阻与谐振机构之间的连接点,取出振荡信号,因此取出对高次谐波进行抑制的振荡信号的同时,也能够改善振荡信号的C/N。
此外,根据第2解决方案,由于将谐振机构用电感元件与电容元件的并联电路构成,因此以简单的构成输出对高次谐波进行抑制的振荡信号的同时,也能够改善振荡信号的C/N。
此外,根据第3解决方案,由于将谐振机构用第1电感元件与电容元件的并联电路以及与并联电路串联的第2电感元件构成,因此能够取出对二次谐波进行抑制的振荡信号,同时改善振荡信号的C/N。
此外,根据第4解决方案,由于将谐振机构用第1电感元件与电容元件的串联电路以及与串联电路并联连接的第2电感元件构成,因此能够取出对二次谐波进行抑制的振荡信号,同时也改善振荡信号的C/N。
此外,根据第5解决方案,由于将谐振机构用具有与振荡频率对应的波长的1/4的长度的微带线构成,因此不使用专用的电路部件,而能取出对二次谐波进行抑制的振荡信号,同时也能改善振荡信号的C/N。
附图说明
图1是表示本发明的振荡电路的第1实施方式的构成的电路图。
图2是表示本发明的振荡电路的第2实施方式的构成的电路图。
图3是表示本发明的振荡电路的第3实施方式的构成的电路图。
图4是表示本发明的振荡电路的第4实施方式的构成的电路图。
图5是表示现有振荡电路的构成的电路图。
图中:21—振荡晶体管;22、33—旁路电容器;23、24—反馈电容器;25、26—基极旁路电阻;27—发射极旁路电阻;28—谐振机构;28a—电感元件;28b、28d、28g—电容元件;28c、28f—第1电感元件;28e、28h—第2电感元件;29—谐振电路;29a—变容二极管;29b—微带线(microstripline);30—耦合电容器;31—扼流电感线圈;32—控制端子;34—耦合电容器;35—缓冲放大器。
具体实施方式
根据图1至图4,对本发明的振荡电路进行说明。图1表示第1实施方式,图2表示第2实施方式,图3表示第3实施方式,图4表示第4实施方式,但图1至图4中与本发明的振荡电路一起也表示了缓冲放大器。
首先,在图1中,振荡晶体管21的集电极与电源B连接,同时通过旁路电容器22被高频接地,在基极与发射极之间连接有反馈电容器23。在发射极与集电极(接地)之间连接有反馈电容器24。此外,在基极,从被串联连接的两个基极旁路电阻25、26的连接点施加偏置电压。发射极与发射极旁路电阻27的一端连接,该发射极旁路电阻27的另一端,介由在振荡频率下阻抗最大的谐振机构28接地。谐振机构28由电感元件28a、电容元件28b和并联电路构成。从而,该谐振机构28构成并联谐振电路,使其并联谐振频率与振荡频率一致。
振荡晶体管21的基极与集电极(接地)之间,耦合有谐振电路29。即,谐振电路29具有,阳极接地的变容二极管(varactor diode)29a,和一端接地的微带线29b,变容二极管29a的阴极通过电容器29c与微带线29b的另一端耦合,微带线29b的另一端通过耦合电容器30与振荡晶体管21的基极耦合。
变容二极管29a的阴极介由扼流电感线圈(choke inductor)31与控制端子32连接。控制端子32,通过旁路电容器(bypass capacitor)33被高频接地。而且,从控制端子32,对变容二极管29a的阴极施加控制电压,由此变容二极管29a的电容值变化,振荡频率也变化。
振荡信号从发射极旁路电阻27与谐振机构28之间的连接点输出,介由耦合电容器34供给缓冲放大器35。在缓冲放大器(buffer amplifier)34的输出侧,例如连接有用于对振荡信号的高次谐波进行抑制的电路。
在以上的结构中,振荡晶体管21的发射极中出现的振荡信号,通过发射极旁路电阻27与谐振机构28分压,但由于在振荡频率中谐振机构28的阻抗最大(理想状态下为无限大),因此从发射极旁路电阻27与谐振机构28之间的连接点输出的振荡信号的基本波几乎没有被衰减。但是,如果频率高,则谐振机构28的阻抗就降低,因此能够取出抑制高次谐波的振荡信号。此外,由于基本波在发射极旁路电阻27中不流动,因此在此没有损耗,振荡信号的C/N变大。
图2中所示的谐振机构,由第1电感元件28c和电容元件28d并联的电路,以及与该并联电路串联连接的第2电感元件28e构成。从而,该谐振机构28,具有并联谐振频率和比该频率高的串联谐振频率。并且,使并联谐振频率与振荡频率一致,使串联谐振频率与高次谐波(例如二次谐波)的频率一致。从而,能够取出最大限地对二次谐波进行抑制了的振荡信号。
图3中所示的振荡机构28,由第1电感元件28f和电容元件28g的串联电路,以及与该串联电路并联的第2电感元件28h构成。从而,该谐振机构28也具有并联谐振频率和比该频率高的串联谐振频率。并且,使并联谐振频率与振荡频率一致,使串联谐振频率与高次谐波(例如二次谐波)的频率一致。从而,能够取出最大限地对二次谐波进行抑制的振荡信号。
图4中所示的谐振机构28,不使用专用的电路部件,而由微带线构成。微带线的长度,被设定为与振荡频率对应的波长的1/4。因此,从发射极旁路电阻27与微带线之间的连接点来看接地侧的阻抗,在理想的状态下为无限大。另一方面,对二次谐波来说,具有1/2波长的长度,因此阻抗为0。由此,能够不使振荡信号的基本波衰减,而使二次谐波衰减。
还有,在图2至图4中,振荡机构28以外的结构相同。此外,图1至图4中,虽然以集电极接地方式的振荡电路进行说明,但也可适用于基极接地方式中。

Claims (2)

1、一种振荡电路,
具备:
振荡晶体管,其集电极或者基极被高频接地;和
旁路电阻,其将所述振荡晶体管的发射极直流接地,
将在振荡频率下阻抗最大的谐振机构介插于所述旁路电阻与地之间,
从所述旁路电阻与所述谐振机构之间的连接点,取出振荡信号;
所述谐振机构,由第1电感元件与电容元件的并联电路以及与该并联电路串联的第2电感元件构成,在所述振荡频率的两倍频率下进行串联谐振。
2、一种振荡电路,
具备:
振荡晶体管,其集电极或者基极被高频接地;和
旁路电阻,其将所述振荡晶体管的发射极直流接地,
将在振荡频率下阻抗最大的谐振机构介插于所述旁路电阻与地之间,
从所述旁路电阻与所述谐振机构之间的连接点,取出振荡信号;
所述谐振机构,由第1电感元件与电容元件的串联电路以及与该串联电路并联的第2电感元件构成,在所述振荡频率的两倍频率下进行串联谐振。
CN200610067889.0A 2005-03-15 2006-03-14 振荡电路 Expired - Fee Related CN100481709C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005073693 2005-03-15
JP2005073693A JP2006261823A (ja) 2005-03-15 2005-03-15 発振回路

Publications (2)

Publication Number Publication Date
CN1835386A CN1835386A (zh) 2006-09-20
CN100481709C true CN100481709C (zh) 2009-04-22

Family

ID=36088375

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200610067889.0A Expired - Fee Related CN100481709C (zh) 2005-03-15 2006-03-14 振荡电路

Country Status (4)

Country Link
US (1) US7369007B2 (zh)
EP (1) EP1703631A1 (zh)
JP (1) JP2006261823A (zh)
CN (1) CN100481709C (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200849813A (en) * 2007-06-13 2008-12-16 Richwave Technology Corp Noise filter
US9106179B2 (en) * 2011-03-18 2015-08-11 Freescale Semiconductor Inc. Voltage-controlled oscillators and related systems
US8912854B2 (en) * 2013-01-04 2014-12-16 International Business Machines Corporation Structure for an inductor-capacitor voltage-controlled oscillator
CN110510796A (zh) * 2019-09-15 2019-11-29 北京航天国环技术有限公司 一种废乳液的处理方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08148933A (ja) * 1994-11-22 1996-06-07 Murata Mfg Co Ltd 電圧制御型発振器
US5856763A (en) * 1997-03-05 1999-01-05 Motorola Inc. Dual frequency voltage controlled oscillator
US6326854B1 (en) * 1999-09-30 2001-12-04 Nortel Networks Limited Coaxial resonator and oscillation circuits featuring coaxial resonators
JP3740977B2 (ja) * 1999-12-22 2006-02-01 株式会社村田製作所 電圧制御発振器、及び、これを用いた電子装置
JP3689642B2 (ja) * 2001-03-22 2005-08-31 アルプス電気株式会社 テレビジョンチューナ用中間周波結合回路
US6593819B2 (en) * 2001-04-28 2003-07-15 Cts Corporation Low phase noise dual band voltage controlled oscillator
JP4281365B2 (ja) * 2003-01-21 2009-06-17 パナソニック株式会社 高周波信号受信装置

Also Published As

Publication number Publication date
JP2006261823A (ja) 2006-09-28
US7369007B2 (en) 2008-05-06
EP1703631A1 (en) 2006-09-20
CN1835386A (zh) 2006-09-20
US20060208819A1 (en) 2006-09-21

Similar Documents

Publication Publication Date Title
CN106877819B (zh) 基于复合型谐振器的压控振荡器
US5231361A (en) Voltage controlled push-push oscillator with parallel resonant tank circuits
CN100481709C (zh) 振荡电路
KR100462086B1 (ko) 발진기
KR100457939B1 (ko) 고주파 수정발진기
CN101212200B (zh) 振荡器
CN101908857B (zh) 低噪声电压控制振荡电路
KR100759508B1 (ko) 귀환루프를 갖는 고주파 발진 회로
KR100731975B1 (ko) 주파수 체배를 위한 커패시터 공통단자를 이용한 발진기코어
JPH036107A (ja) 電圧制御発振器
EP1777808A1 (en) High frequency Colpitts oscillation circuit
CN113872527B (zh) 一种泛音温补晶体振荡器及电子设备
CN210297638U (zh) 一种稳定恒流偏置cascode mmic vco
KR100389106B1 (ko) 발진기
JP2591380B2 (ja) 発振器
CN110417352B (zh) 一种稳定恒流偏置cascode mmic vco
KR100447743B1 (ko) 복수의 공진기를 포함하는 전압제어 발진 장치
US9077281B2 (en) Oscillator circuit
CN110266308B (zh) 一种压控振荡器电路及芯片
US20020000888A1 (en) Low phase noise variable frequency oscillator
KR101527291B1 (ko) 광대역 lc 전압제어 발진기
US6549084B1 (en) Low phase noise variable frequency oscillator
JP4435637B2 (ja) 逓倍型の水晶発振器
Wessendorf High-frequency voltage-controlled-oscillator for use with inverted-mesa quartz resonators
JPH0666583B2 (ja) 高c/n発振回路

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090422

Termination date: 20110314