CN100401974C - A method and system for realizing axial super-resolution of optical coherence tomography - Google Patents
A method and system for realizing axial super-resolution of optical coherence tomography Download PDFInfo
- Publication number
- CN100401974C CN100401974C CNB2006100533270A CN200610053327A CN100401974C CN 100401974 C CN100401974 C CN 100401974C CN B2006100533270 A CNB2006100533270 A CN B2006100533270A CN 200610053327 A CN200610053327 A CN 200610053327A CN 100401974 C CN100401974 C CN 100401974C
- Authority
- CN
- China
- Prior art keywords
- resolution
- axial
- iris filter
- sample
- collimating mirror
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 13
- 238000012014 optical coherence tomography Methods 0.000 title abstract description 47
- 210000001747 pupil Anatomy 0.000 claims abstract description 59
- 238000001514 detection method Methods 0.000 claims abstract description 22
- 238000005316 response function Methods 0.000 claims abstract description 19
- 238000003384 imaging method Methods 0.000 claims abstract description 14
- 230000001427 coherent effect Effects 0.000 claims abstract description 10
- 230000003287 optical effect Effects 0.000 claims description 22
- 239000000835 fiber Substances 0.000 claims description 13
- 238000002834 transmittance Methods 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 2
- 238000003325 tomography Methods 0.000 claims 4
- 235000012489 doughnuts Nutrition 0.000 claims 2
- 230000006835 compression Effects 0.000 claims 1
- 238000007906 compression Methods 0.000 claims 1
- 238000010606 normalization Methods 0.000 claims 1
- 238000005516 engineering process Methods 0.000 abstract description 16
- 239000000523 sample Substances 0.000 description 20
- 238000010586 diagram Methods 0.000 description 6
- 238000005286 illumination Methods 0.000 description 5
- 230000003595 spectral effect Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明公开了一种实现光学相干层析成像(OCT)轴向超分辨的方法及系统。在光学相干层析成像样品臂的准直镜和探测物镜之间插入光瞳滤波器,使轴向响应函数的主瓣宽度缩小到相干门之内,从而实现光学相干层析成像的轴向超分辨。同时,由超分辨光瞳滤波器导致的旁瓣则被相干门抑制,不对OCT相干成像产生有效贡献,从而确保成像对比度不因轴向超分辨而下降。本发明是一种经济简易的新型超分辨技术,可促进实现OCT系统的小型化与商业化。
The invention discloses a method and system for realizing optical coherence tomography (OCT) axial super-resolution. A pupil filter is inserted between the collimating mirror and the detection objective lens of the optical coherence tomography sample arm, so that the main lobe width of the axial response function is narrowed within the coherence gate, thereby realizing the axial ultra-thin optical coherence tomography distinguish. At the same time, the sidelobe caused by the super-resolution pupil filter is suppressed by the coherence gate and does not make an effective contribution to the OCT coherent imaging, thereby ensuring that the imaging contrast is not reduced due to axial super-resolution. The invention is an economical and simple novel super-resolution technology, which can promote the miniaturization and commercialization of the OCT system.
Description
技术领域 technical field
本发明涉及光学相干层析成像(OCT)技术和光学超分辨技术,尤其涉及一种利用光瞳滤波器实现光学相干层析成像轴向超分辨的方法及系统。The invention relates to optical coherence tomography (OCT) technology and optical super-resolution technology, in particular to a method and system for realizing axial super-resolution of optical coherence tomography by using a pupil filter.
背景技术 Background technique
光学相干层析成像(Optical Coherence Tomography,简称OCT)是一种新兴的光学成像技术,相对于传统的临床成像手段来说,具有分辨率高、成像速度快、无辐射损伤、价格适中、结构紧凑等优点,是基础医学研究和临床诊断应用的重要潜在工具。Optical Coherence Tomography (OCT) is an emerging optical imaging technology. Compared with traditional clinical imaging methods, it has high resolution, fast imaging speed, no radiation damage, moderate price, and compact structure. It is an important potential tool for basic medical research and clinical diagnostic applications.
分辨率是OCT技术发展的重要指标。OCT的轴向分辨率由光源带宽和探测光束的聚焦条件共同决定。在探测光束弱聚焦条件下,相应的轴向响应函数的主瓣宽度远远大于相干门宽度,此时的轴向分辨率主要由相干门决定。光源带宽越宽,相干门宽度就越窄。相干门宽度越窄,轴向分辨率就越高。因此,目前用来提高OCT轴向分辨率的主要途径包括短脉冲激光技术、非线性超连续谱产生技术、组合光源光谱合成技术等。但这些宽带光源技术存在以下局限性:1)对成像透镜等光学元件的消色差要求大大提高;2)超宽带高效率单模光纤器件不易获得;3)超短脉冲激光器价格昂贵,操作不便,小型化和商业化存在一定难度。所以,采用宽带光源技术来提高OCT的轴向分辨率,往往价格昂贵,系统复杂,而且存在器件上的瓶颈,很难在现有基础上继续提高。光谱整形技术也可在某种程度上改善OCT的轴向分辨率,如抑制中间谱分量使光谱形状趋于平坦,实现相对意义上的光谱拓宽,进而提高OCT的轴向分辨率。Resolution is an important indicator for the development of OCT technology. The axial resolution of OCT is jointly determined by the bandwidth of the light source and the focusing conditions of the probe beam. Under the condition of weak focusing of the probe beam, the width of the main lobe of the corresponding axial response function is much larger than the width of the coherence gate, and the axial resolution at this time is mainly determined by the coherence gate. The wider the source bandwidth, the narrower the coherence gate width. The narrower the coherence gate width, the higher the axial resolution. Therefore, the main ways to improve the axial resolution of OCT include short-pulse laser technology, nonlinear supercontinuum generation technology, combined light source spectrum synthesis technology, etc. However, these broadband light source technologies have the following limitations: 1) The achromatic requirements for optical components such as imaging lenses are greatly increased; 2) Ultra-broadband high-efficiency single-mode fiber devices are not easy to obtain; 3) Ultrashort pulse lasers are expensive and inconvenient to operate. There are certain difficulties in miniaturization and commercialization. Therefore, using broadband light source technology to improve the axial resolution of OCT is often expensive, the system is complex, and there is a bottleneck in the device, it is difficult to continue to improve on the existing basis. Spectral shaping technology can also improve the axial resolution of OCT to a certain extent, such as suppressing the intermediate spectral components to flatten the spectral shape, achieving relative spectral broadening, and then improving the axial resolution of OCT.
在探测光束强聚焦条件下,其轴向响应函数的主瓣宽度已与相干门接近。光源带宽和轴向响应函数的主瓣宽度都与OCT的轴向分辨率直接相关。在此情形下,压缩轴向响应函数的主瓣宽度是提高OCT轴向分辨率的另一途径。Under the condition of strong focusing of the probe beam, the main lobe width of the axial response function is close to that of the coherence gate. Both the source bandwidth and the main lobe width of the axial response function are directly related to the axial resolution of OCT. In this case, compressing the main lobe width of the axial response function is another way to improve the axial resolution of OCT.
发明内容 Contents of the invention
本发明的目的在于提供一种实现光学相干层析成像轴向超分辨的方法及系统,该方法及系统通过插入适当形式的光瞳滤波器,将轴向响应函数的主瓣宽度缩小到相干门之内,从而实现OCT的轴向超分辨;同时,由超分辨光瞳滤波器导致的旁瓣则由相干门来抑制,不对OCT相干成像产生有效贡献,从而确保成像对比度不因轴向超分辨而下降。The object of the present invention is to provide a method and system for realizing axial super-resolution of optical coherence tomography, which reduces the main lobe width of the axial response function to a coherence gate by inserting a suitable form of pupil filter. In this way, the axial super-resolution of OCT is realized; at the same time, the side lobe caused by the super-resolution pupil filter is suppressed by the coherence gate, which does not make an effective contribution to the OCT coherent imaging, thereby ensuring that the imaging contrast is not affected by the axial super-resolution while falling.
本发明的目的是通过如下技术方案实现的:The purpose of the present invention is achieved through the following technical solutions:
一、一种实现光学相干层析成像轴向超分辨的方法:1. A method for realizing axial superresolution of optical coherence tomography:
在光学相干层析成像样品臂的准直镜和探测物镜之间插入光瞳滤波器,使轴向响应函数的主瓣宽度缩小到相干门之内,从而实现光学相干层析成像的轴向超分辨;其具体步骤如下:A pupil filter is inserted between the collimating mirror and the detection objective lens of the optical coherence tomography sample arm, so that the main lobe width of the axial response function is narrowed within the coherence gate, thereby realizing the axial ultra-thin optical coherence tomography Resolution; the specific steps are as follows:
1)从光纤耦合器一个端口发出的光先由准直镜准直,然后通过光瞳滤波器,再由探测物镜聚焦于样品,此时的照明点扩散函数的轴向主瓣宽度因光瞳滤波器的作用而得到压缩;1) The light emitted from one port of the fiber coupler is first collimated by the collimator, then passed through the pupil filter, and then focused on the sample by the detection objective lens. At this time, the axial main lobe width of the illumination point spread function depends on the pupil The effect of the filter is compressed;
2)从样品返回的反射光和散射光经由探测物镜收集,再次通过光瞳滤波器和准直镜,然后返回光纤耦合器,与来自参考臂的参考光汇合并发生干涉;此时的接收点扩散函数和照明点扩散函数一致,由二者共同决定的轴向响应函数的主瓣宽度小于相干门宽度。2) The reflected light and scattered light returned from the sample are collected by the detection objective lens, pass through the pupil filter and the collimating mirror again, and then return to the fiber coupler to meet and interfere with the reference light from the reference arm; at this time, the receiving point The spread function is consistent with the spread function of the illumination point, and the main lobe width of the axial response function determined by the two is smaller than the width of the coherence gate.
所述的光瞳滤波器由N个同心圆环构成,其中N为大于2的自然数,具体值根据不同光学系统的分辨率要求确定,The pupil filter is composed of N concentric rings, wherein N is a natural number greater than 2, and the specific value is determined according to the resolution requirements of different optical systems,
为光瞳滤波器的光瞳函数,为光瞳函数的极坐标;其中ki表示第i个圆环的振幅透过率,0≤ki≤1;表示第i个圆环的位相延迟,ri-1和ri表示第i环归一化内外半径;当只有参数ki变化时,此表达式对应于振幅型光瞳滤波器;当只有参数变化时,此表达式对应于位相型光瞳滤波器;当参数ki和都变化时,此表达式对应于复振幅型光瞳滤波器。 is the pupil function of the pupil filter, is the polar coordinate of the pupil function; where ki represents the amplitude transmittance of the i-th ring, 0≤ki ≤1; Indicates the phase delay of the i-th ring, r i-1 and r i represent the normalized inner and outer radius of the i-th ring; when only the parameter k i changes, this expression corresponds to the amplitude pupil filter; when only the parameter When changing, this expression corresponds to the phase pupil filter; when the parameters ki and When both vary, this expression corresponds to a complex-amplitude pupil filter.
二、一种实现光学相干层析成像轴向超分辨的系统:2. A system for realizing axial super-resolution of optical coherence tomography:
包括宽带光源、2×2光纤耦合器、探测器、数据采集卡、计算机、参考臂以及依次由准直镜、探测物镜和样品组成的样品臂。样品臂的准直镜和探测物镜光路之间插入光瞳滤波器,从准直镜出来的光通过光瞳滤波器后,由探测物镜聚焦于样品,从样品返回的反射光和散射光经由探测物镜收集,再次通过光瞳滤波器和准直镜,然后返回光纤耦合器。It includes broadband light source, 2×2 fiber optic coupler, detector, data acquisition card, computer, reference arm and sample arm composed of collimating mirror, detection objective lens and sample in turn. A pupil filter is inserted between the collimating mirror of the sample arm and the detection objective lens. The objective collects, passes again through a pupil filter and collimating mirror, and returns to the fiber coupler.
所述的光瞳滤波器为振幅型光瞳滤波器或位相型光瞳滤波器,光瞳滤波器由N个同心圆环构成,其中N为大于2的自然数,具体值根据不同光学系统的分辨率要求确定。The pupil filter is an amplitude-type pupil filter or a phase-type pupil filter, and the pupil filter is composed of N concentric rings, wherein N is a natural number greater than 2, and the specific value is determined according to the resolution of different optical systems. Rate requirements are determined.
本发明的原理为:准直光束经光瞳滤波器后,由探测物镜聚焦,其焦点附近的光分布因光瞳滤波器而发生变化,对应的轴向响应函数也随之改变。采用适当形式的光瞳滤波器,可以将OCT轴向响应函数的主瓣宽度缩小到相干门之内。此时OCT的轴向分辨率不再由光源带宽决定,而是由轴向响应函数的主瓣宽度所决定。通过这种方式实现了OCT轴向分辨率的提高。同时,轴向响应函数的旁瓣则被相干门抑制,不参与相干成像,从而确保了成像对比度不因轴向超分辨而下降。The principle of the invention is: after the collimated light beam passes through the pupil filter, it is focused by the detection objective lens, the light distribution near the focus is changed by the pupil filter, and the corresponding axial response function also changes accordingly. With an appropriate form of pupil filter, the main lobe width of the OCT axial response function can be narrowed within the coherence gate. At this time, the axial resolution of OCT is no longer determined by the bandwidth of the light source, but by the width of the main lobe of the axial response function. An increase in the axial resolution of OCT is achieved in this way. At the same time, the sidelobe of the axial response function is suppressed by the coherence gate and does not participate in coherent imaging, thus ensuring that the imaging contrast is not reduced due to axial super-resolution.
与背景技术相比,本发明具有如下优点:Compared with background technology, the present invention has following advantages:
1)该方法简单易行,成本低廉。只需在常规OCT样品臂的准直镜和探测物镜之间插入光瞳滤波器,使轴向响应函数的主瓣宽度缩小到相干门之内即可。采用成熟的二元光学技术和薄膜技术制作光瞳滤波器,可以达到很高的精度和较低的成本。这种低成本的提高OCT轴向分辨率的方法,避免了采用宽带光源技术所存在的成本昂贵、系统复杂、器件选择困难等缺陷。1) The method is simple and easy to implement with low cost. It is only necessary to insert a pupil filter between the collimator mirror and the detection objective lens of the conventional OCT sample arm to narrow the main lobe width of the axial response function to within the coherence gate. The pupil filter is made by mature binary optical technology and thin film technology, which can achieve high precision and low cost. This low-cost method for improving the axial resolution of OCT avoids the defects of high cost, complex system, and difficult device selection that exist in broadband light source technology.
2)由超分辨光瞳滤波器产生的旁瓣,往往会导致图像对比度的下降,这是传统光学系统中实施光学超分辨术的最大障碍。但在OCT中旁瓣对成像的影响可以消除,利用OCT所固有的相干门可以完全抑制旁瓣参与相干成像,这是在OCT中实施光学超分辨的重要优势。2) The side lobes produced by the super-resolution pupil filter often lead to a decrease in image contrast, which is the biggest obstacle to the implementation of optical super-resolution in traditional optical systems. However, the influence of side lobes on imaging can be eliminated in OCT, and the inherent coherence gate of OCT can completely suppress side lobes from participating in coherent imaging, which is an important advantage of implementing optical super-resolution in OCT.
3)初步实验表明,通过上述方法可以将OCT的轴向分辨率至少提高10%。3) Preliminary experiments show that the axial resolution of OCT can be improved by at least 10% by the above method.
本发明是一种经济简易的新型超分辨技术,可促进实现OCT系统的小型化与商业化。The invention is an economical and simple new super-resolution technology, which can promote the miniaturization and commercialization of the OCT system.
附图说明 Description of drawings
图1是OCT轴向超分辨的样品臂结构示意图;Figure 1 is a schematic diagram of the sample arm structure of OCT axial super-resolution;
图2是光学轴向超分辨的振幅型光瞳滤波器示意图(以N=3为例);Fig. 2 is a schematic diagram of an amplitude pupil filter for optical axial super-resolution (taking N=3 as an example);
图3是光学轴向超分辨的位相型光瞳滤波器示意图(以N=3为例);Fig. 3 is a schematic diagram of a phase-type pupil filter for optical axial super-resolution (taking N=3 as an example);
图4是OCT轴向超分辨方法的系统示意图。Fig. 4 is a schematic diagram of the system of the OCT axial super-resolution method.
图中:1、准直镜,2、光瞳滤波器,3、探测物镜,4、样品,5、宽带光源,6、2×2光纤耦合器,7、探测器,8、数据采集卡,9、计算机,10、参考臂。In the figure: 1. Collimating mirror, 2. Pupil filter, 3. Detection objective lens, 4. Sample, 5. Broadband light source, 6. 2×2 fiber optic coupler, 7. Detector, 8. Data acquisition card, 9. Computer, 10. Reference arm.
具体实施方式 Detailed ways
下面结合附图和实施例对本发明作进一步的说明:Below in conjunction with accompanying drawing and embodiment the present invention will be further described:
图1所示为实施OCT轴向超分辨的样品臂结构示意图,图中1为准直镜,2为光瞳滤波器,3为探测物镜,4为样品。样品4处于探测物镜3的焦点附近。准直镜1、光瞳滤波器2和探测物镜3同轴放置。光瞳滤波器2的有效孔径与探测物镜3的全口径相等,并归一化为1。光瞳滤波器2有效孔径之外的边缘部分因探测物镜3口径的限制不参与成像,可用于光瞳滤波器2的固定。Figure 1 is a schematic diagram of the sample arm structure for implementing OCT axial super-resolution, in which 1 is a collimating mirror, 2 is a pupil filter, 3 is a detection objective lens, and 4 is a sample. The
如图1所示,从2×2光纤耦合器一个端口发出的光,先由准直镜1准直,然后通过光瞳滤波器2,再由探测物镜3聚焦于样品4上。从样品4返回的反射光和散射光经由探测物镜3收集,再次通过光瞳滤波器2和准直镜1,然后在光纤耦合器处与来自参考臂的参考光汇合并发生干涉。鉴于探测臂中照明光路与接收光路的一致性,对应的照明点扩散函数hin和接收点扩散函数hout也一致,并由下式决定:As shown in Figure 1, the light emitted from one port of the 2×2 fiber coupler is first collimated by the
为光瞳滤波器的光瞳函数,其定义式为:p(ρ)和分别表示光瞳滤波器的振幅分布和位相分布,()为光瞳函数的极坐标,u为轴向光学坐标,由式u=(2π/λ)zsin2α=kzsin2α决定,z代表实际的轴向坐标,k=2π/λ为光源中心波长对应的波数,sinα表示探测物镜的数值孔径。照明点扩散函数和接收点扩散函数共同决定了OCT的轴向响应函数: is the pupil function of the pupil filter, and its definition is: p(ρ) and Denote the amplitude distribution and phase distribution of the pupil filter, respectively, ( ) is the polar coordinate of the pupil function, u is the axial optical coordinate, determined by the formula u=(2π/λ)zsin 2 α=kzsin 2 α, z represents the actual axial coordinate, k=2π/λ is the center of the light source The wavenumber corresponding to the wavelength, sinα represents the numerical aperture of the detection objective lens. The illumination point spread function and the receiving point spread function jointly determine the axial response function of OCT:
I=|hin×hout|2 (2)I=|h in ×h out | 2 (2)
光瞳滤波器2的光瞳函数取不同形式时,轴向响应函数随之变化。当采取适当形式的光瞳函数时,轴向响应函数的主瓣宽度收缩到OCT的相干门Δl之内,从而实现OCT轴向分辨率的提高。When the pupil function of the pupil filter 2 takes different forms, the axial response function changes accordingly. When an appropriate form of the pupil function is adopted, the main lobe width of the axial response function shrinks within the coherence gate Δl of the OCT, thereby realizing the improvement of the axial resolution of the OCT.
本发明对于OCT轴向分辨率的提高通过轴向响应函数主瓣宽度与相干门宽度之间的比较来衡量。对于高斯型光谱分布的OCT光源来说,其相干门宽度为:The improvement of the OCT axial resolution of the present invention is measured by comparing the width of the main lobe of the axial response function with the width of the coherence gate. For an OCT light source with a Gaussian spectral distribution, the coherence gate width is:
其中,λ为光源的中心波长,Δλ为光源带宽。Among them, λ is the center wavelength of the light source, and Δλ is the bandwidth of the light source.
本发明中的光瞳滤波器2由N区环状结构组成,其归一化光瞳函数的表达式为:Pupil filter 2 among the present invention is made up of ring structure of N zone, and its normalized pupil function The expression is:
其中ki表示第i个圆环的振幅透过率,0≤ki≤1。表示第i个圆环的位相延迟,ri-1和ri表示第i环归一化内外半径。当只有参数ki或者变化时,此表达式分别对应于振幅型光瞳滤波器和位相型光瞳滤波器。作为实施例,图2示意了三区振幅型光瞳滤波器,其光瞳函数的振幅分布为:Where ki represents the amplitude transmittance of the i-th ring, 0≤ki ≤1 . Indicates the phase delay of the i-th ring, r i-1 and r i represent the normalized inner and outer radius of the i-th ring. When only parameter ki or When changed, this expression corresponds to the amplitude-type pupil filter and the phase-type pupil filter, respectively. As an example, Fig. 2 illustrates a three-zone amplitude pupil filter, and the amplitude distribution of its pupil function is:
图3示意了三区位相型光瞳滤波器,其光瞳函数的位相分布为:Figure 3 shows a three-zone phase pupil filter, and the phase distribution of the pupil function is:
图4所示是实施OCT轴向超分辨方法的系统示意图。包括宽带光源5(B&WTek,Inc.公司的BWC-SLD,中心波长1310nm,带宽65nm)、2×2光纤耦合器6(富通昭和公司的WBC型,中心波长1310nm,带宽80nm)、探测器7、数据采集卡8、计算机9、参考臂10以及依次由准直镜1、光瞳滤波器2、探测物镜3和样品4组成的样品臂。样品臂的准直镜1和探测物镜3光路之间插入光瞳滤波器2。理论和初步实验表明:采用光瞳函数如式(5)和(6)所示的光瞳滤波器,可以将OCT的轴向分辨率至少提高10%。Figure 4 is a schematic diagram of the system implementing the OCT axial super-resolution method. Including broadband light source 5 (BWC-SLD of B&WTek, Inc., center wavelength 1310nm, bandwidth 65nm), 2×2 fiber coupler 6 (WBC type of Futong Showa Company, center wavelength 1310nm, bandwidth 80nm),
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100533270A CN100401974C (en) | 2006-09-08 | 2006-09-08 | A method and system for realizing axial super-resolution of optical coherence tomography |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2006100533270A CN100401974C (en) | 2006-09-08 | 2006-09-08 | A method and system for realizing axial super-resolution of optical coherence tomography |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1915163A CN1915163A (en) | 2007-02-21 |
CN100401974C true CN100401974C (en) | 2008-07-16 |
Family
ID=37736335
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006100533270A Expired - Fee Related CN100401974C (en) | 2006-09-08 | 2006-09-08 | A method and system for realizing axial super-resolution of optical coherence tomography |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN100401974C (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101732035B (en) * | 2009-11-26 | 2011-11-09 | 浙江大学 | Method for optical super resolution based on optical path encoding and coherent synthesis |
EP3067657A1 (en) * | 2015-03-11 | 2016-09-14 | Hitachi-LG Data Storage, Inc. | Optical measurement apparatus and optical measurement method |
CN109596529A (en) * | 2018-12-28 | 2019-04-09 | 浙江大学 | A kind of Optical coherence tomography and method based on fiber array parallel detecting |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109115804B (en) * | 2017-06-22 | 2021-03-26 | 南京理工大学 | A device and method for quantitatively detecting glass subsurface defects |
CN108514404B (en) * | 2018-03-28 | 2021-08-10 | 深圳市太赫兹科技创新研究院 | Optical coherence tomography system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1184927C (en) * | 2002-06-14 | 2005-01-19 | 清华大学 | Method and system of raising longitudinal resolution of optical coherent chromatographic imaging |
US20050018200A1 (en) * | 2002-01-11 | 2005-01-27 | Guillermo Tearney J. | Apparatus for low coherence ranging |
CN1609590A (en) * | 2004-11-10 | 2005-04-27 | 哈尔滨工业大学 | Three-Dimensional Super-resolution Imaging Method of Three-Differential Confocal Microscopy |
US7072045B2 (en) * | 2002-01-16 | 2006-07-04 | The Regents Of The University Of California | High resolution optical coherence tomography with an improved depth range using an axicon lens |
-
2006
- 2006-09-08 CN CNB2006100533270A patent/CN100401974C/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050018200A1 (en) * | 2002-01-11 | 2005-01-27 | Guillermo Tearney J. | Apparatus for low coherence ranging |
US7072045B2 (en) * | 2002-01-16 | 2006-07-04 | The Regents Of The University Of California | High resolution optical coherence tomography with an improved depth range using an axicon lens |
CN1184927C (en) * | 2002-06-14 | 2005-01-19 | 清华大学 | Method and system of raising longitudinal resolution of optical coherent chromatographic imaging |
CN1609590A (en) * | 2004-11-10 | 2005-04-27 | 哈尔滨工业大学 | Three-Dimensional Super-resolution Imaging Method of Three-Differential Confocal Microscopy |
Non-Patent Citations (4)
Title |
---|
OCT轴向超分辨研究. 周琳,30-56,浙江大学硕士论文. 2006 |
OCT轴向超分辨研究. 周琳,30-56,浙江大学硕士论文. 2006 * |
利用变迹术和相干门相结合实现光学相干层析成像术轴向超分辨. 周琳,丁志华,俞晓峰.光学学报,第25卷第9期. 2005 |
利用变迹术和相干门相结合实现光学相干层析成像术轴向超分辨. 周琳,丁志华,俞晓峰.光学学报,第25卷第9期. 2005 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101732035B (en) * | 2009-11-26 | 2011-11-09 | 浙江大学 | Method for optical super resolution based on optical path encoding and coherent synthesis |
EP3067657A1 (en) * | 2015-03-11 | 2016-09-14 | Hitachi-LG Data Storage, Inc. | Optical measurement apparatus and optical measurement method |
US10006755B2 (en) | 2015-03-11 | 2018-06-26 | Hitachi-Lg Data Storage, Inc. | Optical measurement apparatus and optical measurement method |
CN109596529A (en) * | 2018-12-28 | 2019-04-09 | 浙江大学 | A kind of Optical coherence tomography and method based on fiber array parallel detecting |
CN109596529B (en) * | 2018-12-28 | 2020-05-22 | 浙江大学 | Optical coherence tomography system and method based on optical fiber array parallel detection |
Also Published As
Publication number | Publication date |
---|---|
CN1915163A (en) | 2007-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103091299B (en) | Laser differential confocal map microimaging imaging method and device | |
CN105758336B (en) | Reflective laser differential confocal curvature radius measurement method and device | |
CN102589851B (en) | Method for Measuring Focal Length of Reflective Confocal Lens | |
CN101732035B (en) | Method for optical super resolution based on optical path encoding and coherent synthesis | |
CN104833486B (en) | Multiple reflections formula laser differential confocal Long focal length measurement method and apparatus | |
CN106646512A (en) | Ghost imaging method and ghost imaging system based on bionic vision mechanism | |
CN100401974C (en) | A method and system for realizing axial super-resolution of optical coherence tomography | |
CN102519909B (en) | Air-space low-interference phase microscope based on liquid crystal tunable filter | |
CN105388140A (en) | Measuring instrument for site invisible fingerprint display and contained substance thereof | |
CN103823353B (en) | Based on the sub-wavelength super-resolution digital holographic imaging systems of microsphere | |
CN102778293A (en) | Optical path structure of small echelle grating spectrometer | |
CN102607820A (en) | Method for measuring focal length of micro-lens array | |
CN104482880A (en) | Laser stimulated emission depletion (STED) and three-dimensional superresolving spectral pupil differential confocal imaging method and device | |
CN201328803Y (en) | Ultra-wideband spectrum detecting system for OCT (optical coherence tomography) of spectral domain with ultrahigh resolution | |
CN102589853A (en) | Focal length measuring method of auto-collimating differential confocal lens | |
CN118882475A (en) | Confocal displacement sensor system based on spectral two-dimensional lateral encoding | |
Hillenbrand et al. | Parallelized chromatic confocal sensor systems | |
WO2023241090A1 (en) | Raman spectroscopy probe and raman spectroscopy detection apparatus | |
CN103063413A (en) | Integrated long-focus measuring device based on Talbot-moire technology | |
CN103845039B (en) | For the spectrogrph of frequency domain OCT system | |
CN207071084U (en) | A kind of high-resolution Diode laser OCT image system based on path encoding | |
CN105806237B (en) | Reflective laser confocal curvature radius measurement method and device | |
CN200987668Y (en) | System for realizing optical coherence chromatographic imaging axial super-resolution | |
CN103673927A (en) | Reflection cavity type differential confocal measuring method of super-large radius of curvature | |
CN108663735B (en) | Achromatic real-time 3D imaging microscopic device based on distorted Dammann grating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080716 Termination date: 20110908 |