CN100398980C - Three-dimensional super-resolution confocal array scanning and micro-detecting method and device - Google Patents

Three-dimensional super-resolution confocal array scanning and micro-detecting method and device Download PDF

Info

Publication number
CN100398980C
CN100398980C CN 200510007218 CN200510007218A CN100398980C CN 100398980 C CN100398980 C CN 100398980C CN 200510007218 CN200510007218 CN 200510007218 CN 200510007218 A CN200510007218 A CN 200510007218A CN 100398980 C CN100398980 C CN 100398980C
Authority
CN
China
Prior art keywords
array
lens
light
dimensional
resolution
Prior art date
Application number
CN 200510007218
Other languages
Chinese (zh)
Other versions
CN1632448A (en
Inventor
谭久彬
黄向东
Original Assignee
哈尔滨工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学 filed Critical 哈尔滨工业大学
Priority to CN 200510007218 priority Critical patent/CN100398980C/en
Publication of CN1632448A publication Critical patent/CN1632448A/en
Application granted granted Critical
Publication of CN100398980C publication Critical patent/CN100398980C/en

Links

Abstract

一种光学阵列共焦超分辨显微三维探测装置,所述装置包括位于光学系统的中心光轴上依次排列的点光源,准直透镜,微透镜阵列及针孔阵列,扩束透镜、偏振分光镜,1/4波片,二元光瞳滤波器,物镜,载物台,收集透镜,探测针孔阵列及面阵CCD。 An optical super-resolution array of confocal microscopy three-dimensional detection means, said means comprising a point light source located on the central optical axis of the optical system arranged in order, a collimator lens, a microlens array and the pinhole array, beam expander lens, a polarizing beam splitter mirror, 1/4-wave plate binary pupil filter, an objective lens, a stage, a collection lens, a pinhole array and a detection area array CCD. 点光源通过准直透镜形成平行光入射到微透镜阵列上,再经针孔阵列在扩束透镜焦平面上形成点光源阵列,经偏振分光镜及1/4波片,形成偏振光,再经二元光瞳滤波器和物镜照射到被测物表面。 The point light sources to the microlens array, then an array of point light source is formed on the focal plane of the beam expander through a pinhole lens array, by the polarization beam splitter and a quarter-wave plate, the polarization is formed is formed parallel light is incident through the collimator lens, and then two yuan pupil filter and an objective lens is irradiated to the target surface. 经被测物表面反射,按原光路返回,反射光经偏振分光镜后,被全部反射到收集透镜上,经针孔阵列最后到达面阵CCD上,由面阵CCD对信号进行采集。 The surface reflection measured was returned to the original light path, the reflected light after polarization beam splitter, is totally reflected on the collection lens, and finally to the surface through a pinhole array CCD array, the signals collected by the CCD area array. 本发明还包含一种使用一个探测器探测和测量三维表面和三维结构的方法。 The present invention further comprises a method of using a detector and method for detecting three-dimensional surface structures and three-dimensional measurement.

Description

三维超分辨共焦阵列扫描显微探测方法及装置技术领域本发明涉及表面三维微细结构测量技术领域,特别涉及一种三维超分辨共焦阵列扫描显微探测方法及装置。 Super-resolution three-dimensional array of confocal scanning microscopy detection methods TECHNICAL FIELD The present invention relates to a three-dimensional fine structure of a surface measurement technology, and particularly relates to a three-dimensional super-resolution array of confocal scanning microscopy detection method and apparatus. 背景技术共焦显微镜以其非接触、高分辨率、三维数字化成像等显著优点,己广泛应用于医药、生物、光刻、材料等领域,影响共焦显微系统发展的关键因素是测量范围、测量速度及其三维分辨力。 BACKGROUND confocal microscopy its significant advantage of the non-contact, high-resolution, three-dimensional digital imaging, the key factors has been widely used in medicine, biology, photolithography, material, confocal microscopy system affect the development of the measuring range, measurement speed its three-dimensional resolution. 微光学与微电子学的蓬勃发展,促进了二元光学元件制作和加工技术逐渐走向成熟,使得传统光学系统朝着小型化、 阵列化、集成化方向发展。 Booming microelectronics and micro-optics, binary optical elements facilitate the production and processing technologies have matured, so that the conventional optical system moving miniaturized, array technology, integrated direction. 因此,将二元光学元件引入传统共焦显微系统中使二者有机的结合,是解决其三维测量速度、测量分辨率和测量范围三者相矛盾的有效途径。 Thus, the binary optical elements into an organic binding manipulation of both traditional microscopic confocal system, which is to solve the three-dimensional measurement speed, resolution and measurement range effective way three conflicting measurements. 目前,采用微透镜阵列改进共焦扫描性能的方法主要有两种形式, 一种是以微透镜阵列代替传统共焦显微镜的物镜, 一种是利用微透镜阵列形成点阵列照明光源,代替单点照明光源。 Currently, a microlens array using an improved method of confocal scanning performance mainly in two forms, one is a microlens array instead of a conventional confocal microscope objective lens, a microlens array is the use of an illumination source point array is formed, instead of a single point lighting. 前者因微透镜阵列的焦距较短,虽精度较高但测量范围相对较小;而后者由于采用阵列光束点照明,每束光偏离轴线的位置不同,对应采样点不仅产生一定的像散,而且还会偏离理想像点,因而降低了系统的测量精度。 The former because of the shorter focal length of the microlens array, although high precision but the measurement range is relatively small; the latter due to the use of spot illumination beam array, each beam of light at different positions off-axis, corresponding to a certain sampling points not only produces astigmatism, and It will deviate from the ideal image point, thereby lowering the measurement accuracy of the system.

发明内容本发明是针对上迷现有技术中存在的问题,将一种二元微光学元件引入共焦显微技术中,提出一种新型的光学列阵共焦超分辨显微三维探测方法及装置, 并通过二元光瞳滤波器,提高列阵照明情况下系统三维测量精度,解决测量速度、测量范围和测量精度三者之间的矛盾。 The present invention is directed to the above-problems in the prior art, the micro-optical elements into one dibasic confocal microscopy technique, a novel array of optical super-resolution confocal microscopy apparatus and method for detecting a three-dimensional, and by two yuan pupil filter, three-dimensional measurement system to improve the accuracy in lighting array, the measurement speed to solve the contradiction between accuracy of the measurement range and three. 为达到上述目的,本发明提供一种光学阵列共焦超分辨显微三维探测装置, 所述装置包括位于光学系统的中心光轴上依次排列的点光源,准直透镜,微透镜阵列及针孔阵列,扩束透镜、偏振分光镜,1/4波片,二元光瞳滤波器,物镜,载物台,收集透镜,探测针孔阵列及面阵CCD;点光源通过准直透镜形成平行光入射到微透镜阵列上,再经针孔阵列在扩束透镜焦平面上形成点光源阵列,经偏振分光镜及1/4波片,形成偏振光,再经二元光瞳滤波器和物镜照射到被测物表面,经被测物表面反射,按原光路返回,反射光经偏振分光镜后,被全部反射到收集透镜上,经针孔阵列最后到达面阵CCD上,由面阵CCD对信号进行釆集。 To achieve the above object, the present invention provides an optical array confocal microscopy three-dimensional super-resolution detection means, said means comprising a point light source located on the central optical axis of the optical system arranged in order, a collimator lens, a microlens array and a pinhole array, beam expander lens, a polarization beam splitter, 1/4-wave plate binary pupil filter, an objective lens, a stage, a collection lens, a pinhole array probe surface and the CCD array; a point light source is formed parallel light by the collimator lens is incident on the microlens array, a pinhole array is formed and then the point light source array at the focal plane of the beam expander lens, polarized beam splitter and a quarter-wave plate, the polarization is formed, and then the objective lens pupil filter is irradiated by two yuan surface to be measured, the measured object surface reflection, returns to the original light path, the reflected light after polarization beam splitter, is totally reflected on the collection lens, the pinhole array and finally to the area CCD, a CCD area array on Bian signal set. 本发明还提供一种使用一个探测器探测和测量三维表面和三维结构的方法,,所述探测器包括光学探头、载物台、面阵CCD和计算机,光学测头包括点光源装置,准直透镜,微透镜阵列及针孔阵列,扩束透镜、偏振分光镜,1/4 波片,二元光瞳滤波器,物镜,收集透镜,探测针孔阵列;所述方法包括下列步骤:利用微透镜阵列产生探测光束阵列,以实现对被测样品的多光束并行探通过偏振分光镜将探测光束转换为偏振光; The present invention also provides a use of a detector and the detection and measurement of three-dimensional surface of the three-dimensional structure ,, said method comprises an optical detector probe, a stage, and a computer array CCD, the optical probe means comprises a point light source, a collimator lens, a micro lens array and the pinhole array, beam expander lens, a polarization beam splitter, 1/4-wave plate binary pupil filter, objective lens, collecting lens, a detection pinhole array; said method comprising the steps of: using a micro generating a probe beam array lens array, in order to achieve multi-beam test probe sample in parallel by the polarizing beam splitter probe beam into polarized light;

利用二元光瞳滤波器对光束阵列各路光束进行调制,改变探测空间的光强分布特桂,以卖现三维超分辨测量;在光轴方向上对被测物进行轴向扫描探测;反射光经物镜、二元光瞳滤波器到达l/4波片,偏振方向改变90。 Using two yuan pupil filter array brightest light beam modulated light beam, changing a light intensity distribution characteristics detection space Gui, is now sold to a three-dimensional super-resolution measurement; the measured probe was scanned in the axial direction of the optical axis; reflection light via the objective lens binary pupil filter reaches l / 4 wave plate 90 changes the polarization direction. ,经偏振分光镜反射到集光透镜,最后到达面阵CCD表面;在计算机中依据轴向光强分布曲线和各横向探测位置,得出被测样品三维表面形貌测量结果。 , Reflected by the polarizing beam splitter to the light collecting lens, and finally reaches the surface of the area CCD; axially in the computer based on the light intensity distribution curve and the respective lateral position detection, the test specimen obtained three-dimensional surface topography measurements. 进一步的,通过计算机仿真优化二元光瞳滤波器参数,提高共焦阵列显微镜的三维分辨能力。 Further, by computer simulation by binary pupil filter parameter, improve the resolution of a three-dimensional array of confocal microscopy. 进一步的,所述的扫描方式是光学测头进行主光轴方向扫描,载物工作台作横向二维微位移移动。 Further, the scanning method is an optical measuring head main scanning direction of the optical axis, stage table laterally move the two-dimensional micro-displacement. 进一步的,所述的扫描方式是载物工作台作三维微位移移动,光学测头不动。 Further, the scanning method is a stage for loading the three-dimensional micro-displacement, and the optical probe does not move. 本发明利用微光学元件阵列实现多光路同步测量,有效提高共焦显微测量速度;引入新型二元光瞳滤波器,有效提高各光路的三维分辨能力,保证了测量精度,弥补了由点光源离轴照明引起的精度损失;又由于加入了二元光瞳滤波器,可极大地锐化探测空间像点的光强响应曲线,从而縮小共焦阵列的间距,有效提高了光学系统的探测效率;且该装置结构简单,各光路共用同一显微物镜和同一光瞳滤波器,其制作成本相对较低。 The present invention utilizes a micro optical element array of multi-beam path measured simultaneously improve confocal microscopy measurement speed; incorporated New Binary pupil filter, effectively improve three-dimensional resolution of the respective optical path, to ensure measurement accuracy, compensate for off-axis from the point source loss of accuracy due to the illumination; and due to the addition of binary pupil filter, the light intensity can be greatly sharpened probe response curves aerial image point, thereby reducing the confocal array pitch, improve the detection efficiency of the optical system; and the simple structure and share the same optical paths and the same microscope objective pupil filter, its production cost is relatively low. 本发明提供的三维超分辨共焦阵列扫描显微探测方法及装置,可实现多光束并行共焦探测,且具有很高的三维超分辨能力。 The present invention provides a three-dimensional super-resolution array of confocal scanning microscopy detection method and apparatus, the multi-beam parallel confocal detection can be achieved, and a high three-dimensional super-resolution. 利用微透镜阵列及针孔阵列以实现多路并行快速扫描测量,共用同一显微物镜,并加入二元光瞳滤波器, 使各光路均具有三维超分辨探测能力。 A pinhole array and a microlens array for multi-channel parallel fast sweep measurement, share the same microscope objective, and adding a dihydric pupil filter, the respective optical paths each having a three-dimensional super-resolution sensing capability. 本发明是将阵列共焦技术与光学超分辨技术有机的结合,可实现共焦阵列超近间距密集探测,可有效提高其三维测量的效率,特别适用于大规模集成电路的线宽、台阶测量,以及微结构光学元件的三维表面和微机械三维结构的探测和测量,本发明具有大范围、高精度、快速三维测量的优点。 The present invention is an array of confocal technique and the super-resolution optical organic bonding technique, may be implemented over the array of closely spaced confocal detection dense, which can improve the efficiency of the three-dimensional measurement, especially for large scale integrated circuit linewidth, step measurement and the detection and measurement of three-dimensional surfaces and three-dimensional structures micromachined micro-optical element, the advantages of the present invention has a wide range, high-precision, rapid three-dimensional measurement. 本发明的三维超分辨共焦阵列扫描显微探测方法及装置的特点及原理将在其具体实施方式中结合附图作详细说明。 A three-dimensional super-resolution characteristic of the present invention and the principle of confocal scanning microscopy array detection method and apparatus will be described in detail in conjunction with the accompanying drawings and specific embodiments. 附图说明图l光学列阵共焦超分辨三维测量装置结构示意图。 FIG. L array confocal optical super-resolution three-dimensional structural schematic view of the measurement apparatus. 图2三维超分辨光瞳滤波器。 FIG super-resolution 2-dimensional pupil filter. 图3三维超分辨光瞳滤波器响应特性曲线。 FIG 3 dimensional super-resolution optical pupil filter response curve. 图4未使用超分辨光瞳滤波器时各路轴向光强分布特性曲线。 FIG 4 axially brightest light intensity distribution characteristic curve at the super-resolution optical pupil filter is not used. 图5未使用超分辨光瞳滤波器时各路径向光强分布特性曲线。 Figure 5 each path pupil super-resolution filter is not used to the light intensity distribution characteristic curve. 图6光学列阵任一路在不同光瞳参数下的径向光强分布响应曲线。 Radially all the way under different parameters pupil of the optical array 6 any light intensity distribution response curves. 图7光学列阵任一路在不同光瞳参数下的轴向光强分布响应曲线。 7 along the optical axis at any array different pupil intensity distribution parameter response curves. 具体实施方式本实施例三维超分辨共焦阵列扫描显微探测装置的结构如图1所示,该装置包括:激光器l、准直透镜2、微透镜及针孔阵列3、透镜4、偏振分光镜5、 1/4波片6、 二元光瞳滤波器7、显微物镜8、被测物9、微位移工作台10、聚 DETAILED structure of the present embodiment by way of example three-dimensional super-resolution array of confocal scanning microscopy detection device shown in Figure 1, the apparatus comprising: a laser L, a collimator lens 2, a pinhole array and a microlens 3, a lens 4, a polarization beam splitter mirror 5, the quarter-wave plate 6 binary pupil filter 7, the microscope objective 8, the measured object 9, the micro-displacement stage 10, poly

光镜11、探测针孔阵列12、面阵CCD13、微位移驱动控制系统14、计算机15 和徼位移电感传感器16。 Optical mirror 11, a pinhole array probe 12, an area array CCD 13, the micro-displacement drive control system 14, a computer 15 and inductive displacement sensors 16 go around. 本实施例三维超分辨共焦阵列扫描显微探测方法及装置的主要器件型号及参数如下:本实施例中测量物镜8选用40X0. 65和60X0. 85的平场消色差显微物镜。 This embodiment models the main device D superresolution scanning confocal microscopy array detection apparatus and method and parameters are as follows: Example 8 selected measurement objective achromatic microscope objective 40X0 65 and 60X0 85 of the present embodiment. 微透镜阵列为:40X40单元,单元间距为150um,焦距为4mm,量化台阶数为8。 The microlens array is: 40X40 unit cell pitch of 150um, focal length of 4mm, the number of quantization steps is eight. CCD面阵12为丹麦JAI公司的CV-A1摄像头,面阵单元1392X 1040个单元,单元尺寸4. 65um2。 CCD plane 12 Danish company JAI CV-A1 camera, area array unit 1392X 1040 cells, cell size 4. 65um2. 微位移工作台17的驱动器采用美国NEWFOCUS公司生产的大范围、高稳定性Picomotor (微位移驱动器)驱动器,配以缩小比例5: 1的柔性铰链工作台组成的纳米级的微位移进给装置。 Micro-displacement stage driver 17 employs a wide range of U.S. NEWFOCUS produced, high stability Picomotor (MICROPOSITIONER) drive, together with the reduction ratio of 5: micro-displacement nanoscale flexible hinge worktable 1 consisting of a feed device. Z向定位工作台的位移测量由高精度微位移电感传感器16完成,从而实现2ran高精度定位。 Z displacement measurement performed by the high-precision positioning stage micro-displacement inductive sensors 16, thereby realizing high-precision positioning 2ran. 二元光瞳滤波器7采用振幅型可变环形滤波器,见附图2、 3。 7 uses two yuan pupil filter type variable amplitude loop filter, see Figure 2, 3. 本发明工作原理如下所述:来自激光器1的光经准直透镜2变成为平行光束照射到微透镜及针孔阵列3,微透镜焦点位置处于透镜4焦平面上,不同位置点光源经透镜4形成不同倾角的倾斜平行光,经所述光瞳滤波器7和显微物镜8, 到达被测物表面。 The present invention works as follows: the light from the laser via the collimator lens 2 into a parallel light beam is irradiated to the pinhole array and the micro lens 3, the focal position of the microlens in the focal plane of the lens 4, the point light source by the different positions of the lens forming parallel light 4 different tilt angle by the pupil filter 7 and the microscope objective 8, reaches the target surface. 计算机15与微位移驱动控制装置14、高精度微位移电感传感器16组成闭环数字控制系统,精确控制微位移工作台进行Z向扫描移动。 The computer 15 and the drive control device 14 micro-displacement, high-precision micro-displacement sensor 16 is composed of an inductor loop digital control system, precise control of the micro displacement stage scanning movement in the Z direction. 当被探测物9表面在物镜焦平面时,面阵CCD13接受的光强最大,当离焦时光强减小,通过光强特性曲线(即轴向光强与离焦量的关系曲线)线性区段可获得被测表面的离焦距离,与微位移传感器16测量值相结合,由此通过Z向扫描,并 When the maximum light intensity, when the intensity is reduced from Jiaoshi Guang, the light intensity characteristic curve (i.e., axial light intensity versus the amount of defocus) of the linear region was detected at the surface 9 of the objective lens focal plane array CCD13 acceptable surface defocus obtained from the measured period, in combination with surface micro displacement sensor 16 measurements, whereby the Z to the scan, and

经过计算机的数据处理,可将面阵CCD13获得的被测面三维光学信息转换成数字信息,从而获得被测面的三维尺寸。 After the data processing computer may convert the three-dimensional test surface area array CCD13 optical information into digital information obtained so as to obtain three-dimensional size of the test surface. 本发明测量原理是基于共焦显微成像原理,是利用物镜和聚光透镜共焦点,点光源和点探测器处于彼此共轭位置。 The present invention is based on the principle of measuring the imaging principle of confocal microscopy, the objective lens and the condenser lens is a confocal point light source and a point detector is in a position conjugate to each other. 实际上反射式共焦系统的物镜和聚光透镜是同一透镜,因而在探测空间上,其光强分布可表示为<formula>formula see original document page 9</formula>式中D(V)是探测器的强度灵敏度,若取常值,贝U:<formula>formula see original document page 9</formula>(1)与普通显微镜对比可知,它的横向分辨率是相同孔焦比的普通显微镜的1.4倍,并同时具有轴向分辨能力。 Indeed reflective confocal objective lens and the condenser lens are the same, and thus in the detection space, the light intensity distribution may represent a document page 9 </ formula> where D (V) of <formula> formula see original is strength sensitivity of the detector, if we take a constant value, Tony U: <formula> formula see original document page 9 </ formula> (1) comparison with ordinary microscope, whereupon, lateral resolution which is the same hole coke ordinary microscope 1.4 times, while having an axial resolution. 进一步,本发明利用微透镜阵列及针孔阵列,将原有的单一点光源拓展为点光源阵列,可形成多光束并行同步采样。 Further, the present invention utilizes a microlens array and the pinhole array, the original single point light source is extended to the point light source array, a multi-beam may be formed parallel synchronous sampling. 其成像空间的光场分布特性与单点共焦系统有所不同,其轴向、径向光场分布分别为:<formula>formula see original document page 9</formula>(3)可得探测空间轴向、径向的光强分布:<formula>formula see original document page 9</formula> 式中引入等效光瞳函数Peff (P ),该函数与点光源距光轴距离有关,同时与超分辨二元光曈滤波器的特性有关。 Characteristic optical field distribution system with a single point confocal imaging space which is different, the axial and radial distribution of the light field are: <formula> formula see original document page 9 </ formula> (3) detecting the space available axial, radial light intensity distribution: <formula> formula see original document page 9 </ formula> formula introduced equivalent pupil function Peff (P), and the function related to the distance from the optical axis point source, and at the same time super two yuan resolution characteristics of the optical filter tong. 对于振幅型二元光瞳滤波器,就是通过改变滤波器的通光带的位置和尺寸, 以改变探测空间的积分区域,见(2)、 (3)式,从而改变探测空间的光强分布。 Binary the amplitude pupil filter, it is by changing the position and the size of the filter pass band of light to change the integration region detection space, see (2), (3), thereby changing the light intensity distribution of the detection space . 如附图2,振幅二元光瞳滤波器其可变参数:e 、 o为环半径可调系数,0. 5< e<l, 0<。 As figures 2, two yuan pupil filter whose amplitude variable parameters:. E, o factor of the adjustable radius of the ring, 0 5 <e <l, 0 <. <1, c为中心区漏光系数,本具体实施例中二元光瞳滤波器可用如下函数表示:<formula>formula see original document page 10</formula>根据超分辨理论,1)半极值宽(HWHM)比G; 2)焦点强度Strehl比S: 3) 主瓣强度与旁瓣强度比M[7] [8] [9]。 <1, c leakage coefficients for the central region, the present embodiment Binary pupil filter can be represented by the following function: <formula> formula see original document page 10 </ formula> The theory of super-resolution, 1) half width extremum (HWHM) than G; 2) the strength of the focus Strehl ratio S: 3) and the intensity of the main lobe side lobe intensity ratio M [7] [8] [9]. 据此利用轴向和径向两个超分辨因子GT、 GA建立目标函数G3D-GA2GT。 Thus the use of axial and radial two super-resolution factor GT, GA objective function G3D-GA2GT. 由此经过计算机仿真计算,通过改变光瞳滤波器可调参数,计算各光路目标函数G3D,并根据仿真曲线获得光瞳滤波器的优化参数,具体实施例中选取光瞳滤波器参数选取(0=0.56, c=0.6, e=0.82。其超分辨效果见附图6、附图7。尽管采用共焦阵列方法提高了测量的速度,但由于离轴点光源照明的影响, 使得系统的三维分辨力有所下降,为此在系统中引入二元光瞳滤波器,并根据超分辨评价函数,对光瞳滤波器的参数进行了优化,有效地压縮轴向和径向两个方向的半高半宽比(HWMH),同时由共焦特性的作用,可有效的抑制旁瓣,提高系统的三维分辨能力。在探测空间依据其强度分布曲线,在其线性段内,可测量出被测样品的表面形貌和三维微观尺寸。以上结合附图对本发明的具体卖施方式和测试效果作了说明,但这些说明不能被理解为限制了本发明的范围 Whereby through computer simulation, by varying the adjustable pupil filter parameter, calculated for each optical path of the objective function G3D, and obtain an optimized pupil filter parameter according to the simulation curve, select the pupil filter parameter selection (0 embodiments = 0.56, c = 0.6, e = 0.82. which the super-resolution effect see Figure 6, although the drawings confocal array 7. the method of improving the measurement speed, but because of the off-axis point source of illumination, such that a three-dimensional system decreased resolution, for the introduction of two yuan in the system pupil filter, and optimized for the super-resolution evaluation function, the pupil filter parameter, effectively compressing the axial and radial directions of the two half width half maximum ratio (HWMH), while the characteristic of a focus by the action, can effectively suppress sidelobe, three-dimensional resolution of the system is improved. in the detection space according to its intensity distribution curve in its linear segment, is measurable surface topography test samples and three-dimensional microscopic size above in conjunction with the accompanying drawings of embodiment of the present invention is administered to sell and test results has been described, but these descriptions should not be construed as limiting the scope of the invention 本发明的保护范围由随附的权利要求书限定,任何在本发明权利要求基础上进行的改动都是本发明的保护范围。 The scope of the present invention by the appended claims is defined, any changes performed on the basis of the claimed invention is the scope of the present invention.

Claims (7)

1. 一种三维超分辨共焦阵列扫描显微探测装置,包括在中心光轴上依次排列的点光源,准直透镜,微透镜阵列及针孔阵列,扩束透镜、偏振分光镜,1/4波片,显微物镜,收集透镜,探测针孔阵列及面阵CCD,点光源通过准直透镜形成平行光入射到微透镜阵列上,再经针孔阵列在扩束透镜焦平面上形成点光源阵列,经偏振分光镜及1/4波片,形成偏振光,再经显微物镜照射到被测物表面;入射光经被测物表面反射,按原光路返回,反射光经偏振分光镜后,被全部反射到收集透镜上,经探测针孔阵列最后到达面阵CCD上,由面阵CCD对信号进行采集;其特征在于:还包括一个二元光瞳滤波器,所述二元光瞳滤波器放置于1/4玻片与显微物镜之间;所述偏振光经所述二元光瞳滤波器后被调制,调制后的光再经显微物镜照射到被测物表面。 1. A three-dimensional super-resolution array of confocal scanning microscopy detection device comprising a point light source on the central optical axis sequentially arranged, a collimator lens, a microlens array and the pinhole array, beam expander lens, a polarization beam splitter, 1 / 4 wavelength plate, microscope objective collection lens, a pinhole array probe surface and the CCD array, the point light source is formed by a parallel light is incident on the collimator lens to the microlens array, and then form dots on the focal plane of the beam expander through a pinhole lens array array of light sources, polarized beam splitter and a quarter-wave plate, the polarized light is formed, and then the microscope objective irradiated target surface; the surface reflection of incident light by the measured object, returns to the original light path, the light reflected by the polarization beam splitter after being totally reflected to the collection lens, dried and finally to the detection pinhole array CCD array, the signals collected by the CCD area array; characterized by: further including a binary pupil filter, the dihydric light pupil filter is placed between the slide and the microscope objective 1/4; the polarization through the dihydric pupil filter after modulation, the modulated light by the microscope objective and then irradiated to the target surface.
2. 根据权利要求1所述的三维超分辨共焦阵列扫描显微探测装置,其特征在于:所述的二元光瞳滤波器为振幅型、位相型或混合型二元光学器件。 According to claim 1, said three-dimensional super-resolution array of confocal scanning microscopy detection device, wherein: the binary type pupil filter amplitude, phase or mixed binary optic.
3. 根据权利要求1所述的三维超分辨共焦阵列扫描显微探测装置,其特征在于:所述的微透镜阵列是连续浮雕或多台阶微透镜阵列。 According to claim 1, said three-dimensional super-resolution array of confocal scanning microscopy detection device, characterized in that: said microlens array is stepped or continuous relief microlens array.
4. 一种使用一个探测器探测和测量三维表面和三维结构的方法,所述探测器包括点光源装置,准直透镜,微透镜阵列及针孔阵列,扩束透镜、偏振分光镜,1/4波片,二元光瞳滤波器,显微物镜,收集透镜,探测针孔阵列、 面阵CCD和计算机,所述方法包括下列步骤-1)利用微透镜阵列产生探测光束阵列,以实现对被测样品的多光束并行探测和测量;2) 通过偏振分光镜将探测光束转换为偏振光;3) 利用二元光瞳滤波器对光束阵列各路光束进行调制,改变探测空间的光强分布特性,以实现三维超分辨测量;4) 在光轴方向上对被测物进行轴向扫描探测;反射光经物镜、二元光瞳滤波器到达1/4波片,偏振方向改变90° ,经偏振分光镜反射到收集透镜, 最后到达采样探测器表面;5) 在计算机中依据轴向光强分布和径向光强分布曲线,得出被测样品三维表面形貌的 4. A method of using a detector to detect the measurement surface and three-dimensional and three-dimensional structure, said detector means comprising a point light source, a collimator lens, a microlens array and the pinhole array, beam expander lens, a polarization beam splitter, 1 / 4 wave plate, di- pupil filters, microscope objective collection lens, a pinhole array probe, area array CCD and a computer, said method comprising the steps of -1) generating an array of probe beams microlens array, in order to achieve parallel multi-beam detection and measurement of test sample; and 2) the probe beam by the polarizing beam splitter is converted into polarized light; 3) each group of array of beams using a light beam modulated two yuan pupil filter, change the spatial intensity distribution of the light detection properties to achieve the super-resolution three-dimensional measurement; 4) the measured probe was scanned in the axial direction of the optical axis; the reflected light via the objective lens binary pupil filter reaches the quarter-wave plate, the polarization direction is changed 90 °, reflected by the polarization beam splitter to the collection lens, and finally reaches the surface of the sampling probe; 5) in the computer based on the axial and radial light intensity distribution of the light intensity distribution curve obtained three-dimensional surface topography of the test specimen 测量结果。 Measurement results.
5. 根据权利要求4所述的方法,其中,通过计算机仿真得出优化的二元光瞳滤波器参数,提高共焦阵列显微镜的三维分辨能力。 The method according to claim 4, wherein the derived binary pupil filter optimization parameters by computer simulation, to improve the resolution of a three-dimensional array of confocal microscopy.
6. 根据权利要求4所述的方法,其中,所述的扫描方式是由光学测头进行主光轴方向扫描,载物工作台静止。 6. The method according to claim 4, wherein said scanning is carried out by the main optical axis direction of the optical scanning probe, a stationary stage table.
7. 根据权利要求4所述的方法,其中,所述的扫描方式是由载物工作台作主光轴方向等间距移动,光学测头不动。 7. The method according to claim 4, wherein said scanning stage table is a main optical axis direction at equal intervals, and the optical probe does not move.
CN 200510007218 2005-02-04 2005-02-04 Three-dimensional super-resolution confocal array scanning and micro-detecting method and device CN100398980C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200510007218 CN100398980C (en) 2005-02-04 2005-02-04 Three-dimensional super-resolution confocal array scanning and micro-detecting method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200510007218 CN100398980C (en) 2005-02-04 2005-02-04 Three-dimensional super-resolution confocal array scanning and micro-detecting method and device

Publications (2)

Publication Number Publication Date
CN1632448A CN1632448A (en) 2005-06-29
CN100398980C true CN100398980C (en) 2008-07-02

Family

ID=34853086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200510007218 CN100398980C (en) 2005-02-04 2005-02-04 Three-dimensional super-resolution confocal array scanning and micro-detecting method and device

Country Status (1)

Country Link
CN (1) CN100398980C (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1323309C (en) * 2005-11-21 2007-06-27 哈尔滨工业大学 Reflection multilight bean confocal interference microscope having several tens nanometer lateral discriminability
CN100485313C (en) 2007-03-30 2009-05-06 哈尔滨工业大学 Photo-electric autocollimation microscopic measuring instrument for three-dimensional detection and position of space object
CN101799273B (en) * 2010-03-29 2011-08-24 华中科技大学 Nanoscale size structure measuring method and device
CN102692702A (en) * 2011-03-23 2012-09-26 中国科学院生物物理研究所 Confocal microscope using laser interference fields
CN103278088A (en) * 2013-06-09 2013-09-04 哈尔滨工业大学 Symmetrical out-focus type axial high-resolution confocal microimaging device
CN103411561B (en) * 2013-08-15 2015-12-09 哈尔滨工业大学 Microstructure imaging methods based on angular spectrum scanning illumination
CN103411554B (en) * 2013-08-15 2015-11-18 哈尔滨工业大学 Quantum dot based on quantum effects follower pinhole microstructure scanning angular spectrum measuring apparatus
CN103438825B (en) * 2013-08-15 2015-11-04 哈尔滨工业大学 One kind of angular spectrum illumination array scanning confocal annular microstructure measurement apparatus and method
CN103411556B (en) * 2013-08-15 2015-12-09 哈尔滨工业大学 Measuring apparatus and method of a microstructure annular illumination angular spectrum based on linear quasi confocal
CN103411938B (en) * 2013-08-15 2015-07-22 哈尔滨工业大学 Angular spectrum scanning and measuring apparatus for microstructure based on anti-Stokes fluorescent servo-actuated pin holes
CN103411560B (en) * 2013-08-15 2015-11-11 哈尔滨工业大学 Scanning angular spectrum fluorescent lighting follower pinhole detection apparatus and method for measuring the microstructure
CN105277131A (en) * 2014-05-26 2016-01-27 上海微电子装备有限公司 Measurement device and measurement method of three-dimensional pore structure
CN104166242B (en) * 2014-08-27 2017-11-17 深圳市华星光电技术有限公司 Three-dimensional image display apparatus and a three-dimensional image display
CN107003118A (en) * 2014-12-02 2017-08-01 三菱电机株式会社 Displacement sensor, displacement detection device, and displacement detection method
CN104714392B (en) 2015-03-27 2017-06-27 北京京东方茶谷电子有限公司 3d holographic recording apparatus, reproducing apparatus, a display device
CN105319195B (en) * 2015-11-30 2019-02-05 哈尔滨工业大学 A kind of super-resolution structure detection array confocal fluorescent imaging device and its imaging method
CN105547144B (en) * 2015-11-30 2019-02-05 哈尔滨工业大学 A kind of confocal coherent imaging device of super-resolution structure detection array and its imaging method
CN105758799B (en) * 2015-11-30 2019-03-19 哈尔滨工业大学 A kind of super-resolution array virtual architecture optical illumination imaging device and its imaging method
CN105865347B (en) * 2016-05-12 2018-10-26 哈尔滨工业大学 Shifting focus type pupil division confocal microscopy method and apparatus for difference measurement
CN105865339B (en) * 2016-05-12 2018-06-05 哈尔滨工业大学 Formula pupil division phase-shifting interferometry displacement measurement apparatus Confocal
CN108007382B (en) * 2017-11-30 2019-06-11 哈尔滨工业大学 Surface shape measurement device and method based on Structured Illumination
CN108020173B (en) * 2017-11-30 2019-06-11 哈尔滨工业大学 Surface shape measurement device and method based on Structured Illumination
CN108020174B (en) * 2017-11-30 2019-06-11 哈尔滨工业大学 Surface shape measurement device and method based on Structured Illumination
CN107727003B (en) * 2017-11-30 2019-06-18 哈尔滨工业大学 Surface shape measurement device and method based on Structured Illumination

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6352502B1 (en) 1998-12-03 2002-03-05 Lightouch Medical, Inc. Methods for obtaining enhanced spectroscopic information from living tissue, noninvasive assessment of skin condition and detection of skin abnormalities
CN1527026A (en) 2004-02-27 2004-09-08 哈尔滨工业大学 Differential confocal scanning detection method with high spatial resolution

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6352502B1 (en) 1998-12-03 2002-03-05 Lightouch Medical, Inc. Methods for obtaining enhanced spectroscopic information from living tissue, noninvasive assessment of skin condition and detection of skin abnormalities
CN1527026A (en) 2004-02-27 2004-09-08 哈尔滨工业大学 Differential confocal scanning detection method with high spatial resolution

Also Published As

Publication number Publication date
CN1632448A (en) 2005-06-29

Similar Documents

Publication Publication Date Title
Wyant White light interferometry
US7477401B2 (en) Trench measurement system employing a chromatic confocal height sensor and a microscope
US7738113B1 (en) Wafer measurement system and apparatus
US7933010B2 (en) Depth of field extension for optical tomography
US7982950B2 (en) Measuring system for structures on a substrate for semiconductor manufacture
US6798511B1 (en) Imaging ellipsometry
KR101394058B1 (en) Measuring Overlay And Profile Asymmetry Using Symmetric And Anti-systemtric Signals
CN103091299B (en) Laser differential confocal map microimaging imaging method and device
JP3970998B2 (en) With electric scanning table confocal microscope
US6909509B2 (en) Optical surface profiling systems
US6731383B2 (en) Confocal 3D inspection system and process
CN101238348B (en) Device and method for measurement of surfaces
CN1967185B (en) Lens evaluation device
RU2567295C2 (en) Sensor for microscopy
WO2002023248A1 (en) Confocal point microscope and height measuring method using this
CN1997871B (en) Device and method for inspecting the internal surfaces of holes
CN100401012C (en) Device for measuring in three dimensions a topographical shape of an object
JP2000097776A (en) Micro polarimeter and elliptic polarimeter
US8649024B2 (en) Non-contact surface characterization using modulated illumination
US6844935B2 (en) Multi-function opto-electronic detection apparatus
CN101852594B (en) Super-resolution laser polarization differential confocal imaging method and device
CN102147240B (en) Method and device for measuring multiple element parameters in differential con-focus interference manner
US7483147B2 (en) Apparatus and method for measuring thickness and profile of transparent thin film using white-light interferometer
US6877365B2 (en) Scanning probe microscope and specimen observation method and semiconductor device manufacturing method using said scanning probe microscope
JP2006518854A (en) Interference confocal microscopy incorporating pinhole array beam spin liter.

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
TR01 Transfer of patent right