CN100392488C - 液晶取向薄膜及其制造方法、光学薄膜和图像显示装置 - Google Patents

液晶取向薄膜及其制造方法、光学薄膜和图像显示装置 Download PDF

Info

Publication number
CN100392488C
CN100392488C CNB2005100881289A CN200510088128A CN100392488C CN 100392488 C CN100392488 C CN 100392488C CN B2005100881289 A CNB2005100881289 A CN B2005100881289A CN 200510088128 A CN200510088128 A CN 200510088128A CN 100392488 C CN100392488 C CN 100392488C
Authority
CN
China
Prior art keywords
liquid crystal
film
surface protective
protective plate
crystal aligning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005100881289A
Other languages
English (en)
Other versions
CN1734321A (zh
Inventor
川本育郎
上条卓史
米泽秀行
梅本清司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Publication of CN1734321A publication Critical patent/CN1734321A/zh
Application granted granted Critical
Publication of CN100392488C publication Critical patent/CN100392488C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

本发明提供一种液晶取向薄膜的制造方法,其特征在于,包括:通过摩擦对透明基材薄膜实施取向处理的工序(1),将剥离力为0.5N/50mm以下的表面保护片贴合于所述取向处理面的工序(2),剥离所述表面保护片之后在所述取向处理面上涂敷含有液晶单体和/或液晶聚合物的液晶材料的工序(3),使所述液晶材料取向之后进行固定化的工序(4)。由此,本发明提供一种在通过摩擦进行取向处理的基材薄膜上能够使液晶材料良好取向的液晶取向薄膜的制造方法。

Description

液晶取向薄膜及其制造方法、光学薄膜和图像显示装置
技术领域
本发明涉及一种液晶取向薄膜的制造方法。另外,本发明还涉及通过该制造方法得到的液晶取向薄膜、至少使用1张该液晶取向薄膜的光学薄膜。可以把本发明的液晶取向薄膜单独或者与其它薄膜组合作为相位差板、视角补偿薄膜、光学补偿薄膜、椭圆偏振光薄膜等光学薄膜使用。进而,本发明还涉及使用了上述光学薄膜的液晶显示装置、电致EL显示装置、PDP等图像显示装置。
背景技术
近年来,在光学领域以及光电子学等领域中,对光的相位进行控制的相位差板成为重要的光学元件之一。另外,通过在偏振片上贴合相位差板,可以得到椭圆偏振片,根据相位差板的相位差值、波长分散等对各种构成进行了研究。
过去,相位差板是通过单向拉伸或双向拉伸高分子薄膜而制作的。作为高分子薄膜的材料,例如可以举出使用聚碳酸酯树脂的材料,其波长分散大,越靠近短波长侧相位差越高。与之相对,目前使用的相位差板使用了波长分散小的降冰片烯系树脂或者越靠近长波长侧相位差越高的改性聚碳酸酯树脂。另外,这些相位差板正被以各种角度层叠使用。但是,与聚碳酸酯树脂相比,降冰片烯系树脂和改性聚碳酸酯的成本更高。它们的层叠物则进一步使成本提高。另外,这些层叠物需要以各种轴角度打孔,以单板贴合,所以也会花费工序成本或时间,而且也成为质量下降的原因。
另一方面,作为相位差板,已知有在取向基材上形成的液晶取向层。该液晶取向层是通过在取向基材上涂敷液晶单体或液晶聚合物等液晶材料并使其取向一致后进行固化的方法而得到的(参照专利文献1)。液晶材料有棒状向列相型液晶或圆盘状液晶等,与使用了拉伸薄膜的相位差板一样,根据波长分散特性而有各种种类。作为取向基材,可以举出拉伸高分子薄膜或摩擦取向膜。
当在拉伸高分子薄膜上使液晶材料取向时,要求拉伸高分子薄膜的轴精度。但是,通过以往的纵向拉伸和横向拉伸的方法制造的拉伸高分子薄膜,不能稳定且便宜地得到宽度方向±1°以上的精度的轴精度。由此,拉伸高分子薄膜有时用作不需要轴精度的C板(当设平面的折射率为nx、ny,厚度方向的折射率为nz时,或者)或胆甾醇型液晶的取向基材,但是很难用于需要轴精度的A板(
Figure C20051008812800043
或者
Figure C20051008812800044
Figure C20051008812800045
)的生产中。另外,摩擦取向膜的表面在涂敷液晶材料之前如果被污染,则液晶材料的取向性降低,难以得到取向性良好的液晶取向层。例如,在对基材薄膜进行摩擦处理之后,当在涂敷液晶材料的工序之前使摩擦取向膜的表面与辊等接触时,则液晶材料的取向性降低。因此,在使用了摩擦取向膜的液晶取向薄膜的制造方法中,很难采用通过卷对卷(roll to roll)的连续生产方式。
专利文献1:特许第2784680号说明书
发明内容
本发明的目的在于,提供一种在通过摩擦进行取向处理的基材薄膜上能够使液晶材料良好地取向的液晶取向薄膜的制造方法。
另外,本发明的目的还在于,提供通过该制造方法得到的液晶取向薄膜、使用了该液晶取向薄膜的光学薄膜、使用了该光学薄膜的图像显示装置。
本发明人等为了达到上述目的进行了潜心研究,结果发现通过下面所示的液晶取向薄膜的制造方法可以解决上述课题,从而完成了本发明。
即,本发明涉及一种液晶取向薄膜的制造方法,其特征在于,包括:通过摩擦对透明基材薄膜实施取向处理的工序(1)、将剥离力为0.5N/50mm以下的表面保护片贴合于所述取向处理面上的工序(2)、剥离所述表面保护片之后在所述取向处理面上涂敷含有液晶单体和/或液晶聚合物的液晶材料的工序(3)、使所述液晶材料取向之后固定化的工序(4)。
在上述本发明的液晶取向薄膜的制造方法中,在摩擦取向处理工序(1)之后到液晶材料涂敷工序(3)之间,具有将表面保护片贴合于被摩擦处理的取向处理面的贴合工序(2),被摩擦处理的取向处理面在即将被涂敷液晶材料之前不会与其它物体接触。因而,所述取向处理面可以抑制由污染而引起的取向性降低,维持良好的取向性,并可以在此情况下使液晶材料取向。因此,可以不使液晶材料的取向性降低而通过卷对卷连续生产相对薄膜的长轴方向具有任意滞相轴的液晶取向薄膜。由此,能够便宜地制造薄的甚至可以与大型尺寸相对应的并能在相位差板等中利用的液晶取向薄膜。本发明的液晶取向薄膜的制造方法可以用于各种相位差板的制造方法,但尤其优选用于需要轴精度的A板等相位差板的制造方法。
在工序(2)中使用的表面保护片可以使用剥离力为0.5N/50mm以下的表面保护片。剥离力表示相对三乙酰纤维素薄膜通过180°的剥离并以300mm/min的速度剥离表面保护片时的力(N/50mm)。具体地说,是通过实施例中记载的方法测量的。当所述表面保护片的剥离力超过0.5N/50mm时,通过表面保护片的剥离使摩擦处理面的取向性混乱,使液晶材料的取向性降低。所述剥离力优选为0.5N/50mm以下,进一步优选为0.3N/50mm以下。其中,从通过表面保护片保护取向处理面的功能的观点来看,剥离力优选为0.03N/50mm以上,进一步优选为0.05N/50mm以上。
在所述液晶取向薄膜的制造方法中,作为表面保护片,优选使用具有基材层和粘合层并通过将它们共同挤压出或者通过在基材层上涂敷粘合层来制作的表面保护片。所述表面保护片优选使用基材层含有烯烃系树脂而粘合层含有乙烯-醋酸乙烯酯共聚物的保护片。
在所述液晶取向薄膜的制造方法中,当进行工序(3)中的表面保护片的剥离时,优选透明基材薄膜均匀带有正或负电荷中的任一种电荷。在进行表面保护片的剥离时,只要透明基材薄膜均匀带有任一种电荷,则认为摩擦取向处理面可以维持取向。对是否均匀带有电荷的确认,可以通过散布带正和负电荷的带颜色的金属粉(例如,通过带电而分别具有不同颜色的调色剂等)进行。
另外,本发明还涉及通过所述液晶取向薄膜的制造方法得到的液晶取向薄膜。
另外,本发明还涉及一种光学薄膜,其特征在于,至少使用1张所述液晶取向薄膜。液晶取向薄膜为薄型且具有均匀的相位差,适合作为相位差板使用。另外,液晶取向薄膜(相位差板)可以与偏振片组合而适合用作椭圆偏振片等。
另外,本发明还涉及使用了所述光学薄膜的图像显示装置。
进而,本发明还涉及在所述液晶光学薄膜的制造方法中,用于工序(2)的且剥离力为0.5N/50mm以下的表面保护片。
附图说明
图1是表示在实施例1中显示带电状态的附着的调色剂的颜色分布的照片。
图2是表示在实施例2中显示带电状态的附着的调色剂的颜色分布的照片。
具体实施方式
下面,关于本发明的液晶取向薄膜的制造方法,按顺序对各工序进行说明。
(工序(1))
在工序(1)中,通过摩擦对透明基材进行取向处理。
<透明基材薄膜>
透明基材薄膜只要是在使液晶材料发生取向的温度下不出现变化的材料,则没有特别限制,例如可以使用单层或层叠的各种塑料薄膜、玻璃板、金属等。作为塑料薄膜,可以举例为聚对苯二甲酸乙二醇酯、聚萘二甲酸乙二醇酯等聚酯系聚合物,二乙酰纤维素或三乙下纤维素等纤维素系聚合物,聚碳酸酯系聚合物,聚甲基丙烯酸甲酯等丙烯酸系聚合物等透明聚合物构成的薄膜。另外,还可以举出如聚苯乙烯、丙烯腈-苯乙烯共聚物等苯乙烯系聚合物,聚乙烯、聚丙烯、具有环状或降冰片烯构造的聚烯烃、乙烯-丙烯共聚物等烯烃系聚合物,氯乙烯系聚合物,尼龙或芳香族聚酰胺等酰胺系聚合物等透明聚合物构成的薄膜。进而,还可以举出如酰亚胺系聚合物、砜系聚合物、聚醚砜系聚合物、聚醚醚酮系聚合物、聚苯硫醚系聚合物、乙烯醇系聚合物、偏氯乙烯系聚合物、聚乙烯醇缩丁醛系聚合物、芳基化物系聚合物、聚甲醛系聚合物、环氧系聚合物、或者上述聚合物的混合物等透明聚合物构成的薄膜等。作为透明基材薄膜,优选为三乙酰纤维素薄膜或降冰片烯树脂薄膜、烯烃系薄膜。
另外,透明基材薄膜还可以使用设有聚乙烯醇系薄膜、聚酰亚胺系薄膜、聚硅氧烷系薄膜、玻璃质高分子薄膜的材料。
作为形成玻璃质高分子薄膜的材料,倾向于使用烃氧基金属(alcoxide),特别是使用烃氧基金属硅溶胶。烃氧基金属通常用作醇系的溶液。所述溶液被涂敷在基材薄膜上之后除去溶剂,通过加热促进溶胶-凝胶反应,由此在基材薄膜上形成透明玻璃质高分子薄膜。由烃氧基金属硅溶胶形成烃氧基金属硅凝胶层。作为在基板上涂敷上述烃氧基金属硅溶胶溶液的方法,可以采用如辊涂法、照相凹版涂敷法、棒涂法等。作为除去溶剂、促进反应的方法,通常可以利用室温下干燥、在干燥炉中的干燥等。
作为摩擦处理,可以利用人造丝或棉纱等细纤维构成的布或皮质材料对基材薄膜上面(rubbing)进行摩擦,由此进行取向处理。所述布或皮材可以采用通过将它们卷曲的摩擦辊向一个方向摩擦的方法。另外,该摩擦辊能够向0°~±45°方向改变轴角度。使用如此改变轴角度并进行摩擦处理的材料而得到的液晶取向薄膜,可以制作具有各种光轴的相位差板(补偿板)。
(工序(2))
工序(2)中将剥离力为0.5N/50mm以下的表面保护片贴合于所述取向处理面。
表面保护片只要满足剥离力为0.5N/50mm以下,则没有特别限制,可以由1层形成,也可以由2层以上形成。在由1层形成的表面保护片中,该1层满足剥离力为0.5N/50mm以下。另一方面,在由2层以上形成表面保护片的表面保护片中,至少1层作为基材层,至少1层作为粘合层。粘合层侧被贴合于所述取向处理面上。
下面对具有基材层和粘合层的表面保护片进行说明。对形成具有基材层和粘合层的表面保护片的制造方法没有特别限制,优选通过共同挤压法使基材层和粘合层成膜。作为共同挤压法,可以依照在薄膜制造等中通常使用的膨胀法、T模头法等进行。另外,也可以采用通过在基材层上涂敷形成粘合层并转印的方法等形成表面保护片的制造方法。
作为形成基材层的材料,可以举出如烯烃系树脂。烯烃系树脂是烯烃均聚物系或使用多种烯烃进而使用其它单体的嵌段聚合物、无规聚合物等共聚树脂,具体地例示为丙烯系聚合物、低密度聚乙烯、高密度聚乙烯、中密度聚乙烯、线性低密度等乙烯系聚合物,乙烯-丙烯共聚物、乙烯-α-烯烃共聚物、反应剂TPO等烯烃系聚合物、乙烯-甲基丙烯酸甲酯共聚物等烯烃与其它单体的烯烃系共聚物。
为了防止劣化的发生等,也可以在支撑基材中添加如抗氧化剂、紫外线吸收剂、位阻胺系光稳定剂等光稳定剂。另外,也可以配合防静电剂,还有如氧化钙、氧化镁、氧化硅、氧化锌、氧化钛之类的填充剂,颜料,防眼屎剂,润滑剂,防粘连剂等适宜的添加剂。
基材层的厚度为20~300μm,特别是30~250μm,优选为40~200μm,但不限定于此。
作为形成粘合层的树脂,优选乙烯-醋酸乙酯共聚物。另外,作为构成粘合层的材料,例如可以使用橡胶系、丙烯酸系或氨基甲酸酯系等公知的粘合剂。作为橡胶系聚合物的例子,可以举出将天然橡胶、聚异丁烯、丁基橡胶、聚异戊二烯、聚丁二烯等二烯系聚合物或它们的氢化产物,乙烯-丙烯橡胶、乙烯-α-烯烃、乙烯-丙烯-α-烯烃或丙烯-α-烯烃等烯烃系橡胶,苯乙烯-丁二烯-苯乙烯(SBS)或苯乙烯-异戊二烯-苯乙烯(SIS)、苯乙烯-乙烯-异戊二烯-苯乙烯(SEBS)、苯乙烯-乙烯-丙烯-苯乙烯(SEPS)之类的A-B-A型嵌段聚合物,或者苯乙烯-丁二烯(SB)或苯乙烯-异戊二烯(SI)、苯乙烯-乙烯-丁烯共聚物(SEB)、苯乙烯-乙烯-丙烯共聚物(SEP)之类的A-B型嵌段共聚物,苯乙烯-丁二烯橡胶(SBR)之类的苯乙烯系无规共聚物或者氢化苯乙烯系无规共聚物(HSBR),苯乙烯-乙烯-丁烯共聚物-烯烃结晶(SEBC)之类的A-B-O型苯乙烯-烯烃结晶系嵌段共聚物,烯烃结晶-乙烯-丁烯共聚物-烯烃结晶(CEBC)之类的C-B-C型烯烃结晶系嵌段共聚物等作为基础聚合物的橡胶系聚合物。
形成粘合层时,以控制粘合特性为目的等,根据需要,可以配合如软化剂,烯烃系树脂,硅酮系聚合物,液状丙烯酸系共聚物,磷酸酯系化合物,增粘剂,抗老化剂,位阻胺系光稳定剂,紫外线吸收剂,还有如氧化钙、氧化镁、二氧化硅、氧化锌、氧化钛之类的填充剂或颜料等适宜的添加剂。
粘合层的厚度可以根据剥离力等适宜地决定,一般为1~50μm,优选为2~40μm,特别优选为5~20μm。也可以根据需要在粘合层供于使用之前临时粘附隔离件等进行保护。
将所述表面保护片贴合到所述取向处理面,但为了不污染取向处理面,最好在工序(1)结束后接着工序(1)立即进行贴合。
(工序(3))
在工序(3)中,在上述剥离表面保护片之后,在所述取向处理面涂敷含有液晶单体和/或液晶聚合物的液晶材料。
为了不污染取向处理面,所述表面保护片的剥离优选在即将涂敷液晶材料之前进行。对表面保护片的剥离方法没有特别限制,优选以一定速度进行剥离以便不损坏取向处理面的取向性。例如优选以180°的剥离进行。在本发明中,由于使用剥离力为0.5N/50mm以下的表面保护片,所以剥离表面保护片之后的透明基材薄膜的取向处理面可以同样带有正或负电荷中的任一种电荷。
液晶材料含有液晶单体或液晶聚合物、或者它们的混合物。
液晶单体是具有显示向列性、胆甾醇性或近晶性的液晶取向的各种骨架且在末端具有至少1种丙烯酰基、甲基丙烯酰基、乙烯基等不饱和双键或环氧基等聚合性官能团的液晶性化合物。在这些液晶单体中,倾向于使用的是具有至少1种丙烯酰基或甲基丙烯酰基等不饱和双键的、向列型液晶性的液晶化合物。作为液晶单体,为了提高耐久性,优选具有2个以上光聚合性官能团的单体。作为这样的液晶单体,可以具体举出用下述式(1)表示的单体。这些液晶单体可以是1种,也可以并用2种以上。
[化1]
Figure C20051008812800101
在上述式(1)中,A1和A2分别表示聚合性基团,可以相同,也可以不同。另外,A1和A2中的任意一方都可以是氢。X分别表示单键、-O-、-S-、-C=N-、-O-CO-、-CO-O-、-O-CO-O-、-CO-NR-、-NR-CO-、-NR-、-O-CO-NR-、-NR-CO-O-、-CH2-O-或者-NR-CO-NR,在所述X中,R表示H或者C1~C4烷基,M表示直线状原子团(mesogene)基。
在上述式(1)中,X可以相同,也可以不同,但优选为相同。即使在上述式(1)的单体中,优选A2相对A1被配置在对位。
另外,优选A1和A2分别独立并用下述式Z-X-(Sp)n…(2)表示,A1和A2优选为相同的基团。
在上述式(2)中,Z表示交联性基团,X与上述式(1)相同,Sp表示由具有1~30个C原子的直链或支链烷基构成的隔离基团,n表示0或1。上述Sp中的碳链也可以通过醚官能团中的氧、硫醚官能团中的硫、非邻接亚氨基或C1~C4的烷基亚氨基等填隙。
在上述式(2)中,Z优选为用下述式表示的原子团中的任意一种。在下述式中,作为R,可以举例为甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基等基团。
[化2]
Figure C20051008812800102
另外,在上述式(2)中,Sp优选为用下述式表示的原子团中的任意一种,在下述式中,优选m为1~3,p为1~12。
[化3]
在上述式(1)中,M优选用下述式(3)表示,在下述式(3)中,X与上述式(1)中的X相同。Q例如表示取代或未取代的亚烷基或者芳香族烃原子团,另外,例如也可以是取代或未取代的直链或者支链C1~C12亚烷基等。
[化4]
Figure C20051008812800112
在上述Q为上述芳香族烃原子团的情况下,例如优选如同下述式所表示的原子团或它们的取代类似物。
[化5]
Figure C20051008812800113
作为在上述式中表示的芳香族烃原子团的取代类似物,例如可以在每个芳香族环上具有1~4个取代基,另外,也可以在每个芳香族环或基团上具有1或2个取代基。上述取代基可以分别相同或不同。作为所述取代基,可以举出例如C1~C4烷基,硝基,F、Cl、Br、I等卤素,苯基,C1~C4烷氧基等。
作为所述液晶聚合物的具体例,例如可以举出用下述式(4)~(19)表示的单体。
[化6]
Figure C20051008812800121
上述液晶单体显示出液晶性的温度范围根据其种类而不同,例如优选为40~120℃范围,更优选为50~100℃范围,特别优选为60~90℃范围。
在含有液晶单体的液晶材料中,通常含有聚合引发剂。可以适当选择与液晶单体的聚合方法相对应的聚合引发剂。作为聚合性液晶单体的聚合方法,可以举出例如紫外聚合,在这种情况下使用光聚合引发剂。可以没有特别限制地使用各种光聚合引发剂。作为光聚合引发剂,可以例示如チノミスベシャリティケミカルズ公司制的Irgacure 907、Irgacure 184、Irgacure 651、Irgacure 369等。考虑到液晶单体的种类,光聚合引发剂的添加量可以加到不扰乱取向性的程度。通常,相对100重量份液晶单体,优选为0.5~30重量份左右。更优选为2~7重量份,进一步优选为3~6重量份。
液晶聚合物可以没有特别限制地使用显示向列性、胆甾醇性或近晶性的液晶取向的主链型、侧链型或它们的复合型的各种骨架的聚合物。
作为主链型的液晶聚合物,可以举出具有结合了由芳香族单元等构成的直线状原子团(mesogene)基的结构的缩合系聚合物,例如聚醚系、聚酰胺系、聚碳酸酯系、聚酯酰亚胺系等聚合物。作为成为直线状原子团(mesogene)基的上述芳香族单元,可以举出苯基系、联苯基系、萘基系,这些芳香族单元也可以具有氰基、烷基、烷氧基、卤基等取代基。
作为侧链型的液晶聚合物,可以举出以聚丙烯酸酯系、聚甲基丙烯酸酯系、聚硅氧烷系、聚丙二酸系的主链为骨架且在侧链上具有由环状单元等构成的直线状原子团(mesogene)基的聚合物。作为成为直线状原子团(mesogene)基的上述环状单元,可以举例为联苯基系、苯基苯甲酸酯系、苯基环己烷系、氧化偶氮苯系、甲亚胺系、偶氮苯系、苯基嘧啶系、二苯乙炔系、二苯基苯甲酸酯系、双环己烷系、环己基苯系、联三苯系等。其中,在这些环状单元的末端也可以具有例如氰基、烷基、烷氧基、卤基等取代基。
另外,任意液晶聚合物的直线状原子团(mesogene)基都可以借助赋予屈曲性的隔离基团部结合。作为隔离基团部,可以举出聚亚甲基链、聚氧亚甲基链等。形成隔离基团部的结构单元的重复数是由直线状原子团(mesogene)部的化学结构适当决定的,但聚亚甲基链的重复单元为0~20,优选为2~12,聚氧亚甲基链的重复单元为0~10,优选为1~3。
其中,向列相型系液晶聚合物可以通过含有低分子手性剂或者在聚合物成分中导入手性成分而成为胆甾醇系液晶聚合物。
对液晶聚合物的分子量没有特别限制,但优选重均分子量为2千~10万左右。如果液晶聚合物的重均分子量变大,则从作为液晶的取向性来看,液晶聚合物的重均分子量更优选为5万以下。另外,如果液晶聚合物的重均分子量变小,有缺乏作为非流动层的成膜性的倾向,所以液晶聚合物的重均分子量更优选为2.5千以上。
液晶材料可以含有液晶单体或液晶聚合物、或它们的混合物。将所述液晶材料涂敷于所述取向处理面的方法,可以举出使用将液晶材料溶解于溶剂中的溶液的溶液涂敷方法或熔融后熔融涂敷的方法,其中优选溶液涂敷方法。
作为在调制所述溶液时使用的溶剂,根据液晶材料或透明基材薄膜的种类而不同,因此不能一概而论,但通常可以使用氯仿、二氯甲烷、二氯乙烷、四氯乙烷、三氯乙烯、四氯乙烯、氯苯等卤化烃类,苯酚、对氯苯酚等酚类,苯、甲苯、二甲苯、甲氧基苯、1,2-二甲氧基苯等芳香族烃类,丙酮、醋酸乙酯、叔丁醇、丙三醇、乙二醇、三甘醇、乙二醇单甲醚、二甘醇二甲醚、乙基溶纤剂、丁基溶纤剂、2-吡咯烷酮、N-甲基-2-吡咯烷酮、吡啶、三乙胺、四氢呋喃、二甲甲酰胺、二甲基乙酰胺、二甲基亚砜、乙腈、丁腈、二硫化碳等。溶液的浓度依赖于使用的液晶材料的溶解性或作为最终目的的液晶性薄膜的膜厚,所以不能一概而论,但通常在3~50重量%,优选为7~30重量%的范围。
除此之外,液晶材料中也可以适当含有添加剂。另外,也可以通过添加手性剂而成为胆甾醇型液晶材料。
从涂敷的所述液晶材料获得的液晶取向层的厚度优选为1~10μm左右。其中,在特别需要精密控制液晶层膜厚的情况下,由于在涂敷到透明基材薄膜的阶段大致确定膜厚,所以需要特别注意控制溶液的浓度、涂敷膜的膜厚等。
作为将使用上述溶剂并调整为所需浓度的所述溶液涂敷在已实施摩擦处理的取向处理面上的涂敷方法,可以采用如辊涂法、照相凹版涂敷法、棒涂法等。涂敷后,除去溶剂,在基材薄膜上形成液晶层。对溶剂的除去条件没有特别限定,只要能够大体除去溶剂,而且液晶层不会出现流动、流下即可。通常利用在室温下的干燥、在干燥炉中的干燥、在加热板上的加热等除去溶剂。
(工序(4))
在工序(4)中,使上述液晶材料取向后,对液晶取向层进行固定化。由此,固定液晶取向层而获得液晶取向薄膜。
液晶材料的取向通过使液晶单体和/或液晶聚合物成为液晶状态而取向。例如,进行热处理以使液晶材料在液晶温度范围内,在液晶状态下取向。作为热处理方法,可以用与上述干燥方法相同的方法进行。热处理温度根据使用的液晶材料和基材薄膜的种类而不同,所以不能一概而论,但通常在60~300℃,优选为70~200℃的范围内进行。另外,热处理时间根据热处理温度和使用的液晶材料、基材薄膜的种类而不同,所以不能一概而论,但通常在10秒~30分钟之间、优选为30秒~15分钟之间的范围选择。当比10秒短时,有可能无法充分进行取向形成;当比30分钟长时,批量生产效率有可能变差。
作为所述取向的液晶材料的固定化方法,当液晶材料含有液晶单体时,使其聚合固化。聚合固化可以根据液晶单体的种类而采用各种手段,例如,可以采用通过光照射的光聚合性方法。优选采用通过光照射的聚合固化。通过聚合固化,液晶单体进行聚合或者交联而后固定化,从而获得耐久性高的薄膜。光照射例如通过紫外线照射进行。紫外线照射条件优选在惰性气体环境中以促进反应的充分进行。通常使用的具有代表性的是具有约80~300mW/cm2照度的高压汞紫外灯。也可以使用金属卤化物UV灯或白炽灯等其他种类的灯。还有,为了使紫外线照射时的液晶层表面温度在液晶温度范围内,可以进行直到薄膜的距离冷光镜、水冷、其它冷却处理或加快线速度等进行适当调整。
当液晶材料不含有液晶单元而只含有液晶聚合物时,可以通过冷却使液晶取向层冷却到液晶温度以下,从而固定。
由所述液晶取向层构成的液晶取向薄膜,可以与所述基材薄膜一起使用,另外,还可以将其从基材薄膜上剥离而作为光学薄膜使用。进而,也可以将其转印到其它光学薄膜上使用。上述液晶取向薄膜可以单独或与其它薄膜组合,从而用作相位差板、视角补偿薄膜、光学补偿薄膜、椭圆偏振光薄膜等光学薄膜。下面对它们进行说明。
在用于液晶显示装置等图像显示装置中的光学薄膜中使用偏振片。偏振片通常是在偏振镜的一侧或两侧具有保护薄膜。对偏振镜没有特别限制,可以使用各种偏振镜。作为偏振镜,可以举例为在聚乙烯醇系薄膜、部分甲缩醛化聚乙烯醇系薄膜、乙烯-醋酸乙烯酯共聚物系部分皂化薄膜等亲水性高分子薄膜上,吸附碘或二色性染料等二色性物质后单向拉伸的材料;聚乙烯醇的脱水处理物或聚氯乙烯的脱盐酸处理物等聚烯系取向薄膜等。其中,优选使用拉伸聚乙烯醇系薄膜后吸附二色性材料(碘、染料)并进行取向而成的偏振镜。对偏振镜的厚度没有特别的限定,但是通常为约5~80μm左右。
将聚乙烯醇系薄膜用碘染色后经单向拉伸而成的偏振镜,例如,可以通过将聚乙烯醇浸渍于碘的水溶液进行染色后,拉伸至原长度的3至7倍来制作。根据需要,也可以浸渍于含硼酸或碘化钾等的水溶液中。此外,根据需要,也可以在染色前将聚乙烯醇系薄膜浸渍于水中水洗。通过水洗聚乙烯醇系薄膜,除了可以洗去聚乙烯醇系薄膜表面上的污物和防粘连剂之外,还可以通过使聚乙烯醇系薄膜溶胀,防止染色斑等不均匀现象。拉伸既可以在用碘染色之后进行,也可以一边染色一边进行拉伸,还可以在拉伸之后用碘进行染色。也可以在硼酸或碘化钾等的水溶液中或水浴中进行拉伸。
在设置于上述偏振镜的一侧或两侧的保护薄膜中,优选在透明性、机械强度、热稳定性、水分屏蔽性、各向同性等方面具有良好性质的材料。作为上述保护薄膜的材料,例如,可以举例为聚对苯二甲酸乙二醇酯或聚萘二甲酸乙二醇酯等聚酯系聚合物;二乙酰纤维素或三乙酰纤维素等纤维素系聚合物;聚甲基丙烯酸甲酯等丙烯酸系聚合物;聚苯乙烯或丙烯腈-苯乙烯共聚物(AS树脂)等苯乙烯系聚合物;聚碳酸酯系聚合物等。此外,作为形成保护薄膜的聚合物的例子,还可以举例为聚乙烯、聚丙烯、具有环系或降冰片烯结构的聚烯烃,乙烯-丙烯共聚物之类的聚烯烃系聚合物;氯乙烯系聚合物;尼龙或芳香族聚酰胺等酰胺系聚合物;酰亚胺系聚合物;砜系聚合物;聚醚砜系聚合物;聚醚醚酮系聚合物;聚苯硫醚系聚合物;乙烯基醇系聚合物,偏氯乙烯系聚合物;聚乙烯醇缩丁醛系聚合物;芳基化物系聚合物;聚甲醛系聚合物;环氧系聚合物;或者所述聚合物的混合物等。另外,还可以举出对丙烯酸系、氨基甲酸酯系、丙烯酸氨基甲酸酯系、环氧系、硅酮系等热固化性、紫外线固化性树脂等进行薄膜化的材料等。
此外,在特开2001-343529号公报(WO 01/37007)中记载的聚合物薄膜,可以举例为包含(A)在侧链具有取代和/或未取代亚氨基的热塑性树脂、和(B)在侧链具有取代和/或未取代苯基和腈基的热塑性树脂的树脂组合物。作为具体例,可以举例为含有由异丁烯和N-甲基马来酸酐缩亚胺组成的交替共聚物及丙烯腈-苯乙烯共聚物的树脂组合物的薄膜。作为薄膜,可以使用由树脂组合物的混合挤出制品等构成的薄膜。
从偏振光特性和耐久性等观点来看,可以特别优选使用的保护薄膜是用碱等对表面进行皂化处理的三乙酰纤维素薄膜。透明保护层可以为任意厚度,但以偏振片的薄型化等为目的,一般优选为500μm以下,进而优选为1~300μm,特别优选为5~300μm。其中,当在偏振镜的两侧设有保护薄膜时,可以使用其内外侧由不同的聚合物等构成的透明保护薄膜。
另外,透明保护薄膜最好不要着色。因此,优选使用用Rth=(nx-nz)·d(其中,nx是薄膜平面内的滞相轴方向的折射率,nz是薄膜厚度方向的折射率,d是薄膜厚度)表示的薄膜厚度方向的相位差值为-90nm~+75nm的保护薄膜。通过使用这种厚度方向的相位差值(Rth)为-90nm~+75nm的保护薄膜,可以大致消除由保护薄膜引起的偏振片的着色(光学着色)。厚度方向相位差值(Rth)进一步优选为-80nm~+60nm,特别优选为-70nm~+45nm。
在所述偏振镜和保护薄膜之间通常是借助水系粘合剂粘附的。作为水系粘合剂,可以例示为聚乙烯醇系胶粘剂、明胶系胶粘剂、乙烯基系胶乳系、水系聚氨酯、水系聚酯等。
作为上述保护薄膜,还可以使用实施了硬涂层或防反射处理、防粘连(sticking)、以扩散或防眩为目的的处理的保护薄膜。
实施硬涂处理的目的是防止偏振片的表面损坏等,例如可以通过在保护薄膜的表面上附加由丙烯酸系及硅酮系等适当的紫外线固化性树脂构成的硬度、滑动特性等良好的固化被膜的方式等形成。实施防反射处理的目的是防止在偏振片表面的外光的反射,可以通过形成基于以往的防反射膜等来完成。此外,实施防粘连处理的目的是防止与相邻层的粘附。
另外,实施防眩处理的目的是防止外光在偏振片表面反射而干扰偏振片透射光的辨识性等,例如,可以通过采用喷砂方式或压纹加工方式的粗表面化方式或者配合透明微粒的方式等适当的方式,向保护薄膜表面赋予微细凹凸结构来形成。作为在所述表面微细凹凸结构的形成中含有的微粒,例如,可以使用平均粒径为0.5~50μm的由二氧化硅、氧化铝、氧化钛、氧化锆、氧化锡、氧化铟、氧化镉、氧化锑等组成的往往具有导电性的无机系微粒、由交联或者未交联的聚合物等组成的有机系微粒等透明微粒。当形成表面微细凹凸结构时,微粒的使用量相对于形成表面微细凹凸结构的透明树脂100重量份,通常为大约2~50重量份,优选5~25重量份。防眩层也可以兼当用于将偏振片透射光扩散而扩大视角等的扩散层(视角扩大功能等)。
还有,所述防反射层、防粘连层、扩散层或防眩层等除了可以设置在保护薄膜自身上以外,还可以作为其他光学层,与透明保护薄膜分开配置。
可以将上述偏振片用作层叠了相位差板而构成的椭圆偏振片或圆偏振片。对上述椭圆偏振片或圆偏振片进行说明。它们通过相位差板可以将直线偏振光改变为椭圆偏振光或圆偏振光,或者将椭圆偏振光或圆偏振光改变为直线偏振光,或者改变直线偏振光的偏振方向。特别是,作为将直线偏振光改变为圆偏振光或将圆偏振光改变为直线偏振光的相位差板,可使用所谓的1/4波长片(也称为λ/4片)。1/2波长片(也称为λ/2片)通常用于改变直线偏振光的偏振方向的情形。
椭圆偏振片可以有效地用于以下情形等,即补偿(防止)超扭曲向列相(STN)型液晶显示装置因液晶层的双折射而产生的着色(蓝或黄),从而进行上述没有着色的白黑显示的情形。另外,控制三维折射率的偏振片还可以补偿(防止)从斜向观察液晶显示装置的画面时产生的着色,因而优选。圆偏振片可以有效地用于如对彩色图像显示的反射型液晶显示装置的图像的色调进行调整的情形等,而且还具有防止反射的功能。
在相位差板中,可以使用例如各种波长片或用于补偿由液晶层的双折射造成的着色或视角等的构件等,还可以层叠2种以上具有与使用目的相适应的适宜相位差的相位差板而控制相位差等光学特性。作为相位差板,可以举出对由聚碳酸酯、降冰片烯系树脂、聚乙烯醇、聚苯乙烯、聚甲基丙烯酸甲酯、聚丙烯或其他聚烯烃、聚芳酯、聚酰胺之类的适宜的聚合物构成的薄膜进行拉伸处理而形成的双折射性薄膜,由液晶聚合物等液晶材料组成的取向薄膜,用薄膜支撑液晶材料的取向层的构件等。
另外,作为视角补偿薄膜,可以将其层叠于偏振片上作为宽视角偏振片使用。视角补偿膜是从不垂直于画面的稍微倾斜的方向观察液晶显示画面的情况下也使图像看起来比较清晰的、用于扩大视角的薄膜。
作为此种视角补偿相位差板,可以使用另外被实施了双向拉伸处理或向正交的两个方向上实施拉伸处理等且具有双折射的薄膜、或像倾斜取向膜那样的双向拉伸薄膜等。作为倾斜取向薄膜,例如可以举出在聚合物薄膜上粘接热收缩薄膜后在因加热形成的收缩力的作用下,对聚合物薄膜进行拉伸处理或/和收缩处理的材料、使液晶聚合物倾斜取向的材料等。视角补偿薄膜可以将防止基于液晶单元造成的相位差的辨识角的变化所导致的着色等或扩大辨识度良好的视角等作为目的进行适宜组合。
另外,从实现辨识度良好的宽视角的观点来看,可以优选使用用三乙酰纤维素薄膜支撑由液晶聚合物的取向层、特别是圆盘状液晶聚合物的倾斜取向层构成的光学各向异性层而成的光学补偿相位差板。
除了上述之外,对在实际使用时层叠的光学层没有特别的限制,例如可以使用反射板或半透过板等在液晶显示装置等的形成中使用的成为光学层的薄膜1层或2层以上。特别优选的偏振片是在椭圆偏振片或圆偏振片上进一步层叠反射板或半透过反射板而成的反射型偏振片或半透过型偏振片;或者在偏振片上进一步层叠亮度改善薄膜而形成的偏振片。
反射型偏振片是在偏振片上设置反射层而成的,可用于形成反射从辨识侧(显示侧)入射的入射光来进行显示的类型的液晶显示装置等,并且可以省略内置的背光灯等光源,从而具有易于使液晶显示装置薄型化等优点。当形成反射型偏振片时,可以通过根据需要并借助透明保护层等在偏振片的一面附设由金属等构成的反射层的方式等适当的方式而进行。
作为反射型偏振片的具体例子,可以举例为根据需要在经消光处理的保护薄膜的一面上,附设由铝等反射性金属构成的箔或蒸镀膜而形成反射层的偏振片等。另外,还可以举出使所述保护薄膜含有微粒而形成表面微细凹凸结构,并在其上具有微细凹凸结构的反射层的反射型偏振片等。所述的微细凹凸结构的反射层通过漫反射使入射光扩散,由此防止定向性或外观发亮,具有可以抑制明暗不均的优点等。另外,含有微粒的透明保护薄膜还具有当入射光及其反射光透过它时可以通过扩散进一步抑制明暗不均的优点等。反映保护薄膜的表面微细凹凸结构的微细凹凸结构的反射层的形成,例如可以通过用真空蒸镀方式、离子镀方式及溅射方式等蒸镀方式或镀覆方式等适当的方式在透明保护层的表面上直接附设金属的方法等进行。
作为代替将反射板直接附设在所述偏振片的保护薄膜上的方式,还可以在以该透明薄膜为基准的适当的薄膜上设置反射层形成反射片等而后使用。还有,由于反射层通常由金属组成,所以从防止由于氧化而造成的反射率的下降,进而长期保持初始反射率的观点和避免另设保护层的观点等来看,优选用保护薄膜或偏振片等覆盖其反射面的使用形式。
还有,在上述中,半透过型偏振片可以通过作成用反射层来反射光同时使光透过的半透半反镜等半透过型的反射层而获得。半透过型偏振片通常被设于液晶单元的背面侧,可以形成如下类型的液晶显示装置等,即,在比较明亮的环境中使用液晶显示装置等的情况下,反射来自于辨识侧(显示侧)的入射光而显示图像,在比较暗的环境中,使用内置于半透过型偏振片的背面的背光灯等内置光源来显示图像。即,半透过型偏振片在如下类型的液晶显示装置等的形成中有用,即,在明亮的环境下可以节约使用背光灯等光源的能量,在比较暗的环境下也可以使用内置光源的类型的液晶显示装置等的形成中非常有用。
将偏振片和亮度改善薄膜贴合在一起而成的偏振片通常被设置于液晶单元的背面一侧而后使用。亮度改善薄膜是显示如下特性的薄膜,即,当因液晶显示装置等的背光灯或来自背面侧的反射等而有自然光入射时,反射规定偏光轴的直线偏振光或规定方向的圆偏振光,而使其他光透过。因此将亮度改善薄膜与偏振片层叠而成的偏振片可使来自背光灯等光源的光入射,而获得规定偏振光状态的透过光,同时,所述规定偏振光状态以外的光不能透过而被予以反射。借助设置于其后侧的反射层等使在该亮度改善薄膜面上反射的光再次发生反转,并使之再次入射到亮度改善薄膜上,使其一部分或全部作为规定偏振光状态的光透过,从而增加透过亮度改善薄膜的光,同时向偏振镜提供难以吸收的偏振光,从而增大能够在液晶显示图像的显示等中利用的光量,并由此可以提高亮度。即,在不使用亮度改善薄膜而用背光灯等从液晶单元的背面侧穿过偏振镜而使光入射的情况下,具有与偏振镜的偏光轴不一致的偏振方向的光基本上被偏振镜所吸收,因而无法透过偏振镜。即,虽然会因所使用的偏振镜的特性而不同,但是大约50%的光会被偏振镜吸收掉,因此,在液晶图像显示等中能够利用的光量将减少,导致图像变暗。由于亮度改善薄膜反复进行如下操作,即,使具有能够被偏振镜吸收的偏振方向的光不是入射到偏振镜上,而是使该类光在亮度改善薄膜上发生反射,进而借助设于其后侧的反射层等完成反转,使光再次入射到亮度改善薄膜上,这样,亮度改善薄膜只使在这两者间反射并反转的光中的、其偏振方向变为能够通过偏振镜的偏振方向的偏振光透过,同时将其提供给偏振镜,因此可以在液晶显示装置的图像的显示中有效地使用背光灯等的光,从而可以使画面明亮。
也能够在亮度改善薄膜和所述反射层等之间设置扩散板。由亮度改善薄膜反射的偏振光状态的光朝向所述反射层等,所设置的扩散板可将通过的光均匀地扩散,同时消除偏振光状态而成为非偏振光状态。即,扩散板使偏振光恢复到原来的自然光状态。反复进行如下的过程,即,将该非偏振光状态即自然光状态的光射向反射层等,借助反射层等反射后,再次通过扩散板而又入射到亮度改善薄膜上。通过在亮度改善薄膜和上述反射层等之间设置使偏振光恢复到原来的自然光状态的扩散板,可以在维持显示画面的亮度的同时,减少显示画面的亮度不均,从而可以提供均匀并且明亮的画面。通过设置这种扩散板,可适当增加初次入射光的重复反射次数,并利用扩散板的扩散功能,可以提供均匀明亮的显示画面。
作为上述亮度改善薄膜,例如可以使用:电介质的多层薄膜或折射率各向异性不同的薄膜多层层叠体之类的显示出使规定偏光轴的直线偏振光透过而反射其他光的特性的薄膜、胆甾醇型液晶聚合物的取向膜或在薄膜基材上支撑了该取向液晶层的薄膜之类的显示出将左旋或右旋中的任一种圆偏振光反射而使其他光透过的特性的薄膜等适宜的薄膜。
因此,在上述的使规定偏光轴的直线偏振光透过的类型的亮度改善薄膜中,通过使该透过光直接沿着与偏光轴一致的方向入射到偏振片上,可以在抑制由偏振片造成的吸收损失的同时,使光有效地透过。另一方面,在胆甾醇型液晶层之类的使圆偏振光透过的类型的亮度改善薄膜中,虽然可以直接使光入射到偏振镜上,但从抑制吸收损失这一点考虑,优选借助相位差板对该圆偏振光进行直线偏振光化,之后再入射到偏振片上。而且,通过使用1/4波长片作为该相位差板,能够将圆偏振光变换为直线偏振光。
关于在可见光区域等宽波长范围中能起到1/4波长片作用的相位差板,例如可以利用以下方式获得,即,将相对于波长550nm的浅色光能起到1/4波长片作用的相位差层和显示其他相位差特性的相位差层例如能起到1/2波长片作用的相位差层进行重叠的方式等。所以,配置于偏振片和亮度改善薄膜之间的相位差板可以由1层或2层以上的相位差层构成。
还有,就胆甾醇型液晶层而言,也可以组合不同反射波长的材料,构成重叠2层或3层以上的配置构造,由此获得在可见光区域等宽波长范围内反射圆偏振光的构件,从而能够基于此而获得较宽波长范围的透过圆偏振光。
另外,偏振片如同所述偏振光分离型偏振片,可以由层叠了偏振片和2层或3层以上的光学层的构件构成。所以,也可以是组合了上述反射型偏振片或半透过型偏振片和相位差板的反射型椭圆偏振片或半透过型椭圆偏振片等。
上述椭圆偏振片或反射型椭圆偏振片,是通过适当地组合并层叠偏振片或反射型偏振片和相位差板而成的。这类椭圆偏振片等也可以通过在液晶显示装置的制造过程中依次独立层叠(反射型)偏振片和相位差板来形成,以构成(反射型)偏振片和相位差板的组合,而在预先层叠为椭圆偏振片等光学薄膜的情况下,由于在质量的稳定性或层叠操作性等方面出色,因此具有可以提高液晶显示装置等的制造效率的优点。
在本发明的光学薄膜上也可以设有粘合层。粘合剂层除了可以用于在液晶单元上粘附之外,还可以用于光学层的层叠。当粘接上述光学薄膜时,可以根据目的相位差特性等将它们的光学轴调整为适宜的配置角度。
对形成粘合层的粘合剂没有特别限定,例如可以适宜地选择使用以丙烯酸系聚合物、硅酮系聚合物、聚酯、聚氨酯、聚酰胺、聚醚、氟系或橡胶系等的聚合物为基础聚合物的粘合剂。特别优选使用类似丙烯酸系粘合剂的光学透明性优良并显示出适度的润湿性、凝聚性以及粘接性的粘合特性且耐气候性或耐热性等优良的粘合剂。
而且,除了上述之外,从防止因吸湿造成的发泡现象或剥离现象、因热膨胀差等引起的光学特性的下降或液晶单元的翘曲、进而从高质量且耐久性优良的液晶显示装置的形成性等观点来看,优选吸湿率低且耐热性优良的粘合层。
粘合层中可以含有例如天然或合成树脂类、特别是增粘性树脂或由玻璃纤维、玻璃珠、金属粉、其它的无机粉末等构成的填充剂、颜料、着色剂、抗氧化剂等可添加于粘合层中的添加剂。另外也可以是含有微粒并显示光扩散性的粘合层等。
在光学薄膜的一面或两面上附设粘合层时可以利用适宜的方式进行。作为其例子,例如可以举出以下方式,即调制在由甲苯或乙酸乙酯等适宜溶剂的纯物质或混合物构成的溶剂中溶解或分散基础聚合物或其组合物而成的约10~40重量%的粘合剂溶液,然后通过流延方式或涂敷方式等适宜的展开方式直接将其附设在偏振片上或光学薄膜上的方式;或者基于上述而在隔离件上形成粘合层后将其移送并粘贴在偏振片上或光学薄膜上的方式等。
粘合层也能够作为不同组成或种类等的各层的重叠层而设置在偏振片或光学薄膜的一面或两面上。另外,当设置于两面上时,偏振片或光学薄膜的内外也能够是不同组成、种类或厚度等的粘合层。粘合层的厚度可以根据使用目的或粘接力等而适当确定,一般为1~500μm,优选5~200μm,特别优选10~100μm。
对于粘合层的露出面,在供于使用前为了防止其污染等,可以临时粘贴隔离件以进行覆盖。由此能够防止在通常的操作状态下与粘合层接触的现象。作为隔离件,在满足上述的厚度条件的基础上,例如可以使用根据需要用硅酮系或长链烷基系、氟系或硫化钼等适宜剥离剂对塑料薄膜、橡胶片、纸、布、无纺布、网状物、发泡片材或金属箔、它们的层叠体等适宜的薄片体进行涂敷处理后的材料等以往常用的适宜的隔离件。
还有,在本发明中,也可以在形成上述的偏振片的偏振镜、透明保护薄膜、光学薄膜等以及粘合层等各层上,利用例如用水杨酸酯系化合物或苯并苯酚(benzophenol)系化合物、苯并三唑系化合物或氰基丙烯酸酯系化合物、镍配位化合物系化合物等紫外线吸收剂进行处理的方式等方式,使之具有紫外线吸收能力等。
本发明的光学薄膜能够优选用于液晶显示装置等各种装置的形成等。液晶显示装置可以根据以往的方法形成。即,一般来说,液晶显示装置可通过适宜地组合液晶单元和光学薄膜以及根据需要而加入的照明系统等构成部件并装入驱动电路而形成,在本发明中,除了使用本发明的光学薄膜之外,没有特别限定,可以依据以往的方法形成。对于液晶单元而言,也可以使用例如TN型或STN型、π型等任意类型的液晶单元。
能够形成在液晶单元的一侧或两侧配置了上述光学薄膜的液晶显示装置、在照明系统中使用了背光灯或反射板的装置等适宜的液晶显示装置。此时,本发明的光学薄膜能够设置在液晶单元的一侧或两侧。当将光学薄膜设置在两侧时,它们既可以相同,也可以不同。另外,在形成液晶显示装置时,可以在适宜的位置上配置1层或2层以上的例如扩散板、防眩层、防反射膜、保护板、棱镜阵列、透镜阵列薄片、光扩散板、背光灯等适宜的部件。
接着,对有机电致发光装置(有机EL显示装置)进行说明。一般地,有机EL显示装置是在透明基板上依次层叠透明电极、有机发光层以及金属电极而形成发光体(有机电致发光体)。这里,有机发光层是各种有机薄膜的层叠体,已知有:例如由三苯基胺衍生物等构成的空穴注入层和由蒽等荧光性有机固体构成的发光层的层叠体、或此种发光层和由二萘嵌苯衍生物等构成的电子注入层的层叠体、或者这些空穴注入层、发光层及电子注入层的层叠体等各种组合。
有机EL显示装置根据如下的原理进行发光,即,通过在透明电极和金属电极上施加电压,向有机发光层中注入空穴和电子,由这些空穴和电子的复合而产生的能量激发荧光物质,被激发的荧光物质回到基态时,就会放射出光。中间的复合机制与一般的二极管相同,由此也可以推测出,电流和发光强度相对于外加电压显示出伴随整流性的较强的非线性。
在有机EL显示装置中,为了取出有机发光层中产生的光,至少一方的电极必须是透明的,通常将由氧化铟锡(ITO)等透明导电体制成的透明电极作为阳极使用。另一方面,为了容易进行电子注入而提高发光效率,在阴极上使用功函数较小的物质是十分重要的,通常使用Mg-Ag、Al-Li等金属电极。
在具有这种构成的有机EL显示装置中,有机发光层由厚度为10nm左右的极薄的膜构成。因此,有机发光层也与透明电极一样,使光几乎完全透过。其结果是,在不发光时从透明基板表面入射并透过透明电极和有机发光层而在金属电极反射的光会再次向透明基板的表面侧射出,因此,当从外部进行辨识时,有机EL装置的显示面如同镜面。
在包含如下所述的有机电致发光体的有机EL显示装置中,可以在透明电极的表面侧设置偏振片,同时在这些透明电极和偏振片之间设置相位差板,上述有机电致发光体是在通过施加电压而进行发光的有机发光层的表面侧设有透明电极,同时在有机发光层的背面侧设有金属电极而形成。
由于相位差板及偏振片具有使从外部入射并在金属电极反射的光成为偏振光的作用,因此,通过该偏振光作用具有无法从外部辨识出金属电极的镜面的效果。特别是,当采用1/4波长片构成相位差板并且将偏振片和相位差板的偏振方向的夹角调整为π/4时,能够完全遮蔽金属电极的镜面。
即,入射至该有机EL显示装置的外部光因偏振片的存在而只有直线偏振光成分透过。该直线偏振光一般会被相位差板转换成椭圆偏振光,而当相位差板为1/4波长片并且偏振片和相位差板的偏振方向的夹角为π/4时,成为圆偏振光。
该圆偏振光透过透明基板、透明电极、有机薄膜,在金属电极上反射,之后再次透过有机薄膜、透明电极、透明基板,由相位差板再次转换成直线偏振光。然后,因为该直线偏振光与偏振片的偏振方向垂直,所以无法透过偏振片。其结果可以完全遮蔽金属电极的镜面。
实施例
下面,通过实施例对本发明进行具体说明,但本发明不为这些实施例所限定。
<液晶材料的涂敷液的调制>
调制将10g显示向列型液晶相的液晶单体(BASF公司制,PaliocolorLC242)和3g光聚合引发剂(Chiba specialty chemicals公司制,Irgacure907)(对聚合性液晶化合物)溶解于40g甲苯中而成的溶液。
<剥离力>
将表面保护片(150mm×50mm)贴合于三乙酸酰纤维素薄膜上,在23℃下放置20分钟之后,用拉伸试验机(ォリェンテック(株)制,テンシロン)测量以180°的剥离、300mm/min的速度剥离表面保护片时的力(N/50mm)。
<带电状态的确认>
与获得液晶取向薄膜不同,从透明基材薄膜剥离表面保护片之后立即确认带电状态。在从透明基材薄膜剥离表面保护片之后立即进行以下确认:即,在该透明基材薄膜的面上洒下带正电的蓝色调色剂和带负电的红色调色剂之后,去掉围附着的调色剂,目视确认附着的调色剂的颜色分布。在只有蓝色调色剂附着的情况下,可以判断为表面均匀地带负电;在只有红色调色剂附着的情况下,可以判断为表面均匀带正电。在红色调色剂和蓝色调色剂混合存在的情况下,可以判断表面的带电状态不均匀。在实施例1中,将作为判断对象的显示附着的调色剂的颜色分布的照片显示于图1,将关于比较例2的照片显示于图2。
实施例1
用人造丝布通过摩擦对三乙酰纤维素薄膜表面进行取向处理之后,立即贴合剥离力为0.05N/50mm的表面保护片。表面保护片使用積水化学(株)制的6221F。是通过共同挤压出表面保护片的基材层(厚度50μm,聚乙烯)和粘合层(乙烯-醋酸乙酯共聚物)而制作的。接着,在即将涂敷液晶材料的涂敷液之前剥离表面保护片(180°的剥离),用拉丝锭#10在所述取向处理面上涂敷所述涂敷液。在90℃下干燥5分钟,使液晶材料取向后,用金属卤化物灯照射1mJ/cm2的光,使液晶层固化,获得厚2μm的液晶取向薄膜。
实施例2
在实施例1中,除了使用剥离力为0.1N/50mm的表面保护片以外,与实施例1一样获得液晶取向薄膜。表面保护片使用(株)サンェ-化研制的サンテクトPAC3。是通过共同挤压出表面保护片的基材层(厚度60μm,聚乙烯)和粘合层(乙烯-醋酸乙酯共聚物)而制作的。
实施例3
在实施例1中,除了使用剥离力为0.3N/50mm的表面保护片以外,与实施例1一样获得液晶取向薄膜。
比较例1
在实施例1中,除了不使用表面保护片以外,进与实施例1一样获得液晶取向薄膜。在比较例1中,可以看到三乙酰纤维素薄膜与辊之间的接触。
比较例2
在实施例1中,除了使用剥离力为1.5N/50mm的表面保护片以外,与实施例1一样获得液晶取向薄膜。表面保护片使用(株)サンェ-化研制的Y-16F。
比较例3
在实施例1中,除了使用剥离力为1.0N/50mm的表面保护片以外,与实施例1一样获得液晶取向薄膜。表面保护片使用日东电工(株)制的E-MASK。
对在实施例和比较例中得到的液晶取向薄膜进行如下评价。将结果显示于表1中。
(取向性)
准备2张日东电工制的偏振片(SEG1425DU),使其为正交状态,在其之间配置在上述中作成的液晶取向薄膜(相位差板)并使摩擦方向与一张偏振片的吸收轴(或透过轴)一致。对此,用村上色彩公司制的DOT-3测量其透过率Y(%)。当摩擦取向角紊乱时,可以确认透过率上升,取向性降低。透过率如果在0.1%以下,可以判断液晶处于在摩擦方向上均匀取向的状态,将其定为良好。除此以外为不良。
表1
Figure C20051008812800281

Claims (7)

1.一种液晶取向薄膜的制造方法,其特征在于,包括:
通过摩擦对透明基材薄膜实施取向处理的工序(1),
将剥离力为0.5N/50mm以下的表面保护片贴合于所述取向处理面的工序(2),
剥离所述表面保护片之后在所述取向处理面上涂敷含有液晶单体和/或液晶聚合物的液晶材料的工序(3),
使所述液晶材料取向之后进行固定化的工序(4),
在进行工序(3)中的表面保护片的剥离时,使透明基材薄膜均匀带有正或负电荷中的任一种电荷。
2.根据权利要求1所述的液晶取向薄膜的制造方法,其特征在于,
表面保护片具有基材层和粘合层,是通过将它们共同挤压出或者通过在基材层上涂敷粘合层而制作的表面保护片。
3.根据权利要求2所述的液晶取向薄膜的制造方法,其特征在于,
基材层含有烯烃系树脂,粘合层含有乙烯-醋酸乙烯酯共聚物。
4.一种液晶取向薄膜,其特征在于,
是通过权利要求1~3中任意一项所述的液晶取向薄膜的制造方法而得到的。
5.一种光学薄膜,其特征在于,
至少使用1张权利要求4所述的液晶取向薄膜。
6.一种图像显示装置,其特征在于,
使用权利要求5所述的光学薄膜。
7.一种表面保护片,其特征在于,
是在权利要求1~3所述的液晶取向薄膜的制造方法中用于工序(2)的且剥离力为0.5N/50mm以下的表面保护片。
CNB2005100881289A 2004-08-02 2005-07-29 液晶取向薄膜及其制造方法、光学薄膜和图像显示装置 Expired - Fee Related CN100392488C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004225790 2004-08-02
JP2004225790 2004-08-02
JP2005044035 2005-02-21

Publications (2)

Publication Number Publication Date
CN1734321A CN1734321A (zh) 2006-02-15
CN100392488C true CN100392488C (zh) 2008-06-04

Family

ID=36076809

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100881289A Expired - Fee Related CN100392488C (zh) 2004-08-02 2005-07-29 液晶取向薄膜及其制造方法、光学薄膜和图像显示装置

Country Status (1)

Country Link
CN (1) CN100392488C (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5273357B2 (ja) * 2007-07-06 2013-08-28 Jsr株式会社 液晶配向剤および液晶表示素子
CN101349825B (zh) * 2008-09-04 2010-06-23 友达光电股份有限公司 制作透反液晶显示面板的方法
KR101040701B1 (ko) * 2009-12-22 2011-06-13 주식회사 엘지화학 입체영상표시장치용 3d입체안경 및 이를 포함하는 입체영상표시장치
CN104536208A (zh) * 2012-05-25 2015-04-22 京东方科技集团股份有限公司 一种显示面板及其制造方法和显示器件
CN102707498B (zh) * 2012-05-25 2015-02-11 京东方科技集团股份有限公司 一种显示面板及其制造方法和显示器件
JP7329926B2 (ja) * 2018-02-14 2023-08-21 住友化学株式会社 積層体およびその製造方法
JP2019159198A (ja) * 2018-03-15 2019-09-19 住友化学株式会社 光学積層体の製造方法及び粘着層付き光学積層体の製造方法
JP7409323B2 (ja) * 2018-12-27 2024-01-09 日本ゼオン株式会社 フィルムの製造方法、及び製造装置並びに液晶硬化フィルムの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853801A (en) * 1995-09-04 1998-12-29 Fuji Photo Film Co., Ltd. Process for the preparation of continuous optical compensatory sheet
WO2003008134A2 (en) * 2001-07-16 2003-01-30 Denki Kagaku Kogyo Kabushiki Kaisha Surface protection film
WO2003034107A1 (fr) * 2001-10-11 2003-04-24 Nippon Oil Corporation Procede de production d'une couche de cristaux liquides et d'une plaque a polarisation elliptique
WO2003039860A1 (en) * 2001-10-22 2003-05-15 Exxonmobil Chemical Patents Inc. Protective films
CN1497304A (zh) * 2002-10-08 2004-05-19 王子制纸株式会社 液晶偏光板保护用透明粘着膜

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5853801A (en) * 1995-09-04 1998-12-29 Fuji Photo Film Co., Ltd. Process for the preparation of continuous optical compensatory sheet
WO2003008134A2 (en) * 2001-07-16 2003-01-30 Denki Kagaku Kogyo Kabushiki Kaisha Surface protection film
WO2003034107A1 (fr) * 2001-10-11 2003-04-24 Nippon Oil Corporation Procede de production d'une couche de cristaux liquides et d'une plaque a polarisation elliptique
WO2003039860A1 (en) * 2001-10-22 2003-05-15 Exxonmobil Chemical Patents Inc. Protective films
CN1497304A (zh) * 2002-10-08 2004-05-19 王子制纸株式会社 液晶偏光板保护用透明粘着膜

Also Published As

Publication number Publication date
CN1734321A (zh) 2006-02-15

Similar Documents

Publication Publication Date Title
CN100510806C (zh) 带有表面保护薄膜的光学薄膜和图像显示装置
KR100708246B1 (ko) 액정 배향 필름의 제조 방법, 액정 배향 필름, 광학 필름및 화상 표시 장치
CN100439948C (zh) 相位差板及其制造方法、光学膜
CN100458474C (zh) 带有保护薄膜的相位差板及其制造方法
CN100378476C (zh) 粘合型光学薄膜及图像显示装置
CN100426019C (zh) 相位差粘合剂层、粘合型光学薄膜及它们的制法、应用
CN101183159B (zh) 偏振片的制造方法、偏振片、光学膜及图像显示装置
CN101290367B (zh) 偏振片、光学薄膜及图像显示装置
CN100359347C (zh) 粘合型光学薄膜和图像显示装置
CN100392488C (zh) 液晶取向薄膜及其制造方法、光学薄膜和图像显示装置
CN1603866B (zh) 光学部件用粘合剂组合物
CN100392441C (zh) 层叠光学薄膜、椭圆偏振片和图像显示装置
CN100458467C (zh) 防静电性光学膜、防静电性粘合型光学膜、它们的制造方法及图像显示装置
CN101183157B (zh) 偏振片、其制造方法、光学薄膜及图像显示装置
CN101479632B (zh) 粘合型光学薄膜及图像显示装置
CN100485420C (zh) 防静电性粘合型光学膜及图像显示装置
CN100445780C (zh) 偏振镜及其制造方法、偏振片、光学薄膜和图像显示装置
KR20020045547A (ko) 호메오트로픽 배향 액정 필름의 제조방법, 호메오트로픽배향 액정성 조성물 및 호메오트로픽 배향 액정 필름
CN102193133A (zh) 偏振板、其制造方法、光学薄膜及图像显示装置
CN1759332B (zh) 制造倾斜取向薄膜的方法,倾斜取向薄膜及使用该膜的图像显示设备
CN100492451C (zh) 图像显示装置和其制造方法、粘合型光学薄膜
KR20050004231A (ko) 광확산성 시트, 광학소자 및 화상표시장치
CN101187712A (zh) 偏振片的制造方法、偏振片、光学薄膜及图像显示装置
CN100390582C (zh) 带粘合剂的光学薄膜和图像显示装置
CN100394222C (zh) 制造扭转倾斜取向薄膜的方法、扭转倾斜取向薄膜和使用它们的图像显示装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080604

Termination date: 20150729

EXPY Termination of patent right or utility model