CN100443822C - 热泵热水器 - Google Patents

热泵热水器 Download PDF

Info

Publication number
CN100443822C
CN100443822C CNB2006100659122A CN200610065912A CN100443822C CN 100443822 C CN100443822 C CN 100443822C CN B2006100659122 A CNB2006100659122 A CN B2006100659122A CN 200610065912 A CN200610065912 A CN 200610065912A CN 100443822 C CN100443822 C CN 100443822C
Authority
CN
China
Prior art keywords
water
hot
temperature
heat exchanger
defrosting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006100659122A
Other languages
English (en)
Other versions
CN1837707A (zh
Inventor
远藤和广
权守仁彦
高木纯一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Publication of CN1837707A publication Critical patent/CN1837707A/zh
Application granted granted Critical
Publication of CN100443822C publication Critical patent/CN100443822C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/54Water heaters for bathtubs or pools; Water heaters for reheating the water in bathtubs or pools
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/12Hot water central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

本发明要解决的问题是,在开始运转时能够一边从热水贮存罐供应热水,一边直接供应加热的热水的热泵热水器中,在冬季外部空气温度低时,当进行对浴槽注入热水等长时间的运转时,因空气换热器结霜而延长下次开始运转时所需要的热水贮存罐贮存热水运转的时间,有可能在此期间影响到热水的使用。本发明的热泵热水器,检测空气换热器的温度,设定除霜开始温度及比除霜开始温度低的必需除霜温度,当处于除霜开始温度与必需除霜温度之间时,在完成热水贮存罐贮存热水运转后进行除霜运转,然后停止运转;当在必需除霜温度以下,在进行警示的同时,优先进行除霜运转后进行热水贮存罐贮存热水运转,然后停止运转。

Description

热泵热水器
技术领域
本发明涉及热泵热水器在低温情况下结霜时,改善使用的便利性。
背景技术
原有的热泵热水器一般为贮存热水方式,即:与电气热水器相同,配备300L~500L的大容量热水贮存罐,使用价格便宜的夜间低谷电价的电力在夜间进行热泵运转,将水加热后贮存于热水贮存罐,在白天使用上述贮存的热水。
近年来,提出了一种即热式热泵热水器的技术方案,它通过设置在运转开始时从热水贮存罐供应热水的热水贮存罐供应热水回路和直接供给通过热泵运转加热的热水的直接供应热水回路,在由水龙头等用水末端使用热水时,随时进行热泵运转,将加热后的热水直接供给到用水末端。
在日本特开2003-240339号公报(专利文献1)中公开了一种这样的即热式热泵热水器。
热水贮存罐内的热水是在运转开始时使用的热水,供应热水停止后,如果热水贮存罐内的热水温度降低,则对热泵循环进行的运转,在热水贮存罐内的热水达到预定温度后停止运转。
在专利文献1所公开的热泵热水器中,在冬季低温情况下进行供应洗澡热水(热水注入)等长时间的热泵运转时,虽与外部空气温度也有关,但在空气换热器的整个表面上会结霜。在这种情况下,在停止供应热水后如果进行热水贮存罐内热水补充加热的热水贮存罐内的贮存热水运转,因为空气换热器的结霜,处于加热能力低的状态,因此热水贮存罐的贮存热水运转需要很长的时间。而且,当没有充分的补充加热热水贮存罐内的热水就开始随后的供应热水时,就有可能对供应热水带来故障。
也就是说,在通过外部空气集热的空气换热器结霜的状态下,当进行热水贮存罐的贮存热水运转时,则结霜愈加严重而形成结冰状态。那样会进一步降低空气换热器的性能,即使从供应洗澡热水至热水贮存罐内的补充加热,连续地进行热泵运转,也会使加热能力显著降低。
比如,冬季外部空气温度在低温时,完成供应洗澡热水后,当在短时间内使用喷淋时,空气换热器将处于结霜状态,容易发生热水量不足或者供应的热水温度低的情况。
发明内容
本发明的目的在于提供一种热泵热水器,它可以将结霜而对加热能力降低的影响控制在最小限度、以提高使用的方便性。
为解决上述问题,本发明的热泵热水器检测空气换热器的温度,预先设定表示因结霜而需要除霜运转的状态的除霜开始温度、以及比除霜开始温度低的必需除霜温度。必需除霜温度使指结霜有相当程度的堆积,如果不优先进行除霜运转则加热能力将处于明显降低状态的温度。
本发明的热泵热水器为具有设定有这些除霜开始温度、必需除霜温度的热水贮存罐的热泵热水器,通过温度来判别冬季低温时空气换热器的结霜状态,通过进行适合于结霜状态的运转控制来达成上述目的。
本发明第一方案的热泵热水器,具有:热泵制冷剂回路,该热泵制冷剂回路通过制冷剂管道依次将压缩机、供给的水与制冷剂进行换热的水-制冷剂换热器、减压装置、进行空气与制冷剂的换热的空气换热器连接而成;供应热水回路,该供应热水回路由上述水-制冷剂换热器、用于贮存由水-制冷剂换热器加热了的热水的热水贮存罐、冷热水混合阀、流量调节阀、以及连接上述部件的水管组成;控制装置,该控制装置预先设定上述空气换热器的除霜开始温度以及比此除霜开始温度低的必需除霜温度,当上述空气换热器的温度在上述除霜开始温度与上述必需除霜温度的范围内时,供应热水运转停止后,在完成向热水贮存罐贮存热水后进行上述空气换热器的除霜;当上述空气换热器的温度比必需除霜温度低时,供应热水运转停止后,在完成上述空气换热器的除霜后向热水贮存罐贮存热水。
这样,通过温度判别空气换热器的结霜状态,除了通常的结霜状态的除霜开始温度以外,设定立刻需要除霜运转的必需除霜温度,根据空气换热器的温度改变对除霜的控制。具体的,通过设置改变除霜运转开始时间的控制装置,使用者可以不必考虑怎样去做,就能够进行适合于结霜状态的运转控制,可以提高在冬季低温时的使用方便性。
本发明第二方案的热泵热水器是在第一方案的基础上,上述供应热水回路具有将由水-制冷剂换热器加热了的热水直接供给到用水末端的直接供应热水回路和从热水贮存罐向用水末端供应热水的热水贮存罐供应热水回路。通过热水贮存罐供应热水,可以弥补热泵开始运转时的加热延迟,可以通过使热水贮存罐大幅度小型化而实现热水贮存单元与热泵单元的一体化,能够更显著地提高第一方案的即热式热泵热水器的效果。
本发明第三方案的热泵热水器是在第一方案的基础上,因为上述必需除霜温度为与外部空气温度相对应地设定的多个温度,一般地因外部空气温度越低其绝对湿度也越低,空气换热器的结霜量也会减少,所以,通过将必需除霜温度设定为与外部空气温度相对应的较低温度,能够进行适合于结霜量的运转控制,不会优先地进行非紧急的除霜运转,可提供使用更加方便的除霜必要控制装置。
本发明第四方案的热泵热水器是在第一方案的基础上,因为上述除霜必要控制装置在达到必需除霜温度时,通过文字显示或者文字的闪烁来进行警示,使用者可以通过视觉明白处于因为结霜量多而需要优先进行除霜运转的状态,即使供应热水量减少,也不必为此而担心,同时可以采取稍微推迟使用热水等对策。
本发明第五方案的热泵热水器是在第一方案的基础上,因为上述除霜必要控制装置在达到必需除霜温度时,通过声音来进行警示,使用者可以通过声音明白处于因为结霜量多而需要优先进行除霜运转的状态,即使不看厨房遥控器等的显示,也能方便地进行判断,可以消除对供应热水量的减少的不安感,并可以采取稍微推迟使用热水等对策。
根据本发明,能够消除使用者的不安感,可提高冬季低温时的使用方便性。
附图说明
图1是表示本发明的热泵热水器的热泵制冷剂回路、供应热水回路、运转控制装置以及部件的大致结构的一个实施例的示意图。
图2是表示本发明的热泵热水器的安装以及管道连接时的确认动作的一个实施例的流程图。
图3是表示本发明的热泵热水器在热水贮存罐贮存热水运转时的动作的一个实施例的流程图。
图4是表示本发明的热泵热水器的使用热水时的动作的一个实施例的流程图。
图5是表示本发明的热泵热水器的外部空气温度和空气换热器的温度以及除霜开始温度和必需除霜温度的设定值的一个实施例的温度线图。
图6是表示浴槽自动运转的浴槽内注入热水时的动作的一个实施例的流程图。
图7是表示浴槽自动运转的浴槽保温时的动作的一个实施例的流程图。
具体实施方式
下面,采用附图来说明本发明的实施例。
实施例1
图1所示的本发明的一个实施例的热泵热水器,具有热泵制冷剂回路30、供应热水回路40以及运转控制装置50。
热泵制冷剂回路30为各部件各有两个的双循环方式,通过制冷剂管道分别依次连接有压缩机1a、1b、配置在水-制冷剂换热器2上的制冷剂侧传热管2a、2b、减压装置3a、3b、空气换热器4a、4b,该制冷剂回路30内密封有制冷剂。
压缩机1a、1b能进行容量控制,进行大量的供应热水时以大容量运转。这里,压缩机1a、1b通过PWM控制、电压控制(比如PAM控制)以及这些控制方式的组合控制,来进行从低速(比如700转/分)到高速(比如7000转/分)的转数控制。
水-制冷剂换热器2具有制冷剂侧传热管2a、2b及供给冷水侧传热管2c、2d,制冷剂侧传热管2a、2b和供给冷水侧传热管2c、2d之间进行换热。
减压装置3a、3b一般使用电动膨胀阀,将经过水-制冷剂换热器2送来的中温高压制冷剂减压,作为易蒸发的低压制冷剂送至空气换热器4a、4b。另外,减压装置3a、3b还具有通过改变制冷剂通路的节流量来调节热泵回路内的制冷剂循环量的功能、和使节流量为最小、将大量的中温制冷剂送至空气换热器4a、4b来溶化结霜的除霜装置的作用。
空气换热器4a、4b设置在主体的外表面部分,通过风机(未图示)的通风来进行外部空气与制冷剂的换热,具有空气-制冷剂换热器的作用。
供应热水回路40具有用于进行直接供应热水、热水贮存罐贮存热水、热水贮存罐供应热水、对浴槽注入热水、洗澡水补充加热的水循环回路。
直接供应热水回路具有供给冷水管和供应热水管。供给冷水管与供给冷水管接头5、水-制冷剂换热器2的供给冷水侧传热管2c、2d连接,供给冷水管接头5和自来水管等作为装置外部的水源的供水管连接。供应热水管与水-制冷剂换热器2的供给冷水侧传热管2c、2d、厨房热水排出管接头15连接,该厨房热水排出管接头15通过管道与装置外部的一个热水排出末端的厨房水龙头16连接。
该供给冷水管的中途依次设置有减压阀6、对所供给的水的水量进行计量的供水水量传感器7、供水止回阀10、水热交换器水量传感器11。
供应热水管的中途依次设置有混合来自热水贮存罐8的热水的供应热水混合阀12、与供给冷水管的分支水管连接的冷热水混合阀13、调节排出的热水和冷水的流量的流量调节阀14。
减压阀6将比如由作为水源的自来水管供给的200~500kPa的不同程度的高水压控制为大约170kPa的适合使用的一定水压。供水止回阀10控制水只向一个方向流动,防止回流。
厨房热水排出管接头15除了连接到厨房水龙头16外,还能够向洗澡水龙头26和淋浴器27等供应热水。
热水贮存罐贮存热水回路通过水管将热水贮存罐8、热水器内循环泵9、水热交换器水量传感器11、供给冷水侧传热管2c、2d、供应热水混合阀12、热水贮存罐8依次连接而成。
热水贮存罐供应热水回路在上述供给冷水管和供应热水管的各自的中途分支而设置,热水贮存罐8通过水管在止回阀10的前后与供给冷水管连接,通过水管在供应热水混合阀12处与供应热水管连接。此回路主要是通过所供给的水的水压将存留在热水贮存罐8内的供应热水至供应热水管。
对浴槽注入热水回路的上述供给冷水管和至供给冷水侧传热管2c、2d的管路与直接供应热水回路是共用的。并且,供应热水管的流量调节阀14的前方为对浴槽注入热水管道,与热水排入/排出管接头20连接。通过水管依次将向浴槽22内注入热水时打开的洗澡热水注入阀17、检测水的流向的流向开关18、洗澡水循环泵19、热水排入/排出管接头20连接到对浴槽注入热水管道。而热水排入/排出管接头20及排出洗澡热水管接头24通过洗澡水循环转接器21与浴槽22连接。
并且,对浴槽注入热水时,在通过上述对浴槽注入热水回路直接供应热水的同时,在热水贮存罐8内的热水量不小于最小必要量的范围内,也从热水贮存罐8向浴槽22进行热水贮存罐供应热水。这里所谓最小必要量是指对浴槽注入热水完成之后为了淋浴而保留的热水贮存罐内热水保留量。
洗澡水补充加热回路通过水管将浴槽22、洗澡水循环转接器21、热水排入/排出管接头20、洗澡水循环泵19、流向开关18、洗澡水传热管23b、排出洗澡热水管接头24、洗澡水循环转接器21、浴槽22依次连接而成。
并且,洗澡水补充加热时,在通过上述洗澡水补充加热回路进行浴槽水的水循环的同时,进行热泵运转及热水器内循环泵9的运转,使由水-制冷剂换热器2加热的热水经过热水开关阀25循环至设置在洗澡水用换热器23上的热水传热管23a,在热水传热管23a和洗澡水传热管23b之间换热,进行洗澡水补充加热。
运转控制装置50在通过厨房遥控器51及浴槽遥控器52的设定操作进行热泵制冷剂回路30的运转和停止以及压缩机1a、1b的转数控制的同时,通过控制减压装置3a、3b的制冷剂节流量的调节、热水器内循环泵9、洗澡水循环泵19的运转和停止以及供应热水混合阀12、冷热水混合阀13、流量调节阀14、洗澡热水注入阀17、热水开关阀25,来进行热水贮存罐贮存热水运转、直接供应热水运转、热水贮存罐供应热水运转、对浴槽注入热水运转、洗澡水补充加热运转以及除霜运转。
运转控制装置50控制压缩机1a、1b的转数,运转刚开始时为了加快加热升温时间以高转数运转,稳定时以适合供应热水温度和流量的转数运转。
运转控制装置50具有每次进行热水贮存罐贮存热水运转装置,通过在用水末端停止使用热水后,进行完热水贮存罐贮存热水运转后停止运转,来控制热水贮存罐内经常处于保贮存有预定温度的热水的状态。
并且,停止供应热水后的热水贮存罐贮存热水运转不是每次都进行,可以基于热水贮存罐的热敏电阻8a~8d的温度来判断是否需要进行热水贮存罐贮存热水运转。
运转控制装置50具有除霜必需的控制装置,其用来经常检测外部空气温度及空气换热器4a、4b的温度,设定显示处于结霜状态的除霜开始温度、及显示必需立即进行除霜运转的必需除霜温度,在达到必需除霜温度以下时起动,进行在遥控器显示画面的文字显示、闪烁显示或者通过声音的警示以及进行优先除霜的运转控制。
也就是说,供应热水运转停止时,在空气换热器的温度高于除霜开始温度的情况下,完成供应热水后不进行除霜运转,而在进行热水贮存罐贮存热水运转后停止运转;在空气换热器的温度处于除霜开始温度和必需除霜温度的范围内时,完成供应热水后,进行热水贮存罐贮存热水运转后进行除霜运转,然后停止运转;在空气换热器的温度低于必需除霜温度的情况下,在进行文字显示或者闪烁显示或者通过声音的警示的同时,完成供应热水后先进行除霜运转,然后进行热水贮存罐贮存热水运转后停止运转。
并且,在除霜开始温度和必需除霜温度的范围内时,完成供应热水后,可以在热水贮存罐贮存预定量的热水后进行除霜,在除霜后,再进行热水贮存罐内剩余部分的热水贮存。这样,考虑到停止供应热水后再次供应热水的情况,能够在较短的时间内完成预定量的热水贮存罐贮存热水和除霜。
再有,在热泵热水器中还设置有:检测供给冷水温度的供给冷水热敏电阻7a,检测水-制冷剂换热器2的排出热水温度的水换热器热敏电阻2e,检测热水贮存罐8的贮存热水温度及热水贮存量的热水贮存罐热敏电阻8a、8b、8c、8d,检测通过热泵直接供给的热水和从热水贮存罐供给的热水贮存罐热水的混合温度的混合温度热敏电阻12a,检测供应热水温度的供应热水热敏电阻14a,检测浴槽水的温度的洗澡水热敏电阻18a以及检测空气换热器4a、4b的温度的空气换热器热敏电阻4c、4d,检测外部空气温度的空气热敏电阻(未图示)及检测压缩机1a、1b的出口压力的压力传感器1c、1d和检测浴槽22内的水位的水位传感器22a,各检测信号输入至运转控制装置50。运转控制装置50根据这些信号控制各设备。
冷热水开关阀25设置在水-制冷剂换热器2和洗澡水用换热器23之间,用于除洗澡水补充加热时以外关闭水回路,以防止热量从水-制冷剂换热器2向洗澡水用换热器23泄漏。
供水止回阀10控制水只向一个方向流动,防止逆流。溢流阀28在热水贮存罐8内的热水压力达到预定压力以上时起动,起水回路零部件的压力保护的作用。
下面,参照图1的热泵回路30及供应热水回路40,根据图2~图7的流程图对本热泵热水器的运转动作加以说明。
图2是表示安装时的必要操作的流程图的一个实施例。
热泵热水器从制造场所被搬运并安装到使用者所希望设置的地方,供给冷水管接头5与自来水管等供水源连接,厨房热水排出管接头15与厨房水龙头16、洗澡水龙头26、淋浴器27连接,热水排入/排出管接头20与洗澡水循环转接器21、洗澡水龙头26及淋浴器27连接,排出洗澡热水管接头24与洗澡水循环转接器21连接(步骤60)。然后,为排空空气,打开厨房水龙头16或者溢流阀28(步骤61)。打开供水源的总阀门(步骤62)时,从供水源开始给热水器内供水,水通过减压阀6经减压并调节到一定压力后,流入到热水贮存罐8及水-制冷剂换热器2以及各水管内(步骤63)。在通过水从水龙头16、26或溢流阀28溢出确认热水器内处于充满水的状态(步骤64)后,关闭水龙头16、26或溢流阀28,完成往热水器内供水(步骤65)。
热泵热水器在安装时,各设备被设定为如下的初始状态,即:供应热水混合阀12、冷热水混合阀13处于双向打开的状态,流量调节阀14、热水开关阀25处于打开的状态,洗澡热水注入阀17处于关闭状态。
然后,打开电源开关(步骤66),进行浴槽内注水运转(步骤67)。
浴槽内注水运转时,打开洗澡热水注入阀17对浴槽注水,直至水溢出(步骤68)。通过水位传感器22a和供水水量传感器7自动计算出浴槽的容量(步骤69),进行浴槽容量的设定(步骤70),并应用于设定以后的浴槽自动运转中对浴槽注入热水和洗澡水补充加热时的热水量的控制。因此,上述浴槽内注水运转只在设置热泵热水器时需要进行一次。
图3是表示加热热水贮存罐内的水的热水贮存罐贮存热水运转的动作的流程图的一个实施例。
当通过运转控制装置50的控制发出进行热水贮存罐贮存热水运转的指示(步骤71)时,由热水贮存罐热敏电阻8a~8d进行热水贮存温度及热水贮存量的判定(步骤72),如果在规定以内则保持原状不进行运转;如果贮存的热水被使用,减少到规定以下,则开始热水贮存罐贮存热水运转(步骤73)。
进行热水贮存罐贮存热水运转(步骤73)时,压缩机1a、1b开始运转,压缩机1a、1b内的气体状态的制冷剂被压缩加热,成为高温高压的制冷剂,并输送至水-制冷剂换热器2。这样,在水-制冷剂换热器2中,流经制冷剂侧传热管2a、2b内的高温制冷剂与流经供给冷水侧传热管2c、2d内的冷水进行热交换,制冷剂放热,冷水被加热。放热后的制冷剂通过减压装置3a、3b减压,然后在空气换热器4a、4b内膨胀蒸发而形成气体状,再次返回到压缩机1a、1b。通过连续的这种热泵运转,经过水-制冷剂换热器2内的冷水被加热。
在上述热泵运转中,当提高压缩机1a、1b的转数、增大减压装置3a、3b的制冷剂节流量时,加热能力虽增加;但机械损耗和热损耗都增加,运转效率降低。相反,通过降低压缩机1a、1b的转数、减少减压装置3a、3b的制冷剂节流量,虽然加热能力降低,但是机械损耗和热损耗减少,相对的运转效率有所提高。也就是说,在热泵的加热运转中,以低温来进行长时间的加热能够提高加热效率。
比如,比起加热到60℃以上的高温来进行热水贮存罐的贮存热水运转,加热到42℃的使用温度来供应热水的直接供应热水运转可以说是高效率的运转。
在热水贮存罐贮存热水运转(步骤73)中,在上述热泵运转的同时,热水贮存罐贮存热水回路中的供应热水混合阀12从水-制冷剂换热器2侧将热水贮存罐8侧打开,而将冷热水混合阀13侧关闭(步骤73a),并将热水开关阀25关闭(步骤73b)。进而,热水器内循环泵9开始运转,水从热水贮存罐8下部的通水口,向热水器内循环泵9、水换热器水量传感器11、水-制冷剂换热器2、供应热水混合阀12、热水贮存罐8循环。这样,由水-制冷剂换热器2加热的热水从热水贮存罐8的上部开始贮存,热水贮存罐8整体达到贮存高温热水状态时判定热水贮存完成(步骤76),停止运转(步骤77)。
判定从水-制冷剂换热器2排出的热水的温度是否合适的热水排出温度判定(步骤74)通过水换热器热敏电阻2e来进行。当排出热水温度在规定值以内时,则继续进行热水贮存罐贮存热水运转(步骤75);在规定值以外时,通过控制压缩机1a、1b的转数、调节减压装置3a、3b的制冷剂节流量、控制热水器内循环泵9的转数来进行排出热水温度的调节(步骤74a)。
热水贮存温度及贮存量的判定通过热水贮存罐热敏电阻8a~8d来进行。如果热水贮存罐热敏电阻8a~8d全部达到规定温度内,则判断为热水贮存完成,停止运转,热水贮存罐贮存热水结束(步骤77)。
图4是表示打开厨房水龙头16使用热水时的动作的流程图的一个实施例。打开厨房水龙头16开始使用热水(步骤80)时,运转控制装置50在起动压缩机1a、1b、开始热泵制冷剂回路30的运转的同时,通过供给冷水管接头5、减压阀6、供水水量传感器7、供水止回阀10、水换热器水量传感器11、水-制冷剂换热器2、供应热水混合阀12、冷热水混合阀13、流量调节阀14、厨房热水排出管接头15、厨房水龙头16的供应热水回路进行直接供应热水运转(步骤81)。同时,通过供给冷水管接头5、减压阀6、供水水量传感器7、热水贮存罐8、供应热水混合阀12、冷热水混合阀13、流量调节阀14、厨房热水排出管接头15、厨房水龙头16的供应热水回路进行热水贮存罐供应热水运转(步骤82)。
此处,热泵制冷剂回路30将被压缩机1a、1b压缩了的高温制冷剂送至水-制冷剂换热器2的制冷剂侧传热管2a、2b,将从供给冷水侧传热管2c、2d流入的水加热向从供应热水混合阀12侧流出。但是,运转开始时送至水-制冷剂换热器2的制冷剂没有充分地达到高温高压,其温度低,并且由于整个水-制冷剂换热器2的温度低,加热水的加热能力不足。随着时间的推移,制冷剂达到高温高压,与之相应,通过制冷剂产生的散热量增加,对水的加热能力增强。
另外,由于热泵运转的加热能力直到达到高温稳定状态需要几分钟的时间,因而,运转开始后直到达到高温稳定状态的预定时间内,运转控制装置50以比通常高的转数对压缩机的转数进行运转控制,这样可以缩短水加热、供应热水运转的起动时间,在运转开始后的预定时间内,同时进行从热水贮存罐供应热水的热水贮存罐供应热水运转(步骤82)以后,运转控制装置50起动,停止热水贮存罐供应热水运转(步骤84b),切换到只进行直接供应热水运转,继续供应热水运转(步骤85)。
具体的,为使混合温度热敏电阻12a达到目标温度,对混合阀12的开度进行调节。即,如果直接供应热水的温度达不到目标值,则追加由热水贮存罐供应热水;如果直接供应热水的温度达到目标值,则不从热水贮存罐供应热水,而只进行直接供应热水。
在此期间,通过供应热水热敏电阻14a、供水水量传感器7进行供应热水温度及流量的判定(步骤83),如果在规定范围外,则调节温度、流量(步骤84a);如果在规定范围内,则进一步进行直接供应热水温度的判定(步骤84)。
在进行直接供应热水温度的判定(步骤84)时,在水-制冷剂换热器2的加热温度不充分、直接供应热水的温度达不到规定温度的状态下,则继续进行热泵运转的温度流量调节(步骤84a),同时进行热水贮存罐供应热水运转(步骤82)。如果水-制冷剂换热器2的加热温度提高到达到供应热水温度,直接供应热水温度达到规定范围内时,则停止热水贮存罐供应热水运转(步骤84b),仅通过直接供应热水运转(步骤81)继续供应热水(步骤85)。
因此,热水贮存罐8的作用是,在热泵运转的加热能力未充分地达到供应热水温度(通常为40~42℃)之前的起动时间内的辅助功能,热泵制冷剂回路30的能力、特别是压缩机的输出压力越大,越能缩短起动时间,可以减小热水贮存罐8。
为了满足在对浴槽注入热水的同时,对厨房供应热水等多处同时使用热水的要求,即使在运转开始时同时使用热水贮存罐供应热水,作为加热稳定后的供应热水能力,虽然希望压缩机的容量大到现在一般所使用的5kw左右的4倍以上的20kw左右,但这不仅需要开发新型的压缩机,还需要同时开发热泵制冷剂回路30的各个新型部件,这是非常困难的。因此,在本发明的实施例中,作为使用了两台原有压缩机2倍左右的压缩机的双循环热泵方式30a、30b,既灵活运用了现有技术,又确保了实际使用的可靠性。如果压缩机的容量使用1台就足够的话,单循环热泵方式也同样适用于本发明,其效果不变。
随后,当关闭水龙头、使用热水结束时(步骤86),若是处于热水贮存罐供应热水停止而只进行直接供应热水运转时,则停止直接供应热水运转;在热水使用完后处于同时进行热水贮存罐供应热水运转和直接供应热水运转时,则停止直接供应热水运转和热水贮存罐供应热水运转两者。(步骤87)
进而,运转控制装置50由空气换热器热敏电阻4c、4d检测并判定空气换热器4a、4b的温度,在完成以下运转后停止热泵运转。
首先,在停止供应热水运转时(步骤87),当空气换热器4a、4b的温度在除霜开始温度以上,则在停止供应热水运转后不进行除霜运转,在完成热水贮存罐贮存热水运转(步骤89a)后停止运转(步骤90)。
其次,当空气换热器4a、4b的温度在除霜开始温度与必需除霜温度之间时,则在停止供应热水运转后,在完成热水贮存罐贮存热水运转(步骤89b),进而进行除霜运转后(步骤89c)停止运转。(步骤90)
另外,当空气换热器4a、4b的温度在必需除霜温度以下时,则通过除霜必需控制装置以在遥控器操作面板上的文字显示或者闪烁显示或者声音等手段来对需要除霜进行警示(步骤89d),在停止供应热水运转后,进行除霜运转(步骤89e),再进行热水贮存罐贮存热水运转(步骤89f)后,停止运转(步骤90)。
上述热水贮存罐贮存热水运转通过热水贮存罐热敏电阻8a~8d检测贮存热水温度、贮存热水量,在达到规定值内后停止热水贮存罐贮存热水运转。
但是,通过热水贮存罐热敏电阻8a~8d对热水贮存罐的贮存热水状态的检测每时每刻都在进行,即使在为了极短时间内的使用的水加热、供应热水运转停止后,在热水贮存罐8内的热水温度、热水量均在预定值以上时,也被判定为完成了贮存热水,不再进行热水贮存罐贮存热水运转(步骤88)。
如上所述,运转控制装置50由于具有在所有的运转中作为目的的运转完成后,必须在贮存热水完成之前进行热水贮存罐贮存热水运转(步骤88)的每次热水贮存罐贮存热水运转功能,因此,热水贮存罐8中总是贮存有高于预定量的、预定温度的热水,可以消除对运转开始时的热水温度低或者使用中供应热水中断的担心。
图5是表示用于通过所述外部空气温度及空气换热器温度说明上述除霜开始温度、上述必需除霜温度及除霜完成温度的温度线图。纵轴表示空气换热器温度,横轴表示外部空气温度,按照温度从高到低的顺序,线图A表示除霜完成温度,线图B表示除霜开始温度,线图C表示必需除霜温度。
比如,对于冬季的外部空气温度为5℃,在厨房进行餐具清洗的情况下,热水使用时间即使再长也就5分钟~10分钟左右,结霜量比较少,在线图BC之间的E点。在清洗餐具一结束,停止供应热水运转后,进行热水贮存罐贮存热水运转后进行除霜运转,然后停止运转。
但是,在与上述同样条件下进行对浴槽注入热水运转时,供应热水运转时间大约需要30分钟,结霜量增多,会妨碍空气换热器的通风,使加热能力降低。并且,当通风受到阻碍时,空气与制冷剂的换热量减少,空气换热器的温度更加降低,低至比线图C低的F点。
当与空气换热器的温度在E点时的情形相同地先进行热水贮存罐贮存热水运转时,由于加热能力不足使热水贮存罐贮存热水运转需要很长的时间。在热水贮存罐贮存热水量不足的状态下使用淋浴或者水龙头时,容易发生供应热水量不足或者供应热水温度低等问题。
因此,设置除霜必需控制装置,当处于线图C以下时,显示除霜运转必须优先并通报使用者,同时,在完成对浴槽注入热水运转后,先进行除霜运转,再进行热水贮存罐贮存热水运转,然后停止运转。
由于除霜运转是在图1中使减压装置3a、3b的制冷剂节流量为最小,将高温制冷剂以原状送至空气换热器4a、4b中,通过制冷剂的热量来溶化霜,因而,在短时间内达到线图A的除霜完成温度,此后便迅速地进行热水贮存罐贮存热水运转,从而能尽快地完成热水贮存罐贮存热水。
在温度达到0℃以下时,由于外部空气的绝对湿度极低,结霜量减少,因此,将线图B的除霜开始温度及线图C的必需除霜温度设定得较低。线图A所示的除霜完成温度与此相反,由于外部空气温度越低,加热除霜需要的时间越长,所以当外部空气温度在0℃以下时,设定的温度稍高。
当空气换热器的温度高于线图B的除霜开始温度时,处于几乎不结霜的状态,不必进行除霜运转。
图5的线图A、B、C是一个例子,根据热泵回路的零部件构成和容量等会有所不同,即使线图的温度、弯曲等各不相同,采用本发明也能得到同样的效果。
图6是表示浴槽自动运转的浴槽内注入热水时的动作的流程图的一个实施例。按下浴槽自动按钮,使其处于ON的状态(步骤91),当达到设定的时刻时,开始对浴槽注入热水运转(步骤92),打开洗澡热水注入阀17,供应洗澡热水(步骤93)。
供应洗澡热水(步骤93)与图4中说明的使用热水相同地同时进行直接供应热水运转和热水贮存罐供应热水运转。也就是说,在刚开始热泵运转的几分钟内同时进行直接供应热水运转和热水贮存罐供应热水运转,当直接供应热水温度达到稳定状态时,停止热水贮存罐供应热水运转,只进行直接供应热水运转。
在供应洗澡热水运转中,通过浴槽热敏电阻18a检测供应洗澡热水温度,判定供应热水温度(步骤94)。若在规定范围外,则进行温度调节(步骤94a);若在规定范围内,则继续供应洗澡热水(步骤95)。
进而,由水位传感器22a检测浴槽内的水位,判定对浴槽注入热水量(步骤96)。
在判定对浴槽注入热水量(步骤96)时,若在规定量以下时,继续注入热水(步骤95),当达到规定量时,饿停止对浴槽注入热水及热泵运转。(步骤97)
对浴槽注入热水运转停止(步骤97)时,与上述图4相同,进行空气换热器的温度判定(步骤98),根据是否为除霜开始温度及必需除霜温度的判断,进行必需除霜显示、热水贮存罐贮存热水运转及除霜运转(步骤99a~99f)后,停止运转。(步骤100)
图7是表示通过浴槽自动运转进行洗澡水补充加热的动作的流程图的一个实施例。按下浴槽自动按钮,使其处于ON的状态(步骤101),当达到设定时刻时,开始上述图6中说明的对浴槽注入热水运转(步骤102),此后终止对浴槽注入热水运转(步骤103),开始浴槽保温运转(步骤104)。
对浴槽注入热水运转(步骤103)停止后,由浴槽热敏电阻18a检测热水温度,在进行浴槽内热水温度判定时(步骤105),若在规定值以内,则继续浴槽保温;若在规定值以下时,则进行洗澡水补充加热运转(步骤106)。另外,由水位传感器22a按照预定时间间隔(比如每10分钟)检测浴槽内的热水量,在进行对浴槽注入热水量判定(步骤107)中,若在规定值以内,则继续浴槽保温;若在规定值以下时,则向浴槽内添加热水(步骤108)。
进而,在经过浴槽自动运转的设定时间后,浴槽保温运转停止(步骤109),浴槽自动运转停止(步骤110)。
如以上详细地说明那样,本发明对于消除具有热水贮存罐的即热式热泵在冬季低温时因结霜而产生的不便、改善热水贮存罐贮存热水运转、增加节能效果、提高使用方便性等具有显著的效果。
当结霜量很多处于必须优先进行除霜运转状态时,可以通过遥控器显示或者通过声音来告知使用者,即使出现热水供应量减少也可以不必担心,同时,当因结霜导致热水贮存罐贮存热水运转出现故障时,供应热水停止后,由于在完成除霜运转后进行热水贮存罐贮存热水运转,因此,能够高效率地进行除霜、热水贮存罐贮存热水,可以大幅度地提高冬季低温时的使用方便性。

Claims (6)

1.一种热泵热水器,其具有:
热泵制冷剂回路,该热泵制冷剂回路通过制冷剂管道依次将压缩机、供给的水与制冷剂进行换热的水-制冷剂换热器、减压装置、进行空气与制冷剂的换热的空气换热器连接而成;
供应热水回路,该供应热水回路由上述水-制冷剂换热器、用于贮存由水-制冷剂换热器加热了的热水的热水贮存罐、冷热水混合阀、流量调节阀、以及连接上述部件的水管组成;
控制装置,该控制装置预先设定上述空气换热器的除霜开始温度以及比此除霜开始温度低的必需除霜温度,当上述空气换热器的温度在上述除霜开始温度与上述必需除霜温度的范围内时,供应热水运转停止后,在完成向热水贮存罐贮存热水后进行上述空气换热器的除霜;当上述空气换热器的温度比必需除霜温度低时,供应热水运转停止后,在完成上述空气换热器的除霜后向热水贮存罐贮存热水。
2.根据权利要求1所记载的热泵热水器,其特征在于,上述供应热水回路具有将由水-制冷剂换热器加热了的热水直接供给到用水末端的直接供应热水回路和从热水贮存罐向用水末端供应热水的热水贮存罐供应热水回路。
3.根据权利要求1所记载的热泵热水器,其特征在于,上述必需除霜温度为与外部空气温度相对应地设定的多个温度。
4.根据权利要求1所记载的热泵热水器,其特征在于,上述控制装置在达到必需除霜温度时,通过文字显示或者文字的闪烁来进行警示。
5.根据权利要求1所记载的热泵热水器,其特征在于,上述控制装置在达到必需除霜温度时,通过声音来进行警示。
6.一种热泵热水器,其具有:
热泵制冷剂回路,该热泵制冷剂回路通过制冷剂管道依次将压缩机、进行水与制冷剂的换热的水-制冷剂换热器、减压装置、进行空气与制冷剂的换热的空气换热器连接而成;
供应热水回路,该供应热水回路由上述水-制冷剂换热器、用于贮存由水-制冷剂换热器加热了的热水的热水贮存罐、使热水器内的热水和冷水循环的热水器内循环泵、冷热水混合阀、流量调节阀、以及连接上述部件的水管组成;
控制装置,该控制装置预先设定上述空气换热器的除霜开始温度以及比此除霜开始温度低的必需除霜温度,根据上述空气换热器的温度改变除霜运转的开始时间。
CNB2006100659122A 2005-03-24 2006-03-23 热泵热水器 Expired - Fee Related CN100443822C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005085183A JP4215735B2 (ja) 2005-03-24 2005-03-24 ヒートポンプ給湯機
JP2005085183 2005-03-24

Publications (2)

Publication Number Publication Date
CN1837707A CN1837707A (zh) 2006-09-27
CN100443822C true CN100443822C (zh) 2008-12-17

Family

ID=37015177

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100659122A Expired - Fee Related CN100443822C (zh) 2005-03-24 2006-03-23 热泵热水器

Country Status (3)

Country Link
JP (1) JP4215735B2 (zh)
KR (1) KR100685341B1 (zh)
CN (1) CN100443822C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105865024A (zh) * 2016-04-26 2016-08-17 广东美的暖通设备有限公司 热泵热水机及其化霜控制方法和装置

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4958460B2 (ja) 2006-03-29 2012-06-20 日立アプライアンス株式会社 ヒートポンプ給湯機
JP5134296B2 (ja) * 2007-07-10 2013-01-30 一般財団法人電力中央研究所 ヒートポンプ制御装置およびヒートポンプ制御プログラム
JP5081050B2 (ja) * 2008-04-21 2012-11-21 日立アプライアンス株式会社 ヒートポンプ給湯機
KR101058843B1 (ko) 2009-03-18 2011-08-23 고세진 무제상 히트펌프(온수제조) 사이클
JP5675266B2 (ja) * 2010-10-20 2015-02-25 東邦瓦斯株式会社 暖房システム
CN102128494A (zh) * 2011-04-15 2011-07-20 株洲市一元实业有限公司 一种直热恒温式空气能热水器
KR101280211B1 (ko) 2011-11-02 2013-06-28 대성히트펌프 주식회사 착상 방지 히트펌프 시스템 및 그 히트펌프 시스템의 작동방법
CN102721173A (zh) * 2012-06-14 2012-10-10 华南理工大学 一种可调即热式热泵热水器
CN102721172A (zh) * 2012-06-14 2012-10-10 华南理工大学 一种压缩机变容调节即热式热泵热水器
CN103727677B (zh) * 2014-01-02 2016-06-15 福州斯狄渢电热水器有限公司 一种即热式热水器恒温控制系统的控制方法
JP2017223406A (ja) * 2016-06-15 2017-12-21 サンデンホールディングス株式会社 ショーケースの制御装置
JP2019060543A (ja) * 2017-09-27 2019-04-18 株式会社ノーリツ 貯湯給湯装置
CN107894099A (zh) * 2017-11-03 2018-04-10 周超宇 共享热水物联网模式及运作方法
CN113237227B (zh) * 2021-03-30 2023-01-31 浙江中广电器集团股份有限公司 一种热泵热水器及其除霜运转控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346447A (ja) * 1999-06-01 2000-12-15 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機
CN2413236Y (zh) * 2000-01-11 2001-01-03 汪洋 带热泵热水器的单制空调器
JP2002107048A (ja) * 2000-10-03 2002-04-10 Hoshizaki Electric Co Ltd 冷却貯蔵庫の霜取り制御装置
JP2003240339A (ja) * 2002-02-12 2003-08-27 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
JP2004093020A (ja) * 2002-08-30 2004-03-25 Chofu Seisakusho Co Ltd ヒートポンプエアコンの除霜運転制御方法
JP2004101021A (ja) * 2002-09-06 2004-04-02 Daikin Ind Ltd 給湯装置
US6837443B2 (en) * 2002-03-20 2005-01-04 Hitachi, Ltd. Heat pump hot-water supply system
CN1573226A (zh) * 2003-06-24 2005-02-02 日立家用电器公司 热泵热水机
CN2679563Y (zh) * 2004-03-09 2005-02-16 刘卫东 热泵空调热水器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000346447A (ja) * 1999-06-01 2000-12-15 Matsushita Electric Ind Co Ltd ヒートポンプ給湯機
CN2413236Y (zh) * 2000-01-11 2001-01-03 汪洋 带热泵热水器的单制空调器
JP2002107048A (ja) * 2000-10-03 2002-04-10 Hoshizaki Electric Co Ltd 冷却貯蔵庫の霜取り制御装置
JP2003240339A (ja) * 2002-02-12 2003-08-27 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
US6837443B2 (en) * 2002-03-20 2005-01-04 Hitachi, Ltd. Heat pump hot-water supply system
JP2004093020A (ja) * 2002-08-30 2004-03-25 Chofu Seisakusho Co Ltd ヒートポンプエアコンの除霜運転制御方法
JP2004101021A (ja) * 2002-09-06 2004-04-02 Daikin Ind Ltd 給湯装置
CN1573226A (zh) * 2003-06-24 2005-02-02 日立家用电器公司 热泵热水机
CN2679563Y (zh) * 2004-03-09 2005-02-16 刘卫东 热泵空调热水器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105865024A (zh) * 2016-04-26 2016-08-17 广东美的暖通设备有限公司 热泵热水机及其化霜控制方法和装置
CN105865024B (zh) * 2016-04-26 2018-10-16 广东美的暖通设备有限公司 热泵热水机及其化霜控制方法和装置

Also Published As

Publication number Publication date
KR100685341B1 (ko) 2007-02-22
JP4215735B2 (ja) 2009-01-28
CN1837707A (zh) 2006-09-27
KR20060103169A (ko) 2006-09-28
JP2006266591A (ja) 2006-10-05

Similar Documents

Publication Publication Date Title
CN100443822C (zh) 热泵热水器
EP3163176B1 (en) Heating and hot water supply system
US20180128411A1 (en) Controller, method of operating a water source heat pump and a water source heat pump
JP4284290B2 (ja) ヒートポンプ給湯機
WO2003064935A1 (fr) Chauffe-eau du type a pompe a chaleur
KR20100015104A (ko) 히트펌프 연동 온수 시스템의 제어 방법
JP2009063246A (ja) ヒートポンプ給湯機
JP2008002776A (ja) ヒートポンプ給湯装置
JP6056677B2 (ja) 給湯装置
JP4875970B2 (ja) ヒートポンプ給湯装置
JP2009270780A (ja) ヒートポンプ給湯機
JP4486001B2 (ja) ヒートポンプ式給湯機
KR20050005744A (ko) 히트 펌프 급탕기
CN102016439B (zh) 热泵热水器
JP2010054145A (ja) ヒートポンプ給湯機
JP2009074736A (ja) ヒートポンプ式給湯装置
CN100478626C (zh) 热泵热水供应装置
JP7186529B2 (ja) 給湯システム
JP2008064338A (ja) 貯湯装置
JP4515883B2 (ja) 貯湯式給湯装置
JP2009162415A (ja) 貯湯式給湯装置
JP2007147153A (ja) 貯湯式給湯装置
JP3909312B2 (ja) ヒートポンプ給湯機
JP2006138513A (ja) ヒートポンプ式給湯暖房装置
JP2006138514A (ja) ヒートポンプ式給湯暖房装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081217

Termination date: 20160323

CF01 Termination of patent right due to non-payment of annual fee