CN100443725C - 压缩系统及使用它的冷冻装置 - Google Patents

压缩系统及使用它的冷冻装置 Download PDF

Info

Publication number
CN100443725C
CN100443725C CNB2005100764232A CN200510076423A CN100443725C CN 100443725 C CN100443725 C CN 100443725C CN B2005100764232 A CNB2005100764232 A CN B2005100764232A CN 200510076423 A CN200510076423 A CN 200510076423A CN 100443725 C CN100443725 C CN 100443725C
Authority
CN
China
Prior art keywords
mentioned
blade
pressure
refrigerant
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2005100764232A
Other languages
English (en)
Other versions
CN1719034A (zh
Inventor
西川刚弘
小笠原弘丞
須田章博
�原正之
泽边浩幸
吉田浩之
桥本彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Publication of CN1719034A publication Critical patent/CN1719034A/zh
Application granted granted Critical
Publication of CN100443725C publication Critical patent/CN100443725C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

是以避免具有多汽缸旋转压缩机的压缩系统的第二叶片的冲突音的产生为目的,该多汽缸旋转压缩机可以对第一运转模式和第二运转模式进行转换而被使用,在上述第一运转模式,两旋转压缩元件进行压缩作功,在上述第二运转模式,实质上只有第一旋转压缩元件进行压缩作功,其主旨为,在从第二运转模式向第一运转模式转换时,在作为第二叶片的背压,施加了两旋转压缩元件的排出侧压力后,施加两旋转压缩元件的吸入侧压力和排出侧压力之间的中间压力,在从第一运转模式向第二运转模式转换时,在通过阀装置切断向第二缸的致冷剂的流入后,作为第二叶片的背压,施加两旋转压缩元件的吸入侧压力。

Description

压缩系统及使用它的冷冻装置
技术领域
本发明涉及压缩系统、以及构成它的多汽缸旋转压缩机以及使用它的冷冻装置。
背景技术
以往,这种压缩系统是由多汽缸旋转压缩机和控制该多汽缸旋转压缩机的运转的控制装置等构成的。该多汽缸旋转压缩机,例如具有第一以及第二旋转压缩元件的两汽缸旋转压缩机是在密封容器内收纳驱动元件和通过该驱动元件的旋转轴驱动的第一以及第二旋转压缩元件而成。该第一以及第二旋转压缩元件是由第一以及第二缸、第一以及第二辊、第一以及第二叶片构成的,该第一以及第二辊嵌合在形成于旋转轴上的偏心部,在各缸内分别偏心旋转,该第一以及第二叶片与该第一以及第二缸接触,将各缸内分别划分为低压室侧和高压室侧。另外,第一以及第二叶片被弹簧部件总是分别向第一以及第二辊弹压。
这样,若通过上述控制装置驱动元件被驱动,则低压的致冷剂气体从吸入通路被吸入第一以及第二旋转压缩元件的各缸的低压室侧,通过各辊和各叶片的动作分别被压缩,成为高温高压的致冷剂气体,从各缸的高压室侧通过排出口被排出到排出消音室后,被排出到密封容器内,被排出到外部而构成(例如,参照特开平5-99172号公报)。
在具有这样的多汽缸旋转压缩机的压缩系统中,在轻负荷时或低速旋转时等的小能力区域,在通过第一以及第二两缸进行压缩运转的情况下,由于必需吸入两缸的排除容积量的致冷剂气体进行压缩,所以该量通过控制装置,降低驱动元件的转数进行运转。但是,若转数降低过大,则产生了驱动元件的效率降低、同时泄漏损耗增大、运转效率显著降低的问题。
因此,鉴于该问题,开发出可根据能力,对一缸运转和二缸运转进行转换的压缩系统。即,削除将多汽缸旋转压缩机的第一以及第二叶片向第一以及第二辊弹压的弹簧部件中的任意一方的弹簧部件,例如削除将第二叶片向第二辊弹压的弹簧部件,通过控制装置,在二缸运转时,作为第二叶片的背压,成为施加两旋转压缩元件的排出侧的致冷剂压力的压缩系统。据此,第二叶片被向第二辊侧弹压,完成压缩作功。
另一方面,在从上述二缸运转转换为一缸运转时,通过控制装置,作为第二叶片的背压,成为施加两旋转压缩元件的吸入侧的致冷剂压力的压缩系统。因为该吸入压力是低压,所以不能将第二叶片向第二辊侧弹压。因此,在第二旋转压缩元件中,实质上没有进行压缩作功,仅仅是在第一旋转压缩元件中进行致冷剂的压缩作功。
象这样,通过在小能力区域的一缸运转,由于可以减少被压缩的致冷剂气体的量,所以该量可以使转数上升。据此,可以改善驱动元件的运转效率,并且也可以降低泄漏损耗。
在这里,如上所述,在二缸运转时,没有设置弹簧部件的第二旋转压缩元件中,弹压第二辊的两旋转压缩元件的排出侧压力压力变动大,由于该压力变动,叶片的追随性恶化,因为在第二辊和第二叶片之间产生冲突音,所以申请人尝试了作为第二辊的背压,施加两旋转压缩元件的吸入侧压力和排出侧压力之间的中间压力。
但是,在作为第二叶片的背压,施加了上述中间压力的情况下,产生了下述问题,即,在从一缸运转转换为二缸运转时,在使第二叶片追随第二辊上花费时间,在其间,第二叶片与第二辊冲突,产生了冲突音。
另一方面,还存在下述问题,即,在一缸运转时,因为对第二缸内的压力和第二叶片的背压施加相同的吸入侧压力,所以在从二缸运转向一缸运转转换时,第二叶片难以从第二缸40内被引入,在其间,与第二辊冲突,还是产生冲突音。
另外,虽然通过多汽缸旋转压缩机的运转时的将叶片向辊的弹压动作,在叶片的背压侧(与辊相反的一侧)产生压力脉冲,但是,还是存在下述问题,即,没有设置弹簧部件的第二叶片由于该压力脉冲,第二叶片的追随性恶化,与第二辊冲突,产生冲突音。
再有,作为第二叶片的背压而施加的两旋转压缩元件的排出侧压力压力变动大,即使如此,没有设置弹簧部件的第二叶片的追随性恶化,在第二辊和第二叶片之间产生冲突音。
还有,虽然在一缸运转时,在第二旋转压缩元件中,第二辊成为空转状态,但是,还是存在下述问题,即,因为此时,对第二缸内的压力和第二叶片的背压施加了相同的吸入侧压力,由于两空间的平衡变动,第二叶片向第二缸内突出来,与第二辊冲突,还是产生冲突音。
发明内容
本发明就是为了解决该以往技术的问题而产生的发明,是在具有多汽缸旋转压缩机的压缩系统中,以避免在转换运转模式时产生第二叶片的冲突音为目的,该多汽缸旋转压缩机通过弹簧部件仅将第一叶片向第一辊弹压,可以对第一运转模式和第二运转模式进行转换而被使用,在上述第一运转模式,两旋转压缩元件进行压缩作功,在上述第二运转模式,实质上只有第一旋转压缩元件进行压缩作功。
本发明的压缩系统具有多汽缸旋转压缩机,该压缩机在密闭容器内收纳着驱动元件和通过该驱动元件的旋转轴驱动的第一以及第二旋转压缩元件,该第一以及第二旋转压缩元件是由第一以及第二缸、第一以及第二辊、第一以及第二叶片构成的,该第一以及第二辊与在旋转轴上形成的偏心部嵌合,分别在各缸内偏心旋转;该第一以及第二叶片与该第一以及第二辊接触,分别将各缸内划分为低压室侧和高压室侧,同时,该压缩机通过弹簧部件仅将第一叶片向第一辊弹压,可以对第一运转模式和第二运转模式进行转换而被使用,在上述第一运转模式,两旋转压缩元件进行压缩作功,在上述第二运转模式,实质上只有第一旋转压缩元件进行压缩作功,在从第二运转模式向第一运转模式转换时,在作为第二叶片的背压,施加了两旋转压缩元件的排出侧压力后,施加两旋转压缩元件的吸入侧压力和排出侧压力之间的中间压力。
另外,本发明的压缩系统具有多汽缸旋转压缩机,该压缩机在密闭容器内收纳着驱动元件和通过该驱动元件的旋转轴驱动的第一以及第二旋转压缩元件,该第一以及第二旋转压缩元件是由第一以及第二缸、第一以及第二辊、第一以及第二叶片构成的,该第一以及第二辊与在旋转轴上形成的偏心部嵌合,分别在各缸内偏心旋转;该第一以及第二叶片与该第一以及第二辊接触,分别将各缸内划分为低压室侧和高压室侧,同时,该压缩机通过弹簧部件仅将第一叶片向第一辊弹压,可以对第一运转模式和第二运转模式进行转换而被使用,在上述第一运转模式,两旋转压缩元件进行压缩作功,在上述第二运转模式,实质上只有第一旋转压缩元件进行压缩作功,设置用于控制向第二缸的致冷剂流通的阀装置,在从第一运转模式向第二运转模式转换时,在通过阀装置切断向第二缸的致冷剂流入后,作为第二叶片的背压,施加两旋转压缩元件的吸入侧压力。
另外,本发明的压缩系统具有多汽缸旋转压缩机,该压缩机在密闭容器内收纳着驱动元件和通过该驱动元件的旋转轴驱动的第一以及第二旋转压缩元件,该第一以及第二旋转压缩元件是由第一以及第二缸、第一以及第二辊、第一以及第二叶片构成的,该第一以及第二辊与在旋转轴上形成的偏心部嵌合,分别在各缸内偏心旋转;该第一以及第二叶片与该第一以及第二辊接触,分别将各缸内划分为低压室侧和高压室侧,同时,该压缩机通过弹簧部件仅将第一叶片向第一辊弹压,可以对第一运转模式和第二运转模式进行转换而被使用,在上述第一运转模式,两旋转压缩元件进行压缩作功,在上述第二运转模式,实质上只有第一旋转压缩元件进行压缩作功,设置用于控制向第二缸的致冷剂流通的阀装置,在第一运转模式中,通过阀装置,使致冷剂流入第二缸,并且作为第二叶片的背压,施加两旋转压缩元件的吸入侧压力和排出侧压力之间的中间压力,在第二运转模式中,通过阀装置,阻止向第二缸流入致冷剂,并且,作为第二叶片的背压,施加两旋转压缩元件的吸入侧压力,同时,在从第二运转模式向第一运转模式转换时,在作为第二叶片的背压,施加了两旋转压缩元件的排出侧压力后,施加两旋转压缩元件的吸入侧压力和排出侧压力之间的中间压力,在从第一运转模式向第二运转模式转换时,在通过阀装置切断向第二缸的致冷剂流入后,作为第二叶片的背压,施加两旋转压缩元件的吸入侧压力。
另外,在本发明的压缩系统中,在上述各发明中进行模式转换时,使多汽缸旋转压缩机的驱动元件低速旋转,使第一旋转压缩元件或两旋转压缩元件的压缩比为小于等于3.0。
根据该发明,在从第二运转模式向上述第一运转模式转换时,因为在作为第二叶片的背压,施加了两旋转压缩元件的排出侧压力后,施加两旋转压缩元件的吸入侧压力和排出侧压力之间的中间压力,所以可以通过两旋转压缩元件的排出侧压力,使第二叶片早期向第二辊侧移动。据此,可以改善从第二运转模式向第一运转模式转换时的第二叶片的追随性,改善运转效率,并且可以避免产生第二叶片的冲突音。
另外,在对第二叶片施加两旋转压缩元件的排出侧压力,第二叶片追随了第二辊后,通过施加两旋转压缩元件的吸入侧压力和排出侧压力之间的中间压力,与针对第二叶片的背压施加了两旋转压缩元件的排出侧压力的情况相比,由于压力变动显著减小,所以改善了在转换运转模式后的多汽缸旋转压缩机的第二叶片的追随性,改善了第二旋转压缩元件的压缩效率,并且,在第一运转模式中,可以未然地避免了产生第二辊和第二叶片的冲突音。
另外,在从第一运转模式向第二运转模式转换时,因为在通过阀装置切断了向第二缸的致冷剂的流入后,作为第二叶片的背压,施加两旋转压缩元件的吸入侧压力,所以可以使第二缸内的压力高于第二叶片的背压。据此,多汽缸旋转压缩机的第二叶片通过第二缸内的压力,被推向与第二辊相反的一侧,由于不会从第二缸内出来,所以可以未然地避免与第二辊冲突,产生冲突音这样的问题。
这样,通过上述可以提高多汽缸旋转压缩机的性能以及可靠性,作为压缩系统,可以谋求显著地提高性能,该多汽缸旋转压缩机可以对第一运转模式和第二运转模式进行转换而被使用,在上述第一运转模式,第一以及第二旋转压缩元件进行压缩作功,在上述第二运转模式,实质上只有第一旋转压缩元件进行压缩作功。
特别是在转换模式时,若使多汽缸旋转压缩机的驱动元件低速旋转,使第一旋转压缩元件或两旋转压缩元件的压缩比小于等于3.0,则可以抑制在运转模式转换时的压力变动。
另外,本发明的冷冻装置是使用上述各发明的压缩系统,构成致冷剂回路。
根据该发明,因为冷冻装置的致冷剂回路是使用上述各发明的压缩系统构成的,所以也可以谋求冷冻装置整体的运转效率的改善。
另外,本发明是在具有通过弹簧部件仅将第一叶片向第一辊弹压的多汽缸旋转压缩机的压缩系统中,以避免在起动时产生第二叶片的冲突音为目的。
即,该发明的压缩系统具有多汽缸旋转压缩机,该压缩机在密闭容器内,收纳着驱动元件和通过该驱动元件的旋转轴驱动的第一以及第二旋转压缩元件,该第一以及第二旋转压缩元件是由第一以及第二缸、第一以及第二辊、第一以及第二叶片构成的,该第一以及第二辊与在旋转轴上形成的偏心部嵌合,分别在各缸内偏心旋转;该第一以及第二叶片与该第一以及第二辊接触,分别将各缸内划分为低压室侧和高压室侧,同时,该压缩机通过弹簧部件仅将第一叶片向第一辊弹压,在起动多汽缸旋转压缩机时,在作为第二叶片的背压,施加两旋转压缩元件的吸入侧压力的状态下起动,同时在起动后,作为第二叶片的背压,施加两旋转压缩元件的排出侧压力,然后,使第二叶片的背压成为两旋转压缩元件的吸入侧压力和排出侧压力之间的中间压力。
另外,在本发明的压缩系统中,在上述发明中,多汽缸旋转压缩机可以对第一运转模式和第二运转模式进行转换而被使用,在上述第一运转模式,两旋转压缩元件进行压缩作功,在上述第二运转模式,实质上只有第一旋转压缩元件进行压缩作功。
根据该发明,在起动多汽缸旋转压缩机时,是在作为第二叶片的背压,施加两旋转压缩元件的吸入侧压力的状态下起动的,在第二旋转压缩元件中,实质上没有完成压缩作功。
另外,在起动后,作为第二叶片的背压,施加两旋转压缩元件的排出侧压力,将第二叶片向第二辊弹压,开始在第二旋转压缩元件中的压缩作功。
再有,在作为第二叶片的背压,施加了两旋转压缩元件的排出侧压力后,通过使第二叶片的背压成为两旋转压缩元件的吸入侧压力和排出侧压力之间的中间压力,与针对第二叶片的背压施加了两旋转压缩元件的排出侧压力的情况相比,由于压力变动显著减小,所以改善了在起动后的通常运转时的多汽缸旋转压缩机的第二叶片的追随性,改善了第二旋转压缩元件的压缩效率,可以未然地避免产生第二辊和第二叶片的冲突音。
特别是可以提高多汽缸旋转压缩机的性能以及可靠性,作为压缩系统,可以谋求显著地提高性能,该多汽缸旋转压缩机可以对第一运转模式和第二运转模式进行转换而被使用,在上述第一运转模式,第一以及第二旋转压缩元件进行压缩作功,在上述第二运转模式,实质上只有第一旋转压缩元件进行压缩作功。
另外,本发明的冷冻装置是使用上述各发明的压缩系统,构成致冷剂回路。
根据该发明,冷冻装置的致冷剂回路是使用上述各发明的压缩系统构成的,也可以谋求冷冻装置整体的运转效率的改善。
另外,本发明是在通过弹簧部件仅将第一叶片向第一辊弹压的多汽缸旋转压缩机以及具有该多汽缸旋转压缩机的压缩系统中,以改善第二叶片的追随性,避免产生第二叶片的冲突音为目的。
即,该发明的多汽缸旋转压缩机在密闭容器内,收纳着驱动元件和通过该驱动元件的旋转轴驱动的第一以及第二旋转压缩元件,该第一以及第二旋转压缩元件是由第一以及第二缸、第一以及第二辊、第一以及第二叶片分别构成的,该第一以及第二辊与在旋转轴上形成的偏心部嵌合,分别在各缸内偏心旋转;该第一以及第二叶片与该第一以及第二辊接触,分别将各缸内划分为低压室侧和高压室侧,同时,该多汽缸旋转压缩机通过弹簧部件仅将第一叶片向第一辊弹压,具有背压室,该背压室用于对第二叶片施加背压,将其向第二辊弹压,该背压室是作为具有规定空间容积的消音器室。
在该发明中,是将背压室作为具有规定的空间容积的消音器室,通过该空间容积,降低了因对第二叶片的弹压动作而产生的压力脉冲,并且,也可以降低作为第二叶片的背压而被施加的两旋转压缩元件的排出侧压力的压力变动。
据此,可以改善第二叶片的追随性,改善第二旋转压缩元件的压缩效率,并且,可以极力避免产生第二辊和第二叶片的冲突音。
这样,通过上述可以谋求提高多汽缸旋转压缩机的性能以及可靠性,该多汽缸旋转压缩机可以对第一运转模式和第二运转模式进行转换而被使用,在上述第一运转模式,第一以及第二旋转压缩元件进行压缩作功,在上述第二运转模式,实质上只有第一旋转压缩元件进行压缩作功。
另外,本发明的多汽缸旋转压缩机在密闭容器内,收纳着驱动元件和通过该驱动元件的旋转轴驱动的第一以及第二旋转压缩元件,该第一以及第二旋转压缩元件是由第一以及第二缸、第一以及第二辊、第一以及第二叶片分别构成的,该第一以及第二辊与在旋转轴上形成的偏心部嵌合,分别在各缸内偏心旋转;该第一以及第二叶片与该第一以及第二辊接触,分别将各缸内划分为低压室侧和高压室侧,同时,该多汽缸旋转压缩机通过弹簧部件仅将第一叶片向第一辊弹压,具有用于对第二叶片施加背压的背压用通路,使该背压用通路的横截面积大于等于露出在第二缸内的第二叶片的表面积的平均值。
在该发明中,通过使背压用通路的横截面积大于等于露出在第二缸内的第二叶片的表面积的平均值,可以充分地确保该背压用通路,降低因对第二叶片的弹压动作而产生的压力脉冲,并且,也可以降低作为第二叶片的背压而被施加的致冷剂的压力变动。
据此,可以改善第二叶片的追随性,改善第二旋转压缩元件的压缩效率,并且,可以极力避免产生第二辊和第二叶片的冲突音。
通过上述,可以谋求提高多汽缸旋转压缩机的性能以及可靠性,该多汽缸旋转压缩机通过弹簧部件仅将第一叶片向第一辊弹压。
另外,本发明的多汽缸旋转压缩机在密闭容器内收纳着驱动元件和通过该驱动元件的旋转轴驱动的第一以及第二旋转压缩元件,该第一以及第二旋转压缩元件是由第一以及第二缸、第一以及第二辊、第一以及第二叶片构成的,该第一以及第二辊与在旋转轴上形成的偏心部嵌合,分别在各缸内偏心旋转;该第一以及第二叶片与该第一以及第二辊接触,分别将各缸内划分为低压室侧和高压室侧,同时,该多汽缸旋转压缩机通过弹簧部件将第一叶片向第一辊弹压,可以对第一运转模式和第二运转模式进行转换而被使用,在上述第一运转模式,两旋转压缩元件进行压缩作功,在第二运转模式,实质上只有第一旋转压缩元件进行压缩作功,设置将第二叶片向第二辊弹压的弹压机构,使该弹压机构的弹压力小于等于两旋转压缩元件,或第一旋转压缩元件的吸入侧压力作为第二叶片的背压而施加情况下的弹压力。
另外,在本发明的多汽缸旋转压缩机中,在上述发明中,设置用于控制向第二缸的致冷剂流通的阀装置,在第一运转模式中,通过阀装置,使致冷剂流入第二缸,并且作为第二叶片的背压,施加两旋转压缩元件的吸入侧压力和排出侧压力之间的中间压力,或是施加两旋转压缩元件的排出侧压力,在第二运转模式中,通过阀装置,切断向第二缸流入致冷剂,并且,作为第二叶片的背压,施加两旋转压缩元件的吸入侧压力。
另外,本发明的压缩系统具有多汽缸旋转压缩机,该压缩机在密闭容器内收纳着驱动元件和通过该驱动元件的旋转轴驱动的第一以及第二旋转压缩元件,该第一以及第二旋转压缩元件是由第一以及第二缸、第一以及第二辊、第一以及第二叶片构成的,该第一以及第二辊与在旋转轴上形成的偏心部嵌合,分别在各缸内偏心旋转;该第一以及第二叶片与该第一以及第二辊接触,分别将各缸内划分为低压室侧和高压室侧,同时,该压缩机通过弹簧部件仅将第一叶片向第一辊弹压,可以对第一运转模式和第二运转模式进行转换而被使用,在上述第一运转模式,两旋转压缩元件进行压缩作功,在上述第二运转模式,实质上只有第一旋转压缩元件进行压缩作功,设置用于控制向第二缸的致冷剂流通的阀装置,和将第二叶片向第二辊弹压的弹压机构,使该弹压机构的弹压力小于等于两旋转压缩元件,或第一旋转压缩元件的吸入侧压力作为第二叶片的背压而施加情况下的弹压力,同时,在第一运转模式中,通过阀装置,使致冷剂流入第二缸,并且作为第二叶片的背压,施加两旋转压缩元件的吸入侧压力和排出侧压力之间的中间压力,或是施加两旋转压缩元件的排出侧压力,在第二运转模式中,通过阀装置,切断向第二缸流入致冷剂,并且,作为第二叶片的背压,施加两旋转压缩元件的吸入侧压力。
另外,本发明的多汽缸旋转压缩机在密闭容器内收纳着驱动元件和通过该驱动元件的旋转轴驱动的第一以及第二旋转压缩元件,该第一以及第二旋转压缩元件是由第一以及第二缸、第一以及第二辊、第一以及第二叶片构成的,该第一以及第二辊与在旋转轴上形成的偏心部嵌合,分别在各缸内偏心旋转;该第一以及第二叶片与该第一以及第二辊接触,分别将各缸内划分为低压室侧和高压室侧,同时,该多汽缸旋转压缩机通过弹簧部件将第一叶片向第一辊弹压,可以对第一运转模式和第二运转模式进行转换而被使用,在上述第一运转模式,两旋转压缩元件进行压缩作功,在上述第二运转模式,实质上只有第一旋转压缩元件进行压缩作功,在第二叶片的第二辊侧的相反一侧,设置拉伸荷载用的弱弹簧,使该弱弹簧的拉伸力小于等于两旋转压缩元件,或第一旋转压缩元件的吸入侧压力作为第二叶片的背压而施加情况下的弹压力。
根据该发明,例如,通过由弱弹簧等构成的弹压机构,可以改善在第一运转模式中的第二叶片的追随性。特别是,在第一运转模式下,在通过阀装置,使致冷剂流入第二缸,并且,作为第二叶片的背压,施加了两旋转压缩元件的吸入侧压力和排出侧压力之间的中间压力,或是施加了两旋转压缩元件的排出侧压力时,可以通过该弹压机构,未然地避免由于该中间压力或排出侧压力的压力脉冲造成的第二叶片的追随性恶化这样的问题。
另外,通过使弹压机构的弹压力小于等于两旋转压缩元件,或第一旋转压缩元件的吸入侧压力作为第二叶片的背压而施加情况下的弹压力,在第二运转模式中,通过阀装置,切断向第二缸流入致冷剂,并且,作为第二叶片的背压,施加两旋转压缩元件的吸入侧压力,可以通过第二缸内的压力,使将第二叶片向背压侧弹压的弹压力大于将第二叶片向第二辊弹压的吸入侧压力和弹压机构的弹压力。
据此,即使是在设置了将第二叶片向第二辊弹压的弹压机构的情况下,在第二运转模式中,即使是在设置了弹压部件的情况下,由于第二缸内的压力,多汽缸旋转压缩机的第二叶片也不会从第二缸内出来,所以可以未然地避免与第二辊冲突,产生冲突音的问题。
这样,通过上述,可以提高多汽缸旋转压缩机的性能以及可靠性,作为压缩系统,谋求显著地提高性能,该多汽缸旋转压缩机可以对第一运转模式和第二运转模式进行转换而被使用,在上述第一运转模式,第一以及第二旋转压缩元件进行压缩作功,在上述第二运转模式,实质上只有第一旋转压缩元件进行压缩作功。
另外,由于拉伸负荷用的弱弹簧,在第二运转模式中,由于通过该弱弹簧的拉伸力,第二叶片不会从第二缸内出来,所以可以未然地避免与第二辊冲突,产生冲突音的问题。
附图说明
图1是本发明的实施例的压缩系统的多汽缸旋转压缩机的纵剖侧视图。
图2是图1的多汽缸旋转压缩机的另一个纵剖侧视图。
图3是使用了本发明的实施例的压缩系统的空调机的致冷剂回路的图。
图4是表示从图1的多汽缸旋转压缩机的第二运转模式向第一运转模式进行转换动作的图。
图5是本发明的实施例2的压缩系统的多汽缸旋转压缩机的纵剖侧视图。
图6是表示从图5的多汽缸旋转压缩机的第一运转模式向第二运转模式进行转换动作的图。
图7是表示从图5的多汽缸旋转压缩机的第二运转模式向第一运转模式进行转换动作的图。
图8是本发明的实施例3的压缩系统的多汽缸旋转压缩机的纵剖侧视图。
图9是表示在本发明的实施例5的压缩系统的多汽缸旋转压缩机的第二运转模式中的各电磁阀的动作的图。
图10是本发明的实施例7的多汽缸旋转压缩机的纵剖侧视图。
图11是多汽缸旋转压缩机的实施例8的第二缸的俯视剖视图。
图12是本发明的多汽缸旋转压缩机的实施例11的第二旋转压缩元件的第二辊位于上止点情况的第二缸的俯视剖视图。
图13是本发明的多汽缸旋转压缩机的实施例11的第二旋转压缩元件的第二辊位于下止点情况的第二缸的俯视剖视图。
图14是本发明的实施例14的多汽缸旋转压缩机的纵剖侧视图。
图15是图14的多汽缸旋转压缩机的另一个纵剖侧视图。
图16是图14的多汽缸旋转压缩机的第二旋转压缩元件的第二缸的俯视剖视图。
图17是使用了本发明的实施例14的压缩系统的空调机的致冷剂回路的图。
图18是表示在实施例14的多汽缸旋转压缩机的第一运转模式中的致冷剂的流动的图。
图19是表示在实施例14的多汽缸旋转压缩机的第二运转模式中的致冷剂的流动的图。
图20是表示在其他的实施例的多汽缸旋转压缩机的第一运转模式中的致冷剂的流动的图。
图21是本发明的实施例15的多汽缸旋转压缩机的纵剖侧视图。
图22是图21的多汽缸旋转压缩机的另一个纵剖侧视图。
图23是图21的多汽缸旋转压缩机的第二旋转压缩元件的弱弹簧的放大图。
图24是图23的多汽缸旋转压缩机的其他的实施例的第二旋转压缩元件的弱弹簧的放大图。
图25是图23的多汽缸旋转压缩机的另一个其他的实施例的第二旋转压缩元件的弱弹簧的放大图。
具体实施方式
下面,根据附图,详细叙述本发明的实施方式。
(实施例1)
分别为图1是表示作为本发明的压缩系统CS的多汽缸旋转压缩机的实施例,具有第一以及第二旋转压缩元件的内部高压型的旋转压缩机10的纵剖侧视图,图2是表示图1的旋转压缩机10的纵剖侧视图(表示与图1不同的剖面)。另外,本实施例的压缩系统CS是构成作为对室内进行空气调节的冷冻装置的空调机的致冷剂回路的一部分。
在各图中,实施例的旋转压缩机10是内部高压型的旋转压缩机,在由钢板构成的纵型圆筒状的密封容器12内,收纳着电动元件14和旋转压缩机构部18,该电动元件14是作为配置在该密封容器12的内部空间的上侧的驱动元件,该旋转压缩机构部18是由第一以及第二旋转压缩元件32、34构成的,该第一以及第二旋转压缩元件32、34配置在该电动元件14的下侧,通过电动元件14的旋转轴16而被驱动。
密封容器12将底部作为机油槽,由收纳着电动元件14和旋转压缩机构部18的容器主体12A,和封闭该容器主体12A的上部开口的大致碗状的端盖(盖体)12B构成,并且,在该端盖12B的上面形成圆形的安装孔12D,在该安装孔12D上,安装用于向电动元件14供给电力的接线柱(省略配线)20。
另外,在端盖12B上安装着后述的致冷剂排出管96,该致冷剂导入管96的一端与密封容器12内连通。而且,在密封容器12的底部设置安装用台座11。
电动元件14是由沿密封容器12的上部空间的内周面,环状地焊接固定的定子22,和在该定子22的内侧,设置若干的间隔插入设置的转子24构成的,该转子24固定在穿过中心,沿垂直方向延伸的旋转轴16上。
上述定子22具有将环状的电磁钢板叠层而成的叠层体26,和通过串绕(同心绕组)方式,缠绕在该叠层体26的齿部的定子线圈28。另外,转子24也与定子22同样,是由电磁钢板的叠层体30形成的。
在上述第一旋转压缩元件32和第二旋转压缩元件34之间,夹持着中间隔板36。即,第一旋转压缩元件32和第二旋转压缩元件34是由中间隔板36、第一以及第二缸38、40、第一以及第二辊46、48、第一以及第二叶片50、52、上部支撑部件54以及下部支撑部件56构成的,该第一以及第二缸38、40配置在该中间隔板36的上下;该第一以及第二辊46、48在该第一以及第二缸38、40内具有180度的相位差,嵌合在设置于旋转轴16上的上下偏心部42、44上,在各缸38、40内分别偏心旋转;该第一以及第二叶片50、52与该第一以及第二辊46、48接触,将各缸38、40内分别划分为低压室侧和高压室侧;该上部支撑部件54以及下部支撑部件56封闭第一缸38的上侧开口面以及第二缸40的下侧开口面,作为兼用作旋转轴16的轴承的支撑部件。
在上述第一以及第二缸38、40上,设置分别与该第一以及第二缸38、40内部连通的吸入通路58、60,在该吸入通路58、60上,分别连通连接着后述的致冷剂导入管92、94。
另外,在上部支撑部件54的上侧设置排出消音室62,由第一旋转压缩元件32压缩的致冷剂气体被排出到该排出消音室62。该排出消音室62形成在大致碗状的罩部件63内,该罩部件63在中心具有用于旋转轴16以及兼用作旋转轴16的轴承的上部支撑部件54贯穿的孔,覆盖上部支撑部件54的电动元件14侧(上侧)。然后,在罩部件63的上方,与罩部件63留有规定的间隔,设置电动元件14。
在下部支撑部件56上,设置排出消音室64,该排出消音室64通过用作为壁的盖,封闭形成在该下部支撑部件56的下侧的凹陷部而形成。即,排出消音室64通过划分排出消音室64的下部盖68而被封闭。
在上述第一缸38上,形成收纳上述第一叶片50的引导槽70,在该引导槽70的外侧,即,在第一叶片50的背面侧,形成收纳作为弹簧部件的弹簧74的收纳部70A。该弹簧74与第一叶片50的背面侧端部接触,总是将第一叶片50向第一辊46侧弹压。另外,在收纳部70A上,例如也导入密封容器12内的后述的排出侧压力(高压),作为第一叶片50的背压而被施加。这样,该收纳部70A在引导槽70侧和密封容器12(容器主体12A)侧开口,在收纳于收纳部70A的弹簧74的密封容器12侧,设置金属制的栓塞137,以达到防止弹簧74脱落的效果。
另外,在上述第二缸40上,形成收纳第二叶片52的引导槽72,在该引导槽72的外侧,即,在第二叶片52的背面侧,形成背压室72A。该背压室72A在引导槽72侧和密封容器12侧开口,在该密封容器12侧的开口上连通连接着后述的配管75,在密封容器12内被密封。
在密封容器12的容器主体12A的侧面,在与第一缸38和第二缸40的吸入通路58、60相对应的位置上,分别焊接固定着滑套141以及142。这些滑套141和142上下邻接。
这样,在滑套141内,插入连接用于将致冷剂气体导入第一缸38的致冷剂导入管92的一端,该致冷剂导入管92的一端与上缸38的吸入通路58连通。该致冷剂导入管92的另一端在蓄压器146内开口。
在滑套142内,插入连接用于将致冷剂气体导入第二缸40的致冷剂导入管94的一端,该致冷剂导入管94的一端与第二缸40的吸入通路60连通。该致冷剂导入管94的另一端与上述致冷剂导入管92相同,在蓄压器146内开口。
上述蓄压器146是对吸入的致冷剂进行气液分离的罐,通过托架147,安装在密封容器12的容器主体12A的上部侧面。这样,在蓄压器146上,从底部插入有致冷剂导入管92以及致冷剂导入管94,在该蓄压器146内的上方,另一端的开口分别就位。另外,致冷剂配管100的一端插入蓄压器146内的上部。
另外,排出消音室64和排出消音室62通过连通路120连通,该连通路120在轴心方向(上下方向),贯通上下支撑部件54、56和第一以及第二缸38、40以及中间隔板36。这样,被第二旋转压缩元件34压缩,被排出到排出消音室64的高温高压的致冷剂气体通过该连通路120被排出到排出消音室62,与被第一旋转压缩元件32压缩的高温高压的致冷剂气体合流。
另外,排出消音室62和密封容器12内通过贯通罩部件63的未图示出的孔连通,从该孔被第一旋转压缩元件32以及第二旋转压缩元件34压缩,被排出到排出消音室62的高压的致冷剂气体被排出到密封容器12内。
在这里,在上述致冷剂配管100的中途部,连通连接有致冷剂配管101,该配管通过电磁阀105,与上述的配管75连接。另外,在上述的致冷剂排出管96的中途部,也连通连接有致冷剂配管102,与上述致冷剂配管101同样,通过电磁阀106,与上述配管75连接。另外,通过后述的控制器210,分别控制这些电磁阀105、106的开闭。即,若通过控制器210使阀装置105开,阀装置106闭,则致冷剂配管101和配管75连通。据此,在致冷剂配管100中流动,向蓄压器146流入的两旋转压缩元件32、34的吸入侧致冷剂的一部分进入致冷剂配管101,从配管75流入背压室72A。据此,作为第二叶片52的背压,施加两旋转压缩元件32、34的吸入侧压力。
另外,若通过控制器210使阀装置105闭,阀装置106开,则致冷剂排出管96和配管75连通。据此,从密封容器12被排出、通过致冷剂排出管96的两旋转压缩元件32、34的排出侧致冷剂的一部分经过致冷剂配管102,从配管75流入背压室72A。据此,作为第二叶片52的背压,施加两旋转压缩元件32、34的排出侧压力。
在这里,上述的控制器210是构成本发明的压缩系统CS的一部分的部件,控制旋转压缩机10的电动元件14的转数。另外,如上所述,控制上述致冷剂配管101的电磁阀105、致冷剂配管102的电磁阀106的开闭。
接着,图3是表示使用压缩系统CS而构成的上述空调机的致冷剂回路的图。即,实施例的压缩系统CS构成图3所示的空调机的致冷剂回路的一部分,是由上述的旋转压缩机10和控制器210等构成的。旋转压缩机10的致冷剂排出管96与室外侧热交换器152的入口连接。上述控制器210和旋转压缩机10、室外侧热交换器152设置在空调机的未图示出的室外机上。连接在该室外侧热交换器152的出口的配管与作为减压机构的膨胀阀154连接,从膨胀阀154出来的配管与室内侧热交换器156连接。这些膨胀阀154和室内侧热交换器156设置在空调机的未图示出的室内机上。另外,在室内侧热交换器156的出口侧连接着旋转压缩机10的上述致冷剂配管100。
另外,作为致冷剂,使用HFC或HC类的致冷剂,作为润滑油的机油,使用例如矿物油(石油)、烃化油、醚油、酯油等现有的机油。
以上述的构成,接着说明旋转压缩机10的动作。
(1)第一运转模式(通常负荷或高负荷时的运转)
首先,就两旋转压缩元件32、34进行压缩作功的第一运转模式进行说明。根据上述设置在室内机上的未图示出的室内机侧的控制器的运转指令输入,控制器210控制旋转压缩机10的电动元件14的转数,同时在室内为通常负荷或高负荷状态的情况下,控制器210实行第一运转模式。在该第一运转模式下,控制器210关闭致冷剂配管101的电磁阀105以及致冷剂配管102的电磁阀106。
这样,若通过接线柱20以及未图示出的配线,对电动元件14的定子线圈28通电,则电动元件14起动,转子24旋转。通过该旋转,第一以及第二辊46、48嵌合在与旋转轴16一体设置的上下偏心部42、44上,在第一以及第二缸38、40内偏心旋转。
据此,低压致冷剂从旋转压缩机10的致冷剂配管100流入蓄压器146内。如上所述,因为致冷剂配管100的电磁阀105被关闭,所以通过致冷剂配管100的致冷剂不会流入配管75,而是全部流入蓄压器146内。
这样,已流入到蓄压器146内的低压致冷剂在这里被气液分离后,仅仅是致冷剂气体进入在该蓄压器146内开口的各致冷剂排出管92、94内。已进入致冷剂导入管92的低压的致冷剂气体经过吸入通路58,被吸入第一旋转压缩元件32的第一缸38的低压室侧。
被吸入到第一缸38的低压室侧的致冷剂气体通过第一辊46和第一叶片50的动作而被压缩,成为高温高压的致冷剂气体,从第一缸38的高压室侧通过未图示出的排出口内,被排出到排出消音室62中。
另一方面,进入到致冷剂导入管94的低压的致冷剂气体经过吸入通路60,被吸入到第二旋转压缩元件34的第二缸40的低压室侧。被吸入到第二缸40的低压室侧的致冷剂气体通过第二辊48和第二叶片52的动作而被压缩。
此时,如上所述,因为电磁阀105以及电磁阀106被关闭,所以与第二叶片52的背压室72A连通的配管75内为密封空间。再有,因为很多第二缸40内的致冷剂从第二叶片52和收纳部70A之间流入背压室72A中,所以第二叶片52的背压室72A内的压力成为两旋转压缩元件32、34的吸入侧压力和排出侧压力之间的中间压力,该中间压力作为第二叶片52的背压而成为被施加的状态。由于该中间压力,不使用弹簧部件,即可将第二叶片52向第二辊48充分地进行弹压。
另外,在以往,虽然作为第二叶片52的背压,施加了作为两旋转压缩元件32、34的排出侧压力的高压,但是在该情况下,存在下述问题,即,由于排出侧压力脉冲大,而且没有弹簧部件,所以由于该脉冲导致第二叶片52的追随性恶化,压缩效率降低,并且在第二叶片52和第二辊48之间产生冲突音。
但是,作为第二叶片52的背压,通过施加两旋转压缩元件32、34的吸入侧压力和排出侧压力之间的中间压力,与如上所述施加了排出侧压力的情况相比,压力脉冲显著减小。特别是在本实施例中,因为是关闭电磁阀105、106,作为切断两旋转压缩元件32、34的吸入侧致冷剂和排出侧致冷剂从配管75流入的状态,所以可以更好地抑制第二叶片52的背压的脉冲。据此,改善了在第一运转模式中的第二叶片52的追随性,也提高了第二旋转压缩元件34的压缩效率。
另外,通过第二辊48和第二叶片52的动作被压缩成为高温高压的致冷剂气体,从第二缸40的高压室侧通过未图示出的排出口内,被排出到排出消音室64中。被排出到排出消音室64的致冷剂气体经由上述连通路120,被排出到排出消音室62中,与被上述第一旋转压缩元件32压缩的致冷剂气体合流。这样,合流的致冷剂气体通过贯通罩部件63的未图示出的孔,被排出到密封容器12内。
然后,密封容器12内的致冷剂从形成于密封容器12的端盖12B上的致冷剂排出管96排出到外部,流入到室外侧热交换器152中。在这里致冷剂气体放热,通过膨胀阀154减压后,流入室内侧热交换器156中。在这里,致冷剂蒸发,此时,通过从在室内循环的空气中吸热,发挥冷却作用,对室内制冷。然后,反复进行将致冷剂从室内侧热交换器156排出,吸入到旋转压缩机10的循环。
(2)第二运转模式(轻负荷时的运转)
接着,就第二运转模式进行说明。控制器210在室内为轻负荷状态的情况下,转换到第二运转模式。该第二运转模式实质上是只有第一旋转压缩元件32进行压缩作功的模式,是在室内为轻负荷,在上述第一运转模式中,电动元件14为低速旋转的情况下进行的运转模式。在压缩系统CS的小能力区域,通过实质上只有第一旋转压缩元件32进行压缩作功,与通过第一以及第二两缸38、40进行压缩作功的情况相比,由于可以减少压缩的致冷剂气体的量,所以该量也在轻负荷时,使电动元件14的转数上升,改善了电动元件14的运转效率,并且也使降低致冷剂的泄漏损耗成为可能。
在该情况下,控制器210打开致冷剂配管101的电磁阀105,关闭致冷剂配管102的电磁阀106。据此,致冷剂配管101和配管75连通,第一旋转压缩元件32的吸入侧致冷剂流入背压室72A中,作为第二叶片52的背压,第一旋转压缩元件32的吸入侧压力被施加。
另一方面,控制器210通过如上所述的接线柱20以及未图示出的配线,对电动元件14的定子线圈28通电,使电动元件14的转子24旋转。通过该旋转,第一以及第二辊46、48嵌合在与旋转轴16一体设置的上下偏心部42、44上,在第一以及第二缸38、40内偏心旋转。
据此,低压致冷剂从旋转压缩机10的致冷剂配管100流入蓄压器146内。此时,如上所述,因为致冷剂配管101的电磁阀105被打开,所以通过致冷剂配管100的第一旋转压缩元件32的吸入侧的致冷剂的一部分从致冷剂配管101经过配管75流入背压室72A中。据此,背压室72A成为第一旋转压缩元件32的吸入侧压力,作为第二叶片52的背压,该第一旋转压缩元件32的吸入侧压力被施加。
在这里,因为作为第二旋转压缩元件34的背压而被施加的两旋转压缩元件32、34的吸入侧压力为低压,所以不能将第二叶片52向第二辊48弹压。因此,在第二旋转压缩元件34中,实质上没有进行压缩作功,仅仅是设置有弹簧74的第一旋转压缩元件32完成致冷剂的压缩作功。
另一方面,流入到蓄压器146内的低压致冷剂在这里被气液分离后,仅仅是致冷剂气体进入在该蓄压器146内开口的致冷剂排出管92内。进入到致冷剂导入管92的低压的致冷剂气体经过吸入通路58,被吸入到第一旋转压缩元件32的第一缸38的低压室侧。
被吸入到第一缸38的低压室侧的致冷剂气体通过第一辊46和第一叶片50的动作被压缩,成为高温高压的致冷剂气体,从第一缸38的高压室侧通过未图示出的排出口内,被排出到排出消音室62中。此时,因为在该第二运转模式中,排出消音室62作为膨胀型的消音室而发挥功能,排出消音室64作为共鸣型的消音室而发挥功能,所以可以更加降低在第一旋转压缩元件32中被压缩的致冷剂的压力脉冲。据此,在实质上只有第一旋转压缩元件32进行压缩作功的第二运转模式中,可以更加提高消音效果。
排出到排出消音室62的致冷剂气体通过贯通罩部件63的未图示出的孔,被排出到密封容器12内。然后,密封容器12内的致冷剂从形成于密封容器12的端盖12B上的致冷剂排出管96排出到外部,流入室外侧热交换器152中。在这里致冷剂气体放热,通过膨胀阀154减压后,流入室内侧热交换器156中。通过该室内侧热交换器156致冷剂蒸发,通过从在室内循环的空气中吸热,发挥冷却作用,对室内制冷。然后,反复进行将致冷剂从室内侧热交换器156排出,吸入到旋转压缩机10的循环。
(3)从第二运转模式向第一运转模式的转换
另一方面,若室内从上述的轻负荷状态成为通常负荷或高负荷状态,则控制器210从第二运转模式向第一运转模式转换。在这里,对于从第二运转模式向第一运转模式的转换动作,使用图4进行说明。在该情况下,控制器210进行控制,使电动元件14低速旋转(转数小于等于50Hz),使两旋转压缩元件32、34的压缩比小于等于3.0。另外,控制器210关闭致冷剂配管101的电磁阀105,打开致冷剂配管102的电磁阀106(图4的(2))。
据此,致冷剂配管102和配管75连通,两旋转压缩元件32、34的排出侧致冷剂流入背压室72A中,作为第二叶片52的背压,施加两旋转压缩元件32、34的排出侧压力。
作为第二叶片52的背压,通过施加两旋转压缩元件32、34的排出侧压力,由于第二叶片52的背压室72A与第二缸40内相比,成为显著的高压,所以第二叶片52通过背压室72A的该高压,被推向第二辊48侧,进行追随。
在这里,转换时作为第二叶片52的背压,通过施加两旋转压缩元件的排出侧压力,可以将第二叶片52充分地推出到第二辊48侧。即,在从第二运转模式向第一运转模式转换时,作为第二叶片52的背压,如上述的第一运转模式的通常运转时那样,在施加两旋转压缩元件32、34的吸入侧压力和排出侧压力之间的中间压力的情况下,在该中间压力中,由于第二缸40内和背压室72A的压力差少,所以直至第二叶片52追随到第二辊48很花费时间,在其间第二叶片52和第二辊48冲突,产生了发生冲突音这样的问题。
但是,在本发明中,在从第二运转模式向第一运转模式转换时,作为第二叶片52的背压,通过施加两旋转压缩元件32、34的排出侧压力,可以通过该排出侧压力,将第二叶片52向第二辊48侧充分地弹压,使第二辊48早期地追随。
据此,改善从第二运转模式向第一运转模式的转换时的第二叶片52的追随性,改善运转效率,并且可以避免第二叶片52的冲突音的产生。
另外,在转换时,控制器210进行控制,使电动元件14低速旋转(转数小于等于50Hz),使两旋转压缩元件32、34的压缩比小于等于3.0。据此,因为可以抑制压力变动,所以即使是在作为第二旋转压缩元件34的背压,施加了两旋转压缩元件32、34的排出侧压力的情况下,也难以受到该压力变动的影响。
另外,控制器210在对第二叶片52施加两旋转压缩元件32、34的排出侧压力,使第二叶片52追随第二辊48后,施加两旋转压缩元件32、34的吸入侧压力和排出侧压力之间的中间压力(图4的(3))。据此,因为如上所述,在与向第二叶片52的背压上施加了两旋转压缩元件32、34的排出侧压力的情况相比,可以显著地减小压力变动,所以可以改善在运转模式中转换后的旋转压缩机10的第二叶片52的追随性,改善第二旋转压缩元件34的压缩效率,并且,在第一运转模式中,可以未然地避免产生第二辊48和第二叶片52的冲突音。
如以上所详述,根据本发明,可以谋求提高具有旋转压缩机10的压缩系统CS的性能以及可靠性,该旋转压缩机10可以对第一运转模式和第二运转模式进行转换而被使用,在上述第一运转模式,第一以及第二旋转压缩元件32、34进行压缩作功,在上述第二运转模式,实质上只有第一旋转压缩元件32进行压缩作功。
据此,通过使用该压缩系统CS,构成空调机的致冷剂回路,可以提高该空调机的运转效率以及性能,也可以谋求降低消耗电力。
(实施例2)
接着,就本发明的压缩系统CS的其他实施例进行说明。图5是表示作为该情况下的压缩系统CS的多汽缸旋转压缩机,具有第一以及第二旋转压缩元件的内部高压型的旋转压缩机110的纵剖侧视图。另外,在图5中,赋予了与图1至图4相同的符号的部件是可产生相同或类似效果的部件。
在图5中,200是阀装置,在蓄压器146的出口侧,设置在密封容器12的入口侧的致冷剂导入管94的中途部。该电磁阀200是用于控制致冷剂向第二缸40流入的阀装置,由作为控制装置的上述控制器210控制。
另外,在本实施例中,作为致冷剂,与上述实施例相同,使用HFC或HC类的致冷剂,作为润滑油的机油,使用例如矿物油(石油)、烃化油、醚油、酯油等现有的机油。
以上述的构成,接着说明旋转压缩机110的动作。
(1)第一运转模式(通常负荷或高负荷时的运转)
首先,就两旋转压缩元件32、34进行压缩作功的第一运转模式进行说明。根据上述设置在室内机上的未图示出的室内机侧的控制器的运转指令输入,控制器210控制旋转压缩机110的电动元件14的转数,同时,在室内为通常负荷或高负荷状态的情况下,控制器210实行第一运转模式。在该第一运转模式下,控制器210打开致冷剂导入管94的电磁阀200,关闭致冷剂配管101的电磁阀105以及致冷剂配管102的电磁阀106。
这样,若通过接线柱20以及未图示出的配线,对电动元件14的定子线圈28通电,则电动元件14起动,转子24旋转。通过该旋转,第一以及第二辊46、48嵌合在与旋转轴16一体设置的上下偏心部42、44上,在第一以及第二缸38、40内偏心旋转。
据此,低压致冷剂从旋转压缩机110的致冷剂配管100流入蓄压器146内。如上所述,因为致冷剂配管101的电磁阀105被关闭,所以通过致冷剂配管100的致冷剂不会流入配管75,而是全部流入蓄压器146内。
这样,已流入到蓄压器146内的低压致冷剂在这里被气液分离后,仅仅是致冷剂气体进入在该蓄压器146内开口的各致冷剂排出管92、94内。已进入致冷剂导入管92的低压的致冷剂气体经过吸入通路58,被吸入到第一旋转压缩元件32的第一缸38的低压室侧。
被吸入到第一缸38的低压室侧的致冷剂气体通过第一辊46和第一叶片50的动作而被压缩,成为高温高压的致冷剂气体,从第一缸38的高压室侧通过未图示出的排出口内,被排出到排出消音室62中。
另一方面,进入到致冷剂导入管94的低压的致冷剂气体经过吸入通路60,被吸入到第二旋转压缩元件34的第二缸40的低压室侧。被吸入到第二缸40的低压室侧的致冷剂气体通过第二辊48和第二叶片52的动作而被压缩。
此时,如上所述,因为电磁阀105以及电磁阀106被关闭,所以与第二叶片52的背压室72A连通的配管75内为密封空间。再有,因为不少第二缸40内的致冷剂从第二叶片52和收纳部70A之间流入背压室72A中,所以第二叶片52的背压室72A内的压力成为两旋转压缩元件32、34的吸入侧压力和排出侧压力之间的中间压力,该中间压力作为第二叶片52的背压而成为被施加的状态。由于该中间压力,不使用弹簧部件,即可以将第二叶片52向第二辊48充分地弹压。
据此,与上述实施例相同,改善了在第一运转模式中的第二叶片52的追随性,也可以谋求提高第二旋转压缩元件34的压缩效率。
另外,通过第二辊48和第二叶片52的动作而被压缩成为高温高压的致冷剂气体,从第二缸40的高压室侧通过未图示出的排出口内,被排出到排出消音室64中。被排出到排出消音室64的致冷剂气体经由上述连通路120,被排出到排出消音室62中,与被上述第一旋转压缩元件32压缩的致冷剂气体合流。这样,合流的致冷剂气体通过贯通罩部件63的未图示出的孔,被排出到密封容器12内。
其后,密封容器12内的致冷剂从形成于密封容器12的端盖12B上的致冷剂排出管96排出到外部,流入室外侧热交换器152中。在这里,致冷剂气体放热,通过膨胀阀154减压后,流入室内侧热交换器156中。通过该室内侧热交换器156,致冷剂蒸发,通过从在室内循环的空气中吸热,发挥冷却作用,对室内制冷。然后,反复进行将致冷剂从室内侧热交换器156排出,吸入到旋转压缩机110的循环。
(2)从第一运转模式向第二运转模式的转换
接着,若室内从上述的通常负荷或高负荷状态成为轻负荷状态,则控制器210从第一运转模式向第二运转模式转换。
在这里,对于从第一运转模式向第二运转模式的转换动作,使用图6进行说明。另外,在模式转换时,控制器210进行控制,使电动元件14通过低速旋转,例如,使转数小于等于50Hz,使两旋转压缩元件32的压缩比小于等于3.0。
首先,控制器210关闭上述的电磁阀200,切断向第二缸40的致冷剂的流入(图6的(2))。据此,在第二旋转压缩元件34中,没有完成压缩作功。若向第二缸40的致冷剂的流入被阻止,则在第二缸40内,成为比上述两旋转压缩元件32、34的吸入侧压力稍高的压力(因为第二辊48旋转,并且,密封容器12内的高压从第二缸40的间隙等稍稍流入,所以在第二缸40内,为比吸入侧压力稍高的压力)。
另外,因为在上述第一运转模式下,如上所述的背压室72A内的压力成为两旋转压缩元件32、34的吸入侧压力和排出侧压力之间的中间压力,所以第二缸40内的压力和第二叶片52的背压室72A内的压力为大致相同的压力。
然后,控制器210打开致冷剂配管101的电磁阀105。另外,致冷剂配管102的电磁阀106为就这样关闭的状态(图6的(3))。据此,致冷剂配管101和配管75连通,第一旋转压缩元件32的吸入侧致冷剂流入背压室72A中,作为第二叶片52的背压,施加第一旋转压缩元件32的吸入侧压力。
据此,通过致冷剂配管100的第一旋转压缩元件32的吸入侧致冷剂的一部分从致冷剂配管101经过配管75流入背压室72A中。据此,背压室72A成为第一旋转压缩元件32的吸入侧压力,作为第二叶片52的背压,施加该第一旋转压缩元件32的吸入侧压力。
因为如上所述的第二缸40成为比第一旋转压缩元件32的吸入侧压力高的压力,所以作为第二叶片52的背压,通过施加第一旋转压缩元件32的吸入侧压力,可以使第二缸40的压力高于第二叶片52的背压室72A。因此,第二叶片52由于第二缸40内的压力,被推向成为与第二辊48的相反一侧的背压室72A侧,被收纳在引导槽72内。据此,由于在向第二运转模式转换时,可以将第二叶片52早期地从第二缸40内引入,将其收容在引导槽72内,所以可以未然地避免第二叶片52与第二辊48的冲突,产生冲突音这样的问题。
(3)第二运转模式
接着,就在第二运转模式中的旋转压缩机110的动作进行说明。从旋转压缩机110的致冷剂配管100流入到蓄压器146内的低压致冷剂在这里进行气液分离后,仅仅是致冷剂气体进入在该蓄压器146内开口的致冷剂排出管92内。进入到致冷剂导入管92的低压的致冷剂气体经过吸入通路58,被吸入到第一旋转压缩元件32的第一缸38的低压室侧。
被吸入到第一缸38的低压室侧的致冷剂气体通过第一辊46和第一叶片50的动作而被压缩,成为高温高压的致冷剂气体,从第一缸38的高压室侧通过未图示出的排出口内,被排出到排出消音室62中。被排出到排出消音室62的致冷剂气体通过贯通罩部件63的未图示出的孔,被排出到密封容器12内。
其后,密封容器12内的致冷剂从形成于密封容器12的端盖12B上的致冷剂排出管96排出到外部,流入室外侧热交换器152中。在这里,致冷剂气体放热,通过膨胀阀154减压后,流入室内侧热交换器156中。在这里,致冷剂蒸发,此时,通过从在室内循环的空气中吸热,发挥冷却作用,对室内制冷。然后,反复进行将致冷剂从室内侧热交换器156排出、吸入到旋转压缩机110的循环。
另外,在该第二运转模式中,控制器210通过关闭上述的电磁阀200,以阻止向第二缸40的致冷剂的流入的状态运转,在第二运转模式中,第二缸40内的压力就这样被保持在比第二叶片52的背压高的状态。因此,第二叶片52由于第二缸40内的压力,被推向成为与第二辊48相反一侧的背压室72A侧,不会从第二缸40内出来。据此,在第二运转模式的运转中,可以未然地避免第二叶片52从第二缸40内出来,与第二辊48冲突,产生冲突音这样的问题。
(4)从第二运转模式向第一运转模式的转换
另一方面,若室内从上述的轻负荷状态成为通常负荷或高负荷状态,则控制器210从第二运转模式向第一运转模式转换。在这里,对于从第二运转模式向第一运转模式的转换动作,使用图7进行说明。在该情况下,控制器210打开电磁阀200,使致冷剂流入第二缸40,同时,关闭致冷剂配管101的电磁阀105,打开致冷剂配管102的电磁阀106(图7的(2))。
据此,致冷剂配管102和配管75连通,两旋转压缩元件32、34的排出侧致冷剂流入背压室72A中,作为第二叶片52的背压,施加两旋转压缩元件32、34的排出侧压力。
作为第二叶片52的背压,通过施加两旋转压缩元件32、34的排出侧压力,由于第二叶片52的背压室与第二缸40内相比为显著的高压,所以第二叶片52通过背压室72A的该高压,被推向第二辊48侧,进行追随。
在这里,转换时作为第二叶片52的背压,通过施加两旋转压缩元件的排出侧压力,可以将第二叶片52向第二辊侧充分地推出。即,在从第二运转模式向第一运转模式转换时,作为第二叶片52的背压,如上述的第一运转模式的通常运转时那样,在施加两旋转压缩元件32、34的吸入侧压力和排出侧压力之间的中间压力的情况下,在该中间压力中,由于第二缸40内和背压室72A的压力差少,所以直至第二叶片52追随到第二辊48很花费时间,在其间,第二叶片52和第二辊48冲突,产生了发生冲突音这样的问题。
但是,在本发明中,在从第二运转模式向第一运转模式转换时,作为第二叶片52的背压,通过施加两旋转压缩元件32、34的排出侧压力,可以通过该排出侧压力,将第二叶片52向第二辊48侧充分地弹压,使第二辊48早期地追随。
据此,改善了从第二运转模式向第一运转模式转换时的第二叶片52的追随性,改善了运转效率,并且,可以避免第二叶片52的冲突音的产生。
另外,在转换时,控制器210进行控制,使电动元件14低速旋转(转数小于等于50Hz),使两旋转压缩元件32、34的压缩比小于等于3.0。据此,因为可以抑制压力变动,所以即使是在作为第二旋转压缩元件34的背压,施加了两旋转压缩元件32、34的排出侧压力的情况下,也难以受到该压力变动的影响。
另外,控制器210在对第二叶片52施加两旋转压缩元件32、34的排出侧压力,使第二叶片52追随第二辊48后,关闭电磁阀106(图7的(3)),施加两旋转压缩元件32、34的吸入侧压力和排出侧压力之间的中间压力。据此,因为如上所述,与在第二叶片的背压上施加了两旋转压缩元件32、34的排出侧压力的情况相比,压力变动显著地变小,所以可以改善在运转模式中,在转换后,旋转压缩机110的第二叶片52的追随性,改善第二旋转压缩元件34的压缩效率,并且,在第一运转模式中,可以未然地避免产生第二辊48和第二叶片52的冲突音。
如上所详述,即使是在本实施例中,也可以谋求提高具有旋转压缩机110的压缩系统CS的性能以及可靠性,该旋转压缩机110可以对第一运转模式和第二运转模式进行转换而被使用,在上述第一运转模式,第一以及第二旋转压缩元件32、34进行压缩作功,在上述第二运转模式,实质上只有第一旋转压缩元件32进行压缩作功。
据此,通过使用该压缩系统CS,构成空调机的致冷剂回路,可以提高该空调机的运转效率以及性能,也可以谋求降低消耗电力。
(实施例3)
在上述各实施例中,作为致冷剂,是使用了HFC或HC类的致冷剂,也可以使用二氧化碳等的高低压差大的致冷剂,例如,作为致冷剂,也可以使用将二氧化碳和PAG(聚二醇)组合后的致冷剂。在该情况下,因为被各旋转压缩元件32、34压缩的致冷剂为非常高的高压,所以若如上述各实施例,使排出消音室62成为通过罩部件63覆盖上部支撑部件54的上侧的形状,则存在由于该高压,造成罩部件63破损的可能性。
因此,若使通过两旋转压缩元件32、34压缩的致冷剂合流的上部支撑部件54的上侧的排出消音室的形状为图8所示那样的形状,则可以确保耐压性。即,图8的排出消音室162构成如下:在上部支撑部件54的上侧,形成凹陷部,利用将凹陷部作为盖的上部盖66进行封闭。据此,即使是在含有象二氧化碳那样的高低压差大的致冷剂的情况下,也可以应用本发明。
(实施例4)
接着,就本发明的压缩系统CS起动时的动作进行说明。另外,在本实施例中,使用的压缩系统CS、多汽缸旋转压缩机以及致冷剂回路与在实施例1中使用的图1至图3的相同。因此,省略这些构成的说明。另外,使用的致冷剂也与上述各实施例相同,使用HFC或HC类的致冷剂,作为润滑油的机油使用例如矿物油(石油)、烃化油、醚油、酯油等现有的机油。
在这里,使用图9,说明本实施例的旋转压缩机10起动时的动作。根据上述设置在室内机上的未图示出的室内机侧的控制器的运转指令输入,控制器210对旋转压缩机10的电动元件14通电。此时,控制器210在向电动元件14通电的同时,打开致冷剂配管101的电磁阀105,关闭致冷剂配管102的电磁阀106(图9的(1))。据此,致冷剂配管101和配管75连通,控制器210在作为第二叶片52的背压,施加两旋转压缩元件32、34的吸入侧压力的状态下,控制旋转压缩机10的电动元件14的转数,进行起动。
这样,若通过接线柱20以及未图示出的配线,对电动元件14的定子线圈28通电,则电动元件14起动,转子24旋转。通过该旋转,第一以及第二辊46、48嵌合在与旋转轴16一体设置的上下偏心部42、44上,在第一以及第二缸38、40内偏心旋转。
据此,致冷剂从旋转压缩机10的致冷剂配管100流入蓄压器146内。此时,如上所述,因为致冷剂配管101的电磁阀105被打开,所以通过致冷剂配管100的两旋转压缩元件32、34的吸入侧的致冷剂的一部分从致冷剂配管101经过配管75流入背压室72A中。
另一方面,已流入到蓄压器146内的致冷剂在这里被气液分离后,仅仅是致冷剂气体进入在该蓄压器146内开口的致冷剂导入管92内。已进入致冷剂导入管92的致冷剂气体经过吸入通路58,被吸入到第一旋转压缩元件32的第一缸38的低压室侧。
被吸入到第一缸38的低压室侧的致冷剂气体通过第一辊46和第一叶片50的动作而被压缩,成为高温高压的致冷剂气体,从第一缸38的高压室侧通过未图示出的排出口内,被排出到排出消音室62中。被排出到排出消音室62的致冷剂气体通过贯通罩部件63的未图示出的孔,被排出到密封容器12内。
在这里,致冷剂回路内在旋转压缩机10起动时为平衡压。即,因为旋转压缩机10在上一次的运转停止后,逐渐平衡压力,若经过规定的时间,则致冷剂回路内成为平衡压,所以在致冷剂回路内成为平衡压的状况下,起动了旋转压缩机10的情况下,在旋转压缩机10刚刚起动后,作为第二叶片52的背压而被施加的两旋转压缩元件32、34的吸入侧致冷剂的压力成为大致的平衡压。同样,第二缸40内的压力也成为大致平衡压。因此,因为不会出现将第二叶片52向第二辊48弹压,所以在第二旋转压缩元件34中,实质上不进行压缩作功,仅仅是设置有弹簧74的第一旋转压缩元件32完成致冷剂的压缩作功。
其后,密封容器12内的致冷剂从形成于密封容器12的端盖12B上的致冷剂排出管96排出到外部,流入室外侧热交换器152中。在这里,致冷剂气体放热,通过膨胀阀154减压后,流入室内侧热交换器156中。流入到室内侧热交换器156中的致冷剂在这里蒸发,通过从在室内循环的空气中吸热,发挥冷却作用,对室内制冷。然后,反复进行将致冷剂从室内侧热交换器156排出,吸入到旋转压缩机10的循环。
另一方面,若旋转压缩机10起动,经过规定的时间,则在致冷剂回路内构成高低压力差,致冷剂回路内的状态逐渐稳定。另外,在此时,作为第二叶片52的背压而被施加的两旋转压缩元件32、34的吸入侧致冷剂的压力虽然为低压,但是在该低压下,由于不能将第二叶片52向第二辊48侧弹压,所以与上述同样,实质上只有第一旋转压缩元件32完成压缩作功。
在这里,若旋转压缩机10起动,经过规定的时间,则控制器210如图9的(2)所示,关闭致冷剂配管101的电磁阀105,打开致冷剂配管102的电磁阀106。据此,致冷剂配管102与配管75连通,在旋转压缩机10的致冷剂配管100流通的致冷剂全部流入蓄压器146内。
另外,从密封容器12内排出到致冷剂排出管96的致冷剂的一部分从致冷剂配管102经过配管75流入背压室72A中。据此,背压室72A为两旋转压缩元件32、34的排出侧压力,作为第二叶片52的背压,施加两旋转压缩元件32、34的排出侧压力。
作为第二叶片52的背压,通过施加两旋转压缩元件32、34的排出侧压力,由于第二叶片52的背压室与第二缸40内相比为显著的高压,所以第二叶片52通过背压室72A的该高压,被向第二辊48侧弹压,进行追随,在第二旋转压缩元件34中,开始压缩作功。
即,只有在蓄压器146内被气液分离的致冷剂气体进入在该蓄压器146内开口的各致冷剂排出管92、94内。进入到致冷剂导入管92的低压的致冷剂气体如上所述,经过吸入通路58,被吸入到第一旋转压缩元件32的第一缸38的低压室侧。
被吸入到第一缸38的低压室侧的致冷剂气体通过第一辊46和第一叶片50的动作而被压缩,成为高温高压的致冷剂气体,从第一缸38的高压室侧通过未图示出的排出口内,被排出到排出消音室62中。
另一方面,进入到致冷剂导入管94的低压的致冷剂气体经过吸入通路60,被吸入到第二旋转压缩元件34的第二缸40的低压室侧。被吸入到第二缸40的低压室侧的致冷剂气体通过第二辊48和第二叶片52的动作而被压缩。
在这里,控制器210关闭电磁阀105,打开电磁阀106,在作为第二叶片52的背压,施加两旋转压缩元件32、34的排出侧压力的状态下,在起动旋转压缩机10的情况下,因为如上所述,在刚刚起动后,致冷剂回路内的压力是大致平衡压,所以即使打开电磁阀106,作为第二叶片52的背压所施加的压力也是该平衡压,该两旋转压缩元件32、34的排出侧压力直至成为高压要花费时间。因此,直到两旋转压缩元件32、34的排出侧压力上升到某种程度之前,并不能使第二叶片52追随第二辊48。
另外,因为在刚刚起动后,致冷剂回路内的状态不稳定,所以两旋转压缩元件32、34的排出侧压力的脉冲也显著增大。因此,在施加两旋转压缩元件32、34的排出侧压力的状态下起动的情况下,存在下述问题,即,由于两旋转压缩元件32、34的排出侧压力的脉冲造成第二叶片52的追随性恶化,第二叶片52与第二辊48冲突,产生冲突音。
但是,如本发明这样,通过在打开电磁阀105,施加两旋转压缩元件32、34的吸入侧压力的状态下起动,不使第二叶片52追随第二辊48,在第二旋转压缩元件34的压缩作功实质上无效,同时,在起动后致冷剂回路内稳定的状态下,施加两旋转压缩元件32、34的排出侧压力,通过该排出侧压力,将第二叶片52向第二辊48侧弹压,使其追随第二辊38,就可以避免上述的问题,可以改善在起动时第二叶片52的追随性。
据此,改善旋转压缩机10的运转效率,并且,可以避免产生第二叶片52的冲突音。
另外,被第二辊48和第二叶片52的动作压缩,成为高温高压的致冷剂气体从第二缸40的高压室侧通过未图示出的排出口内,被排出到排出消音室64中。被排出到排出消音室64的致冷剂气体经过上述连通路120,被排出到排出消音室62中,与被上述第一旋转压缩元件32压缩的致冷剂气体合流。然后,合流的致冷剂气体通过贯通罩部件63的未图示出的孔,被排出到密封容器12内。
其后,密封容器12内的致冷剂从形成于密封容器12的端盖12B上的致冷剂排出管96排出到外部,流入室外侧热交换器152中。另外,通过致冷剂排出管96的两旋转压缩元件32、34的排出侧致冷剂的一部分由于如上所述电磁阀106被打开,所以从致冷剂配管102经过配管75,流入背压室72A中。据此,作为第二叶片52的背压,施加两旋转压缩元件32、34的排出侧压力。
另一方面,流入到室外侧热交换器152的致冷剂气体在这里放热,通过膨胀阀154减压后,流入室内侧热交换器156中。通过该室内侧热交换器156致冷剂蒸发,通过从在室内循环的空气中吸热,发挥冷却作用,对室内制冷。然后,反复进行将致冷剂从室内侧热交换器156排出,吸入到旋转压缩机10的循环。
另一方面,若施加两旋转压缩元件32、34的排出侧压力,使第二叶片52追随第二辊48,则控制器210在其后关闭电磁阀106(图9的(3))。据此,与第二叶片52的背压室72A连通的配管75内成为封闭空间。在这里,因为不少第二缸40内的致冷剂从第二叶片52和收纳部70A之间流入背压室72A中,所以第二叶片52的背压室72A内的压力成为两旋转压缩元件32、34的吸入侧压力和排出侧压力之间的中间压力,成为该中间压力作为第二叶片52的背压而被施加的状态。因为该中间压力,所以不使用弹簧部件,即可将第二叶片52向第二辊48充分地弹压。
在这里,在作为第二叶片52的背压,继续施加作为上述的两旋转压缩元件32、34的排出侧压力的高压的情况下,因为排出侧压力脉冲大,而且在第二旋转压缩元件34中,没有弹簧部件,所以产生下述问题,即,由于该脉冲造成第二叶片52的追随性恶化,压缩效率降低,并且在第二叶片52和第二辊48之间产生冲突音。
另外,在起动旋转压缩机10,作为第二叶片52的背压,不施加作为上述两旋转压缩元件32、34的排出侧压力的高压,使背压室72A为两旋转压缩元件32、34的吸入侧压力和排出侧压力之间的中间压力的情况下,存在下述问题,即,因为在该中间压力时,第二缸40内和背压室72A的压力差小,所以第二叶片52直至追随到第二辊48要花费时间,在其间,第二叶片52和第二辊48冲突,产生冲突音。
因此,通过作为第二叶片52的背压,施加两旋转压缩元件32、34的排出侧压力,利用该排出侧压力,将第二叶片52向第二辊48侧弹压,使其追随第二辊48后,使背压室72A为两旋转压缩元件32、34的吸入侧压力和排出侧压力之间的中间压力,可以改善第二叶片52的追随性,改善第二旋转压缩元件34的压缩效率,并且,可以未然地避免在起动时产生第二辊48和第二叶片52的冲突音。
另外,在本实施例中,虽然控制器210进行控制,在对电动元件14通电的同时,打开电磁阀105,关闭电磁阀106,但是也可以是在旋转压缩机10起动前进行电磁阀105、106的开闭,例如,控制器210可以在对电动元件14通电前,打开电磁阀105,关闭电磁阀106。
另外,有关在通常负荷或高负荷时进行的第一运转模式以及在轻负荷时进行的第二运转模式,由于与实施例1动作相同,故省略说明。
(实施例5)
再有,在本发明的压缩系统CS中,在也可以是在如上述实施例2的图5所示的蓄压器146的出口侧,电磁阀200设置在密封容器12的入口侧的致冷剂导入管94的中途部,该电磁阀200是由控制器210控制的。
象这样,在致冷剂导入管94上设置电磁阀200,在起动时关闭电磁阀,完全切断向第二旋转压缩元件34的致冷剂的流入,在打开致冷剂配管102的电磁阀106时,打开该电磁阀200,这样在本发明中也有效。
另外,在第二运转模式中,通过利用控制器210关闭电磁阀200,阻止在向第二缸40的致冷剂的流入的状态下进行运转,就可以使第二缸40内成为比第一旋转压缩元件32的吸入侧压力高的压力。
另外,在本实施例中,作为致冷剂,与上述实施例相同,使用HFC或HC类的致冷剂,作为润滑油的机油,使用例如矿物油(石油)、烃化油、醚油、酯油等现有的机油。
说明该情况下的动作。控制器210关闭上述的电磁阀200,阻止向第二缸40的致冷剂的流入。据此,在第二旋转压缩元件34中,没有完成压缩作功。另外,若阻止向第二缸40的致冷剂的流入,则第二缸40内成为比上述的两旋转压缩元件32、34的吸入侧压力高一些的压力(因为第二辊48旋转,并且,密封容器12内的高压从第二缸40的间隙等流入一些,所以第二缸40内成为比吸入侧压力高一些的压力)。
另外,控制器210打开致冷剂配管101的电磁阀105,关闭致冷剂配管102的电磁阀106。据此,致冷剂配管101和配管75连通,第一旋转压缩元件32的吸入侧致冷剂流入背压室72A中,作为第二叶片52的背压,施加第一旋转压缩元件32的吸入侧压力。
然后,通过旋转压缩机110的致冷剂配管100的第一旋转压缩元件32的吸入侧的致冷剂的一部分从致冷剂配管101经过配管75流入背压室72A中。据此,背压室72A成为第一旋转压缩元件32的吸入侧压力,作为第二叶片52的背压,施加该第一旋转压缩元件32的吸入侧压力。
在这里,若关闭电磁阀200,阻止向第二缸40内的致冷剂的流入,使第二缸40内成为比第一旋转压缩元件32的吸入侧压力高的压力,则作为第二叶片52的背压,通过施加第一旋转压缩元件32的吸入侧压力,使第二缸40内的压力比第二叶片52的背压高。因此,第二叶片52通过第二缸40内的压力,被向成为与第二辊48相反一侧的背压室72A侧推压,不会从第二缸40内出来。据此,可以未然地避免第二叶片52从第二缸40内出来,与第二辊48冲突,产生冲突音这样的问题。
另一方面,流入到蓄压器146内的低压致冷剂在这里被气液分离后,仅仅是致冷剂气体进入在该蓄压器146内开口的致冷剂排出管92内。进入到致冷剂导入管92的低压的致冷剂气体经过吸入通路58,被吸入到第一旋转压缩元件32的第一缸38的低压室侧。
被吸入到第一缸38的低压室侧的致冷剂气体通过第一辊46和第一叶片50的动作而被压缩,成为高温高压的致冷剂气体,从第一缸38的高压室侧通过未图示出的排出口内,被排出到排出消音室62中。被排出到排出消音室62的致冷剂气体通过贯通罩部件63的未图示出的孔,被排出到密封容器12内。
其后,密封容器12内的致冷剂从形成于密封容器12的端盖12B上的致冷剂排出管96排出到外部,流入室外侧热交换器152中。在这里,致冷剂气体放热,通过膨胀阀154减压后,流入室内侧热交换器156中。在该室内侧热交换器156中,致冷剂蒸发,通过从在室内循环的空气中吸热,发挥冷却作用,对室内制冷。然后,反复进行将致冷剂从室内侧热交换器156排出,吸入到旋转压缩机110的循环。
象这样,在致冷剂导入管94的中途部设置电磁阀200,在第二运转模式中,通过利用控制器210关闭电磁阀200,在阻止向第二缸40的致冷剂的流入的状态下运转,在第二运转模式中,将第二缸40内的压力就这样保持在比第二叶片52的背压高的状态。因此,第二叶片52通过第二缸40内的压力,被向成为与第二辊48的相反一侧的背压室72A侧推压,不会从第二缸40内出来。据此,可以未然地避免在第二运转模式的运转中,第二叶片52从第二缸40内出来,与第二辊48冲突,产生冲突音这样的问题。
如以上所详述,根据本发明,可以谋求具有旋转压缩机110的压缩系统CS的性能以及可靠性,该旋转压缩机110可以对第1运转模式和第2运转模式进行转换而被使用,在上述第1运转模式,第一以及第二旋转压缩元件32、34进行压缩作功,在上述第2运转模式,实质上只有第一旋转压缩元件32进行压缩作功。
据此,通过使用该压缩系统CS,构成空调机的致冷剂回路,可以提高该空调机的运转效率以及性能,也可以谋求降低消耗电力。
(实施例6)
另外,在上述实施例4以及实施例5中,作为致冷剂,使用HFC或HC类的致冷剂,但是也可以使用二氧化碳等的高低压差大的致冷剂,例如,作为致冷剂,也可以使用二氧化碳和PAG(聚二醇)组合后的致冷剂。在该情况下,因为被各旋转压缩元件32、34压缩的致冷剂为非常高的高压,所以若使如上述各实施例的排出消音室62成为通过罩部件63覆盖上部支撑部件54的上侧的形状,则存在由于该高压,造成罩部件63破损的可能性。
因此,若使通过两旋转压缩元件32、34压缩的致冷剂合流的上部支撑部件54的上侧的排出消音室的形状为图8所示的形状,则可以确保耐压性。即,图8的排出消音室162构成如下:在上部支撑部件54的上侧形成凹陷部,利用将凹陷部作为盖的上部盖66进行封闭。据此,即使是在含有象二氧化碳那样的高低压差大的致冷剂的情况下,也可以应用本发明。
(实施例7)
接着,就本发明的多汽缸旋转压缩机的另外的其他实施例进行说明。图10是该情况下的本发明的多汽缸旋转压缩机的纵剖侧视图。另外,本实施例的多汽缸旋转压缩机的另一个纵剖侧视图与实施例1的图1相同,另外,致冷剂回路图也与实施例1的图3相同。因此,在本实施例中,仅对不同于实施例1的构成的部位进行说明。另外,在本实施例中,赋予与图1至图3相同的符号的部件是可产生相同或类似的效果的部件。
该实施例的背压室172A在引导槽72侧和密封容器12侧开口,在该密封容器12侧的开口连通连接着后述的配管75,密封容器12内被密封。
另外,本发明的背压室172A成为具有规定的空间容积的消音器室。实施例的背压室172A如图10所示,成为具有凹陷状的室的形状,该凹陷状的室在成为下部支撑部件56的上侧的上述配管75和引导槽72的连接部位的位置上具有规定的空间容积。即,本实施例的背压室172A形成在与封闭上述第二缸40的下侧的开口面的下部支撑部件56的上面配管75和引导槽72相对应的位置,通过该下部支撑部件56封闭第二缸40的下面的开口部而形成凹陷部。
象这样,通过使背压室172A成为具有规定的空间容积的形状,通过该背压室172A,可以降低因对第二叶片52的弹压动作而产生的压力脉冲以及作为第二叶片52的背压而被施加的压力的脉冲。
另外,作为致冷剂,使用HFC或HC类的致冷剂,作为润滑油的机油,使用例如矿物油(石油)、烃化油、醚油、酯油等现有的机油。
以上述的构成,接着说明旋转压缩机10的动作。
(1)第一运转模式(通常负荷或高负荷时)
首先,就两旋转压缩元件32、34进行压缩作功的第一运转模式进行说明。根据上述设置在室内机上的未图示出的室内机侧的控制器的运转指令输入,控制器210控制旋转压缩机10的电动元件14的转数,同时,在室内为通常负荷或高负荷状态的情况下,控制器210实行第一运转模式。在该第一运转模式下,控制器210关闭致冷剂配管101的电磁阀105,打开致冷剂配管102的电磁阀106。据此,致冷剂配管102和配管75连通,两旋转压缩元件32、34的吸入侧致冷剂流入背压室172A中,作为第二叶片52的背压,施加两旋转压缩元件32的吸入侧压力。
这样,若通过接线柱20以及未图示出的配线,对电动元件14的定子线圈28通电,则电动元件14起动,转子24旋转。通过该旋转,第一以及第二辊46、48嵌合在与旋转轴16一体设置的上下偏心部42、44上,在第一以及第二缸38、40内偏心旋转。
据此,低压致冷剂从旋转压缩机10的致冷剂配管100流入蓄压器146内。如上所述,因为致冷剂配管100的电磁阀105被关闭,所以通过致冷剂配管100的致冷剂不会流入配管75,而是全部流入蓄压器146内。
这样,已流入到蓄压器146内的低压致冷剂在这里被气液分离后,仅仅是致冷剂气体进入在该蓄压器146内开口的各致冷剂排出管92、94内。已进入致冷剂导入管92的低压的致冷剂气体经过吸入通路58,被吸入到第一旋转压缩元件32的第一缸38的低压室侧。
被吸入到第一缸38的低压室侧的致冷剂气体通过第一辊46和第一叶片50的动作而被压缩,成为高温高压的致冷剂气体,从第一缸38的高压室侧通过未图示出的排出口内,被排出到排出消音室62中。
另一方面,进入到致冷剂导入管94的低压的致冷剂气体经过吸入通路60,被吸入到第二旋转压缩元件34的第二缸40的低压室侧。被吸入到第二缸40的低压室侧的致冷剂气体通过第二辊48和第二叶片52的动作而被压缩。
此时,如上所述,因为对第二叶片52向第二辊48的弹压动作,在第二叶片52的成为与第二辊48的相反一侧的背压室172A侧,产生压力脉冲。在该情况下,产生了在没有设置以往的弹簧部件的第二旋转压缩元件34中,由于该压力脉冲,第二叶片52对第二辊的追随性恶化这样的问题。
再有,由于作为第二叶片52的背压所施加的两旋转压缩元件32、34的排出侧压力脉冲大,而且没有弹簧部件,所以存在下述问题,即,由于该脉冲导致第二叶片52的追随性恶化,据此,压缩效率降低,并且,在第二叶片52和第二辊48之间产生冲突音。
但是,如本发明那样,通过使背压室172A成为具有规定的空间容积的消音器室,可以降低由于对第二叶片52的弹压动作而产生的压力脉冲。另外,来自配管75的两旋转压缩元件32、34的排出侧致冷剂在通过该背压室172A的过程中,压力脉冲显著减小。据此,不使用弹簧部件,也可以将第二叶片52向第二辊48充分地弹压。
据此,改善了在第一运转模式中的第二叶片52的追随性,也提高了第二旋转压缩元件34的压缩效率。再有,通过改善第二叶片52的追随性,可以避免上述的与第二辊48的冲突。因此,也可以极力避免在与第二辊48之间产生冲突音这样的问题。
另外,通过第二辊48和第二叶片52的动作而被压缩,成为高温高压的致冷剂气体,从第二缸40的高压室侧通过未图示出的排出口内,被排出到排出消音室64中。被排出到排出消音室64中的致冷剂气体经过上述连通路120,被排出到排出消音室62中,与被上述第一旋转压缩元件32压缩的致冷剂气体合流。这样,合流的致冷剂气体通过贯通罩部件63的未图示出的孔,被排出到密封容器12内。
其后,密封容器12内的致冷剂从形成于密封容器12的端盖12B上的致冷剂排出管96排出到外部,流入室外侧热交换器152中。一方面,如上所述,因为通过控制器210打开电磁阀106,所以在致冷剂排出管96内流动的两旋转压缩元件32、34的排出侧致冷剂的一部分从致冷剂配管102经过配管75流入背压室172A内。据此,作为第二叶片52的背压,施加两旋转压缩元件32、34的排出侧压力。
另一方面,流入到室外侧热交换器152的致冷剂气体在这里放热,通过膨胀阀154减压后,流入室内侧热交换器156中。通过该室内侧热交换器156,致冷剂蒸发,通过从在室内循环的空气中吸热,发挥冷却作用,对室内制冷。然后,反复进行将致冷剂从室内侧热交换器156排出,吸入到旋转压缩机10的循环。
另外,在上述的第一运转模式中,控制器210关闭致冷剂配管101的电磁阀105,打开致冷剂配管102的电磁阀106,使致冷剂配管102和配管75连通,作为第二叶片52的背压,施加了为高压的两旋转压缩元件32、34的排出侧压力,但在该第一运转模式中,作为第二叶片52的背压,也可以施加两旋转压缩元件32、34的吸入侧压力和排出侧压力之间的中间压力。在该情况下,若通过控制器210关闭致冷剂配管101的电磁阀105以及致冷剂配管102的电磁阀106,使与第二叶片52的背压室172A连通的配管75内成为封闭空间,则因为很多的第二缸40内的致冷剂从第二叶片52和收纳部70A之间流入背压室172A中,所以第二叶片52的背压室172A内的压力成为两旋转压缩元件32、34的吸入侧压力和排出侧压力之间的中间压力,该中间压力作为第二叶片52的背压而被施加。
象这样,即使在作为第二叶片52的背压而施加了中间压力的情况下,也不使用弹簧部件,通过该中间压力,可以将第二叶片52向第二辊48充分地弹压。再有,因为与施加了两旋转压缩元件32、34的排出侧压力的情况相比,压力脉冲显著减小,所以在因上述的背压室172A带来的降低脉冲效果的基础上,可以谋求进一步的降低脉冲。特别是,如上所述,通过关闭电磁阀105、106,成为切断从配管75向两旋转压缩元件32、34的吸入侧致冷剂和排出侧致冷剂的流入的状态,可以更进一步地抑制第二叶片52的背压的脉冲。
(2)第二运转模式(轻负荷时的运转)
接着,就第二运转模式进行说明。控制器210在室内为轻负荷状态的情况下,转换到第二运转模式。该第二运转模式是实质上只有第一旋转压缩元件32进行压缩作功的模式,是在室内为轻负荷,在上述第一运转模式中,电动元件14为低速旋转的情况下进行的运转模式。在小能力区域,通过实质上只有第一旋转压缩元件32进行压缩作功,与通过第一以及第二两缸38、40进行压缩作功的情况相比,由于可以减少压缩的致冷剂气体的量,所以该量即使在轻负荷时,也使电动元件14的转数上升,改善了电动元件14的运转效率,并且也使降低致冷剂的泄漏损耗成为可能。
在该情况下,控制器210打开致冷剂配管101的电磁阀105,关闭致冷剂配管102的电磁阀106。据此,致冷剂配管101和配管75连通,第一旋转压缩元件32的吸入侧致冷剂流入背压室172A中,作为第二叶片52的背压,施加第一旋转压缩元件32的吸入侧压力。
另一方面,控制器210通过如上所述的接线柱20以及未图示出的配线,对电动元件14的定子线圈28通电,使电动元件14的转子24旋转。通过该旋转,第一以及第二辊46、48嵌合在与旋转轴16一体设置的上下偏心部42、44上,在第一以及第二缸38、40内偏心旋转。
据此,低压致冷剂从旋转压缩机10的致冷剂配管100流入蓄压器146内。此时,如上所述,因为致冷剂配管100的电磁阀105被打开,所以通过致冷剂配管100的第一旋转压缩元件32的吸入侧的致冷剂的一部分从致冷剂配管101经过配管75流入背压室172A中。据此,背压室172A成为第一旋转压缩元件32的吸入侧压力,作为第二叶片52的背压,施加该第一旋转压缩元件32的吸入侧压力。
在这里,因为作为第二旋转压缩元件34的背压而被施加的两旋转压缩元件32、34的吸入侧压力为低压,所以不能将第二叶片52向第二辊48弹压。因此,在第二旋转压缩元件34中,实质上没有进行压缩作功,仅仅是设置有弹簧74的第一旋转压缩元件32完成致冷剂的压缩作功。
在该情况下,因为第二缸40内的压力和第二叶片的背压相同地施加吸入侧压力,所以在以往,通过两空间的平衡的变动,第二叶片出现在第二缸内,与第二辊冲突,还是会有产生冲突音的问题。但是,通过具有本发明的规定的空间容积的背压室172A,由于可以降低变动,所以可以极力避免第二叶片52出现在第二缸40内,与第二辊48冲突,产生冲突音这样的问题。
另一方面,流入到蓄压器146内的低压的致冷剂在这里被气液分离后,仅仅是致冷剂气体进入在该蓄压器146内开口的致冷剂排出管92内。进入到致冷剂导入管92的低压的致冷剂气体经过吸入通路58,被吸入到第一旋转压缩元件32的第一缸38的低压室侧。
被吸入到第一缸38的低压室侧的致冷剂气体通过第一辊46和第一叶片50的动作而被压缩,成为高温高压的致冷剂气体,从第一缸38的高压室侧通过未图示出的排出口内,被排出到排出消音室62中。被排出到排出消音室62的致冷剂气体通过贯通罩部件63的未图示出的孔,被排出到密封容器12内。
其后,密封容器12内的致冷剂从形成于密封容器12的端盖12B上的致冷剂排出管96排出到外部,流入室外侧热交换器152中。在这里,致冷剂气体放热,通过膨胀阀154减压后,流入室内侧热交换器156中。通过该室内侧热交换器156,致冷剂蒸发,通过从在室内循环的空气中吸热,发挥冷却作用,对室内制冷。然后,反复进行将致冷剂从室内侧热交换器156排出,吸入到旋转压缩机10的循环。
如以上所详述,根据本发明,可以谋求提高旋转压缩机10的性能以及可靠性,该旋转压缩机10可以对第一运转模式和第二运转模式进行转换而被使用,在上述第一运转模式,第一以及第二旋转压缩元件32、34进行压缩作功,在上述第二运转模式,实质上只有第一旋转压缩元件32进行压缩作功。
据此,通过使用该旋转压缩机10,构成空调机的致冷剂回路,可以提高该空调机的运转效率以及性能,也使谋求降低消耗电力成为可能。
(实施例8)
另外,在实施例7中,是使背压室172A成为具有凹陷状的室的形状,该室具有规定的空间容积,但是并非仅限于此,本发明的背压室只要具有规定的空间容积即可。例如,在背压室成为图11所示的形状的情况下,本发明也有效。另外,图11是这种情况的第二缸的俯视剖视图。在图11中,赋予与图1至图10相同符号的部件是可产生相同或类似效果的部件。
在图11中,49是第二旋转压缩元件34的排出口。该背压室272A在第二缸40的横方向,具有规定的空间容积的扩张部,作为整体,呈大致圆筒状。象这样,在背压室272A成为本实施例这样形状的情况下,也可以通过该背压室272A,降低该压力脉冲,改善第二叶片52的追随性,避免与第二辊48的冲突。
(实施例9)
另外,即使是在上述实施例7以及实施例8的情况下,也如图5所示,在旋转压缩机10的蓄压器146的出口侧,在密封容器12的入口侧的致冷剂导入管94的中途部,设置控制向第二旋转压缩元件34的致冷剂流入的电磁阀200,在第二运转模式中,关闭电磁阀200,切断向第二缸40的致冷剂的流入也是可以的。
在该情况下,若切断向第二缸40的致冷剂的流入,则第二缸40内如上所述,成为比两旋转压缩元件32、34的吸入侧压力稍高的压力(因为第二辊48旋转,并且,密封容器12内的高压从第二缸40的间隙等流入若干,所以第二缸40内成为比吸入侧压力稍高的压力)。
因此,第二叶片52被第二缸40内的压力,向成为与第二辊48的相反一侧的背压室172A(或背压室272A)侧推压,不会出现在第二缸40内。据此,在上述背压室172A(或背压室272A)的效果的基础上,可以更有效地避免产生第二叶片52与第二辊48冲突这样的问题。
(实施例10)
在上述实施例7、实施例8以及实施例9中,作为致冷剂,是使用HFC或HC类的致冷剂,但是也可以使用二氧化碳等的高低压差大的致冷剂,例如,作为致冷剂,也可以使用将二氧化碳和PAG(聚二醇)组合后的致冷剂。在该情况下,因为被各旋转压缩元件32、34压缩的致冷剂为非常高的高压,所以若使如上述各实施例的排出消音室62成为通过罩部件63覆盖上部支撑部件54的上侧的形状,则存在由于该高压,造成罩部件63破损的可能性。
因此,若使通过两旋转压缩元件32、34压缩的致冷剂合流的上部支撑部件54的上侧的排出消音室的形状为图8所示那样的形状,则可以确保耐压性。即,图8的排出消音室162构成如下:在上部支撑部件54的上侧形成凹陷部,利用将凹陷部作为盖的上部盖66进行封闭。据此,即使是在含有象二氧化碳那样的高低压差大的致冷剂的情况下,也可以应用本发明。
(实施例11)
接着,使用图12以及图13,就本发明的多汽缸旋转压缩机的另外的其他实施例进行说明。图12是表示本发明的多汽缸旋转压缩机的第二旋转压缩元件的第二辊位于上止点情况的第二缸的俯视剖视图,图13是表示第二旋转压缩元件的第二辊位于下止点情况的第二缸的俯视剖视图。
另外,由于该实施例的多汽缸旋转压缩机的纵剖侧视图与实施例1的图1以及图2相同,致冷剂回路图也与实施例1的图3相同,所以省略。因此,在本实施例中,仅对不同于实施例1的构成的部位进行说明。另外,在本实施例中,赋予与图1至图3相同符号的部件是可产生相同或类似的效果的部件。
在这里,在第二叶片52的背面侧形成背压室72A。背压室72A在引导槽72侧和密封容器12侧开口,从该密封容器12侧的开口连通连接着作为背压用通路的配管375(图12至图13),密封容器12内被密封。
上述配管375是用于对第二旋转压缩元件34的第二叶片52施加背压的背压用通路,分别为通过后述的致冷剂配管101,与两旋转压缩元件32、34的吸入侧的致冷剂配管100连通,通过致冷剂配管102,与两旋转压缩元件32、34的排出侧的致冷剂排出管96连通。这样,两旋转压缩元件32、34的排出侧致冷剂或两旋转压缩元件32、34的吸入侧致冷剂从配管75流入背压室72A中,作为第二叶片52的背压,施加两旋转压缩元件32、34的排出侧压力或两旋转压缩元件32、34的吸入侧压力。
另外,在本发明中,配管375的横截面积大于等于露出于上述第二缸40内的第二叶片52的表面积的平均值。即,算出在从如图12所示的追随在第二缸40内偏心旋转的第二辊48的第二叶片52成为最不露出在第二缸40内的状态的上止点,到如图13所示的第二叶片52成为最露出在第二缸40内的状态的下止点(图13的第二叶片52的虚线表示露出在第二缸40内的部分)之间,露出在第二缸40内的第二叶片52的表面积的平均值,将上述配管375的横截面积设定为大于等于该表面积的平均值。
象这样,通过使配管375的横截面积大于等于露出于第二缸40内的第二叶片52的表面积的平均值,可以充分地确保第二叶片52的成为与上述第二辊48相反一侧的背压室72A侧的面积。
另外,作为致冷剂,是使用HFC或HC类的致冷剂,作为润滑油的机油,是使用例如矿物油(石油)、烃化油、醚油、酯油等现有的机油。
以上述的构成,接着说明旋转压缩机10的动作。
(1)第一运转模式(通常负荷或高负荷时)
首先,就两旋转压缩元件32、34进行压缩作功的第一运转模式进行说明。根据上述设置在室内机上的未图示出的室内机侧的控制器的运转指令输入,控制器210控制旋转压缩机10的电动元件14的转数,同时,在室内为通常负荷或高负荷状态的情况下,控制器210实行第一运转模式。在该第一运转模式中,控制器210关闭致冷剂配管101的电磁阀105,打开致冷剂配管102的电磁阀106。据此,致冷剂配管102和配管375连通,两旋转压缩元件32、34的排出侧致冷剂流入背压室72A中,作为第二叶片52的背压,施加两旋转压缩元件32、34的排出侧压力。
这样,若通过接线柱20以及未图示出的配线,对电动元件14的定子线圈28通电,则电动元件14起动,转子24旋转。通过该旋转,第一以及第二辊46、48嵌合在与旋转轴16一体设置的上下偏心部42、44上,在第一以及第二缸38、40内偏心旋转。
据此,低压致冷剂从旋转压缩机10的致冷剂配管100流入蓄压器146内。如上所述,因为致冷剂配管100的电磁阀105被关闭,所以通过致冷剂配管100的致冷剂不会流入配管375中,而是全部流入蓄压器146内。
这样,已流入到蓄压器146内的低压致冷剂在这里被气液分离后,仅仅是致冷剂气体进入在该蓄压器146内开口的各致冷剂排出管92、94内。已进入致冷剂导入管92的低压的致冷剂气体经过吸入通路58,被吸入到第一旋转压缩元件32的第一缸38的低压室侧。
被吸入到第一缸38的低压室侧的致冷剂气体通过第一辊46和第一叶片50的动作而被压缩,成为高温高压的致冷剂气体,从第一缸38的高压室侧通过未图示出的排出口内,被排出到排出消音室62中。
另一方面,进入到致冷剂导入管94的低压的致冷剂气体经过吸入通路60,被吸入到第二旋转压缩元件34的第二缸40的低压室侧。被吸入到第二缸40的低压室侧的致冷剂气体通过第二辊48和第二叶片52的动作而被压缩。
此时,如上所述,因为对第二叶片52向第二辊48的弹压动作,在第二叶片52的成为与第二辊48的相反一侧的背压室72A侧,产生压力脉冲。在该情况下,产生了在没有设置以往的弹簧部件的第二旋转压缩元件34中,由于该压力脉冲,第二叶片52对第二辊48的追随性恶化这样的问题。
再有,由于作为第二叶片52的背压所施加的两旋转压缩元件32、34的排出侧压力脉冲大,而且在第二旋转压缩元件34上没有弹簧部件,所以存在下述问题,即,由于该脉冲导致第二叶片52的追随性恶化,据此,压缩效率降低,并且,在第二叶片52和第二辊48之间产生冲突音。
但是,如上所述,通过使配管375的横截面积大于等于露出于第二缸40内的第二叶片52的表面积的平均值,可以充分地确保第二叶片52成为与第二辊48相反一侧的背压室72A侧的面积,可以降低由于第二叶片52的弹压动作而产生的压力脉冲。另外,来自配管375的两旋转压缩元件32、34的排出侧致冷剂在通过该配管375的过程中,压力脉冲显著减小。据此,不使用弹簧部件,即可将第二叶片52向第二辊48充分地弹压。
据此,改善了在第一运转模式中的第二叶片52的追随性,也提高了第二旋转压缩元件34的压缩效率。再有,通过改善第二叶片52的追随性,可以避免上述的与第二辊48的冲突。因此,也可以极力避免在与第二辊48之间产生冲突音这样的问题。
另外,通过第二辊48和第二叶片52的动作而被压缩成为高温高压的致冷剂气体,从第二缸40的高压室侧通过排出口49内,被排出到排出消音室64中。被排出到排出消音室64的致冷剂气体经过上述连通路120,被排出到排出消音室62,与被第一旋转压缩元件32压缩的致冷剂气体合流。合流的致冷剂气体通过贯通罩部件63的未图示出的孔,被排出到密封容器12内。
其后,密封容器12内的致冷剂从形成于密封容器12的端盖12B上的致冷剂排出管96排出到外部,流入室外侧热交换器152中。在这里,如上所述,由于配管102的电磁阀106被打开,所以通过致冷剂排出管96的两旋转压缩元件32、34的排出侧致冷剂的一部分,如上所述从致冷剂配管102进入配管375,作为第二叶片52的背压而被施加。
另一方面,流入到室外侧热交换器152的致冷剂气体在这里放热,通过膨胀阀154减压后,流入室内侧热交换器156中。在该室内侧热交换器156中,致冷剂蒸发,通过从在室内循环的空气中吸热,发挥冷却作用,对室内制冷。然后,反复进行将致冷剂从室内侧热交换器156排出,吸入到旋转压缩机10的循环。
另外,在上述的第一运转模式中,控制器210关闭致冷剂配管101的电磁阀105,打开致冷剂配管102的电磁阀106,使致冷剂配管102和配管375连通,作为第二叶片52的背压,施加为高压的两旋转压缩元件32、34的排出侧压力,但是,作为第二叶片52的背压,也可以施加两旋转压缩元件32、34的吸入侧压力和排出侧压力之间的中间压力。在该情况下,例如若通过控制器210,关闭致冷剂配管101的电磁阀105以及致冷剂配管102的电磁阀106,使与第二叶片52的背压室72A连通的配管375内成为封闭空间,则因为不少第二缸40内的致冷剂从第二叶片52和收纳部70A之间流入背压室72A中,所以第二叶片52的背压室72A内的压力成为两旋转压缩元件32、34的吸入侧压力和排出侧压力之间的中间压力,该中间压力作为第二叶片52的背压而被施加。
象这样,在作为第二叶片52的背压,施加了中间压力的情况下,不使用弹簧部件,通过该中间压力,也可以将第二叶片52向第二辊48充分地弹压。再有,因为与施加了两旋转压缩元件32、34的排出侧压力的情况相比,压力脉冲显著减小,所以在上述配管375的效果的基础上,可以谋求进一步地降低脉冲。特别是,如上所述,通过关闭电磁阀105、106,成为切断从配管375向两旋转压缩元件32、34的吸入侧致冷剂和排出侧致冷剂的流入的状态,可以更进一步地抑制第二叶片52的背压的脉冲。
(2)第二运转模式(轻负荷时的运转)
接着,就第二运转模式进行说明。控制器210在室内为轻负荷状态的情况下,转换到第二运转模式。该第二运转模式是实质上只有第一旋转压缩元件32进行压缩作功的模式,是在室内为轻负荷,在上述第一运转模式中,电动元件14为低速旋转的情况下进行的运转模式。由于在小能力区域,通过实质上只有第一旋转压缩元件32进行压缩作功,与在第一以及第二两缸38、40进行压缩作功的情况相比,可以减少压缩的致冷剂气体的量,所以该量在轻负荷时也使电动元件14的转数上升,改善电动元件14的运转效率,并且也使降低致冷剂的泄漏损耗成为可能。
在该情况下,控制器210打开致冷剂配管101的电磁阀105,关闭致冷剂配管102的电磁阀106。据此,致冷剂配管101和配管375连通,第一旋转压缩元件32的吸入侧致冷剂流入背压室72A中,作为第二叶片52的背压,施加第一旋转压缩元件32的吸入侧压力。
另一方面,控制器210通过如上所述的接线柱20以及未图示出的配线,对电动元件14的定子线圈28通电,使电动元件14的转子24旋转。通过该旋转,第一以及第二辊46、48嵌合在与旋转轴16一体设置的上下偏心部42、44上,在第一以及第二缸38、40内偏心旋转。
据此,低压致冷剂从旋转压缩机10的致冷剂配管100流入蓄压器146内。此时,如上所述,因为致冷剂配管101的电磁阀105被打开,所以通过致冷剂配管100的第一旋转压缩元件32的吸入侧的致冷剂的一部分从致冷剂配管101经过配管375流入背压室72A中。据此,背压室72A成为第一旋转压缩元件32的吸入侧压力,作为第二叶片52的背压,施加该第一旋转压缩元件32的吸入侧压力。
在这里,因为作为第二旋转压缩元件34的背压而被施加的两旋转压缩元件32、34的吸入侧压力为低压,所以不能将第二叶片52向第二辊48弹压。因此,在第二旋转压缩元件34中,实质上没有进行压缩作功,仅仅是设置有弹簧74的第一旋转压缩元件32完成致冷剂的压缩作功。
在该情况下,因为与第二缸40内的压力和第二叶片52的背压相同的吸入侧压力被施加,所以在以往,通过两空间的平衡的变动,第二叶片52出现在第二缸40内,与第二辊48冲突,还是存在产生冲突音这样的问题。但是,如同本发明这样,通过使连通连接在第二叶片52的背压室72A上的配管375的横截面积大于等于露出在第二缸40内的第二叶片52的表面积的平均值,利用该配管375,由于可以降低变动,所以可以极力避免第二叶片52出现在第二缸40内,与第二辊48冲突,产生冲突音这样的问题。
另一方面,流入到蓄压器146内的低压的致冷剂在这里被气液分离后,仅仅是致冷剂气体进入在该蓄压器146内开口的致冷剂排出管92内。进入到致冷剂导入管92的低压的致冷剂气体经过吸入通路58,被吸入到第一旋转压缩元件32的第一缸38的低压室侧。
被吸入到第一缸38的低压室侧的致冷剂气体通过第一辊46和第一叶片50的动作而被压缩,成为高温高压的致冷剂气体,从第一缸38的高压室侧通过未图示出的排出口内,被排出到排出消音室62中。排出到排出消音室62的致冷剂气体通过贯通罩部件63的未图示出的孔,被排出到密封容器12内。
其后,密封容器12内的致冷剂从形成于密封容器12的端盖12B上的致冷剂排出管96排出到外部,流入室外侧热交换器152中。在这里,致冷剂气体放热,通过膨胀阀154减压后,流入室内侧热交换器156中。流入到室内侧热交换器156中的致冷剂在这里蒸发,通过从在室内循环的空气中吸热,发挥冷却作用,对室内制冷。然后,反复进行将致冷剂从室内侧热交换器156排出,吸入到旋转压缩机10的循环。
如以上所详述,根据本发明,可以谋求提高旋转压缩机10的性能以及可靠性,该旋转压缩机10可以对第一运转模式和第二运转模式进行转换而被使用,在上述第一运转模式,第一以及第二旋转压缩元件32、34进行压缩作功,在上述第二运转模式,实质上只有第一旋转压缩元件32进行压缩作功。
据此,通过使用该旋转压缩机10,构成空调机的致冷剂回路,可以提高该空调机的运转效率以及性能,也使谋求降低消耗电力成为可能。
(实施例12)
另外,也可以如图5所示,在旋转压缩机10的蓄压器146的出口侧,在密封容器12的入口侧的致冷剂导入管94的中途部,设置控制向第二旋转压缩元件34的第二缸40的致冷剂流入的电磁阀200,在第二运转模式中,关闭电磁阀200,切断向第二缸40的致冷剂的流入。另外,在图5中,赋予与图1至图13相同符号的部件是产生相同效果的部件。
在该情况下,若切断向第二缸40的致冷剂的流入,则第二缸40内如上所述成为比两旋转压缩元件32、34的吸入侧压力稍高的压力(因为第二辊48旋转,并且,密封容器12内的高压从第二缸40的间隙等流入若干,所以第二缸40内成为比吸入侧压力稍高的压力)。
因此,第二叶片52被第二缸40内的压力,向成为与第二辊48的相反一侧的背压室72A侧推压,不会出现在第二缸40内。据此,在上述配管375的效果的基础上,可以更进一步有效地避免产生第二叶片52与第二辊48冲突这样的问题。
(实施例13)
另外,在上述实施例11以及实施例12中,作为致冷剂,是使用HFC或HC类的致冷剂,但也可以使用二氧化碳等的高低压差大的致冷剂,例如,作为致冷剂,也可以使用将二氧化碳和PAG(聚二醇)组合后的致冷剂。在该情况下,因为被各旋转压缩元件32、34压缩的致冷剂为非常高的高压,所以若使如上述各实施例的排出消音室62成为通过罩部件63覆盖上部支撑部件54的上侧的形状,则存在由于该高压,造成罩部件63破损的可能性。
因此,若使通过两旋转压缩元件32、34压缩的致冷剂合流的上部支撑部件54的上侧的排出消音室的形状为上述图8所示那样的形状,则可以确保耐压性。即,图8的排出消音室162构成如下:在上部支撑部件54的上侧形成凹陷部,利用将凹陷部作为盖的上部盖66进行封闭。据此,即使是在含有象二氧化碳那样的高低压差大的致冷剂的情况下,也可以应用本发明。
(实施例14)
接着,就本发明的压缩系统CS的其他的实施例进行说明。分别为图14是作为本发明的压缩系统CS的多汽缸旋转压缩机的实施例,表示具有第一以及第二旋转压缩元件的内部高压型的旋转压缩机10的纵剖侧视图,图15是表示图1的旋转压缩机10的纵剖侧视图(表示与图1不同的剖面)。另外,本实施例的压缩系统CS是构成作为对室内进行空调的冷冻装置的空调机的致冷剂回路的一部分。另外,在图14以及图15中,赋予与上述各实施例的图1至图13为相同符号的部件是可以产生相同或类似效果的部件,省略其说明。
另外,在上述第二缸40上,形成收纳第二叶片52的引导槽72,在该引导槽72的外侧,即,第二叶片52的背面侧,形成如图16所示的收纳作为弹压机构的弱弹簧76的收纳部472A。该收纳部472A在引导槽72侧和密封容器12侧开口,在该密封容器12侧的开口上连通接续着后述的配管75,密封容器12内被密封。
上述的弱弹簧76是用于将第二叶片52向第二辊48弹压,其一端与第二叶片52的背面侧端部接触,另一端安装固定在从收纳部472A的密封容器12侧连通连接的配管75的前端。另外,该弱弹簧76的弹压力被设定为小于等于两旋转压缩元件32、34,或将第一旋转压缩元件32的吸入侧压力作为第二叶片52的背压而施加情况下的弹压力。
另外,在蓄压器146的出口侧,在密封容器12的入口侧的致冷剂导入管94的中途部设置电磁阀200。该电磁阀200是用于控制致冷剂向第二缸40流入的阀装置,由作为控制装置的后述的控制器210控制。
在这里,上述的控制器210构成本发明的压缩系统CS的一部分,控制旋转压缩机10的电动元件14的转数。另外,如上所述,控制上述致冷剂导入管94的电磁阀200、致冷剂配管101的电磁阀105、致冷剂配管102的电磁阀106的开闭。
接着,图17是表示使用压缩系统CS所构成的上述空调机的致冷剂回路图。即,实施例的压缩系统CS构成图17所示的空调机的致冷剂回路的一部分,是由上述的旋转压缩机10和控制器210等构成的。旋转压缩机10的致冷剂排出管96连接在室外侧热交换器152的入口。上述的控制器210和旋转压缩机10、室外侧热交换器152设置在空调机的未图示出的室外机上。与该室外热交换器152的出口连接的配管连接在作为减压机构的膨胀阀154上,从膨胀阀154出来的配管与室内侧热交换器156连接。这些膨胀阀154和室内侧热交换器156设置在空调机的未图示出的室内机上。另外,在室内侧热交换器156的出口侧,连接着旋转压缩机10的上述致冷剂配管100。
另外,作为致冷剂,是使用HFC或HC类的致冷剂,作为润滑油的机油,是使用例如矿物油(石油)、烃化油、醚油、酯油等现有的机油。
以上述的构成,接着说明旋转压缩机10的动作。
(1)第一运转模式(通常负荷或高负荷时的运转)
首先,使用图18,就两旋转压缩元件32、34进行压缩作功的第一运转模式进行说明。另外,图18是表示在旋转压缩机10的第一运转模式中的致冷剂的流动的图(图中粗线表示致冷剂的流动)。
根据上述设置在室内机上的未图示出的室内机侧的控制器的运转指令输入,控制器210对旋转压缩机10的电动元件14通电。此时,控制器210在向电动元件14通电的同时,打开致冷剂导入管94的电磁阀200以及致冷剂配管102的电磁阀106,关闭致冷剂配管101的电磁阀105(图18)。据此,致冷剂配管102和配管75连通,控制器210作为第二叶片52的背压,在施加两旋转压缩元件32、34的排出侧压力的状态下,控制旋转压缩机10的电动元件14的转数,进行起动。另外,虽然控制器210进行控制,在对电动元件14通电的同时,打开电磁阀200以及电磁阀106,关闭电磁阀105,但是,只要电磁阀200以及电磁阀105、106的开闭是在旋转压缩机10的起动前即可,例如,也可以构成为:控制器210在对电动元件14通电前,打开电磁阀200以及电磁阀106,关闭电磁阀105。
这样,若通过接线柱20以及未图示出的配线,对电动元件14的定子线圈28通电,则电动元件14起动,转子24旋转。通过该旋转,第一以及第二辊46、48嵌合在与旋转轴16一体设置的上下偏心部42、44上,在第一以及第二缸38、40内偏心旋转。
据此,致冷剂从旋转压缩机10的致冷剂配管100流入蓄压器146内。此时,如上所述,因为致冷剂配管101的电磁阀105被关闭,所以通过致冷剂配管100的两旋转压缩元件32、34的吸入侧的致冷剂不会流入配管75中,而是全部流入蓄压器146内。
已流入到蓄压器146内的致冷剂在这里被气液分离后,仅仅是致冷剂气体进入在该蓄压器146内开口的致冷剂导入管92以及致冷剂导入管94内。已进入致冷剂导入管92的致冷剂气体经过吸入通路58,被吸入到第一旋转压缩元件32的第一缸38的低压室侧。
被吸入到第一缸38的低压室侧的致冷剂气体通过第一辊46和第一叶片50的动作而被压缩,成为高温高压的致冷剂气体,从第一缸38的高压室侧通过未图示出的排出口内,被排出到排出消音室62中。
另一方面,进入到致冷剂导入管94的低压的致冷剂气体经过吸入通路60,被吸入到第二旋转压缩元件34的第二缸40的低压室侧。被吸入到第二缸40的低压室侧的致冷剂气体通过第二辊48和第二叶片52的动作而被压缩。
在这里,致冷剂回路内在旋转压缩机10起动时为平衡压。即,因为旋转压缩机10在上一次的运转停止后,逐渐平衡压力,若经过规定的时间,则致冷剂回路内整体成为平衡压,所以象这样,在致冷剂回路内整体成为平衡压的状况下,起动了旋转压缩机10的情况下,在旋转压缩机10刚刚起动后,作为第二叶片52的背压而被施加的两旋转压缩元件32、34的排出侧致冷剂的压力成为大致的平衡压。同样,第二缸40内的压力也成为大致平衡压。
因此,在构成为仅仅通过背压,将第二叶片52向第二辊弹压的情况下,在两旋转压缩元件32、34的排出侧压力上升到某种程度之前,不能使第二叶片52追随第二辊48。因此,在第二旋转压缩元件34中,实质上不进行压缩作功,仅仅是设置有弹簧74的第一旋转压缩元件32完成致冷剂的压缩作功。
另外,因为在刚刚起动后致冷剂回路内的状态不稳定,所以两旋转压缩元件32、34的排出侧压力的脉冲也显著增大。因此,在第二叶片52上不设置任何的弹压机构,在施加两旋转压缩元件32、34的排出侧压力的状态下起动的情况下,存在下述问题,即,由于两旋转压缩元件32、34的排出侧压力的脉冲造成第二叶片52的追随性恶化,第二叶片52与第二辊48冲突,产生冲突音。
但是,通过设置将第二叶片52向第二辊48弹压的弱弹簧76,即使是在第二缸40内和收纳部472A为大致等压(平衡压)的起动时,也可以通过弱弹簧76的弹压力,使第二叶片52追随第二辊48。据此,可以改善在起动时的第二叶片52的追随性。另外,因为从起动时开始,即使是在第二旋转压缩元件34中,也可以进行压缩作功,所以可以谋求提高具有该旋转压缩机10的空调机的性能。
另外,被第二辊48和第二叶片52的动作压缩,成为高温高压的致冷剂气体从第二缸40的高压室侧通过排出口49内,被排出到排出消音室64中。被排出到排出消音室64的致冷剂气体经过上述连通路120,被排出到排出消音室62中,与被上述第一旋转压缩元件32压缩的致冷剂气体合流。然后,合流的致冷剂气体经过贯通罩部件63的未图示出的孔,被排出到密封容器12内。
其后,密封容器12内的致冷剂从形成于密封容器12的端盖12B上的致冷剂排出管96排出到外部,流入室外热交换器152中。另一方面,如上所述,由于通过控制器210打开了电磁阀106,所以通过致冷剂排出管96的致冷剂的一部分从致冷剂配管102经过配管75流入收纳部472A中。
另一方面,流入到室外热交换器152的致冷剂气体放热,通过膨胀阀154减压后,流入室内侧热交换器156中。通过该室内侧热交换器156致冷剂蒸发,通过从在室内循环的空气中吸热,发挥冷却作用,对室内制冷。然后,反复进行将致冷剂从室内侧热交换器156排出,吸入到旋转压缩机10的循环。
(2)从第一运转模式向第二运转模式(轻负荷时的运转)的转换
接着,若室内从上述的通常负荷或高负荷状态成为轻负荷状态,则控制器210从第一运转模式向第二运转模式转换。该第二运转模式是实质上只有第一旋转压缩元件32进行压缩作功的模式,是在室内为轻负荷,在上述第一运转模式中,电动元件14为低速旋转情况下进行的运转模式。在压缩系统CS的小能力区域,通过实质上只有第一旋转压缩元件32进行压缩作功,与通过第一以及第二两缸38、40进行压缩作功的情况相比,由于可以减少压缩的致冷剂气体的量,所以该量在轻负荷时也使电动元件14的转数上升,改善了电动元件14的运转效率,并且,也使降低致冷剂的泄漏损耗成为可能。
在这里,在从第一运转模式向第二运转模式进行模式转换时,控制器210使电动元件14以低速旋转,例如,将转数控制在小于等于50Hz,将两旋转压缩元件32的压缩比控制在小于等于3.0。
这样,控制器210关闭如图19所示的上述电磁阀200,切断向第二缸40的致冷剂的流入。因此,在第二旋转压缩元件34中,没有完成压缩作功。若切断向第二缸40的致冷剂的流入,则第二缸40内成为比上述的两旋转压缩元件32、34的吸入侧压力稍高的压力(因为第二辊48旋转,并且,密封容器12内的高压从第二缸40的间隙等流入若干,所以第二缸40内成为比吸入侧压力稍高的压力)。
这样,控制器210打开致冷剂配管101的电磁阀105,关闭致冷剂配管102的电磁阀106。据此,致冷剂配管101和配管75连通,通过致冷剂配管100的第一旋转压缩元件32的吸入侧的致冷剂的一部分从致冷剂配管101经过配管75流入收纳部472A中。据此,收纳部472A成为第一旋转压缩元件32的吸入侧压力,作为第二叶片52的背压,施加第一旋转压缩元件32的吸入侧压力。
在这里,因为弱弹簧76向第二辊48的弹压力被设定为小于等于第一旋转压缩元件32的吸入侧压力,所以如上所述,第二缸40内为比第一旋转压缩元件32的吸入侧压力高的压力,作为第二叶片52的背压,通过施加第一旋转压缩元件32的吸入侧压力,由于将第二叶片52向第二辊48弹压的收纳部472A的压力和弱弹簧76的弹压力,而使第二缸40内的压力变高。
即,因为通过第二缸40内的压力,将第二叶片52向背压侧(收纳部472A侧)弹压的弹压力大于将第二叶片52向第二辊48弹压的收纳部472A的压力和弱弹簧76的弹压力,所以第二叶片52被向作为与第二辊48相反一侧的收纳部472A侧推压,被收纳在引导槽72内。据此,在向第二运转模式转换时,可以使第二叶片52早期地从第二缸40内引入,收纳在引导槽72内。
此时,在第二叶片53的背压侧没有设置弹压机构的情况下,存在下述问题,即,在转换时,第二叶片52被第二缸40内的压力推压,在从第二缸40内引入时,第二叶片52与收纳部472A的壁部或配管75的前端冲突,产生冲突音。但是,通过设置弱弹簧76,可以在将第二叶片52从第二缸40内引入时,通过弱弹簧76吸收冲击。据此,可以未然地避免第二叶片52与第二辊48的冲突,产生冲突音这样的问题,可以转换到实质上只有第一旋转压缩元件32完成压缩作功的第二运转模式。
(3)第二运转模式
接着,就在第二运转模式中的旋转压缩机10的动作进行说明。另外,与上述的从第一运转模式向第二运转模式转换时相同,是致冷剂导入管94的电磁阀200被关闭,致冷剂配管101的电磁阀105被打开,致冷剂配管102的电磁阀106就这样被关闭的状态(图19)。从旋转压缩机10的致冷剂配管100流入到蓄压器146内的低压致冷剂在这里被气液分离后,仅仅是致冷剂气体进入在该蓄压器146内开口的致冷剂排出管92内。进入到致冷剂导入管92的低压的致冷剂气体经过吸入通路58,被吸入到第一旋转压缩元件32的第一缸38的低压室侧。
一方面,因为致冷剂配管101的电磁阀105被控制器210打开,所以通过致冷剂配管100的一部分的致冷剂从致冷剂配管101经过配管75流入收纳部472A中。据此,收纳部472A成为第一旋转压缩元件32的吸入侧压力,作为第二叶片52的背压,施加该第一旋转压缩元件32的吸入侧压力。
另一方面,被吸入到第一缸38的低压室侧的致冷剂气体通过第一辊46和第一叶片50的动作而被压缩,成为高温高压的致冷剂气体,从第一缸38的高压室侧经过未图示出的排出口内,被排出到排出消音室62中。被排出到排出消音室62中的致冷剂气体通过贯通罩部件63的未图示出的孔,被排出到密封容器12内。
其后,密封容器12内的致冷剂从形成于密封容器12的端盖12B上的致冷剂排出管96排出到外部,流入室外热交换器152中。另外,因为如上所述的电磁阀106被关闭,所以在致冷剂排出管96流动的第一旋转压缩元件32的排出侧的致冷剂不会流入配管75中,而是全部流入室外热交换器152中。这样,流入到室外热交换器152的致冷剂气体放热,通过膨胀阀154减压后,流入室内侧热交换器156中。在这里,致冷剂蒸发,此时,通过从在室内循环的空气中吸热,发挥冷却作用,对室内制冷。然后,反复进行将致冷剂从室内侧热交换器156排出,吸入到旋转压缩机10的循环。
另外,在该第二运转模式中,通过使控制器210关闭上述的电磁阀200,以切断向第二缸40的致冷剂流入的状态运转,在第二运转模式中,第二缸40内的压力就这样被保持在比第二叶片52的背压高的状态。因此,第二叶片52由于第二缸40内的压力,被推向作为与第二辊48的相反一侧的收纳部472A侧(弱弹簧76侧),不会出现在第二缸40内。据此,在第二运转模式的运转中,可以未然地避免第二叶片52出现在第二缸40内,与第二辊48冲突,产生冲突音这样的问题。
(4)从第二运转模式向第一运转模式的转换
另一方面,若室内从上述的轻负荷状态成为通常负荷或高负荷状态,则控制器210从第二运转模式向第一运转模式转换。在这里,对于从第二运转模式向第一运转模式的转换动作进行说明。在该情况下,控制器210进行控制,使电动元件14低速旋转(转数小于等于50Hz),使两旋转压缩元件32、34的压缩比小于等于3.0。控制器210打开电磁阀200,使致冷剂流入第二缸40,同时,关闭致冷剂配管101的电磁阀105,打开致冷剂配管102的电磁阀106。
据此,致冷剂配管102和配管75连通,两旋转压缩元件32、34的排出侧致冷剂流入收纳部472A中,作为第二叶片52的背压,施加两旋转压缩元件32、34的排出侧压力。
作为第二叶片52的背压,通过施加两旋转压缩元件32、34的排出侧压力,由于第二叶片52的收纳部472A与第二缸40内相比为很高的压力,所以第二叶片52通过收纳部472A的该高压和弱弹簧76,被推向第二辊48侧,进行追随。据此,在第二旋转压缩元件34中,再次开始压缩作功。
象这样,通过设置弱弹簧76,在从第二运转模式向第一运转模式转换时,可以将第二叶片52向第二辊48侧充分地弹压,可以使其早期地追随第二辊48。
据此,改善了在从第二运转模式向第一运转模式的转换时的第二叶片52的追随性,改善了运转效率,并且,可以避免第二叶片52的冲突音的产生。
如以上所详述,根据本发明,可以谋求提高具有旋转压缩机10的压缩系统CS的性能以及可靠性,该旋转压缩机10可以对第一运转模式和第二运转模式进行转换而被使用,在上述第一运转模式,第一以及第二旋转压缩元件32、34进行压缩作功,在上述第二运转模式,实质上只有第一旋转压缩元件32进行压缩作功。
据此,通过使用该压缩系统CS,构成空调机的致冷剂回路,可以提高该空调机的运转效率以及性能,也使谋求降低消耗电力成为可能。
另外,在本实施例中,在第一运转模式、起动时以及从第二运转模式向第一运转模式转换运转时,通过控制器210打开致冷剂配管102的电磁阀106,连通致冷剂配管102和配管75,使两旋转压缩元件32、34的排出侧致冷剂流入收纳部472A中,作为第二叶片52的背压,施加了两旋转压缩元件32、34的排出侧压力,但并非仅限于此,也可以是作为第二叶片52的背压,施加两旋转压缩元件32、34的吸入侧压力和排出侧压力之间的中间压力。
在该情况下,例如如图20所示,若通过控制器210关闭电磁阀105以及电磁阀106,使与第二叶片52的收纳部472A连通的配管75内成为封闭空间,则因为不少第二缸40内的致冷剂从第二叶片52和收纳部70A之间流入收纳部472A中,所以第二叶片52的收纳部472A内的压力成为两旋转压缩元件32、34的吸入侧压力和排出侧压力之间的中间压力,该中间压力作为第二叶片52的背压而被施加。
象这样,在作为第二叶片52的背压,施加中间压力的情况下,也通过与上述实施例相同地施加弱弹簧76的弹压力,就可以将第二叶片52向第二辊48充分地弹压,使其早期地追随。
(实施例15)
接着,就本发明的其他实施例的压缩系统的多汽缸旋转压缩机(旋转压缩机)进行说明。图21以及图22分别是在本实施例中的旋转压缩机310的纵剖侧视图。另外,在图21以及图22中,赋予与图1至图20为相同符号的部件是可以产生相同或类似效果的部件。
在图22中,176是拉伸负荷用的弱弹簧,设置在收纳第二旋转压缩元件34的第二叶片52的引导槽72的外侧,即,第二叶片52的背面侧的收纳部472A上。该弱弹簧176是用于将第二叶片52向与第二辊48的相反一侧牵引,其一端安装在第二叶片52的前端,另一端安装在配管75上。另外,该弱弹簧176的拉伸力为小于等于两旋转压缩元件32、34,或是将第一旋转压缩元件32的吸入侧压力作为第二叶片52的背压而施加情况下的弹压力。
在这里,使用图23,说明该弱弹簧176的安装方法。该弱弹簧176形成为两端的直径大于其他的部分。这样,在第二叶片52的与第二辊48不接触一侧的端部的中心,形成与该弱弹簧176的一端一致的槽52A,弱弹簧176的一端嵌入该槽52A。同样,在与收纳部472A连接的配管75的内壁上,形成与该弱弹簧176的另一端一致的槽75A,弱弹簧176的另一端嵌入该槽75A。据此,可以将弱弹簧176安装在第二叶片52的背面侧,可以将第二叶片52向与第二辊48的相反一侧牵引。另外,并非仅限于象上述那样使用两端的直径大,其他的部分小的弱弹簧176的情况,也可以这样安装,例如如图24所示,在使用整体直径相同的弱弹簧的情况下,若扩大该弹簧的两端部的间距,则会使弱弹簧不会碰到第二叶片52。另外,也可以是如图25所示,在弱弹簧的一端设置挂钩177,将该挂钩177安装在第二叶片52上(在第二叶片52上形成用于安装挂钩177的孔178),牵引第二叶片52。
以上述的构成,说明旋转压缩机310的动作。
(1)第一运转模式(通常负荷或高负荷时的运转)
首先,就两旋转压缩元件32、34进行压缩作功的第一运转模式进行说明。根据上述设置在室内机上的未图示出的室内机侧的控制器的运转指令输入,控制器210对旋转压缩机310的电动元件14通电。此时,控制器210在向电动元件14通电的同时,打开致冷剂配管102的电磁阀106,关闭致冷剂配管101的电磁阀105。据此,致冷剂配管102和配管75连通,控制器210在作为第二叶片52的背压,施加两旋转压缩元件32、34的排出侧压力的状态下,控制旋转压缩机310的电动元件14的转数,进行起动。另外,虽然控制器210进行控制,在对电动元件14通电的同时,打开电磁阀106,关闭电磁阀105,但只要电磁阀105、106的开闭是在旋转压缩机310的起动前即可,例如,也可以是控制器210在对电动元件14通电前打开电磁阀106,关闭电磁阀105。
这样,若通过接线柱20以及未图示出的配线,对电动元件14的定子线圈28通电,则电动元件14起动,转子24旋转。通过该旋转,第一以及第二辊46、48嵌合在与旋转轴16一体设置的上下偏心部42、44上,在第一以及第二缸38、40内偏心旋转。
据此,致冷剂从旋转压缩机310的致冷剂配管100流入蓄压器146内。此时,如上所述,因为致冷剂配管101的电磁阀105被关闭,所以通过致冷剂配管100的两旋转压缩元件32、34的吸入侧的致冷剂不会流入配管75中,而是全部流入蓄压器146内。
已流入到蓄压器146内的致冷剂在这里被气液分离后,仅仅是致冷剂气体进入在该蓄压器146内开口的致冷剂导入管92以及致冷剂导入管94内。已进入致冷剂导入管92的致冷剂气体经过吸入通路58,被吸入到第一旋转压缩元件32的第一缸38的低压室侧。
被吸入到第一缸38的低压室侧的致冷剂气体通过第一辊46和第一叶片50的动作而被压缩,成为高温高压的致冷剂气体,从第一缸38的高压室侧通过未图示出的排出口内,被排出到排出消音室62中。
在这里,致冷剂回路内在旋转压缩机310起动时为平衡压。即,因为在旋转压缩机310在上一次的运转停止后,逐渐平衡压力,若经过规定的时间,则致冷剂回路内整体成为平衡压,所以象这样在致冷剂回路内整体成为平衡压的状况下,起动了旋转压缩机310的情况下,在旋转压缩机310刚刚起动后,作为第二叶片52的背压而被施加的两旋转压缩元件32、34的排出侧致冷剂的压力成为大致的平衡压。同样,第二缸40内的压力也成为大致平衡压。
因此,在两旋转压缩元件32、34的排出侧压力上升到某种程度之前,不能使第二叶片52追随第二辊48。因此,在第二旋转压缩元件34中,实质上不进行压缩作功,仅仅是设置有弹簧74的第一旋转压缩元件32完成致冷剂的压缩作功。
在该情况下,因为在刚刚起动后致冷剂回路内的状态不稳定,所以两旋转压缩元件32、34的排出侧压力的脉冲也显著增大。因此,在施加两旋转压缩元件32、34的排出侧压力的状态下起动的情况下,存在下述问题,即,由于两旋转压缩元件32、34的排出侧压力的脉冲造成第二叶片52的追随性恶化,第二叶片52与第二辊48冲突,产生冲突音。
但是,在本实施例中,通过设置将第二叶片52向与第二辊48的相反一侧牵引的拉伸负荷用的弱弹簧176,通过弱弹簧76的拉伸力,由于第二叶片52不会出现在第二缸40内,所以可以未然地避免第二叶片52与第二辊48冲突,产生冲突音这样的问题。
另一方面,被上述第一旋转压缩元件32压缩,被排出到排出消音室62中的致冷剂气体经过贯通罩部件63的未图示出的孔,被排出到密封容器12内。
其后,密封容器12内的致冷剂从形成于密封容器12的端盖12B上的致冷剂排出管96排出到外部,流入室外热交换器152中。另一方面,因为如上所述,通过控制器210打开了电磁阀106,所以通过致冷剂排出管96的致冷剂的一部分从致冷剂配管102经过配管75流入收纳部472A中。
另一方面,流入室外热交换器152的致冷剂气体放热,通过膨胀阀154减压后,流入室内侧热交换器156中。通过该室内侧热交换器156致冷剂蒸发,通过从在室内循环的空气中吸热,发挥冷却作用,对室内制冷。然后,反复进行将致冷剂从室内侧热交换器156排出,吸入到旋转压缩机310的循环。
另一方面,若起动旋转压缩机310,经过规定时间,则在致冷剂回路10内逐渐产生高低压差。即,第一旋转压缩元件32的吸入侧压力成为低压,排出侧压力成为高压。据此,第二叶片52通过该排出侧压力,追随第二辊48,即使是在第二旋转压缩元件34中,也完成压缩作功。在这里,因为弱弹簧176的拉伸力如上所述为小于等于将第一旋转压缩元件32(或两旋转压缩元件32、34)的吸入侧压力作为第二叶片52的背压而施加的情况的弹压力,所以可以使第二叶片52不受作为该排出侧压力的高压的影响而追随第二辊48。
另外,被第二辊48和第二叶片52的动作压缩,成为高温高压的致冷剂气体从第二缸40的高压室侧通过排出口49内,被排出到排出消音室64中。被排出到排出消音室64中的致冷剂气体经过上述连通路120,被排出到排出消音室62中,与被上述第一旋转压缩元件32压缩的致冷剂气体合流。然后,合流的致冷剂气体经过贯通罩部件63的未图示出的孔,被排出到密封容器12内。
其后,密封容器12内的致冷剂从形成于密封容器12的端盖12B上的致冷剂排出管96排出到外部,流入室外热交换器152中。另一方面,因为如上所述,通过控制器210,电磁阀106被打开,所以通过致冷剂排出管96的致冷剂的一部分从致冷剂配管102经过配管75流入收纳部472A中。
另一方面,流入到室外热交换器152中的致冷剂气体放热,通过膨胀阀154减压后,流入室内侧热交换器156中。通过该室内侧热交换器156致冷剂蒸发,通过从在室内循环的空气中吸热,发挥冷却作用,对室内制冷。然后,反复进行将致冷剂从室内侧热交换器156排出,吸入到旋转压缩机310的循环。
(2)从第一运转模式向第二运转模式(轻负荷时的运转)的转换
接着,若室内从上述的通常负荷或高负荷状态成为轻负荷状态,则控制器210从第一运转模式向第二运转模式转换。该第二运转模式是实质上只有第一旋转压缩元件32进行压缩作功的模式,是在室内为轻负荷,在上述第一运转模式中,电动元件14为低速旋转情况下进行的运转模式。在压缩系统CS的小能力区域,通过实质上只有第一旋转压缩元件32进行压缩作功,与通过第一以及第二两缸38、40进行压缩作功的情况相比,由于可以减少压缩的致冷剂气体的量,所以该量在轻负荷时也使电动元件14的转数上升,改善了电动元件14的运转效率,并且,也使降低致冷剂的泄漏损耗成为可能。
在这里,在从第一运转模式向第二运转模式进行模式转换时,控制器210使电动元件14以低速旋转,例如,将转数控制在小于等于50Hz,将两旋转压缩元件32的压缩比控制在小于等于3.0。
这样,控制器210打开致冷剂配管101的电磁阀105,关闭致冷剂配管102的电磁阀106。据此,致冷剂配管101和配管75连通,通过致冷剂配管100的两旋转压缩元件32、34的吸入侧的致冷剂的一部分从致冷剂配管101经过配管75流入收纳部472A中。据此,收纳部472A成为两旋转压缩元件32、34的吸入侧压力,作为第二叶片52的背压,施加两旋转压缩元件32、34的吸入侧压力。
在这里,第二缸40内和第二叶片52的背压成为相同的两旋转压缩元件32、34的吸入侧压力。此时,在第二叶片52的背压侧没有设置弱弹簧176的情况下,因为如上所述第二缸40内和第二叶片52为相同的压力,所以存在下述问题,即,将第二叶片52从第二缸40内引入需要时间,在此期间,第二叶片52与第二辊48冲突,产生冲突音。
但是,通过设置拉伸负荷用的弱弹簧176,通过该弱弹簧176的拉伸力,第二叶片52被向作为与第二辊48的相反一侧的收纳部472A侧牵引,将其收容在引导槽72内。据此,在向第二运转模式转换时,可以使第二叶片52早期地从第二缸40内引入,收纳在引导槽72内。
据此,可以未然地避免第二叶片52与第二辊48冲突,产生冲突音这样的问题,可以转换到实质上只有第一旋转压缩元件32完成压缩作功的第二运转模式。
(3)第二运转模式
接着,就在第二运转模式中的旋转压缩机310的动作进行说明。另外,与上述从第一运转模式向第二运转模式转换时相同,是致冷剂配管101的电磁阀105被打开,致冷剂配管102的电磁阀106被关闭这样的状态。从旋转压缩机310的致冷剂配管100流入到蓄压器146内的低压致冷剂在这里被气液分离后,仅仅是致冷剂气体进入在该蓄压器146内开口的致冷剂排出管92内。进入到致冷剂导入管92的低压的致冷剂气体经过吸入通路58,被吸入到第一旋转压缩元件32的第一缸38的低压室侧。
一方面,因为致冷剂配管101的电磁阀105被控制器210打开,所以通过致冷剂配管100的一部分致冷剂从致冷剂配管101经过配管75流入收纳部472A中。据此,收纳部472A成为第一旋转压缩元件32的吸入侧压力,作为第二叶片52的背压,施加该第一旋转压缩元件32的吸入侧压力。
另一方面,被吸入到第一缸38的低压室侧的致冷剂气体通过第一辊46和第一叶片50的动作而被压缩,成为高温高压的致冷剂气体,从第一缸38的高压室侧经过未图示出的排出口内,被排出到排出消音室62中。被排出到排出消音室62的致冷剂气体通过贯通罩部件63的未图示出的孔,被排出到密封容器12内。
其后,密封容器12内的致冷剂从形成于密封容器12的端盖12B上的致冷剂排出管96排出到外部,流入室外热交换器152中。另外,因为如上所述,电磁阀106被关闭,所以在致冷剂排出管96流动的第一旋转压缩元件32的排出侧的致冷剂不会流入配管75中,而是全部流入室外热交换器152中。这样,流入到室外热交换器152的致冷剂气体放热,通过膨胀阀154减压后,流入室内侧热交换器156中。在这里,致冷剂蒸发,此时,通过从在室内循环的空气中吸热,发挥冷却作用,对室内制冷。然后,反复进行将致冷剂从室内侧热交换器156排出,吸入到旋转压缩机310的循环。
另外,通过上述弱弹簧176,在该第二运转模式中,第二叶片52被向与成为第二辊48的相反一侧的收纳部472A侧(弱弹簧176侧)牵引,不会出现在第二缸40内。据此,在第二运转模式的运转中,可以未然地避免第二叶片52出现在第二缸40内,与第二辊48冲突,产生冲突音这样的问题。
(4)从第二运转模式向第一运转模式的转换
另一方面,若室内从上述的轻负荷状态成为通常负荷或高负荷状态,则控制器210从第二运转模式向第一运转模式转换。在这里,就从第二运转模式向第一运转模式的转换动作进行说明。在该情况下,控制器210进行控制,使电动元件14低速旋转(转数小于等于50Hz),使两旋转压缩元件32、34的压缩比小于等于3.0。控制器210关闭致冷剂配管101的电磁阀105,打开致冷剂配管102的电磁阀106。
据此,致冷剂配管102和配管75连通,两旋转压缩元件32、34的排出侧致冷剂流入收纳部472A中,作为第二叶片52的背压,施加两旋转压缩元件32、34的排出侧压力。
作为第二叶片52的背压,通过施加两旋转压缩元件32、34的排出侧压力,由于将第二叶片52向第二辊48弹压的弹压力比弱弹簧176的拉伸力大,所以第二叶片52通过收纳部472A的该高压,被推向第二辊48侧,进行追随。据此,在第二旋转压缩元件34中,再次开始压缩作功。
如以上所详述,根据本发明,可以谋求提高具有旋转压缩机310的压缩系统CS的性能以及可靠性,该旋转压缩机310可以对第一运转模式和第二运转模式进行转换而被使用,在上述第一运转模式,第一以及第二旋转压缩元件32、34进行压缩作功,在上述第二运转模式,实质上只有第一旋转压缩元件32进行压缩作功。
据此,通过使用该压缩系统CS,构成空调机的致冷剂回路,可以提高该空调机的运转效率以及性能,也使谋求降低消耗电力成为可能。
另外,在本实施例中,在第一运转模式、起动时以及从第二运转模式向第一运转模式转换运转时,通过控制器210,打开致冷剂配管102的电磁阀106,连通致冷剂配管102和配管75,使两旋转压缩元件32、34的排出侧致冷剂流入收纳部472A中,作为第二叶片52的背压,施加了两旋转压缩元件32、34的排出侧压力,但是并非仅限于此,也可以是作为第二叶片52的背压,施加两旋转压缩元件32、34的吸入侧压力和排出侧压力之间的中间压力。即使是在该情况下,因为弱弹簧176的拉伸力被设定为小于等于将上述两旋转压缩元件32、34或是将第一旋转压缩元件32的吸入侧压力作为第二叶片52的背压而施加情况下的弹压力,所以可以使第二叶片52不受影响地追随第二辊48。
另外,在上述各实施例中,作为致冷剂,是使用HFC或HC类的致冷剂,但是也可以使用二氧化碳等的高低压差大的致冷剂,例如,作为致冷剂,也可以使用将二氧化碳和PAG(聚二醇)组合后的致冷剂。在该情况下,因为被各旋转压缩元件32、34压缩的致冷剂为非常高的高压,所以若使如上述各实施例的排出消音室62成为通过罩部件63覆盖上部支撑部件54的上侧的形状,则存在由于该高压,造成罩部件63破损的可能性。
因此,若使通过两旋转压缩元件32、34压缩的致冷剂合流的上部支撑部件54的上侧的排出消音室的形状为图8所示那样的形状,则可以确保耐压性。即,图8的排出消音室162构成如下:在上部支撑部件54的上侧形成凹陷部,利用将凹陷部作为具有规定的厚度的盖的上部盖66进行封闭。据此,即使是在含有象二氧化碳那样的高低压差大的致冷剂的情况下,也可以应用本发明。
另外,在上述各实施例中,使用旋转轴16为纵置型的旋转压缩机进行了说明,该发明当然也可以应用在使用旋转轴为横置型的旋转压缩机的情况下。
再有,在上述各实施例中,是使用了两汽缸的旋转压缩机,当然也可以应用到具有三汽缸或者三汽缸以上的旋转压缩元件的多汽缸旋转压缩机的压缩系统中。

Claims (6)

1.一种压缩系统,该压缩系统具有多汽缸旋转压缩机,该压缩机在密闭容器内收纳着驱动元件和通过该驱动元件的旋转轴驱动的第一以及第二旋转压缩元件,该第一以及第二旋转压缩元件是由第一以及第二缸、第一以及第二辊、第一以及第二叶片构成的,该第一以及第二辊与在上述旋转轴上形成的偏心部嵌合,分别在上述各缸内偏心旋转;该第一以及第二叶片与该第一以及第二辊接触,分别将上述各缸内划分为低压室侧和高压室侧,同时,该压缩机通过弹簧部件仅将上述第一叶片向上述第一辊弹压,可以对第一运转模式和第二运转模式进行转换而被使用,在上述第一运转模式,上述两旋转压缩元件进行压缩作功,在上述第二运转模式,实质上只有上述第一旋转压缩元件进行压缩作功,其特征在于,
在从上述第二运转模式向上述第一运转模式转换时,在作为上述第二叶片的背压,施加了上述两旋转压缩元件的排出侧压力后,施加上述两旋转压缩元件的吸入侧压力和排出侧压力之间的中间压力。
2.一种压缩系统,该压缩系统具有多汽缸旋转压缩机,该压缩机在密闭容器内收纳着驱动元件和通过该驱动元件的旋转轴驱动的第一以及第二旋转压缩元件,该第一以及第二旋转压缩元件是由第一以及第二缸、第一以及第二辊、第一以及第二叶片构成的,该第一以及第二辊与在上述旋转轴上形成的偏心部嵌合,分别在上述各缸内偏心旋转;该第一以及第二叶片与该第一以及第二辊接触,分别将上述各缸内划分为低压室侧和高压室侧,同时,该压缩机通过弹簧部件仅将上述第一叶片向上述第一辊弹压,可以对第一运转模式和第二运转模式进行转换而被使用,在上述第一运转模式,上述两旋转压缩元件进行压缩作功,在上述第二运转模式,实质上只有上述第一旋转压缩元件进行压缩作功,其特征在于,
设置用于控制向上述第二缸的致冷剂流通的阀装置,
在从上述第一运转模式向上述第二运转模式转换时,在通过上述阀装置切断向上述第二缸的致冷剂流入后,作为上述第二叶片的背压,施加上述两旋转压缩元件的吸入侧压力。
3.一种压缩系统,该压缩系统具有多汽缸旋转压缩机,该压缩机在密闭容器内收纳着驱动元件和通过该驱动元件的旋转轴驱动的第一以及第二旋转压缩元件,该第一以及第二旋转压缩元件是由第一以及第二缸、第一以及第二辊、第一以及第二叶片构成的,该第一以及第二辊与在上述旋转轴上形成的偏心部嵌合,分别在上述各缸内偏心旋转;该第一以及第二叶片与该第一以及第二辊接触,分别将上述各缸内划分为低压室侧和高压室侧,同时,该压缩机通过弹簧部件仅将上述第一叶片向上述第一辊弹压,可以对第一运转模式和第二运转模式进行转换而被使用,在上述第一运转模式,上述两旋转压缩元件进行压缩作功,在上述第二运转模式,实质上只有上述第一旋转压缩元件进行压缩作功,其特征在于,
设置用于控制向上述第二缸的致冷剂流通的阀装置,
在上述第一运转模式中,通过上述阀装置,使致冷剂流入上述第二缸,并且作为上述第二叶片的背压,施加上述两旋转压缩元件的吸入侧压力和排出侧压力之间的中间压力,在上述第二运转模式中,通过上述阀装置,阻止向上述第二缸流入致冷剂,并且,作为上述第二叶片的背压,施加上述两旋转压缩元件的吸入侧压力,同时,
在从上述第二运转模式向上述第一运转模式转换时,在作为上述第二叶片的背压,施加了上述两旋转压缩元件的排出侧压力后,施加上述两旋转压缩元件的吸入侧压力和排出侧压力之间的中间压力,在从上述第一运转模式向上述第二运转模式转换时,在通过上述阀装置切断向上述第二缸的致冷剂流入后,作为上述第二叶片的背压,施加上述两旋转压缩元件的吸入侧压力。
4.如权利要求1至3中的任一项所述的压缩系统,其特征在于,在上述模式转换时,使上述多汽缸旋转压缩机的上述驱动元件低速旋转,使上述第一旋转压缩元件或两旋转压缩元件的压缩比为小于等于3.0。
5.一种冷冻装置,其特征在于,使用权利要求1至4中的任一项所述的压缩系统,构成致冷剂回路。
6.一种压缩系统,该压缩系统具有多汽缸旋转压缩机,该多汽缸旋转压缩机在密闭容器内收纳着驱动元件和通过该驱动元件的旋转轴驱动的第一以及第二旋转压缩元件,该第一以及第二旋转压缩元件是由第一以及第二缸、第一以及第二辊、第一以及第二叶片构成的,该第一以及第二辊与在上述旋转轴上形成的偏心部嵌合,分别在上述各缸内偏心旋转;该第一以及第二叶片与该第一以及第二辊接触,分别将上述各缸内划分为低压室侧和高压室侧,同时,该压缩机通过弹簧部件将上述第一叶片向上述第一辊弹压,可以对第一运转模式和第二运转模式进行转换而被使用,在上述第一运转模式,上述两旋转压缩元件进行压缩作功,在上述第二运转模式,实质上只有上述第一旋转压缩元件进行压缩作功,其特征在于,
设置用于控制向上述第二缸的致冷剂流通的阀装置,和
将上述第二叶片向上述第二辊弹压的弹压机构,
使该弹压机构的弹压力小于等于将上述两旋转压缩元件、或第一旋转压缩元件的吸入侧压力作为上述第二叶片的背压而施加情况下的弹压力,同时,
在上述第一运转模式中,通过上述阀装置使致冷剂流入上述第二缸,并且作为上述第二叶片的背压,施加上述两旋转压缩元件的吸入侧压力和排出侧压力之间的中间压力,或是施加上述两旋转压缩元件的排出侧压力,在上述第二运转模式中,通过上述阀装置切断向上述第二缸流入致冷剂,并且,作为上述第二叶片的背压,施加上述两旋转压缩元件的吸入侧压力。
CNB2005100764232A 2004-07-08 2005-06-07 压缩系统及使用它的冷冻装置 Active CN100443725C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004201915 2004-07-08
JP2004201601A JP2006022723A (ja) 2004-07-08 2004-07-08 圧縮システム及びそれを用いた冷凍装置
JP2004201601 2004-07-08
JP2004203001 2004-07-09
JP2004202994 2004-07-09
JP2004235419 2004-08-12

Related Child Applications (5)

Application Number Title Priority Date Filing Date
CN2008101340503A Division CN101344090B (zh) 2004-07-08 2005-06-07 多汽缸旋转压缩机
CN2008101340486A Division CN101344088B (zh) 2004-07-08 2005-06-07 多汽缸旋转压缩机
CN2008101340467A Division CN101344086B (zh) 2004-07-08 2005-06-07 多汽缸旋转压缩机
CN2008101340490A Division CN101344089B (zh) 2004-07-08 2005-06-07 多汽缸旋转压缩机
CNA2008101340471A Division CN101344087A (zh) 2004-07-08 2005-06-07 压缩系统

Publications (2)

Publication Number Publication Date
CN1719034A CN1719034A (zh) 2006-01-11
CN100443725C true CN100443725C (zh) 2008-12-17

Family

ID=35796182

Family Applications (6)

Application Number Title Priority Date Filing Date
CN2008101340503A Active CN101344090B (zh) 2004-07-08 2005-06-07 多汽缸旋转压缩机
CN2008101340467A Active CN101344086B (zh) 2004-07-08 2005-06-07 多汽缸旋转压缩机
CN2008101340486A Active CN101344088B (zh) 2004-07-08 2005-06-07 多汽缸旋转压缩机
CN2008101340490A Active CN101344089B (zh) 2004-07-08 2005-06-07 多汽缸旋转压缩机
CNA2008101340471A Pending CN101344087A (zh) 2004-07-08 2005-06-07 压缩系统
CNB2005100764232A Active CN100443725C (zh) 2004-07-08 2005-06-07 压缩系统及使用它的冷冻装置

Family Applications Before (5)

Application Number Title Priority Date Filing Date
CN2008101340503A Active CN101344090B (zh) 2004-07-08 2005-06-07 多汽缸旋转压缩机
CN2008101340467A Active CN101344086B (zh) 2004-07-08 2005-06-07 多汽缸旋转压缩机
CN2008101340486A Active CN101344088B (zh) 2004-07-08 2005-06-07 多汽缸旋转压缩机
CN2008101340490A Active CN101344089B (zh) 2004-07-08 2005-06-07 多汽缸旋转压缩机
CNA2008101340471A Pending CN101344087A (zh) 2004-07-08 2005-06-07 压缩系统

Country Status (2)

Country Link
JP (1) JP2006022723A (zh)
CN (6) CN101344090B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106090089A (zh) * 2016-07-25 2016-11-09 珠海凌达压缩机有限公司 弹簧、滑动组件、压缩机以及空调器

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200619505A (en) 2004-12-13 2006-06-16 Sanyo Electric Co Multicylindrical rotary compressor, compression system, and freezing device using the compression system
KR101409876B1 (ko) * 2008-08-22 2014-06-20 엘지전자 주식회사 용량가변형 로터리 압축기 및 이를 적용한 냉동기기 및 그 운전 방법
CN102667354B (zh) * 2009-09-28 2015-05-06 东芝开利株式会社 空调机
CN102644596B (zh) * 2011-02-16 2014-09-10 广东美芝制冷设备有限公司 容量控制式旋转压缩机
CN103557646B (zh) * 2013-09-30 2015-11-18 广东美芝制冷设备有限公司 制冷系统和制热系统
CN104729130B (zh) * 2013-12-24 2017-05-10 珠海格力电器股份有限公司 空调系统及空调系统的控制方法
CN109356854B (zh) * 2018-10-19 2019-12-27 珠海格力电器股份有限公司 变容压缩机运行模式判断方法、设备、变容压缩机及空调
JP6974769B2 (ja) * 2020-02-10 2021-12-01 ダイキン工業株式会社 圧縮機

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229788A (ja) * 1985-07-30 1987-02-07 Mitsubishi Electric Corp 多気筒回転式圧縮機
JPH01247786A (ja) * 1988-03-29 1989-10-03 Toshiba Corp 2シリンダ型ロータリ式圧縮機
JPH05256286A (ja) * 1992-03-13 1993-10-05 Toshiba Corp 多気筒型回転圧縮機
JPH10259787A (ja) * 1997-01-17 1998-09-29 Toshiba Corp ロータリ式密閉形圧縮機および冷凍サイクル装置
CN1467379A (zh) * 2002-07-09 2004-01-14 ���ǵ�����ʽ���� 可变容量的旋转式压缩机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063093U (ja) * 1983-10-06 1985-05-02 三洋電機株式会社 多気筒回転圧縮機の容量制御装置
JP2555464B2 (ja) * 1990-04-24 1996-11-20 株式会社東芝 冷凍サイクル装置
JPH0599172A (ja) * 1991-10-03 1993-04-20 Sanyo Electric Co Ltd 2気筒回転圧縮機
JPH1137578A (ja) * 1997-07-16 1999-02-12 Toshiba Corp 空気調和装置
TW568996B (en) * 2001-11-19 2004-01-01 Sanyo Electric Co Defroster of refrigerant circuit and rotary compressor for refrigerant circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6229788A (ja) * 1985-07-30 1987-02-07 Mitsubishi Electric Corp 多気筒回転式圧縮機
JPH01247786A (ja) * 1988-03-29 1989-10-03 Toshiba Corp 2シリンダ型ロータリ式圧縮機
JPH05256286A (ja) * 1992-03-13 1993-10-05 Toshiba Corp 多気筒型回転圧縮機
JPH10259787A (ja) * 1997-01-17 1998-09-29 Toshiba Corp ロータリ式密閉形圧縮機および冷凍サイクル装置
CN1467379A (zh) * 2002-07-09 2004-01-14 ���ǵ�����ʽ���� 可变容量的旋转式压缩机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106090089A (zh) * 2016-07-25 2016-11-09 珠海凌达压缩机有限公司 弹簧、滑动组件、压缩机以及空调器

Also Published As

Publication number Publication date
CN101344086B (zh) 2010-06-02
CN101344090B (zh) 2010-06-02
CN101344087A (zh) 2009-01-14
CN101344088A (zh) 2009-01-14
CN101344090A (zh) 2009-01-14
CN101344088B (zh) 2010-04-21
CN101344089A (zh) 2009-01-14
CN101344089B (zh) 2010-06-09
JP2006022723A (ja) 2006-01-26
CN1719034A (zh) 2006-01-11
CN101344086A (zh) 2009-01-14

Similar Documents

Publication Publication Date Title
CN100443725C (zh) 压缩系统及使用它的冷冻装置
EP1614902B1 (en) Compression system and method
TWI337223B (zh)
JP4856091B2 (ja) 容量可変型ロータリ圧縮機及びこれを備える冷却システム
TWI656310B (zh) 高壓壓縮機及具有該高壓壓縮機的冷凍機
EP2924295A1 (en) Rotary compressor
CN101349270A (zh) 多气缸旋转压缩机和具备它的压缩系统以及制冷装置
JP2006177194A (ja) 多気筒回転圧縮機
JP2006022766A (ja) 多気筒回転圧縮機
JP4404708B2 (ja) 圧縮システム及びそれを用いた冷凍装置
JP2006052693A (ja) 多気筒回転圧縮機及びそれを用いた圧縮システム
JP2006022765A (ja) 多気筒回転圧縮機
JP2006169979A (ja) 圧縮システム及びそれを用いた冷凍装置
JP2006009756A (ja) 圧縮システム及びそれを用いた冷凍装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20060111

Assignee: Shenyang CATIC electromechanical SANYO refrigeration equipment Co., Ltd.

Assignor: Sanyo Electric Co., Ltd.

Contract record no.: 2017990000464

Denomination of invention: Compression system, multicylinder rotary compressor, and refrigeration apparatus using the same

Granted publication date: 20081217

License type: Common License

Record date: 20171127

EE01 Entry into force of recordation of patent licensing contract