CN100469916C - 激光烧结制备镁基储氢合金及其复合材料的方法 - Google Patents

激光烧结制备镁基储氢合金及其复合材料的方法 Download PDF

Info

Publication number
CN100469916C
CN100469916C CNB2007100211642A CN200710021164A CN100469916C CN 100469916 C CN100469916 C CN 100469916C CN B2007100211642 A CNB2007100211642 A CN B2007100211642A CN 200710021164 A CN200710021164 A CN 200710021164A CN 100469916 C CN100469916 C CN 100469916C
Authority
CN
China
Prior art keywords
alloy
biscuit
laser
preparation
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2007100211642A
Other languages
English (en)
Other versions
CN101029358A (zh
Inventor
张庆安
袁晓敏
斯庭智
柳东明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Technology AHUT
Original Assignee
Anhui University of Technology AHUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Technology AHUT filed Critical Anhui University of Technology AHUT
Priority to CNB2007100211642A priority Critical patent/CN100469916C/zh
Publication of CN101029358A publication Critical patent/CN101029358A/zh
Application granted granted Critical
Publication of CN100469916C publication Critical patent/CN100469916C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明提供一种激光烧结制备镁基储氢合金及其复合材料的方法。本发明方法主要是:通过球磨机球磨将单质金属或贮氢合金粉末混合均匀;混合合金素坯的压制工艺选择,加载压力为20-30MPa,保压时间为30秒最佳;选定激光烧结工艺:用CO2激光器,激光功率为:500-1600W,扫描速率为100-120mm/min,光斑直径为3-5mm,烧结过程中通循环水冷却。该方法能解决普通烧结制备镁基储氢合金及其复合材料耗时、耗能、成本高、产量低的缺点,具有烧结时间大大缩短,能耗低,组织均匀细小并可设计的特点,从而降低制备成本,并且提高镁基储氢合金及其复合材料的性能。

Description

激光烧结制备镁基储氢合金及其复合材料的方法
技术领域:
本发明属于激光技术、粉末冶金技术和储氢技术领域,具体涉及一种激光烧结制备镁基储氢合金及其复合材料的方法。
背景技术:
随着世界上能源危机和环境恶化,氢能作为一种新型的清洁能源越来越受到人们的关注。与氢能技术休戚相关的储氢材料倍受各国重视,储氢材料的成分设计、相设计直接关系到其储氢性能的优劣。不同的储氢合金相具有不同的储氢、电化学、热力学等性能。为了发挥多种合金相的综合性能,目前多元合金化是得到多相储氢合金的主要手段[Q.A.Zhang,et.al.Int.J.of Hydrogen Energy.2000,25(7):657.],但它在很大程度上受到合金体系以及替代元素的限制。机械球磨也是得到多相储氢合金的手段之一[A.Zaluska,et.al.Appl.Phys.A2001,72:157.],但在球磨过程中材料容易非晶化和受到不锈钢磨球的污染,并且球磨时间过长,耗时耗能。传统的烧结方法虽然也经常被人们用来制备多相储氢合金[J.Chen,et al,J.Alloys Comps.,2000,302:304.],但耗时太长能耗太大,烧结一周甚至达一月之久,并且在烧结过程中储氢材料易于氧化;故烧结工艺不易控制,造成制备成本增加。
金属镁作为一种储氢材料具有密度小、贮氢容量高(7.6wt.%)和资源丰富、价格低廉等优点。因此镁系储氢合金是很有发展前途的贮氢材料之一。但Mg具有低的熔点(650℃),故通过熔炼或普通烧结的方法都存在烧损大且工艺不易控制的特点。激光烧结是最近发展起来的一种新工艺,它是一种极快的烧结模式,基本不受材料体系的控制,因此是一种先进的材料制备方法。由于储氢合金具有多样性,分别具有不同的熔点以及对激光具有不同的能量吸收、热传导、热膨胀等特性。故在理论上采用激光液相或半固相烧结储氢合金和复合材料切实可行。对于Mg基储氢合金及其复合材料采用激光烧结,由于激光烧结功率集中、时间短;因此,Mg的烧损少、工艺简单易控。激光烧结具有快速加热和冷却的特点,烧结的材料组织得到细化并引入大量的缺陷,这些都增加储氢材料的吸放氢表面从而改善吸放氢热力学和动力学性能。此外通过合金体系的选择可以实现复合材料组织的控制,制备具有储氢容量高的主相和催化性能好的第二相的“心/壳”组织。但激光烧结储氢合金存在复合材料体系设计、激光烧结工艺的选择、气体保护等技术难点,故到目前为止,国内和国际上尚没有人采用过激光烧结来制备多相复合储氢材料。
发明内容:
为了改善现有的镁基储氢合金及其复合材料制备方法的不足以及材料组织的可控设计,本发明提供一种镁基储氢合金及其复合材料制备的新方法,将激光烧结工艺成功地应用到Mg基储氢合金及其复合材料的制备。该方法基本不受储氢复合材料体系的控制,具有制备工艺简单,组织细小均匀可设计,大大缩短制备时间和降低能耗,从而大幅降低制备成本和提高制备产品质量。
本发明所提供的激光烧结制备镁基储氢合金及其复合材料的方法如下:按镁基储氢合金材料或其多组分的复合材料设计组分配比,称取金属粉末或合金粉末混合均匀,于粉末压力机中压制成素坯,将素坯放置在CO2激光器中进行烧结,激光烧结功率为500-1600W,扫描速度为100-120mm/min,光斑直径为3-5mm三道扫描成型,烧结时间为3-10s,产物为镁基储氢合金及其复合材料。
首先对于Mg-Ni二元合金或Mg-Ni-RE(稀土元素)三元合金组成的镁基储氢合金材料,其组分可以按照Mg-Ni二元合金的化学式进行配比制备Mg2Ni、MgNi和MgNi2等二元合金,或者按照Mg-Ni-RE(稀土元素)三元合金的化学式进行配比制备Mg-Ni-RE三元储氢合金。直接采用Mg粉和Ni粉,或者Mg粉、Ni粉和RE粉末于充满氩气的球磨罐中球磨混合2h;其中球料比为10:1,球磨机转速为200r/min。混合均匀的金属粉末于不锈钢磨具中20-30MPa保压30秒后压制成φ13×3mm的素坯,将素坯放入激光烧结室的石墨烧舟中激光烧结成型,烧结时通Ar气保护并通冷却水进行快速冷却。采用CO2激光器进行烧结,激光烧结功率为500-1600W,扫描速度为100-120mm/min,光斑直径为3-5mm三道扫描成型,烧结时间为3-10s。Mg-Ni二元合金和Mg-Ni-RE三元合金激光烧结时Mg单质的烧损随烧结功率的升高而增加,但烧损基本在5%以下,大大低于熔炼和普通烧结。
镁基储氢合金复合材料是有Mg或Mg-Ni二元合金或Mg-Ni-RE(稀土元素)三元合金与AB5、AB3、A2B7(A为稀土元素,B为Ni)中的一种或多钟储氢合金激光烧结制备成的复合材料。优选Mg2Ni、MgNi和MgNi2等二元合金或Mg-Ni-RE三元合金或单质Mg可以与储氢容量高且电化学性能好的AB5,AB3,A2B7(A为稀土元素,B为Ni)中的一种或多钟储氢合金激光烧结制备Mg基储氢复合材料。对于通过普通方法制备或直接购买的单相或多相储氢合金经破碎、球磨至300目,按储氢复合材料的成分设计比例称取合金粉末在行星式球磨机中球磨混合均匀后在不锈钢模具中压制成素坯待用。其中球磨混合和素坯的制备工艺参数与Mg基储氢合金的相同。根据材料体系的不同选定激光烧结工艺:采用CO2激光器进行烧结,激光烧结功率为:500-1600W,扫描速率为100-120mm/min,光斑直径为3-5mm三道扫描成型,烧结时间为3-10s,烧结时通Ar气保护并通冷却水进行快速冷却。根据合金的熔点的高低设计并通过激光烧结工艺的控制可以制备具有储氢容量高的主相和催化性能好的第二相的“心/壳”组织,以提高Mg基储氢复合材料的储氢及电化学性能。
本发明的有益效果是:
1、由于高能激光束对材料瞬时作用产生一相或几相的液相或半固相烧结从而快速制备冶金结合良好且性能优异的Mg基储氢合金及其复合材料。它区别于普通的烧结所需几小时、几天甚至几个月的烧结方式能在几秒到十几秒时间内烧结完成。
2、制备的镁基储氢合金及其复合材料体系广(包括Mg-Ni二元合金、Mg-Ni-RE三元合金等以及它们所形成的复合材料);Mg的烧损低并可有效控制;材料的组织可以优化设计,烧结的组织具有晶粒细小、缺陷多(空位和裂纹等),可有效控制制备具有储氢容量高的主相和催化性能好的第二相的“心/壳”组织,从而提高Mg基储氢复合材料的储氢及电化学性能。
3、激光烧结室装置设计简单价格低廉,同时其具有气体保护、激光束穿入和快速冷却等功能使激光烧结复合储氢材料具有产量大、能耗少、工艺简单、产品质量优异和节约保护气体等特点。
附图说明:
图1为镁基贮氢合金及其复合材料试样激光烧结室结构示意图。
图中,1:Ar气进气口,2:激光透射镜,3:激光束,4:试样,5:铜导热板,6:石墨烧舟,7:冷却水进水口,8:冷却水出水口,9:真空泵抽气口
图2为Mg-20wt.% LaNi5复合材料激光烧结X射线衍射图(经Rietvield软件进行拟合)。
图中,(线条)为计算值,(+)为测量值,衍射峰下面的竖条从上至下分别表示Mg,Mg2Ni,LaMg12和MgO相衍射峰的位置。
图3为LaNi5-30wt.% Mg2Ni复合材料激光烧结X射线衍射图(经Rietvield软件进行拟合)。
图中,(线条)为计算值,(+)为测量值,衍射峰下面的竖条从上至下分别表示LaNi4Mg,LaNi5,LaMg2Ni9和MgNi2相衍射峰的位置。
图4为LaNi5-30wt.% Mg2Ni复合材料激光烧结组织的背散射扫描照片图。
具体实施方式:
实施例1:金属Mg粉,纯度99.7%,粒度200目;Ni粉纯度为99.7%,粒度为200目。将一定重量摩尔比为1:1的Mg粉(对于Mg粉多添加5%的烧损)和Ni粉放入不锈钢罐中;不锈钢罐装在行星式球磨机中氩气保护球磨混合2小时(球料比为10:1);混合均匀的粉末于不锈钢磨具中30MPa保压30秒后压制成φ13×3mm素坯;将素坯放入烧结室的石墨烧舟中,用CO2激光器进行烧结。其中激光功率为1000W,扫描速率为120mm/min,光斑直径为3mm三道扫描成型,烧结时间约为8s,烧结过程中通循环水冷却;经激光烧结后可快速制备纯度高的Mg-Ni二元合金,其中Mg2Ni和MgNi2的含量达到95wt.%以上。
实施例2:金属Mg粉,纯度99.7%,粒度200目;熔炼的LaNi5合金于手套箱中研磨成300目的合金粉末。将重量比为4:1的Mg粉(对于Mg粉多添加5%的烧损)和LaNi5合金粉放入不锈钢罐中,;不锈钢罐装在行星式球磨机中氩气保护球磨混合2小时(球料比为10:1);混合均匀的粉末于不锈钢磨具中30MPa保压30秒后压制成φ13×3mm素坯;将素坯放入烧结室的石墨烧舟中,用CO2激光器进行烧结。其中激光功率为800W,扫描速率为120mm/min,光斑直径为5mm三道扫描成型,烧结时间约为6s,烧结过程中通循环水冷却;经激光烧结后可快速制备纯度高的La-Mg-Ni复合材料,其中复合材料主要由Mg、Mg2Ni和LaMg12组成(图2为Mg-20wt.% LaNi5复合材料激光烧结X射线衍射图)。其储氢性能与普通烧结相当,但烧结时间大大缩短,工艺要求低可实现工业化生产。
实施例3:电磁熔炼或直接购买Mg2Ni和LaNi5合金于手套箱中研磨成100目的合金粉末。将重量比为9:1到7:3的LaNi5和Mg2Ni合金粉放入不锈钢罐中,;不锈钢罐装在行星式球磨机中氩气保护球磨混合2小时(球料比为10:1);混合均匀的粉末于不锈钢磨具中20MPa保压30秒后压制成φ13×3mm素坯;将素坯放入烧结室的石墨烧舟中,用CO2激光器进行烧结。其中激光功率为500W,扫描速率为120mm/min,光斑直径为3mm三道扫描成型,烧结时间为10s,烧结过程中通循环水冷却;经激光烧结后可快速制备纯度高的La-Mg-Ni三元合金复合材料,其中复合材料主要由Mg2Ni、LaNi5、LaNi4Mg和LaMg2Ni9合金组成(图4为LaNi5-30wt.% Mg2Ni复合材料激光烧结X射线衍射图)。由于复合材料合金相的熔点不同故可实现高熔点相的“心”(LaNi5)和低熔点相的“壳”(Mg2Ni、LaNi4Mg和LaMg2Ni9)所组成的“心/壳”组织(图5为LaNi5-30wt.% Mg2Ni复合材料激光烧结组织图)。复合材料具有放电容量高,活化次数少,循环稳定的电化学性能。

Claims (6)

1、激光烧结制备镁基储氢合金及其复合材料的方法,其特征在于该制备方法如下:按镁基储氢合金材料或其多组分的复合材料设计组分配比,称取金属粉末或合金粉末混合均匀,于粉末压力机中压制成素坯,将素坯放置在CO2激光器中进行烧结,激光烧结功率为500-1600W,扫描速度为100-120mm/min,光斑直径为3-5mm三道扫描成型,烧结时间为3-10s,产物为镁基储氢合金或镁基储氢合金的复合材料。
2、根据权利要求1所述的制备方法,其特征在于所述的镁基储氢合金材料是Mg-Ni二元合金或Mg-Ni-RE三元合金,其中所述的RE为稀土元素。
3、根据权利要求1所述的制备方法,其特征在于所述的镁基储氢合金复合材料是由Mg或Mg-Ni二元合金或Mg-Ni-RE三元合金与AB5、AB3、A2B7中的一种或多钟储氢合金激光烧结制备成的复合材料,复合物的原始材料的熔点应具有一定的温差,其中所述的RE为稀土元素,所述的A为稀土元素,所述的B为Ni。
4、根据权利要求1所述的制备方法,其特征在于所述的金属粉末或合金粉末混合均匀是通过以下方式进行:置于充满氩气的不锈钢球磨罐中球磨混合2小时,其中球料比为10:1,球磨机转速为200r/min。
5、根据权利要求1所述的制备方法,其特征在于所述的素坯是通过以下方式压制:将混合均匀的金属粉末或合金粉末于不锈钢磨具中20-30MPa保压30秒后压制成ф13×3mm素坯。
6、根据权利要求1所述的制备方法,其特征在于所述的素坯放置在CO2激光器中进行烧结,其方式是将素坯放入烧结室的石墨烧舟中,用CO2激光器进行烧结,烧结时Ar气保护并通冷却水进行快速冷却。
CNB2007100211642A 2007-04-02 2007-04-02 激光烧结制备镁基储氢合金及其复合材料的方法 Expired - Fee Related CN100469916C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2007100211642A CN100469916C (zh) 2007-04-02 2007-04-02 激光烧结制备镁基储氢合金及其复合材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2007100211642A CN100469916C (zh) 2007-04-02 2007-04-02 激光烧结制备镁基储氢合金及其复合材料的方法

Publications (2)

Publication Number Publication Date
CN101029358A CN101029358A (zh) 2007-09-05
CN100469916C true CN100469916C (zh) 2009-03-18

Family

ID=38714907

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007100211642A Expired - Fee Related CN100469916C (zh) 2007-04-02 2007-04-02 激光烧结制备镁基储氢合金及其复合材料的方法

Country Status (1)

Country Link
CN (1) CN100469916C (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683653A (zh) * 2011-03-09 2012-09-19 中国科学院长春应用化学研究所 复合贮氢合金及镍氢蓄电池
CN105514399A (zh) * 2015-12-21 2016-04-20 宁波高新区锦众信息科技有限公司 一种镍氢二次电池用镁基储氢合金及其制备方法
CN108428872A (zh) * 2018-03-23 2018-08-21 陈红梅 一种高镍三元锂电池电极材料及制备方法
CN108326290B (zh) * 2018-04-26 2021-01-22 包头昊明稀土新电源科技有限公司 稀土新电源用贮氢合金及其制备方法
CN108754199A (zh) * 2018-06-29 2018-11-06 黑龙江工程学院 一种激光烧结辅助制备高强变形稀土镁合金方法及设备
CN110681869B (zh) * 2019-10-15 2021-08-03 上海交通大学 选区激光熔化增材制造技术制备高强韧镁稀土合金的方法
CN111996435B (zh) * 2020-08-31 2021-09-28 重庆理工大学 高熵合金复合粉末及超高速激光熔覆强化镁合金的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
激光烧结三种铁基粉末压坯的初步研究. 郭作兴.应用激光,第19卷第2期. 1999 *

Also Published As

Publication number Publication date
CN101029358A (zh) 2007-09-05

Similar Documents

Publication Publication Date Title
CN100469916C (zh) 激光烧结制备镁基储氢合金及其复合材料的方法
CA2242555C (en) Nanocrystalline composite for hydrogen storage
Li et al. Characterization of Mg–20 wt% Ni–Y hydrogen storage composite prepared by reactive mechanical alloying
JP5152822B2 (ja) Mg−M−H系水素吸蔵合金及びその製造方法
CN105063457B (zh) 一种纳米石墨复合的高容量RE‑Mg‑Ni基贮氢材料及其制备方法
CN107338385A (zh) 一种体心立方结构为主的储氢高熵合金及其制备方法
US6328821B1 (en) Modified magnesium based hydrogen storage alloys
CN103317128A (zh) 一种Mg-Ni-La基复合储氢合金粉及其制备方法
Park et al. Effect of Fe substitution on first hydrogenation kinetics of TiFe-based hydrogen storage alloys after air exposure
CN102277508A (zh) 镁基储氢合金的制备方法
Kazemipour et al. Hydrogen storage properties of Ti0. 72Zr0. 28Mn1. 6V0. 4 alloy prepared by mechanical alloying and copper boat induction melting
CN110656272B (zh) 一种基于高熵效应的镁基贮氢材料及其制备方法
Wang et al. The hydrogenation properties of Mg1. 8Ag0. 2Ni alloy
CN102576919B (zh) 储氢合金组合物的制造方法
Park et al. On the first hydrogenation kinetics and mechanisms of a TiFe0. 85Cr0. 15 alloy produced by gas atomization
Ma et al. Enhanced hydrogen storage properties of ZrTiVAl 1− x Fe x high-entropy alloys by modifying the Fe content
CN110629091A (zh) 一种燃料电池用高容量多相贮氢合金及其制备方法
Konstanchuk et al. Interaction of alloys and intermetallic compounds obtained by mechanochemical methods with hydrogen
Han et al. Effect of yttrium content on microstructure and hydrogen storage properties of TiFe-based alloy
CN108097947B (zh) 一种高容量Mg-Zn-Ni三元贮氢合金及其制备方法
Zhao et al. Microstructure and hydrogen storage properties of Zr-based AB2-type high entropy alloys
Liu et al. Regulating the microstructure and hydrogen storage properties of Ti23V40Mn37+ 10 wt% ZrNi alloys via ultrasonic treatment
CN107099724B (zh) 纳米三氟化钛催化Mg-RE-Ni-Al-Ti-Co基贮氢合金的制备方法
CN103633339A (zh) 一种纳米CeO2催化的高容量RE-Mg-Ni基贮氢合金及其制备方法
Li et al. Synthesis and dehydrogenation behavior of Mg–Fe–H system prepared under an external magnetic field

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090318

Termination date: 20120402