CN100439493C - 造血干细胞及其治疗新生血管性眼疾的方法 - Google Patents
造血干细胞及其治疗新生血管性眼疾的方法 Download PDFInfo
- Publication number
- CN100439493C CN100439493C CNB2004800189906A CN200480018990A CN100439493C CN 100439493 C CN100439493 C CN 100439493C CN B2004800189906 A CNB2004800189906 A CN B2004800189906A CN 200480018990 A CN200480018990 A CN 200480018990A CN 100439493 C CN100439493 C CN 100439493C
- Authority
- CN
- China
- Prior art keywords
- cell
- lin
- hsc
- mouse
- retina
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/0634—Cells from the blood or the immune system
- C12N5/0647—Haematopoietic stem cells; Uncommitted or multipotent progenitors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
- A61P27/12—Ophthalmic agents for cataracts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P41/00—Drugs used in surgical methods, e.g. surgery adjuvants for preventing adhesion or for vitreum substitution
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/02—Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/06—Antianaemics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/14—Vasoprotectives; Antihaemorrhoidals; Drugs for varicose therapy; Capillary stabilisers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/06—Animal cells or tissues; Human cells or tissues
- C12N5/0602—Vertebrate cells
- C12N5/069—Vascular Endothelial cells
- C12N5/0692—Stem cells; Progenitor cells; Precursor cells
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/10—Cells modified by introduction of foreign genetic material
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/12—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
- A61K2035/124—Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells the cells being hematopoietic, bone marrow derived or blood cells
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Zoology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Wood Science & Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Hematology (AREA)
- Cell Biology (AREA)
- General Engineering & Computer Science (AREA)
- Developmental Biology & Embryology (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- Vascular Medicine (AREA)
- Immunology (AREA)
- Ophthalmology & Optometry (AREA)
- Diabetes (AREA)
- Heart & Thoracic Surgery (AREA)
- Epidemiology (AREA)
- Cardiology (AREA)
- Virology (AREA)
- Urology & Nephrology (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
分离的、哺乳动物的、来源于成熟骨髓的、含有内皮祖细胞(EPCs)的谱系阴性的造血干细胞群(Lin- HSCs)能够修复眼中的视网膜血管与神经网络。优选地,分离的Lin- HSCs中至少约20%的细胞表达细胞表面抗原CD31。分离的Lin- HSC群对治疗眼血管疾病具有用处。在一个优选的实施方案中,Lin- HSC群通过:抽取一只成体哺乳动物的骨髓、从骨髓中分离多种单核细胞、使用针对一个或多个谱系表面抗原的生物素偶联的谱系群体抗体标记这些单核细胞;从多种单核细胞中除去谱系表面抗原阳性的单核细胞,然后回收含EPCs的Lin-HSCs群的方式,来进行分离。还提供了使用治疗上有用的基因来转染的分离的Lin- HSCs,用于在基于细胞的基因治疗中将基因传递至眼中。还描述了制备本发明中分离的干细胞群的方法,以及治疗眼疾与眼损伤的方法。
Description
相关申请的交叉引用
本申请于2003年7月25日提交的美国专利申请10/628,783的部分连续申请案、要求2002年7月25日提交的60/398,522的临时申请以及2003年5月2日提交的60/467,051的临时申请的权益,上述申请的全部公开内容均引入本申请作为参考。
政府利益声明
本文所描述工作的一部分是由国家癌症研究所基金CA92577及国家卫生研究所基金EY11254、EY12598与EY125998资助。美国政府在本发明中具有一定权利。
技术领域
本发明涉及来源于骨髓的分离的、哺乳动物的、谱系阴性的造血干细胞(Lin-HSC)及其应用。更特别地,本发明涉及含有内皮祖细胞(EPC)的分离的、哺乳动物的、谱系阴性的造血干细胞(Lin-HSC)群。本发明还涉及通过施用Lin-HSC与转染的Lin-HSC群至眼部来治疗眼血管疾病。
背景技术
遗传性视网膜变性影响了多达1/3500的人,其特征是进行性夜盲、视野缺损、视神经萎缩、小动脉变细、血管透性改变及通常会发展为全盲的视野中心缺损(Heckenlively,J.R.,editor,1988;RetinitisPigmentosa,Philadelphia:JB Lippincott Co.)。这些疾病的分子遗传学分析在超过110种不同的基因中识别出突变,但这些基因仅能对已知受疾病困扰的个体中相对较小比例做出解释(Humphries等.,1992,Science 256:804-808;Farrar等.2002,EMBO J.21:857-864.)。这些突变中很多都与包括视紫红质、cGMP磷酸二酯酶、rds外周蛋白及RPE65在内的光转导系统中的酶与结构组分相联系。尽管具有这些观察资料,但仍没有减缓或逆转这些视网膜变性疾病进一步发展的有效治疗手段。在将野生型的转基因传递到携带特定突变的动物光感受器或视网膜色素上皮(RPE)时,基因治疗上的新进展已实现了小鼠中rds(Ali等.2000,Nat.Genet。25:306-310)及rd(Takahashi等.1999,J.Virol.73:7812-7816)表型与狗中RPE65表型(Acland等.2001,Nat.Genet.28:92-95)的成功逆转。
年龄相关性黄斑变性(ARMD)与糖尿病视网膜病变(DR)是工业化国家中视力损害的主要原因,它们由异常的视网膜新生血管导致。由于视网膜由各层结构清晰的神经元、神经胶质与血管这些元件组成,因此诸如血管增生或水肿这样相对微小的紊乱都会导致视觉功能的显著丧失。遗传性视网膜变性,例如色素性视网膜炎(RP),也与诸如动脉狭窄及血管萎缩之类的血管异常相关。虽然在确定那些促进及抑制血管新生的因子方面已取得了显著进展,但目前仍没有专门治疗眼血管疾病的有效治疗手段。
多年来已知在正常成人循环系统与骨髓中存在一个干细胞群。这些细胞可按照造血谱系阳性(Lin+)或谱系阴性(Lin-)两个谱系区分为不同的亚群。此外,近来表明谱系阴性的造血干细胞(HSC)群体含有能够在体外和体内形成血管的内皮祖细胞(EPC)(参见Asahara等.1997,Science 275:964-7)。这些细胞能够参与正常的和病理的出生后血管新生(参见Lyden等.2001 Nat.Med.7,1194-201;Kalka等.2000,Proc.Natl.Acad.Sci.U.S.A.97:3422-7;及Kocher等.2001,Nat.Med.7:430-6)并分化成包括肝细胞(参见Lagasse等.2000,Nat.Med.6:1229-34)、小胶质细胞(参见Priller等.2002Nat.Med.7:1356-61)、心肌细胞(参见Orlic等.2001,Proc.Natl.Acad.Sci.U.S.A.98:10344-9)及上皮细胞(参见Lyden等.2001,Nat.Med.7:1194-1201)在内的多种非内皮细胞类型。尽管这些细胞已经应用在血管新生的数个实验模型中,但EPC作用于新生血管的机制仍不清楚,尚无法确定能够有效增加针对特定血管的细胞数目的策略。
来源于骨髓的造血干细胞是目前唯一一种普遍用于治疗用途的干细胞。骨髓HSC在移植上已经应用了40多年。目前,正在研究可获得纯化的干细胞的先进方法以发展出针对白血病、淋巴瘤及遗传性血液疾病的治疗手段。已在有限数目的患者中进行了干细胞在人体中临床糖尿病及晚期肾癌治疗方面的应用的研究。
发明概述
本发明提供了分离的、哺乳动物的、不在细胞表面表达谱系表面抗原(Lin)的造血干细胞(HSCs)群,即谱系阴性的造血干细胞(Lin-HSCs)。本发明的Lin-HSC群含有内皮祖细胞(EPC),也称内皮前体细胞,可以在经玻璃体内注射至眼中后选择性地作用于活化的视网膜星形胶质细胞。本发明的Lin-HSCs优选地来源于成体哺乳动物骨髓,更优选地来源于成人骨髓。
在一个优选的实施方案中,本发明的Lin-HSC群通过:抽取一只成体哺乳动物的骨髓、从骨髓中分离多种单核细胞、使用针对一个或多个谱系表面抗原的生物素偶联的谱系群体抗体标记这些单核细胞,除去谱系表面抗原阳性的单核细胞然后回收含EPCs的Lin-HSCs群的方式,来进行分离。优选地,单核细胞使用针对选自CD2、CD3、CD4、CD11、CD11a、Mac-1、CD14、CD16、CD19、CD24、CD33、CD36、CD38、CD45、Ly-6G、TER-119、CD45RA、CD56、CD64、CD68、CD86、CD66b、HLA-DR及CD235a(血型糖蛋白A)的一种或多种谱系表面抗原的生物素偶联的谱系群体抗体来标记。优选地,本发明分离的Lin-HSC群中至少约20%的细胞表达表面抗原CD31。
本发明Lin-HSC群中的EPC′s广泛地整合到发育中的视网膜血管中,并持续稳定地整合至眼新生血管。使用本发明分离的Lin-HSC群可在哺乳动物中恢复并稳定变性中的视网膜血管,从而拯救神经元网络,进而推动缺血组织的修复。
在一个优选的实施方案中,分离的Lin-HSC群中的细胞使用治疗上有用的基因进行转染。例如,细胞可使用能编码选择性作用于新生血管并抑制新血管形成、却不影响已存在血管的神经营养剂或者抗血管新生试剂的多聚核苷酸,通过一种基于细胞的基因治疗方式来进行转染。在一个实施方案中,本发明分离的Lin-HSC群含有一种编码血管新生抑制肽的基因。血管新生抑制的Lin-HSCs在调节诸如ARMD、DR及与异常血管相关联的某些视网膜变性疾病中的异常血管生长方面具有功效。在另一个实施方案中,本发明分离的Lin-HSC群含有编码神经营养肽的基因。神经营养的Lin-HSCs在包括诸如青光眼、视网膜色素变性及其它类似与视神经变性相关的眼疾中的促进神经元修复方面具有功效。
使用本发明分离的Lin-HSC群治疗眼疾的一个特殊优点,是在使用Lin-HSCs进行玻璃体内治疗的眼中观察到血管营养与神经营养的修复效果。在使用本发明分离的Lin-HSCs处理过的眼中,视网膜神经元及光感受器得到保护,视觉功能也得以维持。本发明提供了一种包括施用从骨髓中分离的Lin-HSC细胞来治疗视网膜变性的方法,该Lin-HSC细胞含有能选择性作用于活化的视网膜星形胶质细胞的内皮祖细胞,其中至少50%的分离的Lin-HSCs表达表面抗原CD31并且至少50%的分离的Lin-HSCs表达表面抗原CD 117(c-kit)。
本发明还提供一种从成体哺乳动物骨髓中,优选地是从成人骨髓中分离含内皮祖细胞的谱系阴性造血干细胞群的方法。此外,可以从用于视网膜血管再生或修复性治疗以及用于治疗或改善视网膜神经组织变性的人Lin-HSCs中获得遗传上一致的细胞系(即无性繁殖系)。
附图的简要描述
图1(a与b)描述的是小鼠视网膜发育示意图。(a)原发丛的发育。(b)视网膜血管形成的第二阶段。GCL,节细胞层;IPL,内网层;INL;内核层;OPL,外网层;ONL,外核层;RPE,视网膜色素上皮;ON,视神经;P,外周部。
图1c描述的是来源于骨髓的Lin+HSC与Lin-HSC分离细胞的流式细胞仪特征图。顶行:非抗体标记细胞的二维点图分布,其中R1表示阳性PE-染色可定量的区域;R2表示GFP-阳性;中间行:Lin-HSC(C57B/6)与底行:Lin+HSC(C57B/6)细胞,每个细胞系使用针对Sca-1、c-kit、Flk-1/KDR、CD31的PE-联接抗体进行标记。Tie-2数据由Tie-2-GFP小鼠中获得。百分比表示在整个Lin-HSC与Lin+HSC群中阳性标记细胞的百分数。
图2描述的是Lin-HSCs进入发育中的小鼠视网膜的植入过程。
(a)在注射4天后(P6)玻璃体内注射的eGFP+Lin-HSC细胞在视网膜上附着并分化(b)Lin-HSC(B6.129S7-Gtrosa26小鼠,使用β-抗体染色)在使用胶原蛋白IV抗体染色的血管(星号表示血管顶端)前面定植。(c)在注射后4天(P6)绝大多数Lin+HSC细胞(eGFP+)不能分化。(d)注射后4天(P6)肠系膜eGFP+鼠的EC。(e)注射入成体小鼠眼中的Lin-HSCs(eGFP+)。(f)在GFAP-GFP转基因小鼠中定位并沿着已存在的星型胶质细胞模板分化的eGFP+Lin-HSCs(箭头处)的低倍放大。(g)Lin-细胞(eGFP)与其下面的星型胶质细胞(箭头处)之间联接的较高倍数放大。(h)没有注射GFAP-GFP转基因的对照。(i)注射后4天(P6),eGFP+Lin-HSCs迁至更深处的神经丛区域并在此进行分化。左图在一个视网膜全样载片中记录到Lin-HSC活性;右图表示的是视网膜中(顶部是玻璃体一侧,底部是巩膜一侧)Lin-细胞(箭头处)的位置。(j)使用α-CD31-PE及α-GFP-alexa 488抗体进行双标记。注射后7天,所注射的Lin-HSC(eGFP,红色)整合到血管中(CD31)。箭头指明整合区域。(k)eGFP+Lin-HSC细胞在注射后14天(P17)形成血管。(l与m)心内注射罗丹明-葡聚糖表明该血管完整无缺,在原发丛(l)与深处的血管丛(m)中均有功能。
图3(a与b)表示的是eGFP+Lin-HSC细胞定位在成熟视网膜中由激光(a)与机械(b)损伤(星号表明损伤位点)所诱导的神经胶质增生部位(由表达GFAP的星型胶质细胞表示,最左图)。最右图是一幅较高倍数放大图,表示的是Lin-HSCs与星型胶质细胞的紧密联系。刻度尺=20μM。
图4显示的是Lin-HSC细胞修复视网膜变性小鼠的血管。(a-d)注射后27天(P33)使用胶原蛋白IV染色的视网膜;(a)与(b),使用Lin+HSC细胞(Balb/c)注射的视网膜与普通FVB小鼠在血管系统没有表现出差异;(c)与(d)使用Lin-HSCs细胞(Balb/c)注射的视网膜表现出与野生型小鼠同源的丰富的血管网络;(a)与(c)使用DAPI染色的完整视网膜(顶部是玻璃体一侧,底部是巩膜一侧)的冰冻切片;(b)与(d)视网膜所有数量的深层血管丛;(e)以图例说明在注射了Lin-HSC细胞的视网膜中,形成深层血管丛的血管分布有所增加的条线图(n=6)。深层视网膜血管形成的程度通过计算每幅图像中血管的总长度来定量。比较了Lin-HSC、Lin+HSC或者对照的视网膜中血管平均总长度/高倍视野(以微米为单位)。(f)使用来源于rd/rd小鼠的Lin-HSC细胞(R,右眼)或者Lin+HSC细胞(L,左眼)进行注射后深层血管丛长度的比较。给出了6只无关系的小鼠的结果(一种颜色代表一种小鼠)。(g)与(h)Lin-HSC细胞(Balb/c)在注射至P15眼中时还修复了rd/rd血管。给出了注射至视网膜的Lin-HSC细胞(G)或者Lin+HSC细胞(H)的中间及深层血管丛。
图5描述的是小鼠视网膜组织的显微照片。(a)视网膜全样载片(rd/rd小鼠)的深层,使用eGFP+Lin-HSCs注射后五天(P11)可见(灰色部分)。(b)与(c)于P6时接受Balb/c Lin-细胞(b)或者Lin+HSC细胞(c)注射的Tie-2-GFP(rd/rd)小鼠的P60时刻视网膜血管。在(b)和(c)的左图中只有内源内皮细胞(GFP-染色)是可见的。(b)和(c)的中图是使用CD31抗体进行染色的,箭头表明使用CD31而不用GFP染色的血管,(b)和(c)的右图显示的是同时使用GFP与CD31染色。(d)注射Lin-HSC(左图)与对照视网膜(右图)的α-SMA染色。
图6显示的是T2-TrpRS-转染的Lin-HSCs抑制小鼠视网膜血管的发育。(a)人TrpRS、T2-TrpRS以及在氨基末端带有Igk信号序列的T2-TrpRS的示意图。(b)注射了使用T2-TrpRS转染的Lin-HSC的视网膜,在体内表达T2-TrpRS蛋白。(1)在大肠杆菌中产生的重组T2-TrpRS;(2)在大肠杆菌中产生的重组T2-TrpRS;(3)在大肠杆菌中产生的重组T2-TrpRS;(4)对照视网膜;(5)注射Lin-HSC+pSecTag2A(只是载体)的视网膜;(6)注射Lin-HSC+pKLel35(在pSecTag中有Igk-T2-TrpRS)的视网膜。(a)内源TrpRS。(b)重组T2-TrpRS。(c)注射入视网膜中的Lin-HSC的T2-TrpRS。(c-f)注射后7天,接受注射的视网膜中具有代表性的原发(表层的)与次级(深层的)血管丛;(c)与(d)使用空质粒转染的Lin-HSC进行注射的眼发育正常;(e)与(f)使用T2-TrpRS-转染的Lin-HSC进行注射的眼,多数表现出深层血管丛受到抑制;(c)与(e)原发(表层的)血管丛;(d)与(f)次级(深层的)血管丛。在(f)中观察到的较弱的血管轮廓是(e)中原发网络血管的“相互渗透”图像。
图7显示的是编码His6-标记的T2-TrpRS的DNA序列,SEQ IDNO:1。
图8显示的是His6-标记的T2-TrpRS的氨基酸序列,SEQ ID NO:2。
图9所示的是使用本发明中Lin-HSC以及Lin+HSC(对照)进行眼内注射的小鼠视网膜显微照片与视网膜电图(ERG)。
图10描述的统计图表明使用Lin-HSC进行治疗的rd/rd小鼠眼中中间(Int.)及深层血管层的神经元修复(y-轴)与血管修复(x-轴)之间存在相关关系。
图11描述的统计图表明使用Lin+HSC进行治疗的rd/rd小鼠眼中神经元修复(y-轴)与血管修复(x-轴)之间没有相关关系。
图12是一幅在注射后1个月(1M)、2个月(2M)以及6个月(6M)的时间点上,使用Lin-HSC对rd/rd小鼠眼进行治疗(暗条)以及未对rd/rd小鼠眼进行治疗(亮条)且以任意相对的单位给出的血管长度(y-轴)的条线图。
图13包括3个在注射后1个月(1M)、2个月(2M)及6个月(6M)的rd/rd小鼠外核层(ONR)中核数目的条线图,并表明相对于使用Lin+HSC进行治疗的对照眼(亮条),使用Lin-HSC进行治疗的眼(暗条)中核的数目有显著增长。
图14描述的是在单个rd/rd小鼠中,在1个月(1M)、2个月(2M)及6个月(6M)的时间点(注射后)上,右眼(R,使用Lin-HSC治疗)与左眼(L,使用Lin+HSC治疗的对照眼)相比较,表示其中外核层中核数目的点;在给定点上的每条线比较的是同一个小鼠的左右眼。
图15描述的是在rd1/rd1小鼠(C3H/HeJ,左图)或野生型小鼠(C57BL/6,右图)中视网膜血管及神经细胞的变化。给出了同一个视网膜的视网膜全样载片(红色:胶原蛋白IV,绿色:CD31)及切片(红色:DAPI,绿色:CD31,下图)中,中间(上图)或者深层(中图)血管丛的视网膜血管(P:出生后天数)(GCL:节细胞层;INL:内核层;ONL:外核层)。
图16表示的是注射Lin-HSC修复rd/rd小鼠中神经细胞的变性。A、B与C,在P30(A)、P60(B)及P180(C)时,中间(int.)或者深层血管丛的视网膜血管以及注射Lin-HSC的眼(右图)与对侧的注射对照细胞(CD31-)的眼(左图)的切片,D,在P30(左图,n=10)、P60(中图,n=10)及P180(右图,n=6)时使用Lin-HSC注射或者使用对照细胞(CD31-)注射的视网膜中血管的平均总长度(+或者-平均值的标准差)。分别给出中间(Int.)与深层血管丛的数据(Y轴:血管的相对长度)。E,在使用对照细胞(CD31-)进行注射或者使用Lin-HSC进行注射的视网膜中,在P30(左图,n=10)、P60(中图,n=10)及P180(右图,n=6)时ONL中细胞核的平均数(Y轴:ONL中细胞核的相对数目)。F,在p30(左图)、P60(中图)及P180(右图)时使用Lin-HSC注射或者使用对照细胞(CD31-)注射的视网膜中,血管长度(X轴)与ONL中细胞核数目(Y轴)之间的线性相关。
图17表示的是通过注射Lin-HSC修复了视网膜的功能。使用视网膜电图(ERG)记录来测量注射到视网膜中的Lin-HSC或对照细胞(CD31-)的功能。A与B,注射后2个月得到恢复的与未恢复的视网膜的典型例子。给出了同一只动物中,注射了Lin-HSC的右眼(A)与注射了CD31-对照细胞的左眼(B)的视网膜切片(绿色:使用CD31染色的血管,红色:使用DAPI染色的核)。C,A与B中所示的同一只动物的EPG结果。
图18所示的是人骨髓细胞群能够在rd1小鼠中修复变性的视网膜(A-C)。在rd10——小鼠另一个视网膜变性模型中,也观察到这种修复(D-K)。A,使用绿色染料标记的人Lin-HSCs(hLin-HSCs)能够在玻璃体内注射到C3SnSmn.CB17-Prkdc SCID小鼠后分化为视网膜血管细胞。B与C,注射后1.5个月时,在使用Lin-HSC注射的眼(B)或对侧的对照眼(C)中的视网膜血管(左图:上:中间血管丛,下:深层血管丛)与神经细胞(右图)。D-K,使用Lin-HSCs对rd10小鼠的修复(在P6时注射)。给出了在P21(D:Lin-HSCs,H:对照细胞)、P30(E:Lin-HSCs,I:对照细胞)、P60(F:Lin-HSCs,J:对照细胞)及P105(G:Lin-HSCs,K:对照细胞)时具代表性的视网膜(在每个时间点上,获得治疗的眼与对照眼均来自同一只动物)。视网膜血管(每幅图的上图为中间血管丛;每幅图的中图为深层血管丛)使用CD31(绿色)与胶原蛋白IV(红色)染色。每幅图的下图显示的是同一个视网膜的横切面(红色:DAPI,绿色:CD31)。
图19显示的是在使用Lin-HSCs治疗后,晶体蛋白αA在修复的外核层细胞中表现出正调节,而在使用对照细胞处理的对侧眼中没有这种现象。左图:修复的视网膜中的IgG对照,中图:修复的视网膜中的晶体蛋白αA,右图:在未修复的视网膜中的晶体蛋白αA。
图20包含在使用本发明Lin-HSCs进行治疗的鼠类视网膜中表现出正调节的基因的表格。(A)在使用鼠Lin-HSCs进行治疗的鼠视网膜中表达量增加3倍的基因。(B)在使用鼠Lin-HSCs进行治疗的鼠视网膜中表现出正调节的晶体蛋白基因。(C)在使用人Lin-HSCs进行治疗的鼠视网膜中表达量增加2倍的基因。(D)在使用人Lin-HSCs进行治疗的鼠视网膜中表现出正调节的神经营养因子或者生长因子的基因。
图21所示的是在本发明的CD133阳性(DC133+)以及CD133阴性(CD133-)的人Lin-HSC群中,CD31与整联蛋白α6的分布图。
图22所示的是在出生后的P0直至P30期间,于常规氧水平(含氧量正常)进行饲养的野生型C57/B16小鼠出生后视网膜的发育。
图23所示的是于P7至P12期间在高氧水平(含氧量高;75%氧)进行饲养,随后于P12至P17在含氧量正常情况下进行饲养的野生型C57/B16小鼠中氧诱导的视网膜病变模型。
图24所示的是在氧诱导的视网膜病变模型中通过使用本发明的Lin-HSC群来进行治疗的血管修复。
优选实施例的详细描述
干细胞可通过细胞表面抗原的分布来明确识别(详细的讨论参见《干细胞:科学进展与未来趋势》,National Institutes of Health,Officeof Science Policy于2001年六月制定的报告,附录E:干细胞标记,引入本文作为参考。
造血干细胞是能够发育成多种血细胞类型的干细胞,例如B细胞、T细胞、粒细胞、血小板及红细胞。谱系表面抗原是一组作为成熟血细胞谱系标记的细胞表面蛋白,包括CD2、CD3、CD11、CD11a、Mac-l(CD11b:CD18)、CD14、CD16、CD19、CD24、CD33、CD36、CD38、CD45、CD45RA、鼠Ly-6G、鼠TER-119、CD56、CD64、CD68、CD86(B7.2)、CD66b、人白细胞抗原DR(HLA-DR)以及CD235a(血型糖蛋白A)。不在显著水平上表达这些抗原的造血干细胞一般称为谱系阴性(Lin-)。人造血干细胞一般表达其它诸如CD31、CD34、CD117(c-kit)和/或CD133这样的表面抗原。鼠造血干细胞一般表达其它诸如CD34、CD117(c-kit)、Thy-1和/或Sca-1这样的表面抗原。
本发明提供细胞表面不显著表达“谱系表面抗原”(Lin)的分离的造血干细胞。这种细胞在本文中用来指“谱系阴性”或者“Lin-”造血干细胞。特别地,本发明提供了含有内皮祖细胞(EPCs)的Lin-造血干细胞群(Lin-HSCs),它能够整合到发育中的血管然后分化形成血管内皮细胞。优选地,分离的Lin-HSC群置于譬如磷酸缓冲盐溶液(PBS)这样的培养基中。
在本文以及附加的权利要求中,用语“成熟的”骨髓,包括出生后分离的骨髓,也就是与胚胎相对,从幼年及成体个体中分离的骨髓。术语“成体哺乳动物”既指幼年的也指完全成熟的哺乳动物。
本发明提供含内皮祖细胞(EPCs)的分离的、哺乳动物的、谱系阴性的造血干细胞(Lin-HSC)群。本发明分离的Lin-HSC群优选地由其中至少约20%的细胞能够表达表面抗原CD31,通常存在于内皮细胞上的哺乳动物细胞所组成。在另一个实施方案中,至少约50%,更优选的是约65%,最优选的是至少75%的细胞表达CD31。优选地,本发明Lin-HSC群中至少约50%的细胞表达整联蛋白α6抗原。
在一个优选的鼠Lin-HSC群的实施例中,至少约50%的细胞表达CD31抗原,至少约50%的细胞表达CD117(c-kit)抗原。优选地,至少约75%,更优选约81%的Lin-HSC细胞表达表面抗原CD31。在另一个优选的鼠的实施例中,至少约65%,更优选约70%的细胞表达表面抗原CD117。本发明的一个特别优选的实施例是一个其中约50%至85%的细胞表达表面抗原CD31并且约70%至75%的细胞表达表面抗原CD117的鼠Lin-HSCs群。
另一个优选的实施方案是其中细胞为CD133阴性、至少约50%的细胞表达CD31表面抗原并且至少约50%的细胞表达整联蛋白α6抗原的人Lin-HSC群。而另一个优选的实施方案是其中细胞为CD133阳性、少于约30%的细胞表达CD31表面抗原并且少于约30%的细胞表达整联蛋白α6抗原的人Lin-HSC群。
本发明中分离的Lin-HSC群在玻璃体内注射到诸如小鼠或人这样的哺乳动物物种的眼中时,可选择性地作用于星型胶质细胞并且整合到视网膜新生血管中,从其中分离细胞。
本发明中分离的Lin-HSC群含有能够分化为内皮细胞并在视网膜内形成血管结构的内皮祖细胞。特别地,本发明的Lin-HSC群在治疗视网膜新生血管与视网膜血管变性疾病方面具有用处,并能修复视网膜血管损伤。本发明的Lin-HSC细胞促进视网膜中神经元的修复并促进抗细胞凋亡基因的正调节。一个不可思议的发现是本发明中的成熟Lin-HSC细胞甚至能够在患有视网膜变性的恶性复合免疫缺陷(SCID)小鼠中抑制视网膜变性。此外,Lin-HSC群能够在诸如由氧诱导的视网膜病变或者早熟性视网膜病变伤害的初生哺乳动物眼中用来治疗视网膜缺陷。
本发明还提供了一种在哺乳动物中治疗眼疾的方法,其包括由从哺乳动物骨髓中分离含有内皮祖细胞的谱系阴性的造血干细胞群、以及将分离到的干细胞以足以抑制疾病的量玻璃体内注射到哺乳动物眼中。本发明可以在初生的、幼年的或者完全成体的哺乳动物中用来治疗诸如视网膜变性疾病、视网膜血管变性疾病、局部缺血性视网膜病变、血管出血、血管渗漏及脉络膜病变这样的眼疾。这些疾病的实施例包括年龄相关性黄斑变性(ARMD)、糖尿病视网膜病变(DR)、拟眼组织胞浆菌病(POHS)、早产儿视网膜病(ROP)、镰状细胞贫血与色素性视网膜炎,以及视网膜损伤。
注射到眼中的干细胞的数目应该足以抑制眼睛的疾病状态。例如,细胞的数目能够有效修复眼视网膜损伤、稳定视网膜新生血管、成熟视网膜新生血管并防止或者修复血管渗漏与血管出血。
可以使用诸如编码基于细胞进行基因治疗的、用于眼中的抗血管新生蛋白的基因、以及编码增强神经元修复效果的神经营养剂的基因这样的治疗上有用的基因来转染本发明中Lin-HSC群的细胞。
转染的细胞可以包括任何能用于治疗视网膜障碍的治疗上有用的基因。在一个优选的实施方案中,本发明中转染的Lin-HSCs含有可操作地编码抗血管新生肽的基因,该肽包括蛋白、或者诸如TrpRS或其抗血管新生的片段,例如在共同未决的美国专利申请No.10/080,839中所详细描述的TrpRS的T1与T2片段,其公开所公开的内容引入本申请作为参考。本发明中编码抗血管新生肽的转染的Lin-HSCs在治疗诸如糖尿病视网膜病变及其它类似疾病这样的与异常血管发育相关的视网膜疾病方面是有益的。Lin-HSCs优选地是人细胞。
在另一个优选的实施方案中,本发明中转染的Lin-HSCs含有可操作地编码诸如神经生长因子、神经营养蛋白-3、神经营养蛋白-4、神经营养蛋白-5、睫状神经营养因子、视网膜色素上皮衍生的神经营养因子、胰岛素样生长因子、神经胶质细胞系衍生的神经营养因子、脑衍生神经营养因子以及其它类似的神经营养剂的基因。这类神经营养的Lin-HSCs在促进诸如青光眼与色素性视网膜炎、治疗视网膜神经损伤等视网膜神经变性疾病中的神经元修复方面是有益的。已有报道植入睫状神经营养因子可作为色素性视网膜炎的有效治疗手段(参见Kirby等.2001,Mol Ther.3(2):241-8;Farrar等.2002,EMBO Journal21:857-864).据报道脑衍生神经营养因子可在受损的视网膜神经节中调节与基因相关的生长(参见Fournier,等.,1997,J.Neurosci。Res.47:561-572)。据报道神经胶质细胞系衍生的神经营养因子在色素性视网膜炎中能延缓光感受器的变性(参见McGee等.2001,Mol Ther.4(6):622-9)。
本发明还提供了一种从哺乳动物骨髓中分离含有内皮祖细胞的谱系阴性的造血干细胞的方法。该方法包括以下步骤:(a)从成体哺乳动物中抽取骨髓;(b)从骨髓中分离多种类型单核细胞;(c)使用针对一个或多个谱系表面抗原的生物素偶联的谱系群体抗体来标记单核细胞,优选地谱系表面抗原选自CD2、CD3、CD4、CD11、CD11a、Mac-1、CD14、CD16、CD19、CD24、CD33、CD36、CD38、CD45、Ly-6G(鼠的)、TER-119(鼠的)、CD45RA、CD56、CD64、CD68、CD86(B7.2)、CD66b、人白细胞抗原DR(HLA-DR)及CD235a(血型糖蛋白A);(d)从多种类型单核细胞中除去上述一种或多种表面抗原为阳性的单核细胞,并回收含有内皮祖细胞的谱系阴性的造血干细胞群,优选地其中至少20%的细胞表达CD31。
当从成人骨髓中分离Lin-HSC时,优选地,使用针对谱系表面抗原CD2、CD3、CD4、CD11a、Mac-1、CD14、CD16、CD19、CD33、CD38、CD45RA、CD64、CD68、CD86(B7.2)和CD235a的生物素偶联的谱系群体抗体来标记单核细胞。当从成体小鼠骨髓中分离Lin-HSC时,优选地,使用针对谱系表面抗原CD3、CD11、CD45、Ly-6G和TER-119的生物素偶联的谱系群体抗体来标记单核细胞。
在一个优选的方法中,从成人骨髓中分离细胞并通过CD133谱系进一步分离。一个优选的分离人Lin-HSCs的方法包括使用生物素偶联的CD133抗体来标记单核细胞及回收CD133阳性的Lin-HSC群的额外步骤。典型地,少于约30%的此类细胞表达CD31并且少于约30%的此类细胞表达整联蛋白α6。本发明中CD133阳性的人Lin-HSC群在注射到未发生血管新生的眼中时能够作用于外周局部缺血所引发的新生血管的位点。
分离人Lin-HSC的另一个优选方法包括使用生物素偶联的CD133抗体来标记单核细胞、除去CD133阳性的细胞并回收CD133阴性的Lin-HSC群的额外步骤。典型地,至少约50%的此类细胞表达CD31并且至少约50%的此类细胞表达整联蛋白α6。本发明中CD133阴性的人Lin-HSC群在注射到发生血管新生的眼中时能够整合到发育中的血管中。
本发明还提供通过施用本发明中转染的Lin-HSC细胞、并将这些细胞玻璃体内注射至眼中来治疗眼血管新生疾病的方法。这些转染的Lin-HSC细胞包括能够编码抗血管新生或神经营养基因产物的治疗上有用的基因转染的Lin-HSC。优选地,转染的Lin-HSC细胞是人细胞。
优选地,至少约1×105个Lin-HSC细胞或者转染的Lin-HSC细胞通过玻璃体内注射至患有视网膜变性疾病的哺乳动物眼中的方式来施用。所注射细胞的数目可依据视网膜变性的严重程度、哺乳动物的年龄以及在治疗视网膜变性领域的普通技术人员已知的其它因素。在一个时期内,Lin-HSC可以以单剂量或多剂量施用的方式施用,这由负责治疗的临床医生决定。
本发明的Lin-HSCs在治疗与传导阻滞相关视网膜损伤与视网膜缺陷、或者视网膜血管变性或视网膜神经变性这些方面是有益的。人Lin-HSC也能够用来产生遗传上相同的细胞系,即无性繁殖系,可以用在视网膜血管的再生性或修复性治疗中,也可用于视网膜神经变性的改善治疗。
方法
实施例1.细胞分离与富集:鼠Lin-HSC群A与B的制备
常规步骤。所有体内评估均依照《NIH实验动物看护与使用指南》执行,并且所有评估程序均获得Scripps研究所(TSRI,La Jolla,CA)动物看护与使用委员会的认可。从B6.129S7-Gtrosa26、Tie-2GFP、ACTbEGFP、FVB/NJ(rd/rd小鼠)或者Balb/cBYJ成体小鼠(TheJackson Laboratory,ME)中提取骨髓细胞。
通过使用蔗糖梯度(Sigma,St.Louis,MO)的密度梯度离心来分离单核细胞,并使用在小鼠中用于Lin-选择的生物素偶联的谱系群体抗体(CD45、CD3、Ly-6G、CD 11、TER-119,Pharmingen,San Diego,CA)来标记这些单核细胞。使用磁分离设备(AUTOMACSTM sorter,Miltenyi Biotech,Auburn,CA)从Lin-HSC中分离谱系阳性(Lin+)细胞并除去。所获得的含内皮祖细胞的Lin-HSC群使用下述抗体,PE-联接的-Sca-1、c-kit、KDR及CD31(Pharmingen,San Diego,CA)利用FACS Calibur流式细胞仪(BectonDickinson,Franklin Lakes,NJ)来进一步鉴定。Tie-2-GFP骨髓细胞被用来鉴定Tie-2。
为了获得成体小鼠内皮细胞,通过外科手术从ACTbEGFP小鼠中分离肠系膜组织并置于胶原酶(Worthington,Lakewood,NJ)中以消化组织,然后使用45μm过滤器过滤。收集流通滤液并用内皮生长培养基(Clonetics,San Diego,CA)温育。通过观察形态上鹅卵石样外观、使用CD31 mAb(Pharmingen)染色以及检查培养物在MATRIGELTM matrix(Beckton Dickinson,Franklin Lakes,NJ)中形成管腔样结构,来确认内皮的性状。
鼠Lin-HSC群A。通过上述的常规步骤从ACTbEGFP小鼠中提取骨髓细胞。Lin-HSC细胞通过FACS流式细胞仪来鉴定CD31、c-kit、Sca-1、Flk-1与Tie-2细胞表面抗原标记。结果如图1c所示。约81%的Lin-HSC显示出CD31标记,约70.5%的Lin-HSC显示出c-kit标记,约4%的Lin-HSC显示出Sca-1标记,约2.2%的Lin-HSC显示出Flk-1标记,约0.91%的Lin-HSC显示出Tie-2标记。相反,从这些骨髓细胞中分离的Lin+HSC具有显著不同的细胞标记图谱(即,CD31:37.4%;c-kit:20%;Sca-1:2.8%;Flk-:0.05%)。
鼠Lin-HSC群B。通过上述的常规步骤从Balb/C、ACTbEGFP及C3H小鼠中提取骨髓细胞。分析Lin-HSC细胞中存在的细胞表面抗原(Sca-1、KDR、c-kit、CD34、CD31及多种整联蛋白:α1、α2、α3、α4、α5、α6、αM、αV、αX、αIIb,,β1、β4、β3、β4、β5及β7)结果如表1所示。
表1.Lin-HSC群B的特征描述
实施例2.在鼠模型中玻璃体内施用细胞
使用锋利的刀片在小鼠的眼睑中割去一份眼睑组织使得P2至P6期间眼球暴露在外。然后使用33号(Hamilton,Reno,NV)针头注射器玻璃体内注射本发明的谱系阴性的HSC群A(在约0.5μl至约1μl细胞培养基中大约有105个细胞)。
实施例3.EPC转染
根据厂商的实验手册,利用FuGENETM6转染试剂(Roche,Indianapolis,IN),使用编码TrpRS的T2片段且含有His6标签(SEQID NO:1,图7)的DNA转染鼠Lin-HSC(群A)。Lin-HSC细胞(大约每ml 106细胞)悬浮在含有干细胞因子(PeproTech,Rocky Hill,NJ)的opti-MEM培养基中(Invitrogen,Carlsbad,CA)。然后加入DNA(约1μg)与FuGENE试剂(约3μl),混合物于约37℃温育约18小时。温育后,清洗并收集细胞。经FACS分析确认该系统的转染率大约为17%。T2产物利用Western印迹确认。带有His6标签的T2-TrpRS的氨基酸序列如图8中SEQ ID NO:2所示。
实施例4.免疫组织化学及共聚焦分析
在多个不同的时间点收集小鼠视网膜,用来制备全样载片或者冰冻切片。若制备全样载片,视网膜使用4%的低聚甲醛固定,在50%胎牛血清蛋白(FBS)及20%普通羊血清中于室温下封闭一小时。视网膜经一抗处理后用二抗检测。使用的一抗有:抗胶原蛋白IV(Chemicon,Temecula,CA)、抗β-gal(Promega,Madison,WI)、抗GFAP(Dako Cytomation,Carpenteria,CA),抗α-平滑肌肌动蛋白(α-SMA,Dako Cytomation)。使用的二抗联接了Alexa 488或者594荧光标记(Molecular Probes,Eugene,OR)。利用MRC 1024共聚焦显微镜(Bio-Rad,Hercules,CA)获取图像。利用软件(Bio-Rad)创建三维图像以检查在视网膜全样载片中三个不同血管层的发育。由共聚焦显微镜所辨别出的增强GFP(eGFP)小鼠与GFAP/wtGFP小鼠间GFP点密度的差异用来创建3D图像。
实施例5.小鼠中体内视网膜血管新生的定量检验
为了分析T2-TrpRS,从小鼠视网膜三维图像重建了原发与深层血管丛。原发丛分为两类:正常发育,或者中断的血管形成。深度血管发育抑制的分类是依据血管抑制的百分比建立的,包括以下标准:深层血管丛形成受到完全抑制标记为“完全”,正常血管发育(含少于25%的抑制)标记为“正常”,其余的标记为“部分”。对于rd/rd小鼠的修复数据,使用10×透镜记录每个视网膜全样载片中更深层血管丛的四个分开的区域。计算每幅图像中血管的总长,完成后在组间进行比较。为了获得精确的信息,将Lin-HSC注射到小鼠的一只眼中而将Lin+HSC注射到同一只小鼠的另一只眼中。未进行注射用作对照的视网膜取自同一窝幼仔。
实施例6.成体视网膜损伤小鼠模型
使用二极管激光(150mW,1秒,50mm)或者用27号针机械刺破小鼠视网膜建立激光及创伤模型。伤后5天,利用玻璃体内方法注射细胞。5天后从小鼠中收集眼睛。
实施例7.视网膜变性的神经营养修复
由成体鼠骨髓获得的谱系阴性的造血干细胞(Lin-HSC)在小鼠视网膜变性模型中具有血管营养及神经营养修复效果。玻璃体内注射约0.5毫升含有约105个本发明的Lin-HSC至10天龄小鼠的右眼中,2个月后估算视网膜血管与神经层核数目。同一只小鼠的左眼使用大约相同数目的Lin+HSC注射作为对照,并进行类似估算。如图9所示,在使用Lin-HSC进行治疗的眼中,视网膜血管几乎正常,内核层基本正常,外核层(ONL)有约3至4层核。相反,对侧使用Lin+HSC处理的眼其中视网膜血管层明显萎缩,外视网膜血管层完全萎缩;内核层明显萎缩且外核层完全消失。在小鼠3与小鼠5的图例中这种情况尤为明显。在小鼠1中,未见修复效果,这种情况存在于大约15%接受注射的小鼠中。
使用视网膜电流图(ERG)评定视觉功能时,当观测到血管与神经修复(小鼠3与5)时可观察到阳性ERG的恢复。当没有血管与神经修复(小鼠1)时,观察不到阳性ERG。施用本发明的Lin-HSC的rd/rd小鼠眼中血管与神经营养修复的关系通过回归作图形式在图10中给出。在中间血管类型(r=0.45)及深层血管(r=0.67)中观察到神经元(y-轴)与血管(x-轴)之间的相关关系。
图11所示的是施用Lin+HSC在血管与神经元修复之间没有任何统计学上显著的相关关系。对血管修复进行量化,数据在图12中给出。图12中所示的注射后1个月(1M)、2个月(2M)及6个月(6M)的小鼠的数据,表明使用本发明的Lin-HSC进行治疗的眼中血管长度(暗条),与同一只小鼠未治疗的眼中的血管长度(亮条)相比,有了显著增加,特别是在注射后1个月与2个月时更明显。在注射Lin-HSC或者Lin+HSC约两个月后通过计算内外核层中神经核的数目可以对神经营养修复效果进行定量。结果如图13与14所示。
实施例8.人Lin-HSC群
通过上述常规步骤从健康成人志愿者中提取骨髓细胞。然后单核细胞通过使用蔗糖梯度(Sigma,St。Louis,MO)的密度梯度离心进行分离。为了从人骨髓单核细胞中分离Lin-HSC群,将下述生物素偶联的谱系群体抗体用于磁分离体系(AUTOMACSTMsorter,Miltenyi Biotech,Auburn,CA):CD2、CD3、CD4、CD11a、Mac-1、CD14、CD16、CD19、CD33、CD38、CD45RA、CD64、CD68、CD86、CD235a(Pharmingen)。
基于CD133表达将人Lin-HSC群进一步分为两个亚群。细胞使用生物素偶联的CD133抗体标记并分为CD133阳性与CD133阴性亚群。
实施例9在视网膜变性鼠模型中玻璃体内施用人与鼠细胞
C3H/HeJ、C3SnSmn.CB17-Prkdc SCID与rd10小鼠品系用作视网膜变性模型。C3H/HeJ与C3SnSmn.CB17-Prkdc SCID小鼠(TheJackson Laboratory,Maine)在导致早期发生严重的视网膜变性的视网膜变性1(rd1)突变上是同型的。该突变位于编码杆状光感受器cGMP磷酸二酯酶β亚基的Pde6b基因的外显子7部分。已经在常染色体隐性的色素性视网膜炎(RP)的人患者中发现了该基因的这个突变。C3SnSmn.CB17-Prkdc SCID小鼠在恶性复合免疫缺陷自发突变(Prkdc SCID)上也是同型的,且被用在人细胞转移实验中。rd10小鼠中视网膜变性是由Pde6b基因的外显子13中的突变导致的。这也是后期发作的与临床有关的RP模型,而且是比rd1/rd1更轻微的视网膜变性。所有评估均依照《NIH实验动物看护与使用指南》来执行,并且所有的评估过程均获得Scripps研究所(TSRI,La Jolla,CA)动物看护与使用委员会的认可。
使用锋利的刀片在小鼠的眼睑中割去一份眼睑组织使得P2至P6期间眼球暴露在外。然后使用33-号(Hamilton,Reno,NV)针头注射器玻璃体内注射鼠群A或者人群C的谱系阴性的HSC细胞(在约0.5μl至约1μl细胞培养基中大约有105个细胞)至小鼠眼中。为了使所注射的人细胞可见,在注射前使用染料(Cell tracker green CMFDA,Molecular Probes)标记细胞。
在多个不同的时间点收集视网膜并用4%的低聚甲醛(PFA)与甲醇固定,接着在50%FBS/20%NGS中于室温封闭一小时。为了给视网膜血管染色,使用抗CD31(Pharmingen)及抗胶原蛋白IV(Chemicon)之后接着用Alexa 488或594联接的二抗(MolecularProbes,Eugene,Oregon)温育视网膜。按四个径向上减缓切口的方式平放视网膜以获得全样载片标本。中间或深层血管丛(参见Dorrell等.2002 Invest Ophthalmol。Vis.Sci.43:3500-3510)中的血管图像利用MP2100共聚焦显微镜及软件(Biorad,Hercules,California)获得。为了量化血管,从中间或深层血管层的中间部分随机选择四个独立的区域(900μm×900μm),使用分析软件(Biorad)测量血管的总长。同一个血管丛中这四个区域的总长度被用来做进一步的分析。
重新包埋压片的视网膜用于冰冻切片。视网膜置于4%PFA中过夜然后用20%的蔗糖温育.视网膜包埋在最佳切割温度化合物(OCT:Tissue-Tek;Sakura FineTech,Torrance,CA)中。冰冻切片(10μm)在含有核染料DAPI(Sigma-Aldrich,St.Louis,Missouri)的PBS中再次水合。通过共聚焦显微镜获得含有视神经头部及整个周边视网膜的单个切片中三个不同区域(280μm宽,无偏采样)的DAPI标记的核图像。对位于一个切片三个独立区域ONL中的核的数目进行计算并求和以进行分析。执行简单的线性回归分析以检测在深层血管丛中血管长度与ONL中细胞核数目之间的关系。
经过整夜的暗适应后,通过腹膜内注射15μg/gm克氯胺酮与7μg/gm甲苯噻嗪来麻痹小鼠。使用金箔角膜电极,并将参考电极放置口中,接地电极与尾相连,在瞳孔扩大(散瞳)后(1%硫酸阿托品)从每只眼的角膜表面记录视网膜电流图(ERGs)。使用固定在高反射空视野拱顶外面的Grass Photic Stimulator(PS33Plus,GrassInstruments,Quincy,MA)产生刺激。根据直至光刺激器(0.668cd-s/m2)所允许的最大亮度的范围内短波长(Wratten 47A;λmax=470nm)闪光来记录视杆细胞反应。反应信号被放大(CP511 ACamplifier,Grass Instruments)、数字化处理(PCI-1200,NationalInstruments,Austin,TX)、然后用计算机进行分析。对于来自治疗的及未治疗的眼中的ERGs记录,每只小鼠均可作为自己的内标。将多达100次的扫描进行平均用作最弱信号。从治疗眼的应答中减去未治疗眼的平均应答,信号中的这个差值可用作功能性恢复指数。
使用微阵列分析来评估Lin-HSC中视网膜基因表达。使用Lin-或者CD31-HSCs注射P6时的rd/rd小鼠。注射后40天(在注射后的这个时间点上,明显可见视网膜血管及光感受器层的修复)将这些小鼠的视网膜剥离到没有Rnase的培养基中。通过全样载片分析每个视网膜的一个扇型部分,以确保正常的HSC作用以及血管与神经保护均已经实现。取自注射成功的视网膜中的RNA通过TRIzol(LifeTechnologies,Rockville,MD)、酚/氯仿RNA分离方案进行纯化。RNA杂交到Affymetrix Mu74Av2芯片上,使用软件(SiliconGenetics,Redwood City,CA)分析基因表达。纯化的人或小鼠HSCs玻璃体内注射至P6小鼠。在P45时剥离视网膜并收集:1)注射了人HSC、并修复了的小鼠视网膜,2)注射了人HSC、未修复的小鼠视网膜,及3)注射了小鼠HSC、并修复了的小鼠视网膜的片段,用来纯化RNA并杂交到人特异性的U133A Affymetrix芯片上。使用软件鉴定表达水平在背景值以上并且在使用人HSC修复的视网膜中具有更高表达量基因。然后单独分析这些基因中每个基因的探针对表达图谱,并与使用dChip的正常人U133A微芯片实验模型进行比较,以确认人的特异性杂交并消除由于跨物种杂交造成的假阳性。
当CD133阳性与CD133阴性的亚群通过玻璃体内注射到初生SCID小鼠的眼中时,在表达CD31及整联蛋白α6表面抗原的CD133阴性亚群(参见图21,下图)中观察到其与发育中血管的最大程度整合。不表达CD31及整联蛋白α6的CD133阳性亚群(图21,上图)看上去作用于外周局部缺血所导致的新生血管靶位点,不过在注射到处于血管新生的眼中时并非如此。
实施例10.在氧诱导的视网膜变性鼠模型中玻璃体内施用鼠细胞
在氧诱导的视网膜变性(OIR)模型中,将出生后P7至P12期间的新生野生型小鼠C57B16小鼠暴露于高氧环境(75%氧)中。图22所示的是从P0至P30期间C57B16小鼠中正常的初生后血管发育。在P0时只在视神经盘周围观察到刚开始发育的表层血管。接下来几天后,原发的表层网络扩展至外围,在P10时到达远处外围。在P7与P12期间,次级(深层)血管丛开始发育。至P17时,已呈现出一个广泛的表层与深层血管网络(图22,插图)。在随后的时间,同血管的第三(中间)层一起进行重塑,直至在约P21时形成成熟结构为止。
相反,在OIR模型中,在于P7-P12暴露于75%氧之后,事件的正常顺序被剧烈打断(图23)。本发明的成体鼠Lin-HSC群于P3时注射到随后会经历OIR的小鼠的一只眼中,另一只眼注射PBS或者CD31阴性细胞用作对照。图24所示的是本发明的Lin-HSC群能够在处于发育中的小鼠视网膜中逆转高氧水平的变性效果,在P17经处理的眼中可观察到完全发育的表面及深层视网膜血管结构而在对照眼中表现出的是在大血管区域实际上没有没有深层血管(图24)。在OIR模型中观察了约100只小鼠眼睛。在58%使用本发明Lin-HSC治疗的眼中观察到正常血管形成,比较而言,12%使用CD31-细胞处理的对照眼及3%使用PBS处理的对照眼也有此现象。
结果
鼠视网膜血管发育:眼血管新生模型
小鼠眼睛为诸如人视网膜血管发育这样的哺乳动物视网膜血管发育提供了一种公认的模型。在鼠视网膜血管发育期间,局部缺血诱导的视网膜血管与以星型胶质细胞紧密联接的方式发育。这些神经胶质元件从视神经盘沿节细胞层移至人胎儿或者新生啮齿类动物妊娠末三个月时的视网膜上,并呈放射状伸展。当鼠视网膜血管发育时,内皮细胞利用这个已经存在的星型胶质细胞模板来确定视网膜血管的模式(参见图1a与b)。图1(a与b)描述的是小鼠视网膜发育示意图。图1a描述的是叠加在星型胶质细胞模板(浅线)上原发丛(图中上左的暗线)的发育,图1b描述的是视网膜血管形成的第二阶段。在图中,GCL代表神经节细胞层;IPL代表内网层;INL代表内核层;OPL代表外网层;ONL代表外核层,RPE代表视网膜色素上皮;ON代表视神经;P代表外周部。
在出生时,视网膜血管实际上不存在。至出生后14天(P14),视网膜已经发育成同视觉形成相符的复杂的视网膜血管原发(表层的)与次级(深处的)层。最初,辐条状的外周乳突血管在已存在的星型胶质细胞网络上向外周快速生长,通过形成毛细血管丛使其连接日益增多。这些血管于直至P10期间在神经纤维内部作为一个单层生长(图1a)。在P7-P8期间侧枝开始由原发丛长出,并刺入视网膜至外网层在那里形成次级或深层视网膜血管丛。至P21时,整个网络一进行了广泛重塑,第三个或中间血管丛在内核层内表面形成(图1b)。
从多个理由可以认为初生小鼠视网膜血管新生模型在研究眼血管新生期间HSC的作用是非常有用的。在这个与生理学有关的模型中,在内源血管出现之前已经存在一个大的星型胶质细胞模板,这可以用来评估新血管形成过程期间细胞-细胞相互作用的功用。此外,已知这个一贯的且可重复的初生视网膜血管形成过程是低氧引发的,在这个方面它与许多已知的由局部缺血在其中起作用的视网膜疾病具有相似性。
从骨髓中富集内皮祖细胞(EPC)
尽管细胞表面标记表达已经广泛用于评估所制备HSC中的EPC群,但专一识别EPC的标记仍然未确定。为了富集EPC,造血谱系标记阳性的细胞(Lin+),即B淋巴细胞(CD45)、T淋巴细胞(CD3)、粒细胞(Ly-6G)、单核细胞(CD11)和红细胞(TER-119),从小鼠骨髓单核的细胞中除去。用Sca-1抗原来进一步富集EPC。玻璃体内注射等量的Lin-Sca-1-细胞或者Lin-细胞的结果进行比较,在两个组中没有发现差异。实际上,当注射Lin-Sca-1-细胞时,观察到与发育中血管在更大程度上的整合。
根据功能测定,本发明的Lin-HSC群同EPCs一起富集。进一步地,Lin+HSC群与Lin-HSC群功能表现完全不同。对通常用于鉴定EPC各组分(基于先前报道的体外特征研究)的抗原决定簇也进行了评估。然而这些标记没有哪个是与Lin-组分专一联系的,同Lin+HSC组合物相比,所有标记在Lin-HSC中增加约70至约1800%(图1c)。图1c描述的是来源于骨髓的Lin+HSC与Lin-HSC分离细胞的流式细胞仪特征图。图1c的顶行所示的是造血干细胞中非抗体标记细胞的二维点图分布,R1表示阳性PE-染色的可定量区域;R2表示GFP-阳性;在中间行给出了Lin-HSC的二维点图,在底行给出了Lin+HSC的二维点图。C57B/6细胞使用针对Sca-1、c-kit、Flk-1/KDR、CD31的PE-联接抗体进行标记。Tie-2数据由Tie-2-GFP小鼠中获得。在二维点图角上的百分比表示在整个Lin-HSC或Lin+HSC群中阳性标记细胞的百分数。有趣的是,公认的EPC标记,譬如Flk-1/KDR、Tie-2及Sca-1都是弱表达,因此没有用于进一步的分离。
玻璃体内注射的HSC Lin-细胞含有作用于星型胶质细胞的EPC并整合到发育中的视网膜血管
为了判定是否玻璃体内注射Lin-HSC能够作用于视网膜的特定细胞类型、利用星型胶质细胞模板并参与视网膜血管新生,取自本发明Lin-HSC组合物的约105个细胞或者取自成体小鼠(GFP或者LacZ转基因)骨髓的的Lin+HSC细胞(对照,约105个细胞)注射到出生后2天(P2)的小鼠眼中。注射后四天(P6),来源于GFP或者LacZ转基因小鼠的本发明Lin-HSC组合物中的很多细胞,粘着在视网膜上并具有内皮细胞典型伸长的外观(图2a)。图2描述的是Lin-HSCs进入发育中的小鼠视网膜的植入过程。如图2a所示,注射后四天(P6)玻璃体内注射的eGFP+Lin-HSC在视网膜上附着并分化。
在视网膜的很多区域,GFP表达细胞以一种能与下面星型胶质细胞相一致的方式排列,类似于血管。这些荧光细胞在内源的、发育中的血管网络之前被观察到(图2b)。相反,只有少数Lin+HSC(图2c)或者成体小鼠肠系膜内源细胞(图2d)附着在视网膜表面。为了确认是否来自所注射Lin-HSC群的细胞也能够附着在已经形成血管的视网膜上,我们注射Lin-HSC组合物到成熟的眼中。有趣的是,没有观察到细胞附着在视网膜上或整合到已形成的、正常的视网膜血管中(图2e)。这表明本发明的Lin-HSC组合物不破坏已正常发育完成的血管,不会在正常发育完成的视网膜中引发异常的血管形成。
为了判定本发明中所注射的Lin-HSC组合物与视网膜星型胶质细胞之间的关系,使用了能够表达胶质细胞原纤维酸性蛋白(GFAP,星型胶质细胞的一种标记)与由启动子促发的绿色荧光蛋白(GFP)的转基因小鼠。对使用来自eGFP转基因小鼠的Lin-HSC进行注射的这些GFAP-GFP转基因小鼠的视网膜进行检查,表明所注射的eGFPEPC与已存在的星型胶质细胞共同定位(图2f-h,箭头处)。观察到eGFP+Lin-HSC的突起与下面的星型胶质细胞网络一致(箭头,图2g)。对这些眼的检查表明所注射的标记了的细胞仅附着于星型胶质细胞上;在视网膜外周仍没有内源血管的P6小鼠视网膜中,观察到所注射的细胞附着在位于那些仍未血管化区域的星型胶质细胞上。有趣的是,在视网膜更深层处正常视网膜血管将随后发育的精确位点上观察到所注射的标记了的细胞(图2i,箭头)。
为了判定所注射的本发明中的Lin-HSC是否能稳定整合到发育中的视网膜血管,在几个稍后的时间点上检查视网膜血管。早在P9时(注射后七天),Lin-HSC已整合至CD31+结构(图2j)。到P16(注射后14天)时,细胞已经广泛整合至视网膜中类血管的结构中(图2k)。在处死动物之前心内注射罗丹明-葡聚糖(以鉴定具有功能的视网膜血管),多数Lin-HSC与未闭合的血管排在一起(图2l)。观察到标记细胞分布的两种模式:(1)在一个模式中,细胞在未标记的内皮细胞间沿血管散布;以及(2)另一个模式显示血管完全由所标记的细胞组成。所注射的细胞也整合到深层血管丛的血管中(图2m)。虽然以前曾报道过来源于Lin-HSC的EPC零散结合到新生血管中,但本文是首次报道血管网络完全由这些细胞组成。这表明本发明中玻璃体内注射的来源于骨髓的Lin-HSC群中的细胞能够有效整合到形成中的视网膜血管丛的任何一层。
玻璃体内注射后对非视网膜组织(例如,脑、肝脏、心脏、肺、骨髓)进行5或10天的组织学检查,没有发现存在任何GFP阳性细胞。这表明Lin-HSC组合物中某个亚群的细胞选择性地作用于视网膜星型胶质细胞并稳定整合到发育中的视网膜血管中。由于这些细胞具有许多内皮细胞的特征(同视网膜星型胶质细胞相关联、细长的形态、稳定整合到未闭合的血管并且在没有血管的部位不存在),这些细胞表明在Lin-HSC群中存在EPC。所作用的星型胶质细胞与在许多缺氧性视网膜病变中观察到的是相同类型。现已充分了解神经胶质细胞是DR与其它类型的视网膜损伤中所观察到的新血管叶(neovascularfronds)的主要组分。在活性神经胶质增生及局部缺血引发的血管新生的条件下,活性星型胶质细胞增生、产生细胞因子并上调GFAP,与包括人在内的许多哺乳动物物种在初生视网膜血管模板形成阶段所观察到的现象相仿。
本发明的Lin-HSC群会象在初生眼中那样作用于成体小鼠眼中的活性星型胶质细胞,将Lin-HSC细胞注射到由于光致凝结(图3a)或针尖(图3b)导致视网膜损伤的成熟的眼中。在两个模型中,只是在损伤位点周围观察到显著的GFAP染色的细胞群(图3a与b)。来自所注射Lin-HSC组合物的细胞位于损伤位点并与GFAP阳性的星型胶质细胞保持特异联系。在这些位点上,还观察到Lin-HSC细胞以与深层视网膜血管初生形成阶段相似的水平移至视网膜的更深层。视网膜未损伤的部分不含有Lin-HSC细胞,这与当Lin-HSC注射到正常的、未受伤的成熟视网膜中时所观察到的相一致(图2e)。这些数据表明Lin-HSC组合物能够选择性地与神经胶质增生作用于受伤的成熟视网膜中的活性神经胶质细胞以及正在形成血管的初生视网膜。
玻璃体内注射的Lin-HSC能够修复并稳定变性的血管
由于玻璃体内注射的Lin-HSC组合物作用于星型胶质细胞并整合到正常的视网膜血管中,这些细胞也可以稳定由于局部缺血或者与神经胶质增生及血管变性相联系的变性视网膜疾病中的变性血管。出生后一个月内的rd/rd小鼠是用于显示光感受器深度变性及视网膜血管层的视网膜变性的模型。这些小鼠中视网膜血管正常发育至P16,此时较深的血管丛退化;到P30时绝大多数小鼠中深层与中间的血管丛几乎完全变性。
为了判定是否HSC能够修复退化的血管,将Lin+或Lin-HSC(来自Balb/c小鼠)于P6时玻璃体内注射到rd/rd小鼠。至P33时,使用Lin+HSC注射后,视网膜最深层的血管几乎完全消失(图4c和b)。相反,至P33时绝大多数注射了Lin-HSC的视网膜具有几乎正常的具有3个平行的、良好成型的血管层的视网膜血管结构(图4c和d)。该效应的量化结果表明注射了Lin-的rd/rd眼中深层血管丛的平均长度几乎比未处理或注射Lin+细胞处理的眼高3倍(图4e)。令人惊讶的是,注射来源于rd/rd成体小鼠(FVB/N)骨髓的Lin-HSC组合物也能够修复变性的rd/rd初生小鼠的视网膜血管(图4f)。早在出生后2-3周便观察到rd/rd小鼠眼中血管的变性。迟至P15时注射Lin-HSC也可使rd/rd小鼠中变性的血管能在至少一个月的时间里维持部分稳定(图4g和4h)。
注射至较年幼(譬如,P2)的rd/rd小鼠中的Lin-HSC组合物也整合到发育中的表层血管中。至P11时,观察到这些细胞移至深层血管丛的层面并形成与在野生型外部视网膜血管层中所观察到的一致的模式(图5a)。为了更清晰描述所注射的Lin-HSC组合物中细胞整合至并且稳定rd/rd小鼠中变性的视网膜血管的方式,将来源于Balb/c小鼠的Lin-HSC组合物注射到Tie-2-GFP FVB小鼠眼中。FVB具有rd/rd基因型,并且由于他它们表达融合蛋白Tie-2-GFP,所有的内源血管都是荧光显色的。
当来自Lin-HSC组合物的未标记细胞注射到初生的Tie-2-GFPFVB眼中并随后整合到发育中的血管时,在内源的、Tie-2-GFP标记的血管中应该存在未标记的间断(gap),Tie-2-GFP标记的对应于所注射的已整合的、未标记的Lin-HSC。随后使用另一种血管标记(譬如,CD-31)进行的染色可以显示出整个血管,可以用来判定非内源的内皮细胞是否是血管的一部分。注射后两个月,在使用Lin-HSC组合物注射的眼视网膜中观察到CD-31阳性、Tie-2-GFP阴性的血管(图5b)。有趣的是,多数修复的血管含有Tie-2-GFP阳性细胞(图5c)。如同平滑肌肌动蛋白染色所测定的那样,不管是否有血管修复,周细胞的分布并没有因为注射Lin-HSC而发生改变(图5d)。这些数据清晰的表明了玻璃体内所注射的本发明的Lin-HSC组合物可移至视网膜,参与正常视网膜血管的形成,并在遗传缺陷的小鼠中稳定内源的变性血管。
通过注射来自Lin-HSC的转染细胞抑制视网膜血管新生
多数视网膜血管疾病涉及异常的血管增生而不是变性。可以使用作用于星型胶质细胞的转基因细胞释放一种抗血管新生蛋白并抑制血管新生。使用T2色氨酰-转移核糖核酸合成酶(T2-TrpRS)转染来自Lin-HSC组合物的细胞。T2-TrpRS是可有效抑制视网膜血管新生的TrpRS的一个43kD的片段(图6a)。在P12时,于P2时刻使用作为对照的质粒转染的Lin-HSC组合物进行注射的眼视网膜具有正常的原发(图6c)与次级(图6d)视网膜血管丛。使用本发明的T2-TrpRS转染的Lin-HSC组合物注射到P2时的眼中并在10天后进行评估,原发网络明显异常(图6e)并且深层视网膜血管的形成几乎完全被抑制(图6f)。在这些眼中观察到的很少量的血管明显被血管间的大段间隔所削弱。分泌T2-TrpRS的Lin-HSC的抑制范围在表2中详述。
在体外Lin-HSC组合物中的细胞产生并分泌T2-TrpRS,将这些转染细胞注射到玻璃体后,在视网膜中观察到一条30kD的T2-TrpRS片段(图6b)。仅在使用本发明中转染的Lin-HSC注射的视网膜中可特异观察到这条30kD的片段,而且相对于重组或体外合成蛋白,这种表观分子量的降低可能是由于T2-TrpRS在体内进行了加工或降解。这些数据表明Lin-HSC组合物可以通过作用于活性星型胶质细胞将表达血管抑制分子的基因这样的在功能上有作用的基因递送至视网膜血管。虽然所观察到的血管抑制效果可能是由于细胞介导的活性所致,不过由于使用同样的、只是没有T2转染的Lin-HSC组合物进行治疗的眼具有正常的视网膜血管,因此这种可能性极低。
表2分泌T2-TrpRS的Lin-HSCs对血管的抑制
玻璃体内注射的Lin-HSC群定位于视网膜星型胶质细胞,整合至血管中,并能用于治疗多种视网膜疾病。当绝大多数注射的HSC组合物附着于星型胶质细胞模板时,少量细胞移至视网膜深层,定植于深层血管网络随后将发育的区域。即使在出生后42天之前没有在这一区域观察到GFAP阳性的星型胶质细胞,也不能排除GFAP阴性的神经胶质细胞已经存在并提供Lin-HSC定位信号的可能性。以前的研究已经表明许多疾病同活化的神经胶质增生相关联。特别地,在DR中,神经胶质细胞及其胞外基质同病理性血管新生有关联。
由于所注射的Lin-HSC组合物中的细胞特异性地附着于表达GFAP的神经胶质细胞,因此不管什么类型的损伤,均可使用本发明的Lin-HSC组合物作用于视网膜中将发生血管新生的病灶。例如,在诸如糖尿病这样的局部缺血的视网膜病变中,新血管的形成是对缺氧的一种应答。通过用Lin-HSC组合物作用于病理性新生血管位点,可以稳定发育中的新生血管从而防止诸如出血或水肿(同DR相关的视觉丧失的原因)这样的新生血管异常并能潜在地缓解最初刺激新生血管形成的缺氧症。异常血管能够回复到正常状态。此外,可以通过使用转染的Lin-HSC组合物以及激光诱导的星型胶质细胞的活化将诸如T2-TrpRS这样的血管抑制蛋白传递到病理性血管新生的位点。由于激光凝固普遍应用在临床眼科学上,该方法在许多视网膜疾病上都有应用。这些基于细胞的方法已经用于癌症治疗的研究,由于眼内注射使得将大量细胞直接注入发病位点成为可能,这些方法在眼疾上的用途更为有利。
Lin-HSC的神经营养与血管营养修复
MACS用于分离来自上述的增强绿色荧光蛋白(eGFP)、C3H(rd/rd)、FVB(rd/rd)小鼠骨髓中的Lin-HSC。取自这些小鼠的含EPC的Lin-HSC通过玻璃体内注射至P6时的C3H或FVB小鼠眼中。在注射后的多个时间点上(1个月、2个月及6个月)收集视网膜。通过使用针对CD31的抗体染色后利用扫描激光共聚焦显微镜、以及使用DAPI进行核染色后的视网膜组织学,来对血管进行分析。还使用取自不同时间点上的视网膜中的mRNA的微阵列基因表达分析来鉴定潜在地同这种效应相关的那些基因。
至P21时rd/rd小鼠的眼睛患有神经感觉细胞及视网膜血管深度变性。于P6时使用Lin-HSC进行治疗的rd/rd小鼠的眼睛维持正常的视网膜血管结构达6个月之久;在所有时间点上(1M、2M与6M)与对照相比较,深层与中间层都有显著改善(参见图12)。此外,我们观察到使用Lin-HSC治疗的视网膜要更厚一些(1M;1.2倍,2M;1.3倍,6M;1.4倍),而且与作为对照的使用Lin+HSC进行处理的眼相比,在外核层具有更多数目的细胞(1M;2.2倍,2M;3.7倍,6M;5.7倍)。同对照(未处理或者未用Lin-处理)rd/rd视网膜相比,对“修复的”视网膜(例如,Lin-HSC)所进行的大规模基因组分析表明:编码sHSPs(小热激蛋白)的基因,以及包括编码图20中插图A与B中蛋白的基因在内的、同血管与神经修复相关的特异的生长因子的基因,都有明显上调。
本发明中来源于骨髓的Lin-HSC群明显且可重复地促使正常血管的维持,并显著增加rd/rd小鼠中光感受器及其它神经细胞层。这种同小热激蛋白的显著上调相关的神经营养修复效果提供了探索目前无法治愈的视网膜变性病症的治疗方法。
Rd1/rd1小鼠视网膜表现出深度血管及神经变性
小鼠中正常的出生后视网膜血管与神经发育已有详细描述,与在末三个月时的人类胎儿中所观察到的类似(Dorrell等.,2002,Invest.Ophthalmol.Vis.Sci.43:3500-3510)。Rd1基因为纯合子的小鼠具有很多人视网膜变性的特征(Frasson等.,1999,Nat.Med.5:1183-1187),并表现出同由于编码PR cGMP磷酸二酯酶的基因突变所导致的与急性血管萎缩并发的快速光感受器(PR)丧失(Bowes等.1990,Nature347:677-680)。为了检查视网膜发育中的血管及其随后的变性,使用作为成熟血管的胞外基质(ECM)蛋白的抗胶原蛋白IV(CIV)的抗体,以及内皮细胞的标记物CD31(PECAM-1)(图15)。直至大概出生后8天,含光感受器的外核层(ONL)开始变性时,rd1/rd1(C3H/HeJ)的视网膜一直正常发育。ONL快速变性,细胞通过细胞凋亡而死亡,至P20时仅余下一个单个的核层。使用抗体CIV及CD31对视网膜全样载片进行双染色,显示了rd1/rd1小鼠中血管变性的细节同其他人所描述的相似(Blanks等.,1986,J.Comp.Neurol.254:543-553)。尽管在P12之后没有CD31着色证明了内皮细胞快速损失,但原发和深层视网膜血管层看起来仍发育正常。CD31阳性的内皮细胞在直至P12期间一直以正常分布状态存在,但在此之后快速消失,CIV阳性染色在所检查的时间点始终存在,说明血管及相关的ECM正常形成,但在P13——至这个时间没有CD31阳性细胞被观察到——之后仅有基质。(图15,中图)。中间血管丛在P21之后也变性,但进度要慢于在深层中所观察到的(图15,上图)。给出了正常小鼠的视网膜血管与神经细胞层以同rd1/rd1小鼠进行比较(右图,图15)。
来源于骨髓的Lin-HSC在rd1/rd1小鼠中的神经保护效应
玻璃体内注射的Lin-HSC整合到内源视网膜血管全部三层血管丛中,防止血管变性。有趣的是,所注射的细胞实际上在外核层中从未观察到过。这些细胞或整合到形成中的视网膜血管,或在这些血管附近被观察到。小鼠Lin-HSCs(来自C3H/HeJ)于变性刚要开始前的P6时刻玻璃体内注射到C3H/HeJ(rd1/rd1)小鼠眼中。至P30时,使用对照细胞(CD31-)注射的眼表现出典型的rd1/rd1表型,也就是说,在每一个检查的视网膜中均观察到深层血管丛及ONL几乎完全变性。使用Lin-HSCs注射的眼则维持了看上去正常的中间及深层血管丛。令人惊讶的是,在使用Lin-HSC注射的眼的内核层(INL)与ONL中,同作为对照的注射了细胞的眼(图16A)相比,明显观察到更多的细胞。Lin-HSCs的这种修复效应可以在注射后2个月时观察到(图16B),并持续长达6个月(图16C)。当修复的与未修复的眼进行比较时,在所有进行测量的时间点上都发现注射了Lin-HSC的眼中中间与深层血管丛中的血管、以及含有神经细胞的INL与ONL,其中差异非常明显(图16B与C)。通过测量血管的总长度(图16D)并对ONL中观察到的DAPI阳性细胞核进行计数(图16E)来对这种效应进行量化。利用所有时间点上的数据进行简单的线性回归分析。
在注射Lin-HSC的眼中(图16F),P30(p<0.024)及P60(p<0.034)时的血管修复与神经(例如,ONL厚度)修复之间观察到统计学上显著的相关。当P180时比较注射Lin-HSC的视网膜与作为对照的注射了细胞的视网膜,尽管不具有统计学上的显著性(p<0.14),其相关性还是很高的。相反,作为对照的注射了细胞的视网膜在任何时间点上的血管与ONL维持之间没有表现出显著的相关(图16F)。这些数据表明玻璃体内注射Lin-HSC导致rd1/rd1小鼠视网膜中伴发的视网膜血管及神经修复。在ONL中或者其它位于视网膜血管内部或临近视网膜血管的任何地方,都没有观察到注射的细胞。
注射Lin-HSC的rd/rd视网膜的功能性修复
对注射对照细胞或者鼠Lin-HSCs(图17)两个月后的小鼠做视网膜电流图(ERGs)。ERG记录后对每只眼进行免疫组织化学与显微分析,以确认已发生血管及神经修复。来自治疗的、修复的以及对照的、未修复的眼中的具代表性的ERG记录显示,在修复的眼中,数字基底信号(治疗的减去未治疗的眼)产生一个8-10微伏幅度的可清晰检测的信号(图17)。毫无疑问,来自两个眼睛的信号是非常不同的。然而,从使用Lin-HSC治疗的眼中可记录到一致的可检测的ERGs。在所有例子中,来自对照眼的ERG是无法检测的。虽然修复眼中的信号幅度远低于正常眼,但无论何时只要是组织修复就可以始终观察到信号,而且信号与其他人报道的基于基因修复的研究中的幅度是一类的。所有的这些结果证实了使用本发明Lin-HSCs进行治疗的眼中在某种程度上的功能性修复。
来自人骨髓(hBM)的Lin-HSCs也可以修复变性的视网膜
从人骨髓中分离的Lin-HSCs与鼠Lin-HSCs具有相似的作用。从捐赠人那里收集骨髓,除去Lin+HSCs,从而产生人Lin-HSCs(hLin-HSCs)群。
这些细胞使用先体内后体外地用荧光染料进行标记,然后注射至C3SnSmn.CB17-Prkdc SCID小鼠眼中。注射的Lin-HSCs以与注射鼠Lin-HSCs时相同的方式移至并作用于视网膜血管新生的位点(图18A)。除了所作用的血管外,人Lin-HSCs对rd/rd小鼠的血管及神经细胞层也提供了一种有力的修复效果(图18B与C)。这个观察证实了在人骨髓中存在能够作用于视网膜血管并防止视网膜变性的细胞。
Lin-HSCs在rd10/rd10小鼠中具有血管及神经营养效果
虽然rd1/rd1小鼠是应用最为广泛的、描述最详尽的用于视网膜变性的模型(Chang等.2002,Vision Res.42:517-525),但变性非常迅速,在这点上与通常在人疾病中观察到的更慢时间过程不同。在这个品系中,光感受器细胞在视网膜血管仍在快速延伸的P8时刻左右开始变性(图15)。与在绝大多数患有这种疾病的人中所观察到的不同,即便在中间血管丛还在形成时仍发生后续的深层视网膜血管变性,这样,rd1/rd1小鼠的视网膜永远无法彻底发育。一个具有更慢时间的变性过程以及更类似人视网膜变性状态的rd10小鼠模型,被用来研究Lin-HSC介导的血管修复。在rd10小鼠中,光感受器细胞于P21左右开始变性,其后不久便开始血管变性。
在正常感觉神经的视网膜发育至P21大体完成之后,观察到变性在视网膜彻底分化后便开始发生,而且以这种方式进行的变性比rd1/rd1小鼠模型更接近人视网膜变性。将来自rd10小鼠的Lin-HSCs或对照细胞注射至P6眼中,在不同时间点上对视网膜进行评估。在P21时,来自注射了Lin-HSC及对照细胞的眼的视网膜都表现正常,所有的血管层都完全发育,INL与ONL也正常发育(图18D与18H)。在约P21时视网膜变性开始发生并随时间加剧。至P30时,注射对照细胞的视网膜表现出严重的血管及神经变性(图18I),而注射Lin-HSC的视网膜保持几乎正常的血管层与光感受器细胞(图18E)。修复的与未修复的眼之间的不同在后面的时间点上更加显著(对比一下图18F及18G与18J及18K)。在对照处理的眼中,通过CD31与胶原蛋白IV的免疫组织化学染色可以十分清楚地观察到血管变性的发展(图18I-K)。对照处理的眼几乎完全是CD31阴性,但胶原蛋白阳性血管的“轨迹”仍然明显,表明发生的是血管退化,而不是未完成的血管形成。相反,Lin-HSC治疗的眼同时具有与正常的、野生型的眼非常相似的CD31及胶原蛋白IV阳性血管(对比一下图18F与18I)。
使用Lin-HSC治疗后rd/rd小鼠视网膜的基因表达分析
使用大量基因组(微阵列分析)分析修复的与未修复的视网膜,以识别神经营养修复中可能的介质。使用Lin-HSCs治疗的rd1/rd1小鼠视网膜中的基因表达与未注射的视网膜以及使用对照细胞(CD31-)进行注射的视网膜进行比较。这些比较每个都是一式三份。在所有三份样品中,要求基因的表达水平至少要比背景水平高出2倍,才可认定其存在。Lin-HSC保护的视网膜同对照中注射了细胞的及未注射的rd/rd小鼠视网膜相比,其中上调了3倍的基因如图20中插图A与B所示。许多显著上调的基因,包括MAD及Ying Yang-1(YY-1),编码功能与保护细胞避免细胞凋亡相关的蛋白。使用Lin-HSC治疗的视网膜中,与已知参与应激时保护细胞的热激蛋白具有序列同源性和相似功能的许多晶体蛋白基因也被上调。α晶体蛋白的表达通过免疫组织化学分析定位在ONL(图19)。
将使用人Lin-HSCs修复的来自rd1/rd1小鼠视网膜的信使RNA杂交到人特异性的AffymetrixU133A微阵列芯片上。经严紧分析后,发现了许多基因,其mRNA的表达是人特异性的、高于背景、而且与鼠Lin-HSC修复的视网膜及人对照的注射了细胞但未修复的视网膜相比,在人Lin-HSC修复的视网膜中明显更高(图20,插图C)。一种表达在原生的及最新分化的CD34+造血干细胞表面的细胞粘连分子CD6,与另一个由造血干细胞表达的基因干扰素α13,是通过微阵列生物信息学技术发现的,验证了评估方案的有效性。此外,人Lin-HSC修复的小鼠视网膜样品中几个生长因子及神经营养因子的表达高于背景(图20,插图D)。
讨论
使用谱系定型的造血细胞标记来负选择来源于骨髓的含EPC的Lin-HSC群。虽然可用作EPC的来源于骨髓的Lin-HSC亚群未被经常用的细胞表面标记所表征,但这些细胞在发育中或受损视网膜血管中的行为与在Lin+或成熟内皮细胞群中观察到的完全不同。这些细胞选择性地作用于视网膜血管新生的位点并参与新血管的形成。
遗传性视网膜变性疾病通常伴发视网膜血管损伤。对这类疾病进行有效治疗要求功能恢复以及维持复杂组织构造。最近几项研究已经发现,使用营养因子或者干细胞本身,或二者的组合这样的基于细胞的传递可能是必须的。例如,使用生长因子疗法去治疗视网膜变性疾病,会导致血管发生当正常视网膜组织构造受到严重破坏时才出现的血管不受控制的过渡生长。使用神经或视网膜干细胞治疗视网膜变性疾病可能会重建神经功能,但具有功能的血管也是维持视网膜功能完整性所必需的。整合到rd/rd小鼠视网膜血管的来自本发明中Lin-HSCs的细胞在不破坏视网膜结构的情况下可稳定变性的血管。当细胞注射到P15时的rd/rd小鼠时也观察到这种修复效果。自从rd/rd小鼠中于P16时开始发生血管变性后,这个观察结果开启了使用Lin-HSC进行有效治疗的窗口。在注射了本发明的Lin-HSC的眼中视网膜神经元与光感受器得以保存,视觉功能得以维持。
来源于成熟骨髓的Lin-HSCs在玻璃体内注射至患有视网膜变性疾病的小鼠中时,会导致复杂的血管及神经营养效应。在完全的视网膜变性之前(指在通常至出生后30天便表现出完全的视网膜变性的小鼠中,从出生至出生后16天的这段时间)注射Lin-HSCs,修复效应在治疗后能持续多达6个月而且大多数都有效。在两个视网膜变性的小鼠模型中观察到这种修复,而且不寻常的是,当受体是免疫缺陷且患有视网膜变性的啮齿类动物时(譬如,SCID小鼠),或者供体是患有视网膜变性的小鼠时,来源于成人骨髓的HSCs能够完成这种修复。虽然最近几个报道描述了利用野生型基因的基于病毒的基因修复在患有视网膜变性的小鼠中或狗中的部分表型修复(Ali等2000,Nat Genet25:306-310;Takahashi等.1999,J.Virol.73:7812-7816;Acland等.2001,Nat.Genet.28:92-95.),但本发明仍是第一个通过血管修复而获得的基于细胞的基因治疗的效应。因此,这样一个能够治疗具共有超过100个已知相关突变的一组疾病的方法,其潜在应用要比创建针对每个已知突变的单个基因疗法更具实用价值。
神经营养修复效应的确切的分子基础还不清楚,但只有当存在伴发的血管稳定/修复时才观察得到。存在注射的干细胞本身并不足以产生神经营养修复,在外核层中明显不存在来源于干细胞的神经元排除了所注射的细胞转变为光感受器的可能性。由微阵列基因表达分析获得的数据表明已知具有抗细胞凋亡效应的基因明显上调。由于在视网膜中观察到的绝大多数神经死亡是通过细胞凋亡的方式进行的,这种保护也许在延长光感受器以及其它在这些疾病中威胁到视觉功能的神经元的寿命方面具有重大疗效。C-myc是一种通过上调多种下游细胞凋亡诱导的因子来参与细胞凋亡的转录因子。C-myc的表达在rd/rd小鼠中超过野生型,增加了4.5倍,表明它可能参与在rd/rd小鼠中观察到的光感受器变性。已知两个在Lin-HSC保护的视网膜中显著上调的基因Madl与YY-1(图20,插图A),可以抑制c-myc的活性,从而抑制c-myc诱导的凋亡。
Madl的过量表达也表现出抑制Fas诱导的另一种细胞凋亡途径的危险组分caspase-8的活性。这两种分子的上调可以通过防止rd/rd小鼠中通常会导致变性的细胞凋亡的引发,从而在保护视网膜不发生血管及神经变性方面发挥作用。
另一组在Lin-HSC保护的视网膜中被大量上调的基因包括晶体蛋白家族的成员(图20,插图B)。与热激蛋白及其它应激诱导的蛋白相似,晶体蛋白可以被视网膜应激激活,并提供防止细胞凋亡的保护效应。在视网膜营养失调的鼠模型中,αA-晶体蛋白的异常低表达同光感受器损伤相关,最近一个rd/rd小鼠视网膜的蛋白质组学分析表明晶体蛋白上调的诱导是对视网膜变性的应答。根据我们的EPC修复的rd/rd小鼠视网膜的微阵列数据,晶体蛋白的上调看起来在EPC介导的视网膜神经保护方面起重要作用。
诸如c-my、Madl、Yx-1及晶体蛋白这样的基因,可能是神经修复的下游介质。神经营养试剂能够调节抗细胞凋亡基因的表达,尽管我们的使用小鼠干细胞来进行修复的视网膜的微阵列分析并未表明已知的神经营养因子在增强水平上的诱导。在另一方面,使用人特异性芯片对来源于人骨髓的干细胞所介导的修复进行分析,表明多个生长因子基因的表达虽然低,但仍有显著增加。
上调的基因包括成纤维细胞生长因子家族的几个成员与otoferlin。在otoferlin基因中的突变与遗传紊乱相关,会导致由于听觉神经疾病的耳聋。可能是由于注射了Lin-HSCs,otoferlin的产量也有助于视网膜神经疾病的预防。在历史上,很长时间都认为在视网膜变性的病人及动物中观察到的血管变化,是由于光感受器死亡所导致新陈代谢需求减少的间接结果。本文数据表明,至少对于患有遗传性视网膜变性的小鼠,保持正常的血管也可以帮助维持外核层的组分。近来文献报道支持组织特异性血管具有比预想的简单为血管提供“养份”更强的营养效应这种观念。例如,在VEGFR1激活后,肝内皮细胞能够被诱导产生在面临肝损伤时紧急应对肝细胞再生与维持的生长因子(LeCouter等.2003,Science 299:890-893)。
已报道在功能性血管形成之前,血管内皮细胞与邻近的肝实质细胞之间的相似指示作用与肝器官形成有关。在发生视网膜变性的个体中内源视网膜血管可能不会促进如此剧烈的修复,但如果该含有来源于骨髓干细胞群的内皮祖先的血管是板状的,它们会使血管对变性具有更强抗性,同时会促进视网膜神经以及血管的存活。在患有视网膜变性的人中,推迟完全视网膜变性的起始时间,可提供超出预期多年的视觉能力。使用本发明Lin-HSCs治疗的动物明显维持了足以支撑其视力的ERG。
在临床上,光感受器与其它神经元受到真正损伤而视觉功能却仍能保持将会受到广泛重视。在某些状况下,关键的阈值交织在一起,从而丧失视觉。由于几乎所有的人遗传性视网膜变性发病早,但过程缓慢,因此通过鉴定视网膜变性的个体、使用玻璃体内注射自体的骨髓干细胞移植物来治疗变性、进而延迟与视觉损伤伴发的视网膜变性,是非常可能的。为了增强这些干细胞的寻靶与整合,需要存在有活性的星型胶质细胞。这在存在相关的神经胶质增生时可通过早期治疗来实现,或者通过使用激光刺激活性星型胶质细胞局部增殖来实现。
本发明的Lin-HSC群含有能够通过作用于活性星型胶质细胞来促进血管新生并在没有破坏视网膜结构的情形下整合到已存在模板中的EPC群。本发明的Lin-HSC群在患有视网膜变性的眼中还提供了一种不寻常的长期神经营养修复效应。此外,遗传上改进的、自体含EPC的Lin-HSC组合物能够接种至局部缺血或者发生异常血管形成的眼中,并能稳定整合到新血管中,并且在很长时间周期内局部持续释放治疗分子。这些局部释放的基因,能以生理学上有意义的剂量来表达药理学的物质,它们为治疗目前无法治愈的眼疾提供了一个新的范例。
上述实施例中的众多变化及修饰在不背离本发明新特征的精神与范围时是有效的。关于本文给出的特殊实施例,不是,也不应推断为对本发明的限制。
序列表
<110>The Scripps Research Institute
Friedlander,Martin
Otani,Atsushi
DaSilva,Karen
Moreno,Stacey(Hanekamp)
<120>造血干细胞及其治疗新生血管性眼疾的方法
<130>TSRI-988,1PC
<150>10/628,783
<151>2003-07-25
<150>60/467,051
<151>2003-05-02
<150>60/398,522
<151>2002-07-25
<160>2
<170>FastSEQ for Windows Version 4.0
<210>1
<211>4742
<212>DNA
<213>人工序列
<220>
<223>编码His-标记的人T2-TrpRS的DNA
<400>1
tggcgaatgg gacgcgccct gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60
cagcgtgacc gctacacttg ccagcgccct agcgcccgct cctttcgctt tcttcccttc 120
ctttctcgcc acgttcgccg gctttccccg tcaagctcta aatcgggggc tccctttagg 180
gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240
acgtagtggg ccatcgccct gatagacggt ttttcgccct ttgacgttgg agtccacgtt 300
ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360
ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420
acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480
tcggggaaat gtgcgcggaa cccctatttg tttatttttc taaatacatt caaatatgta 540
tccgctcatg agacaataac cctgataaat gcttcaataa tattgaaaaa ggaagagtat 600
gagtattcaa catttccgtg tcgcccttat tccctttttt gcggcatttt gccttcctgt 660
ttttgctcac ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt tgggtgcacg 720
agtgggttac atcgaactgg atctcaacag cggtaagatc cttgagagtt ttcgccccga 780
agaacgtttt ccaatgatga gcacttttaa agttctgcta tgtggcgcgg tattatcccg 840
tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttggt 900
tgagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg 960
aggaccgaag gagctaaccg cttttttgca caacatgggg gatcatgtaa ctcgccttga 1080
tcgttgggaa ccggagctga atgaagccat accaaacgac gagcgtgaca ccacgatgcc 1140
tgcagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc 1200
ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc 1260
ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc gtgggtctcg 1320
cggtatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac 1380
gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc 1440
actgattaag cattggtaac tgtcagacca agtttactca tatatacttt agattgattt 1500
aaaacttcat ttttaattta aaaggatcta ggtgaagatc ctttttgata atctcatgac 1560
caaaatccct taacgtgagt tttcgttcca ctgagcgtca gaccccgtag aaaagatcaa 1620
aggatcttct tgagatcctt tttttctgcg cgtaatctgc tgcttgcaaa caaaaaaacc 1680
accgctacca gcggtggttt gtttgccgga tcaagagcta ccaactcttt ttccgaaggt 1740
aactggcttc agcagagcgc agataccaaa tactgtcctt ctagtgtagc cgtagttagg 1800
ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc 1860
agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt 1920
accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgga 1980
gcgaacgacc tacaccgaac tgagatacct acagcgtgag ctatgagaaa gcgccacgct 2040
tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg 2100
cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggtttcgcca 2160
cctctgactt gagcgtcgat ttttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa 2220
cgccagcaac gcggcctttt tacggttcct ggccttttgc tggccttttg ctcacatgtt 2280
ctttcctgcg ttatcccctg attctgtgga taaccgtatt accgcctttg agtgagctga 2340
taccgctcgc cgcagccgaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga 2400
gcgcctgatg cggtattttc tccttacgca tctgtgcggt atttcacacc gcatatatgg 2460
tgcactctca gtacaatctg ctctgatgcc gcatagttaa gccagtatac actccgctat 2520
cgctacgtga ctgggtcatg gctgcgcccc gacacccgcc aacacccgct gacgcgccct 2580
gacgggcttg tctgctcccg gcatccgctt acagacaagc tgtgaccgtc tccgggagct 2640
gcatgtgtca gaggttttca ccgtcatcac cgaaacgcgc gaggcagctg cggtaaagct 2700
catcagcgtg gtcgtgaagc gattcacaga tgtctgcctg ttcatccgcg tccagctcgt 2760
tgagtttctc cagaagcgtt aatgtctggc ttctgataaa gcgggccatg ttaagggcgg 2820
ttttttcctg tttggtcact gatgcctccg tgtaaggggg atttctgttc atgggggtaa 2880
tgataccgat gaaacgagag aggatgctca cgatacgggt tactgatgat gaacatgccc 2940
ggttactgga acgttgtgag ggtaaacaac tggcggtatg gatgcggcgg gaccagagaa 3000
aaatcactca gggtcaatgc cagcgcttcg ttaatacaga tgtaggtgtt ccacagggta 3060
gccagcagca tcctgcgatg cagatccgga acataatggt gcagggcgct gacttccgcg 3120
tttccagact ttacgaaaca cggaaaccga agaccattca tgttgttgct caggtcgcag 3180
acgttttgca gcagcagtcg cttcacgttc gctcgcgtat cggtgattca ttctgctaac 3240
cagtaaggca accccgccag cctagccggg tcctcaacga caggagcacg atcatgcgca 3300
cccgtggcca ggacccaacg ctgcccgaga tctcgatccc gcgaaattaa tacgactcac 3360
tatagggaga ccacaacggt ttccctctag aaataatttt gtttaacttt aagaaggaga 3420
tatacatatg agtgcaaaag gcatagacta cgataagctc attgttcggt ttggaagtag 3480
taaaattgac aaagagctaa taaaccgaat agagagagcc accggccaaa gaccacacca 3540
cttcctgcgc agaggcatct tcttctcaca cagagatatg aatcaggttc ttgatgccta 3600
tgaaaataag aagccatttt atctgtacac gggccggggc ccctcttctg aagcaatgca 3660
tgtaggtcac ctcattccat ttattttcac aaagtggctc caggatgtat ttaacgtgcc 3720
cttggtcatc cagatgacgg atgacgagaa gtatctgtgg aaggacctga ccctggacca 3780
ggcctatggc gatgctgttg agaatgccaa ggacatcatc gcctgtggct ttgacatcaa 3840
caagactttc atattctctg acctggacta catggggatg agctcaggtt tctacaaaaa 3900
tgtggtgaag attcaaaagc atgttacctt caaccaagtg aaaggcattt tcggcttcac 3960
tgacagcgac tgcattggga agatcagttt tcctgccatc caggctgctc cctccttcag 4020
caactcattc ccacagatct tccgagacag gacggatatc cagtgcctta tcccatgtgc 4080
cattgaccag gatccttact ttagaatgac aagggacgtc gcccccagga tcggctatcc 4140
gagtgccagc gacccaaact cctccatctt cctcaccgac acggccaagc agatcaaaac 4260
caaggtcaat aagcatgcgt tttctggagg gagagacacc atcgaggagc acaggcagtt 4320
tgggggcaac tgtgatgtgg acgtgtcttt catgtacctg accttcttcc tcgaggacga 4380
cgacaagctc gagcagatca ggaaggatta caccagcgga gccatgctca ccggtgagct 4440
caagaaggca ctcatagagg ttctgcagcc cttgatcgca gagcaccagg cccggcgcaa 4500
ggaggtcacg gatgagatag tgaaagagtt catgactccc cggaagctgt ccttcgactt 4560
tcagaagctt gcggccgcac tcgagcacca ccaccaccac cactgagatc cggctgctaa 4620
caaagcccga aaggaagctg agttggctgc tgccaccgct gagcaataac tagcataacc 4680
ccttggggcc tctaaacggg tcttgagggg ttttttgctg aaaggaggaa ctatatccgg 4740
at 4742
<210>2
<211>392
<212>PRT
<213>
<220>人工序列
<223>His-标记的人T2-TrpRS
<400>2
Met Ser Ala Lys Gly Ile Asp Tyr Asp Lys Leu Ile Val Arg Phe Gly
1 5 10 15
Ser Ser Lys Ile Asp Lys Glu Leu Ile Asn Arg Ile Glu Arg Ala Thr
20 25 30
Gly Gln Arg Pro His His Phe Leu Arg Arg Gly Ile Phe Phe Ser His
35 40 45
Arg Asp Met Asn Gln Val Leu Asp Ala Tyr Glu Asn Lys Lys Pro Phe
50 55 60
Tyr Leu Tyr Thr Gly Arg Gly Pro Ser Ser Glu Ala Met His Val Gly
65 70 75 80
His Leu Ile Pro Phe Ile Phe Thr Lys Trp Leu Gln Asp Val Phe Asn
85 90 95
Val Pro Leu Val Ile G1n Met Thr Asp Asp Glu Lys Tyr Leu Trp Lys
100 105 110
Asp Leu Thr Leu Asp Gln Ala Tyr Gly Asp Ala Val Glu Asn Ala Lys
115 120 125
Asp Ile Ile Ala Cys Gly Phe Asp Ile Asn Lys Thr Phe Ile Phe Ser
130 135 140
Asp Leu Asp Tyr Met Gly Met Ser Ser Gly Phe Tyr Lys Asn Val Val
145 150 155 160
Lys Ile Gln Lys His Val Thr Phe Asn Gln Val Lys Gly Ile Phe Gly
165 170 175
Phe Thr Asp Ser Asp Cys Ile Gly Lys Ile Ser Phe Pro Ala Ile Gln
180 185 190
Ala Ala Pro Ser Phe Ser Asn Ser Phe Pro Gln Ile Phe Arg Asp Arg
195 200 205
Thr Asp Ile Gln Cys Leu Ile Pro Cys Ala Ile Asp Gln Asp Pro Tyr
210 215 220
Phe Arg Met Thr Arg Asp Val Ala Pro Arg Ile Gly Tyr Pro Lys Pro
225 230 235 240
Ala Leu Leu His Ser Thr Phe Phe Pro Ala Leu Gln Gly Ala Gln Thr
245 250 255
260 265 270
Ala Lys Gln Ile Lys Thr Lys Val Asn Lys His Ala Phe Ser Gly Gly
275 280 285
Arg Asp Thr Ile Glu Glu His Arg Gln Phe Gly Gly Asn Cys Asp Val
290 295 300
Asp Val Ser Phe Met Tyr Leu Thr Phe Phe Leu Glu Asp Asp Asp Lys
305 310 315 320
Leu Glu Gln Ile Arg Lys Asp Tyr Thr Ser Gly Ala Met Leu Thr Gly
325 330 335
Glu Leu Lys Lys Ala Leu Ile Glu Val Leu Gln Pro Leu Ile Ala Glu
340 345 350
His Gln Ala Arg Arg Lys Glu Val Thr Asp Glu Ile Val Lys Glu Phe
355 360 365
Met Thr Pro Arg Lys Leu Ser Phe Asp Phe Gln Lys Leu Ala Ala Ala
370 375 380
Leu Glu His His His His His His
385 390
Claims (14)
1.一种分离的、哺乳动物的、谱系阴性的造血干细胞群,它含有造血干细胞与内皮祖细胞,其中至少约50%的细胞表达整联蛋白α6表面抗原。
2.权利要求1的分离的干细胞群,其中至少约20%的细胞表达表面抗原CD31。
3.权利要求1的分离的干细胞群,其中细胞来源于成熟骨髓。
4.权利要求1的分离的干细胞群,其中,所述的细胞是小鼠细胞,且其中至少约50%的细胞表达表面抗原CD31,并且至少约50%的细胞表达表面抗原CD117。
5.权利要求1的分离的干细胞群,其中所述细胞是人细胞。
6.权利要求5的分离的干细胞群,其中所述细胞为CD133阴性,至少约50%的细胞表达整联蛋白α6表面抗原,并且至少约50%的细胞表达表面抗原CD31。
7.权利要求5的分离的干细胞群,其中所述细胞为CD133阳性,少于约30%的细胞表达整联蛋白α6表面抗原,并且少于约30%的细胞表达表面抗原CD31。
8.权利要求1的分离的干细胞群进一步包括一种细胞培养基。
9.如权利要求1所述的分离的干细胞群,其中,所述的干细胞是CD133阴性,且其中至少约50%的干细胞表达CD31,至少约50%的干细胞表达整联蛋白α6抗原,并且所述的干细胞包含可操作地编码治疗上有用的肽的经转染的基因,其中治疗上有用的肽是抗血管新生肽或是一种神经营养剂。
10.权利要求9的经转染的干细胞群,其中抗血管新生肽是蛋白片段。
11.权利要求9的经转染的干细胞群,其中神经营养剂选自:神经生长因子、神经营养蛋白-3、神经营养蛋白-4、神经营养蛋白-5、睫状神经营养因子、视网膜色素上皮衍生的神经营养因子、胰岛素样生长因子、神经胶质细胞系衍生的神经营养因子、脑衍生神经营养因子。
12.如权利要求1所述的分离的干细胞群,其中,所述的干细胞是CD133阳性,且其中少于约30%的干细胞表达CD31,少于约30%的干细胞表达整联蛋白α6抗原,并且所述的干细胞包含可操作地编码治疗上有用的肽的经转染的基因,其中治疗上有用的肽是抗血管新生肽或是一种神经营养剂。
13.权利要求12的经转染的干细胞群,其中抗血管新生肽是蛋白片段。
14.权利要求12的经转染的干细胞群,其中神经营养剂选自:神经生长因子、神经营养蛋白-3、神经营养蛋白-4、神经营养蛋白-5、睫状神经营养因子、视网膜色素上皮衍生的神经营养因子、胰岛素样生长因子、神经胶质细胞系衍生的神经营养因子、脑衍生神经营养因子。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US46705103P | 2003-05-02 | 2003-05-02 | |
US60/467,051 | 2003-05-02 | ||
US10/628,783 | 2003-07-25 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006100676791A Division CN1831119B (zh) | 2003-05-02 | 2004-04-28 | 造血干细胞及其治疗新生血管性眼疾的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1816281A CN1816281A (zh) | 2006-08-09 |
CN100439493C true CN100439493C (zh) | 2008-12-03 |
Family
ID=36908146
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006100676791A Expired - Fee Related CN1831119B (zh) | 2003-05-02 | 2004-04-28 | 造血干细胞及其治疗新生血管性眼疾的方法 |
CNB2004800189906A Expired - Fee Related CN100439493C (zh) | 2003-05-02 | 2004-04-28 | 造血干细胞及其治疗新生血管性眼疾的方法 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2006100676791A Expired - Fee Related CN1831119B (zh) | 2003-05-02 | 2004-04-28 | 造血干细胞及其治疗新生血管性眼疾的方法 |
Country Status (10)
Country | Link |
---|---|
EP (2) | EP1754783A1 (zh) |
JP (2) | JP4714682B2 (zh) |
KR (3) | KR101169261B1 (zh) |
CN (2) | CN1831119B (zh) |
AU (2) | AU2004237749B2 (zh) |
BR (1) | BRPI0409861A (zh) |
CA (2) | CA2526670C (zh) |
MX (2) | MXPA05011752A (zh) |
RU (2) | RU2345780C2 (zh) |
ZA (2) | ZA200509756B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2554662A1 (en) * | 2011-08-05 | 2013-02-06 | M Maria Pia Cosma | Methods of treatment of retinal degeneration diseases |
AU2012321102C1 (en) | 2011-10-27 | 2016-11-10 | Pharma Cinq, Llc | Vectors encoding rod-derived cone viability factor |
RU2495650C1 (ru) * | 2012-02-29 | 2013-10-20 | Федеральное государственное бюджетное учреждение "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова" Министерства здравоохранения и социального развития Российской Федерации | Трехкомпонентный комплекс для клеточной терапии в офтальмологии |
RU2485922C1 (ru) * | 2012-03-28 | 2013-06-27 | Федеральное государственное бюджетное учреждение "Межотраслевой научно-технический комплекс "Микрохирургия глаза" имени академика С.Н. Федорова" Министерства здравоохранения и социального развития Российской Федерации | Способ лечения "сухой" формы возрастной макулярной дегенерации |
CN107043699B (zh) * | 2017-04-25 | 2023-04-07 | 徐子雁 | 一种低能量激光诱导间充质干细胞血管化的试剂盒 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020098521A1 (en) * | 2000-10-18 | 2002-07-25 | Dominique Bonnet | Method and marker for the isolation of human multipotent hematopoietic stem cells |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1307300C (zh) * | 2002-07-25 | 2007-03-28 | 斯克里普斯研究学院 | 造血干细胞和治疗新生血管性眼部疾病的方法 |
-
2004
- 2004-04-28 CA CA2526670A patent/CA2526670C/en not_active Expired - Lifetime
- 2004-04-28 KR KR1020057020854A patent/KR101169261B1/ko not_active IP Right Cessation
- 2004-04-28 AU AU2004237749A patent/AU2004237749B2/en not_active Ceased
- 2004-04-28 MX MXPA05011752A patent/MXPA05011752A/es active IP Right Grant
- 2004-04-28 KR KR1020127006540A patent/KR101224375B1/ko not_active IP Right Cessation
- 2004-04-28 CN CN2006100676791A patent/CN1831119B/zh not_active Expired - Fee Related
- 2004-04-28 MX MXPA05011750A patent/MXPA05011750A/es active IP Right Grant
- 2004-04-28 BR BRPI0409861-7A patent/BRPI0409861A/pt not_active IP Right Cessation
- 2004-04-28 RU RU2005137569/15A patent/RU2345780C2/ru not_active IP Right Cessation
- 2004-04-28 CA CA2524063A patent/CA2524063C/en not_active Expired - Lifetime
- 2004-04-28 KR KR1020067009013A patent/KR20060056420A/ko not_active Application Discontinuation
- 2004-04-28 EP EP05025978A patent/EP1754783A1/en not_active Ceased
- 2004-04-28 JP JP2006513372A patent/JP4714682B2/ja not_active Expired - Fee Related
- 2004-04-28 CN CNB2004800189906A patent/CN100439493C/zh not_active Expired - Fee Related
- 2004-04-28 EP EP04760595A patent/EP1624758A4/en not_active Ceased
-
2005
- 2005-12-01 ZA ZA200509756A patent/ZA200509756B/xx unknown
- 2005-12-01 AU AU2005239702A patent/AU2005239702B2/en not_active Ceased
- 2005-12-01 ZA ZA200509752A patent/ZA200509752B/xx unknown
- 2005-12-27 JP JP2005373996A patent/JP4714580B2/ja not_active Expired - Fee Related
-
2006
- 2006-02-07 RU RU2006103574/15A patent/RU2389497C2/ru not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020098521A1 (en) * | 2000-10-18 | 2002-07-25 | Dominique Bonnet | Method and marker for the isolation of human multipotent hematopoietic stem cells |
Non-Patent Citations (4)
Title |
---|
Bone marrow-derived stem cells target retinalastrocytesandcan promote or inhibit retinal angiogenesis. Atsus Otani等.Nature Medicine,Vol.第8卷 No.第9期. 2002 |
Bone marrow-derived stem cells target retinalastrocytesandcan promote or inhibit retinal angiogenesis. Atsus Otani等.Nature Medicine,Vol.第8卷 No.第9期. 2002 * |
Fibroblast growth factor receptor-1 isexpressedbyendothelialprogenitor cells. Patricia E.Burger et.BLOOD,Vol.第100卷 No.第10期. 2002 |
Fibroblast growth factor receptor-1 isexpressedbyendothelialprogenitor cells. Patricia E.Burger et.BLOOD,Vol.第100卷 No.第10期. 2002 * |
Also Published As
Publication number | Publication date |
---|---|
BRPI0409861A (pt) | 2006-05-16 |
EP1624758A4 (en) | 2007-03-07 |
ZA200509756B (en) | 2006-10-25 |
RU2389497C2 (ru) | 2010-05-20 |
KR101169261B1 (ko) | 2012-08-03 |
AU2005239702B2 (en) | 2010-03-04 |
JP2006525806A (ja) | 2006-11-16 |
EP1754783A1 (en) | 2007-02-21 |
RU2005137569A (ru) | 2006-06-10 |
JP4714580B2 (ja) | 2011-06-29 |
AU2004237749A1 (en) | 2004-11-18 |
JP2006166918A (ja) | 2006-06-29 |
CA2526670A1 (en) | 2004-11-18 |
CN1831119B (zh) | 2010-05-26 |
EP1624758A2 (en) | 2006-02-15 |
CA2526670C (en) | 2011-06-14 |
MXPA05011750A (es) | 2006-06-06 |
JP4714682B2 (ja) | 2011-06-29 |
KR101224375B1 (ko) | 2013-01-21 |
ZA200509752B (en) | 2006-11-29 |
RU2006103574A (ru) | 2007-08-20 |
RU2345780C2 (ru) | 2009-02-10 |
KR20120034251A (ko) | 2012-04-10 |
CN1831119A (zh) | 2006-09-13 |
CA2524063A1 (en) | 2004-11-18 |
MXPA05011752A (es) | 2006-06-06 |
AU2005239702A1 (en) | 2005-12-22 |
KR20060008968A (ko) | 2006-01-27 |
CA2524063C (en) | 2015-02-17 |
AU2004237749B2 (en) | 2011-09-15 |
CN1816281A (zh) | 2006-08-09 |
KR20060056420A (ko) | 2006-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1307300C (zh) | 造血干细胞和治疗新生血管性眼部疾病的方法 | |
CN101356268A (zh) | 未熟儿视网膜病和相关视网膜疾病的治疗方法 | |
CN101594781A (zh) | 分离的髓样细胞群及其治疗方法 | |
KR100869914B1 (ko) | 혈관 형성 조절에 유용한 트립토파닐-tRNA 신세타제기원 폴리펩타이드 | |
IL195854A (en) | Aminoacyl polypeptides - trna human synthesis used to regulate angiogenesis | |
US20020182666A1 (en) | Human aminoacyl-tRNA synthetase polypeptides useful for the regulation of angiogenesis | |
CN110856724A (zh) | 包含核酸及car修饰的免疫细胞的治疗剂及其应用 | |
CN100439493C (zh) | 造血干细胞及其治疗新生血管性眼疾的方法 | |
CN107206096B (zh) | 碳硅烷树枝状体及用于药物递送系统的使用该树枝状体获得的可聚集载体 | |
US6387664B1 (en) | Sparc fusion protein and method for producing the same | |
KR101309500B1 (ko) | 분리된 계통 음성 조혈 줄기세포 및 이를 사용한 치료 방법 | |
CN110108884A (zh) | 一种对于犬瘟热病毒及抗体的elisa检测方法 | |
TW202227499A (zh) | 識別ha-1抗原之結合蛋白及其用途 | |
CN115232813A (zh) | 用于构建vWF基因突变的血管性血友病模型猪核移植供体细胞的基因编辑系统及其应用 | |
CN115161335A (zh) | 用于构建tardbp基因突变的als模型猪核移植供体细胞的基因编辑系统及其应用 | |
CN115232811A (zh) | 用于构建hbb基因突变的镰刀型细胞贫血症模型猪核移植供体细胞的方法及应用 | |
JP2000247901A (ja) | Sparc融合タンパク質含有医薬組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081203 Termination date: 20160428 |