CN100381356C - 富勒烯的制造方法 - Google Patents

富勒烯的制造方法 Download PDF

Info

Publication number
CN100381356C
CN100381356C CNB2004800158895A CN200480015889A CN100381356C CN 100381356 C CN100381356 C CN 100381356C CN B2004800158895 A CNB2004800158895 A CN B2004800158895A CN 200480015889 A CN200480015889 A CN 200480015889A CN 100381356 C CN100381356 C CN 100381356C
Authority
CN
China
Prior art keywords
soccerballene
gas
reaktionsofen
oxygen
coaly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2004800158895A
Other languages
English (en)
Other versions
CN1802315A (zh
Inventor
武原弘明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Frontier Carbon Corp
Original Assignee
Frontier Carbon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Frontier Carbon Corp filed Critical Frontier Carbon Corp
Publication of CN1802315A publication Critical patent/CN1802315A/zh
Application granted granted Critical
Publication of CN100381356C publication Critical patent/CN100381356C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • C01B32/154Preparation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

使含原料碳氢化物气体与含氧气体从设置在富勒烯反应炉(11)的喷管(16)的喷出部(21)喷出到富勒烯反应炉(11)内,使之燃烧,制造富勒烯的方法中,含原料碳氢化物气体与含氧气体向反应炉(11)内喷出时,从喷出部的平均喷出速度设为超过0.75m/秒、且在10m/秒以下,最好是处于1m/秒以上、且6m/秒以下,以增大相对于含原料碳氢化物气体中的碳的富勒烯收率及生成的煤状中所含的富勒烯含率。据此,可以比以往更增加富勒烯的单位时间的生产量。

Description

富勒烯的制造方法
技术领域
本发明涉及富勒烯的制造方法,根据所述富勒烯的制造方法,增加富勒烯的原料供给量,提高富勒烯的收率及生成的煤状物中的富勒烯含率,增加富勒烯的生产量。
背景技术
富勒烯是继钻石及石墨之后第3种碳同素异形体的总称,指以C60或C70为首的一组球壳状的碳分子,除C60及C70之外,已知的该碳同素异形体有C74、C76、C78、C80、C82、C84、C86、C88、C90、C92、C94及C96,只要是球壳状就可以,对碳原子数无上限。
富勒烯的存在最终被确认是较近的1990年的事情。虽然是比较崭新的碳材料,但已被认识到,由于其特殊的分子结构而显示了特异的物理性质,如在超硬材料方面的应用、医药品方面的应用、超导材料方面的应用或在半导体制造方面的应用的广泛的领域,正急速开展革新性的用途开发。尤其,在富勒烯中C60及C70的合成比较容易,所以预测今后的需求将爆发性地增加。
到目前为止,虽然提出了各种各样的富勒烯的合成法,但是根据任何一种方法,至今都未确立廉价的、大量制造富勒烯的方法。这些方法中已知作为最廉价、高效的制造方法之一是燃烧法。
燃烧法是通过在富勒烯反应炉内形成的火焰中燃烧含碳化合物制造富勒烯的方法,用于燃烧的燃料与富勒烯的原料可以使用相同的含碳化合物。
此处,欲要生成富勒烯,燃烧含碳化合物时的火焰的条件变得很重要。该火焰条件可以通过控制选自含碳化合物燃烧时含碳化合物中的碳对于氧的元素组成比(C/O比)、富勒烯反应炉内的压力、燃烧含碳化合物时的稀释剂浓度、温度、含碳化合物在火焰中的滞留时间、含有含碳化合物的气体及氧气的混合气体的喷管中的气体速度中的任意的1个或2个以上参数进行调节。
如日本专利特表平6-507879号公报(以下称专利文献1)记载,通过使富勒烯反应炉内减压、调节C/O比为0.72~1.07、稀释剂浓度为0~40摩尔%、温度为1400~3000K、气体速度为14~75cm/秒,由此,可以生成含有富勒烯的煤状物。
另外,在美国专利申请公开第2003/0044342号(以下称专利文献2)的说明书中揭示了一种可以使燃料/氧化剂(如空气)比及气体速度稳定在一个较广的范围、提高火焰稳定性的多孔质耐火材料的喷管。该文献记载了:在该喷管中,通过平均1分钟投入80ml的甲苯,可在1小时内制造200g的煤状物(固体碳生成物),通过甲苯提取该煤状物中所含的富勒烯18质量%(富勒烯:36g)左右,最多时可收集富勒烯30质量%(富勒烯:60g)。
然而,在专利文献1中公开的方法中,即使调节火焰的条件,生成的煤状物中的富勒烯含率为0.003~7质量%、富勒烯相对于含碳化合物中的碳的收率很小,为0.02~0.24质量%。另外,由于来自喷管的气体速度很小,所以存在如下问题:可以一次投入的燃料量有限,单位时间的富勒烯生产量也很少。更有,在单纯提高气体速度的场合,如在专利文献1中记载的金属制的喷管中存在发生火焰的吹逸现象,不能维持稳定火焰的问题。
另外,在使用专利文献2中记载的喷管的场合,文献中公开的向喷管进行的1分钟80ml的甲苯的供给,若从喷管的直径为10.5英寸计算,则可知:气体自喷管的平均喷出速度为约50cm/秒左右,在专利文献1中记载的平均喷出速度的范围内。另外,关于将气体的平均喷出速度提升至何种程度,没有具体的记载或启示。即使可以提高气体自燃烧器的喷出速度,在该场合,制造炉内的热负荷也增大,从制造炉排出的气体温度也上升。为此,在含有富勒烯的煤状物的回收装置(如袋滤器)中导入气体之前,虽然有必要将其温度冷却至回收装置的耐热温度以下为止,但是仅单纯地使之热辐射不能冷却。此处,如在专利文献2中也有说明,使用一般的热交换器的场合,由于气体中含有的煤状物,存在着如下问题:在短暂的时间内热交换器发生闭塞,操作实质上成为不可能。
为此,人们一直谋求这样一种方法:籍由提高富勒烯的收率、且将更多的燃料投入到同样的装置(喷管)中,以提高煤单位时间的富勒烯的生产量,同时有效的冷却含有在富勒烯反应炉内生成的富勒烯的煤状物与含有该煤状物的气体,导入煤状物的回收装置中。
本发明是鉴于上述情况而成,其目的在于,提供一种富勒烯的制造方法,根据所述方法,增加富勒烯的原料供给量,比以往更加提高富勒烯的每单位时间的生产量,可长时间稳定地进行富勒烯的制造。
发明内容
按照上述目的的本发明的富勒烯的制造方法,是一种将含原料碳氢化物气体与含氧气体从设置在富勒烯反应炉的喷出部向该富勒烯反应炉内喷出、使之燃烧,以制造富勒烯的方法,其特征在于,
所述含原料碳氢化物的气体与所述含氧气体向所述富勒烯反应炉内喷出时、其从所述喷出部喷出的平均喷出速度设为超过0.75m/秒、且在10m/秒以下,可以增加单位时间的富勒烯生产量。
此处,从喷出部喷出的平均喷出速度可将向富勒烯反应炉内供给时的含原料碳氢化物的气体及含氧气体的总体积,除以在富勒烯反应炉内分布有细微喷出孔的区域(即喷出部)的横截面积而求得,但是,根据富勒烯反应炉内的压力、喷出时的气体温度及燃烧C/O比的任意1个或2个以上条件而变化。在本发明中,在算出气体的喷出速度时的喷出时的气体体积换算为温度298K时的体积。
另外,由于除以分布有细微的喷出孔的区域,即喷出部的横截面积,所以即使喷出部的结构(如喷出孔的内径、喷出孔的配置间距及喷出孔的个数等条件中至少1个)变化,从喷出部的平均喷出速度也可以保持恒定,适合用作富勒烯反应炉的运转参数。
还有,在用相同个数的喷出孔喷出相同气体量的场合,则因为喷出孔的尺寸变小,则喷出速度增大,因此,当含原料碳氢化物的气体及含氧气体从喷出孔实质地喷出时的喷出速度,相比较从喷出部的平均喷出速度增大。然而,在制造富勒烯时,最好调节喷出部的结构、即喷出孔的径及个数,以便从喷出孔喷出时的喷出速度接近于从喷出部的平均喷出速度。此处,从喷出孔的喷出速度与从喷出部的平均喷出速度的关系是(喷出速度/从喷出部的平均喷出速度)的值为10以下,较好的是5以下,更好的是2以下。
还有,虽然将(喷出速度/从喷出部的平均喷出速度)的值,也可以通过将装置(例如喷出部及富勒烯反应炉的任意方或双方)设为特殊的结构而取为1,但是在通常使用的装置中,其(喷出速度/从喷出部的平均喷出速度的)值为1以上。
通过将供给到富勒烯反应炉内的含原料碳氢化物的气体及含氧气体从喷出部的平均喷出速度规定在某些特定范围内,可以增加单位时间内的富勒烯生成量。另外,可以理解:从在燃烧气体流内被加热的含原料碳氢化物的气体发生的富勒烯前体在燃烧气体流内的不均一的移动得到抑制,可以将富勒烯前体在燃烧气体流内的滞留时间保持一定,同时,可以在高温中均匀的加热,可以使富勒烯的生成反应稳定、发生。
为此,如使用在专利文献2中记载的直径10.5英寸的多孔质耐火性材料的喷管,用本发明的方法制造富勒烯的场合,可以每小时生成330~3000g的煤状物,还有,可以使生成的煤状物中的富勒烯含率在10质量%以上,30质量%以下。结果,如将煤状物中的富勒烯含率设为20质量%的场合,每小时生成的富勒烯的生成量为66~600g,与以往相比可以飞跃性地增加。还有,在增大喷管的直径的场合,富勒烯的生产量当然也可以增加。
此处,当含原料碳氢化物气体及含氧气体向富勒烯反应炉内喷出时,其从喷出部的平均喷出速度为0.75m/秒以下的场合,不仅单位时间的富勒烯生成量减少,而且难以在喷出部的下游侧形成含原料碳氢化物气体及含氧气体的明显的喷出流。因此,不能显著促进从富勒烯反应炉的上游侧至下游侧的燃烧气体流,燃烧气体易产生自循环流,并不理想。另外,自喷管喷出的平均喷出速度在如此低速的场合,自喷管喷出的喷出速度比燃料的燃烧速度更慢,在长时间的运转中,在喷管内发生火焰逆流的现象、即发生逆火现象,继续运转成为不可能。
另一方面,当含原料碳氢化物的气体及含氧气体向富勒烯反应炉内喷出时,其从喷出部的平均喷出速度超过10m/秒的场合,在喷出部的下游侧形成的含原料碳氢化物气体及含氧气体的喷出流过强,容易形成乱流。
因此,由于在含原料碳氢化物气体及含氧气体所发生的乱流,搅拌燃烧气体,燃烧气体易发生循环流,因而不理想。
由上所述,将含原料碳氢化物气体及含氧气体向富勒烯反应炉内喷出时从喷出部的平均喷出速度规定为超过0.75m/秒以下、且在10m/秒以下。
另外,在本发明的富勒烯的制造方法中,所述含原料碳氢化物气体与含氧气体从所述喷出部的平均喷出速度更好是在1m/秒以上、(更好的是1.6m/秒)且6m/秒以下的范围内。由此,可显著促进从富勒烯反应炉的上游侧至下游侧流出的燃烧气体流的形成,也防止逆火现象,而且可以形成稳定的喷出流。
而且,在本发明的富勒烯的制造方法中,将所述含原料碳氢化物气体与含氧气体的平均喷出速度设为Vm/秒、所述富勒烯反应炉内的压力设为P托的场合,(V×P)最好在30以上、且1000以下的范围内。如此,由于通过使将平均喷出速度Vm/秒和富勒烯反应炉内的压力P托的乘积在上述的范围内,可以在富勒烯反应炉内使含原料碳氢化物气体与含氧气体为稀薄状态燃烧,所以可以规定能够进一步增加富勒烯的每单位的生产量的条件。
此处,在平均喷出速度Vm/秒和富勒烯反应炉内的压力P托的乘积不到30的场合,如使平均喷出速度为1.5m/秒、富勒烯反应炉内的压力不到2托,则虽然富勒烯反应炉内的压力有利于富勒烯的生成,但是因后段的管道或袋滤器的微小的压力损失的增大而炉内的压力上升,难以保持设定的压力。
另一方面,在平均喷出速度Vm/秒和富勒烯反应炉内的压力P托的乘积超过1000的场合,如设平均喷出速度为6m/秒、富勒烯反应炉内的压力超过167托,则在含原料碳氢化物气体加热分解,在富勒烯或富勒烯之外的煤生成的过程中,煤的生成反应变得显著,富勒烯的生成率恶化。
从上可知,平均喷出速度Vm/秒和富勒烯反应炉内的压力P托的乘积的下限以30为宜、较好的是80、更好的是120。上述乘积的上限以100为宜、较好的是500、400、300、200及150的任一个。该场合,(V×P)超过400的场合可能会发生逆火,所以无需预先混合含原料碳氢化物气体与含氧气体,使用具有各自独立的喷出口的分离型的喷管喷出到富勒烯反应炉内,在该反应炉中进行燃烧。
另外,在本发明的富勒烯的制造方法中,可将含有从所述富勒烯反应炉导入到煤状物的回收装置的煤状物的气体冷却至200℃以上、且700℃以下的温度。
此处,在含有煤状物的气体的温度超过700℃的场合,该温度可能在使用普通的工业用材料的煤状物的回收装置的耐热温度界限以上,机器可能损伤,并不理想。另外,由于富勒烯在减压下、在约700℃以上时升华成为气体状态,所以回收装置(气固分离装置)内的温度超过700℃时,由于富勒烯以气体状态与气体一起通过回收装置,所以煤状物中的富勒烯率含低下,所以并不理想。
再有,含有煤状物的气体的温度不到200℃的场合,由于有害物质的多环芳香族碳氢化物(PAH)作为固体混杂于煤状物中,被回收装置回收,所以并不理想。
由上可知,为了不必损坏煤状物的回收装置,也能提高煤状物中的富勒烯含率,虽然可将含有导入回收装置之前的煤状物的气体温度设为200℃以上、且700℃以下,但是其下限较好的是设为300℃、更好是400℃;其上限较好的是设为600℃、更好是500℃。通过将导入回收装置之前的气体温度设为以上的范围,可延长机器的寿命,还可进一步提高富勒烯的回收率。
如此,在将从富勒烯反应炉的气体温度限制在200℃以上、且700℃以下的富勒烯的制造方法中,含有从所述富勒烯反应炉排出至所述回收装置为止的煤状物的气体,最好以1000℃/秒以上的冷却速度进行冷却。此处,在含有煤状物的气体的冷却速度不到1000℃/秒的场合,必须延长气体为到达煤状物的回收装置所需的滞留时间,为确保冷却时间,装置的导管系统的长度实质上加长,并不经济。还有,所谓该场合的冷却速度是指:将从反应炉内的最高燃烧温度(理论绝热火焰温度)至煤状物的回收装置的入口气体温度为止的温差除以从喷出部喷出到达回收装置为止的气体滞留时间的值。气体滞留时间虽然根据装置的体积与气体的实际体积流量决定,但是由于气体的实际体积流量根据温度及压力而随时变化,所以难以进行实际测定。在此处,得出理论绝热火焰温度和实际测定的煤状物的回收装置的入口气体温度的平均温度,计算在该平均温度时的炉内压力的排气的实际体积流量(m3/秒),将反应炉内及包括管道的装置的体积(m3)除以该排气的实际体积流量而得(上述滞留时间)。
另外,反应炉内的最高燃烧温度(及其他的高温场所的温度)的测定也可以使用光温度计。另外,回收装置的入口侧的气体温度可以采用热电偶用通常的方法进行测定。
更有,虽然含有煤状物的气体的冷却速度越快越好,对上限值不作规定,但是从装置的条件制约来看,现实的是在2000℃/秒左右。
由上可知,为了不必损坏煤状物的回收装置,且做成经济的装置结构,虽然设含有煤状物的气体的冷却速度为1000℃/秒以上,但较好的是2000℃/秒以上,进一步可行的话设为3000℃/秒以上更好。
而且,在本发明的富勒烯的制造方法中,在将含有从所述富勒烯反应炉排出的煤状物的气体冷却为规定温度的场合,可在凭借制冷剂冷却周围的管内形成旋回流进行冷却。如此,由于形成旋回旋回流冷却含煤状物的气体,所以可以经常替换接触管内壁的气体,并且气体与管的内壁的接触位置也可以经常变动,由此,可以提高气体与管的内壁之间的热交换效率。其结果,可以将所有气体的温度同样降低。另外,高速气流在管的内侧壁部分流动,可以显著减少煤状物的附着量。
另外,在本发明的富勒烯的制造方法中,较好的是,含所述原料碳氢化物气体在燃烧时,含有该原料碳氢化物的气体中的碳相对所述含氧气体中的氧元素组成比设为1.00以上、且1.56以下。如此,通过将元素组成比、即C/O比控制在上述的范围内,可以使富勒烯的生成量最大化。另外,此处C/O比超过1.56的场合,燃烧的含原料碳氢化物气体的量降低,燃烧气体的温度不增高,煤状物作为主体从含原料碳氢化物气体生成。因此,在富勒烯前体的生成量降低的同时,富勒烯前体之间的冲突频率降低,富勒烯的生成速度减小,结果,导致煤状物中的富勒烯含率极低下。
另一方面,在C/O比不到1.00的场合,燃烧的含原料碳氢化物气体量增加,燃烧温度增高,富勒烯的生成速度增加,结果虽然煤状物中的富勒烯含率增加,但一方面由于煤状物自身的生成量减少,所以最终的富勒烯的收量减少,不理想。
从以上可知,可将C/O比的下限设为1.00、较好的是1.08、更好的是1.09;可将C/O比的上限设为1.56,较好的是1.36、更好的是1.23。
而且,在本发明的富勒烯的制造方法中,所述含氧气体最好是浓度99%以上的氧气。通过将含氧气体的组成作成实质上仅由氧气构成,籍此,可减少富勒烯反应炉内中发生的燃烧气体的量,增大燃烧气体的单位体积的保持热量。其结果,可以将燃烧气体的温度设为如,其下限为1600℃,较好的是1700℃;其上限为2100℃,较好的是1900℃。另外,促进含原料碳氢化物气体的分解,富勒烯前体的生成速度增大,且促进富勒烯前体之间的反应,可以提高富勒烯的生成速度。
在本发明的富勒烯的制造方法中,所述含原料碳氢化物气体更好的是进行预热,从所述喷出部喷出到所述富勒烯反应炉内。据此,可以防止含原料碳氢化物气体在搬运中液化,操作稳定,且可以提高富勒烯反应炉的燃烧温度。
更有,在本发明的富勒烯的制造方法中,所述含原料碳氢化物气体最好进行预热、从所述喷出部喷出到所述富勒烯反应炉内。据此,可以提高在富勒烯反应炉内燃烧含原料碳氢化物气体时的燃烧温度,提高富勒烯的制造效率。
含原料碳氢化物气体的预热温度最好是在原料碳氢化物的使用压力的气化温度以上,较好的是高于气化温度10℃以上、更好的是高于气化温度20℃以上的温度。较好的是,含氧气体也进行预热,做成与含原料碳氢化物气体相同程度的气体,但是在使用压力下,最好是设为作为混合气体时的自燃温度以下,理想的是设定为比自燃温度低10℃以上的温度为好。
此处,虽然也可以改变含原料碳氢化物气体和含氧气体的预热温度以调节混合气体的温度,但是两种气体的预热温度的温差越小越好,即便有温差,该温差最好在50℃以内。
另外,在本发明的富勒烯的制造方法中,最好在所述富勒烯反应炉的上部设置具有所述喷出部的喷管;在所述富勒烯反应炉的下部设置将含有在所述富勒烯反应炉内生成的煤状物的气体排出的排出部。通过进行如此配置,从上部降落的煤状物不会覆盖在喷管之上。不会阻塞喷管的喷出口。
根据以上的本发明的方法,可将所述富勒烯反应炉内生成的煤状物中的富勒烯含率设为超过7质量%、且50质量%以下。如此,本发明的方法与以往的方法比较,可以增加(以往是7质量%以下)煤状物中的富勒烯含率。
附图说明
图1是适用本发明一个实施例的富勒烯的制造方法的富勒烯制造设备的说明图。
图2是同上富勒烯制造设备的变化例的说明图。
图3是说明实验例1~3的富勒烯浓度及富勒烯生成量与喷管流速之间关系的说明图。
图4是说明比较例1~3的富勒烯浓度及富勒烯生成量与喷管流速之间关系的说明图。
图5是说明实验例3~6的富勒烯浓度及富勒烯生成量与炉内压力之间关系的说明图。
图6是说明实验例7~16的富勒烯浓度及富勒烯生成量与元素组成比(C/O比)之间关系的说明图。
具体实施方式
接着,参照附图对将本发明具体化的实施例进行说明,以供理解本发明。
如图1所示,适用了本发明一实施例的富勒烯的制造方法的富勒烯制造设备10具有:富勒烯反应炉11、从富勒烯反应炉11排出的气体状物回收含有富勒烯的煤状物的回收装置12、对从回收装置12排出的气体进行冷却的气体冷却器13、由对通过气体冷却器13降温的气体进行抽吸的真空泵而组成的减压装置14。以下关于这些进行更详细的说明。
富勒烯反应炉11具有:如圆筒形状的反应炉主体15,和设置在反应炉主体15的上端侧的喷管16。反应炉主体15,由如不锈钢等的耐热钢构成,在其内侧的一部分或全部内衬有如氧化铝质的耐火砖或氧化铝质的不定形耐火材料等的耐火物。该结构可以提高富勒烯生成部的温度、适于富勒烯的生成。
另外,为了防止在反应炉内生成的煤状物降落到喷管16的表面上,阻碍长时间的稳定运转,所以反应炉主体15虽然做成铅垂向下,但是在不进行长时间运转的场合,无需规定反应炉主体朝向铅垂下方,反应炉主体可以是铅垂向上,也可以是斜向上方。
喷管16具有:供给含原料碳氢化物气体的含原料碳氢化物气体管道17、向含原料碳氢化物气体中的燃烧气体的燃烧供给所需氧气的含氧气体管道18、从供给的含原料碳氢化物气体及含氧气体制作混合气体的混合室19、将得到的混合气体保持为规定的压力(如50~80托、最好是100~150托)的蓄能(压)室20、设置有多个混合气体喷出的、未图示的喷出孔(如口径0.1~5mm、最好是0.2~3mm)的喷出部21。
作为喷出部21可以采用各种形态,但是为了得到良好的气体流,最好是多个小口径的喷出孔集合的形态。例如,在具备多个口径为0.1~5mm的喷出孔的场合,相对于喷出部21区域的横截面积,喷出孔的开口面积的合计最好占有10~95%、较好的是50~95%。
还有,混合室19、蓄能室20及喷出部21可以由如不锈钢等的耐热钢形成。此处,喷出部21也可以使用多孔质的陶瓷(如氧化锆,堇青石或碳)烧结体构成,可以通过采用多孔质的陶瓷以提高喷出部21的耐热性,可以进行长时间的稳定运转。
另外,也可以不设混合室19,将含原料碳氢化物气体和含氧气体分别独立地导入富勒烯反应炉11内。
在含原料碳氢化物气体管道17和含氧气体管道18上分别设置有热交换器22、23,以将加热处理(预热)的原料碳氢化物气体、含氧气体供给到喷管16中。还有,也有在比热交换器22更上游侧的含原料碳氢化物气体管道17中配置用于使原料碳氢化物气化的气化装置24。还有,热交换器22、23无论使用哪一种都可以,但是根据情况,也可以省略热交换器22、23的任一个,仅预热含原料碳氢化物气体及含氧气体的任一个。另外,在含原料碳氢化物气体管道17和含氧气体管道18的前部中,分别设置有将供给到喷管16的原料碳氢化物气体及含氧气体的流量进行调节的流量调节器25、26。
在富勒烯反应炉11的下端侧,设置有:备有含有在富勒烯反应炉11中生成的富勒烯或煤状物的高温排气的排出口27。该排出口27上介由气体降温装置28连接有回收装置12。此处,在该实施例中,气体降温装置28具有将周壁冷却为规定温度的、规定长度的导管29,籍由乱流状态的含煤状物的高温气流通过该导管29内,被从周围吸热,降温到规定的温度(如原料碳氢化物的液化温度以上、富勒烯的固化温度以下,即200~700℃,较好是300~500℃左右),送到回收装置12内。
还有,含有从富勒烯反应炉11排出的煤状物的气体的温度,可根据富勒烯反应炉11的长度或冷却效率进行变化。此处,气体降温装置若仅是将周壁冷却为规定温度的规定长度的导管29,则冷却效率很差,所以尤其在从喷管16喷出的气体的平均喷出速度很快的场合(如200cm/秒以上的场合),有时气体温度成为超过1000℃的高温。因此,要想将成为高温的气体温度降至回收装置12的耐热温度以下,如降低至回收装置12的高温耐热滤器30的耐热温度400~600℃左右,则气体降温装置的结构尤其变得很重要。
如此场合,如图2所示,可使用采用了使含有富勒烯的高温气体旋回流、通过通道的气旋型的气体降温装置(冷却器)31的富勒烯制造设备32,以取代气体降温装置28。该气体降温装置31由:上游侧成圆筒状的筒状部33;下游侧与该筒状部33连接、具有经过下游侧端部直径缩小的缩径部34的管构成。在其外侧周围卷贴有图未示的水冷套管或冷却管。还有,在该实施例中,筒状部33的内径为600mm、其长度为1500mm左右,但若是具有将从反应炉发生的气体以100℃/秒以上进行冷却的能力,则当然能变更其尺寸。
在该气体降温装置31的筒状部33中,富勒烯反应炉11的排出部35在筒状部33的切线方向连接,含有介由排出部35排出到筒状部33内的富勒烯的气体沿着管内的内周面回转(日文:旋回),形成旋回流且冷却之后排出到下游侧。还有,在缩径部34的下游侧端部连接有输送管36,该输送管36与回收装置12连接。据此,可以提高气体与管的内壁之间的热交换效率,将温度降低至期望的温度,而且可以同样地降低整体气体的温度。
另外,该场合,经常变动气体与管的内壁之间的接触位置,可以抑制在气体中漂浮的煤状物或富勒烯反应炉11内形成的气体中混入的燃烧残渣附着于管的内壁上。因此,管的内壁变得容易露出,可以高位维持气体与管内壁之间的热交换效率。通过此时的内侧的旋回流气体的流速设为高速(如15~300m/秒),更好的是将下限设为35m/秒、其上限设为150m/秒。
如此,通过使用气旋型的气体降温装置31,可以将含有从富勒烯反应炉11排出至回收装置12的煤状物的气体以1000℃/秒以上的冷却速度进行冷却。该冷却速度是将从富勒烯反应炉11内的最高燃烧温度至回收装置12的入口的气体温度的温差,除以从喷出部21到达至回收装置12为止的气体滞留时间的值。
因此,无需考虑能够将气体温度降温至上述的温度为止的距离,就可以缩短输送管36的长度。而且,在该输送管36内也发生旋回流,使煤状物不附着于管内壁上,可以输送气体。
如图1所示,由于回收装置12用于分离从富勒烯反应炉11发生的含煤状物气流中的固态物与气态物,所以在其内部备有高温耐热滤器30。由于温耐热滤器30使含原料碳氢化物气体及含氧气体通过、回收富勒烯及煤状物,所以根据气体的温度具有400~600℃的耐热温度。
回收装置12的结构是用于通常的吸尘器等的袋滤器结构,该袋滤器利用所述的高温耐热滤器30构成。作为这样的高温耐热滤器30,可以举例如日本ポ一ル株式会社制的烧结金属滤器或富士滤器工业株式会社制的烧结金属滤器等。烧结金属滤器网眼的大小根据生成富勒烯的燃烧条件或煤状物质的性质进行适当选择。
另外,通过气体降温装置使含煤状物气流的温度下降至150℃左右以下的场合,回收装置12的内部的滤器无需是高温耐热滤器,可以使用通常使用的滤器,如尼龙或四氟乙烯材质的滤器。
在回收装置12中设置有可定期除去附着于其上部的固化物(如煤状物和富勒烯)的反清洗机构37。
该反清洗机构37具有贮留高压的惰性气体(如氮气或氩气)等的罐38和电磁阀39,通过定期地、短时间脉冲式打开电磁阀39,可将惰性气体通入高温耐热滤器-30内,使附着于周围的固化物掉落到下方,打开排出阀40排出到外部。在回收装置12的上部,设置有将通过高温耐热滤器-30的气体向外部排出的气体排出管道41。在回收装置12的气体排出管道41中设置有气体冷却器13。该气体冷却器13由和通常的热交换器相同或近似的结构而成,以降低流入到减压装置14的气体的温度,降低减压装置14的负荷。另外,可以将在气流内所含的含原料碳氢化物气体及燃烧气体中的水分液化,从下部的排水管排出。
后续于该气体冷却器13的减压装置14由通常的真空泵构成。还有,由于富勒烯的升华温度也根据真空温度进行变化,所以可以选定减压装置14以便根据供给的碳质原料、氧气及惰性气体的量最有效地回收压力。
通过用各流量调节器25、26,可控制含原料碳氢化物气体和含氧气体的供给量导入混合室19内,制作混合气体。该混合气体,相对于含原料碳氢化物气体燃烧时的氧气的含原料碳氢化物中的碳的元素组成比(C/O)的下限调节为1.00,较好的是1.08,更好的是1.09;将上限调节为1.56,较好的是1.36,更好的是1.23。
然后将制作的混合气体在蓄能室20内保持,从喷出部21喷出,可以向反应炉主体15内以如超过0.75m/秒、且10m/秒以下,较好是1m/秒以上、且6m/秒以下的平均喷出速度稳定供给混合气体。
介由连接于排出口27的导管29,可以用减压装置14将反应炉主体15内进行排气,可以将反应炉主体15内保持为如20托以上且180托以下,较好的是将下限为30托、上限为100托、更好的是80托的减压状态。
此处,将含原料碳氢化物气体和含氧气体的平均喷出速度设为V m/秒、富勒烯反应炉内的压力为P托的场合,设(V×P)为30以上、且1000以下的范围。
因此,可以在该减压状态下,使从喷出部21喷出到反应炉主体15内的混合气体燃烧,并且生成的燃烧气体从反应炉主体15通过排出口27向外部排出。
然后,对本发明的一实施例的富勒烯的制造方法作详细说明。
作为含原料碳氢化物气体使用甲苯气体、作为含氧气体使用浓度99%以上的氧气体(又称纯氧气体)。用各流量调节器25、26分别调节甲苯气体量及纯氧气体量,导入混合室19内制作混合气体,以便使甲苯中的碳相对于甲苯气体燃烧时的氧气的元素组成比(C/O比)的下限成为1.0,较好的是1.08,更好的是1.09,使其上限成为1.56,较好的是1.36,更好的是1.23。
然后,通过导管29用减压装置14将反应炉主体15内排气,同时,将混合气体从喷出部21喷出到反应炉主体15内,使之燃烧,以便使从喷出部21的平均喷出速度在如1m/秒以上、6m/秒以下。此时,调节减压装置14的排气量,以便反应炉主体15能够维持在如20托以上、且180托以下,较好的是其下限为30托、上限为100托,更好的是上限80托的减压状态。
此处,将含原料碳氢化物气体和含氧气体的平均喷出速度Vm/秒与富勒烯反应炉内的压力P托的乘积(V×P)调节在30以上、且1000以下的范围内。
由于甲苯气体和氧气体的混合气体在供给反应炉主体15内之前充分混合,所以甲苯的燃烧可以均匀地进行,可以使反应炉主体15内的温度成为均匀且高温(如1600~2100℃、较好的是1700~1900℃)
另外,由于将C/O比控制在规定的范围内,所以在未燃烧的甲苯加热、分解时煤状物的生成被抑制,富勒烯前体大量生成。由此,使生成的富勒烯前体之间的冲突频率提高,富勒烯的生成速度提高,可以提高富勒烯的收率。
为进一步提高燃烧气体的温度,最好在向反应炉主体15内喷出之前预热混合气体。因此,在含原料碳氢化物气体供给导管17和含氧气体供给导管18中分别设置热交换器22、23,将甲苯及氧气体加热处理之后供给至喷管16的混合室19。此处,由于甲苯及氧气体在混合室19内进行预混合成为混合气体,从喷出部21喷出至富勒烯反应炉11内进行燃烧,所以最好运转各热交换器22、23,以便使混合气体的温度能够成为甲苯的气化温度以上、未到自燃的温度。还有,为了可以保持气体状态,温度范围可以在气化温度10℃以上、最好是20℃以上。另外为防止自燃,温度范围可以是比自燃温度低10℃以上、最好是低20℃以上。
另外,在不设置混合室19而将甲苯和氧气体分别独立地导入富勒烯反应炉11内的场合,由于不必担心在富勒烯反应炉11内的上游侧着火,所以对氧气预热温度无上限,但是由于甲苯气体在300℃左右炭化,所以为了不堵塞含原料碳氢化物气体管道17,氧气预热温度最好在炭化温度以下。
还有,最好甲苯气体及氧气两种都进行加热处理,但是根据场合不同,也可以仅预热甲苯气体及氧气中的一种。作为原料碳氢化物,除了甲苯之外可以使用芳香族系碳氢化物、煤系碳氢化物、乙炔系不饱和碳氢化物、乙烯系碳氢化物或脂肪族饱和碳氢化物,也可以将这些碳氢化物单独或以任意的比例混合使用。还有,作为芳香族系碳氢化物,有如苯、二甲苯、萘或蒽,作为煤系碳氢化物有例如杂酚油或缩酸油,作为脂肪族饱和碳氢化物有如戊烷或正己烷。
其中最好使用精制的碳氢化物,尤其最好是芳香族系碳氢化物。含原料碳氢化物气体的纯度以高为宜,但是为控制燃烧浓度或含原料碳氢化物气体在燃烧反应中的浓度,也可以用氩气等的惰性气体稀释含原料碳氢化物气体。作为含氧气体使用浓度99%以上的氧气、用氮气或氩气等的惰性气体稀释浓度99%以上的氧气、或空气等。
以下,就将混合气体以规定的速度向反应炉主体15内喷出时,甲苯在氧气下的燃烧及分解,还有富勒烯的生成状况进行说明。由于混合气体从喷管16的喷出部21以超过0.75m/秒、且在10m/秒以下,优选是1m/秒以上、且6m/秒以下的平均喷出速度喷出,所以可以在1个喷管中投入大量的原料。另外,由于使用含氧浓度高的氧化剂,所以反应炉主体15内的燃烧气体温度达到如1600~2100℃,最好是1700~1900℃的高温。为此,未燃烧的甲苯容易被加热、分解、气化,扩散至因甲苯的燃烧发生的燃烧气体内。此处,反应炉主体15内流入大量的混合气体,在喷出部21的下游侧形成混合气体的显著的喷出流。因此,可理解为:含有甲苯的分解物的燃烧气体,促进了从富勒烯反应炉11的上游侧(喷管16侧)向下游侧流出的同样(一致)的气流的形成。
反应炉主体15内,保持在其压力的下限20托,更好的是30托,其上限100托、更好的是80托的减压状态,含原料碳氢化物气体和含氧气体的平均喷出速度Vm/秒与富勒烯反应炉11内的压力P托的乘积(V×P)调节为30以上、且1000以下的范围内,由此可理解为:甲苯的均匀燃烧得到促进,燃烧气体的温度在铅垂于反应炉主体15的轴向的方向上实质上相同。
其结果,在燃烧气体流内难以发生自循环流。所以,在反应炉主体15内,可以求得从上游侧向下游侧流出的、相同的流动稳定化。
此处,通过将喷管16设置在铅垂方向上方侧,使燃烧气体因重力向下方流,其稳定化可靠。还有,反应炉主体15内的燃烧气体通过连接到排出口27的导管29由减压装置14排气。
在燃烧气体中扩散的甲苯的分解物可以认为是:被燃烧气体加热而转化为富勒烯前体,富勒烯前体互相重复冲突,转化为富勒烯的物质。此处,含有甲苯的分解物的燃烧气体流,由于是在从反应炉主体15内从上游侧向下游侧的同样的气体流,因此,燃烧气体的甲苯的分解物的不均匀的移动受到抑制,使得甲苯分解物在燃烧气体内的滞留时间变得相同。因此可解释为:富勒烯前体从甲苯的分解物稳定生成。另外,生成的富勒烯前体在燃烧气体中的不均匀移动也受到抑制,使得富勒烯前体在燃烧气体内的滞留时间也变得相同。由此也可解释富勒烯可从富勒烯前体稳定生成。其结果,可以理解:富勒烯相对于甲苯中的碳的收率为0.5质量%以上、1质量%以下、煤状物中的富勒烯含率超过7质量%、且50质量%以下,更好的是10质量%以上、且25质量%以下。
如以上说明,已判明:由于混合气体从喷管16向反应炉主体15内以很大的平均喷出速度喷出,使富勒烯的收率及煤状物中的富勒烯含率同时提高。此处,用如此大的平均喷出速度喷出混合气体,意味着增加供给富勒烯反应炉11的单位时间的混合气体,其结果,供给富勒烯反应炉11的富勒烯的原料供给量变多。所以,增加富勒烯的原料的供给量,可以高位维持富勒烯的收率及煤状物中的富勒烯含率,所以可以大幅提高富勒烯的生产量。
实验例
以下,就为了确认本发明的作用效果而进行的实验例进行说明。
在富勒烯的制造中,分别使用在上述实施例中使用的富勒烯制造设备10、32,含原料碳氢化物气体、含氧气体分别使用甲苯气体和纯氧。还有,甲苯气体一旦用气化装置加热甲苯成为气体状之后,用热交换器22将其加热成140℃左右。另一方面,氧气从氧气罐供给热交换器23,在该处加热成为140℃。而且,将该加热过的甲苯气体及氧气在喷管16内进行预混合,作为混合气体,向富勒烯反应炉11内喷出。
使用的喷管16的喷出部21,用外径为250mm的圆板状的多孔质陶瓷烧结体而构成,在多孔质的陶瓷烧结体上作为喷出孔每25mm形成有30~50个孔。
另外,富勒烯反应炉11的长度为2000mm、直径为300mm,在富勒烯反应炉11的内壁面中从相当于喷管16的表面部(前端部)的部位向下游侧400mm的范围,用如氧化铝质的不定形耐火材料构成衬里层。在以下的比较例及实验例中使用的喷管和反应炉,使用与以上说明的喷管11和反应炉16实质上相同的结构。
还有,含有从使用于富勒烯制造设备10中的反应炉11发生的煤状物气体的排出口27,其内径为150mm,气体降温装置28是内径为150mm,长度为5000mm的不锈钢质导管,其结构为用水将外侧冷却。
另一方面,用于富勒烯制造设备32的反应炉11中设置的排出部35的排出口,其内径是200mm,气体降温装置31是内径为1500mm、长度为5000mm的不锈钢质导管,其结构为用水将外侧冷却。
此处,将使用图1所示的富勒烯制造设备10的比较例1~3的制造条件及其结果示于表2、将使用图2所示的富勒烯制造设备32的实验例1~16的制造条件及其结果分别示于表1、表3、表4。还有在启动各富勒烯制造设备10、32的时候,在任一场合都连续100小时以上稳定地生成富勒烯。
表1
Figure C20048001588900181
表2
表3
Figure C20048001588900201
表4
Figure C20048001588900211
上述各表中的各词意思以及分析方法如下。
煤收率:在袋滤器中回收的煤相对于单位时间里使用的甲苯重量的重量比例。
煤状物中(以下,也单称煤中)的富勒烯浓度:煤中的富勒烯浓度,利用溶于甲苯等的有机溶剂的性质,使用高效液相色谱装置(HPLC)按照下述方法进行测定。
(1)在10ml螺旋管内精确秤量煤样品0.015g(A)。
(2)然后,添加7ml(6g)三甲苯,,精确秤量溶剂添加量(B)
(3)混合后,用超声波处理15分钟冷却至室温。
(4)将连锁(テスミック)滤器(0.2μm-PTFE)安装在塑料注射器。
(5)注射器中加入11ml左右的样品,向管瓶过滤。
(6)实施HPLC分析。还有(1)、(2)中的稀释率B/A为约400。
HPLC分析条件如下:
HPLC装置:ァジレンテ(Aglient)公司制1100、溶离剂:48vol%甲苯/MeOH,0.8ml/min、柱:YMC-Pack,ODS-AM,S-3μm、12nm、75nm×4.6mmID、柱温度:40℃、波长:308nm。用该方法,如将C60及C70、C74、C76、C78、C80、C82、C84、C86、C88、C90、C92、C94及C96、及高次的富勒烯类的1个或2个以上作为富勒烯检测。
富勒烯收率:生成的富勒烯相对于单位时间里使用的甲苯重量的重量比例。
实验例1~3
使用图2所示的富勒烯制造设备32,按照表1所示的各条件制造富勒烯。
如表1及图3所示,若使从喷管喷出的气体的平均喷出速度(以下,又称喷管流速)以78cm/秒(V×P=31.2)、155cm/秒(V×P=62)、334cm/秒(V×P=133.6)增加,则煤中的富勒烯浓度分别以23.6质量%、23.0质量%、14.5质量%略有减少,但是由于对喷管的甲苯的投入量很多,所以富勒烯生成量(生产量)分别增大为56g/h、99g/h、183g/h。此处,喷管流速可以进一步增大
比较例1~3
根据图1所示的富勒烯制造设备10,根据表2所示的各条件制造富勒烯。
虽然制造条件与表1的实验例略相同,但是由于没有富勒烯制造设备32的旋回流型的冷却装置、即没有气体降温装置31,所以袋滤器的入口温度与实验例1~3相比增高。尤其,如图所示,包括喷管流速快的比较例2及3,在所有的生产量,煤中的富勒烯浓度降低,富勒烯生产量降低。另外,尤其在比较例2及3,袋滤器入口温度很高达800~900℃,超过袋滤器的耐热温度,所以虽然可以进行比以往更长时间的连续运转,但是不可能进行比富勒烯制造设备32更长时间的连续运转。
以上,根据实验例1~3及比较例1~3的结果,通过增大喷管流速,富勒烯的生产量飞跃性增大,另外使袋滤器的入口温度作为700℃以下,可以确认:可以增大富勒烯的生产效率。
实验例3~6
使用图2所示的富勒烯制造设备32,按照表3所示的各条件制造富勒烯。还有在该实验例,变更反应炉的炉内压力。
如表3及图5所示,将炉内压力在40~150托的范围(V×P=133.5~134)进行变化,煤中的富勒烯浓度或富勒烯生产量稳定维持。该场合,若提高炉内压力,则对应其压力,喷管减少,但是可以稳定维持火焰至89cm/秒。但是进一步提高炉内压力,喷管流速成为75cm/秒的场合,在喷管内发生逆火现象,难以稳定维持火焰。
实验例7~16
使用图2所示的富勒烯制造设备32,按照表4所示的各条件制造富勒烯。在该实验例,变更燃料的C/O比。
如图6所示,即使甲苯流量相同,在C/O比很小时,煤中的富勒烯浓度虽然很高,但是煤收率很低,结果富勒烯生成量变很低。另外,C/O比很高的场合,相反煤中的富勒烯浓度变低,煤收率很高。
还有,富勒烯生成量在C/O比1.15~1.17附近最大。
从该情况可以推测:若相对于氧气的甲苯中的碳的元素组合比不到1.00或超过1.28,则富勒烯收率极度降低。尤其,在C/O比为1.01以上、1.23以下的场合,煤中的富勒烯浓度超过7%,可以生成比以往更多的富勒烯。
以上,虽然说明了本发明的实施例及用于确认其作用效果的实验例,但是本发明不限定于该实施例及实验例,有可能分别变更说明书中记载的各构成,将上述的各实施例或变化例的一部分或全部进行组合,构成本发明的富勒烯的制造方法的场合也包含在本发明的权利要求范围内。如,可以将用热交换器分别加热的甲苯气体和氧气另用导管供给到喷管,在喷管混合之后喷出到反应炉主体内,但是也可以将用热交换器分别加热的甲苯气体和氧气在混合器内混合成为混合气体状态之后,供给没有混合室的喷管中,喷出到反应炉主体内。该场合,运转各热交换器,以便使混合气体的温度达到甲苯的气化温度以上、不到自燃温度。
另外,也可以将用热交换器分别加热的甲苯气体和氧气从设置在富勒烯反应炉的喷出部喷出到富勒烯反应炉内,边在富勒烯反应炉内扩散混合边燃烧。该场合,甲苯气体的加热温度范围为气化温度以上,未到碳化温度。另外,氧气的加热温度范围,只要是甲苯的气化温度以上,不到甲苯与氧气混合后的发火温度,就没有特别限制。
虽然将喷管设置在反应炉主体的上端侧(铅垂方向上方),但是可以设置在富勒烯反应炉的侧部上侧或下端侧(铅垂方向下方)。另外,也可以将燃烧器在每个喷出孔分割设置,分别配置混合室及蓄能室。
作为用于喷管的喷出部,虽然使用由多孔质陶瓷烧结体的板形成的喷出部,但是也可以使用由不锈钢等的耐热钢形成的喷出部。另外,可以使用具有由不锈钢制的耐热金属形成的微小径喷嘴集合而成的喷出部的喷管。
产业上的利用可能性
本发明的富勒烯的制造方法,因含原料碳氢化物气体与含氧气体从喷出部的平均喷出速度设为超过0.75m/秒、且在10m/秒以下(更好的是1m/秒以上、6m/秒以下),因此,可以增加富勒烯的原料供给量,如可以87~600g/h左右的高生产量生产富勒烯。所以,可以比以往更增加富勒烯的单位时间的生产量。
另外,籍由将含原料碳氢化物气体与含氧气体的喷出部的平均喷出速度设为Vm/秒与将富勒烯反应炉内的压力设为P托的乘积(VP)设为30以上、且在1000以下的范围内,可使富勒烯反应炉内中的含原料碳氢化物气体与含氧气体成为稀薄状态燃烧,由此可以使富勒烯反应炉内的温度更均匀,且高温,可以增大富勒烯的生成速度。
其结果,燃烧均匀进行,提高了在富勒烯反应炉内的富勒烯生成效率,可以进一步增加富勒烯的生成量。

Claims (16)

1.一种富勒烯的制造方法,所述制造方法是将含原料碳氢化物气体与含氧气体从设置在富勒烯反应炉的喷出部向所述富勒烯反应炉内喷出、使之燃烧,以制造富勒烯的方法,其特征在于,
所述含原料碳氢化物气体与所述含氧气体向所述富勒烯反应炉内喷出时,从所述喷出部的平均喷出速度为超过0.75m/秒、且在10m/秒以下。
2.如权利要求1所述的富勒烯的制造方法,其特征在于,所述含原料碳氢化物气体与所述含氧气体从所述喷出部的平均喷出速度在1m/秒以上、且6m/秒以下的范围。
3.如权利要求1所述的富勒烯的制造方法,其特征在于,将所述含原料碳氢化物气体与所述含氧气体的平均喷出速度设为Vm/秒、将所述富勒烯反应炉内的压力设为P、单位为托,(V×P)在30以上、且1000以下的范围。
4.如权利要求2所述的富勒烯的制造方法,其特征在于,将所述含原料碳氢化物气体与所述含氧气体的平均喷出速度设为Vm/秒、将所述富勒烯反应炉内的压力设为P、单位为托,(V×P)在30以上且1000以下的范围内。
5.如权利要求1所述的富勒烯的制造方法,其特征在于,含有从所述富勒烯反应炉导入到煤状物回收装置的煤状物的气体被冷却至200℃以上、且700℃以下的温度。
6.如权利要求2所述的富勒烯的制造方法,其特征在于,含有从所述富勒烯反应炉导入到煤状物回收装置的煤状物的气体被冷却至200℃以上、且700℃以下的温度。
7.如权利要求5所述的富勒烯的制造方法,其特征在于,含有从所述富勒烯反应炉排出至所述回收装置的煤状物的气体,以1000℃/秒以上的冷却速度被冷却。
8.如权利要求6所述的富勒烯的制造方法,其特征在于,含有从所述富勒烯反应炉排出至所述回收装置的煤状物的气体,以1000℃/秒以上的冷却速度被冷却。
9.如权利要求7所述的富勒烯的制造方法,其特征在于,含有从所述富勒烯反应炉排出的煤状物的气体,在由制冷剂冷却周围的管内形成旋回流进行冷却。
10.如权利要求8所述的富勒烯的制造方法,其特征在于,含有从所述富勒烯反应炉排出的煤状物的气体,在由制冷剂冷却周围的管内形成旋回流进行冷却。
11.如权利要求1至10的任一项所述的富勒烯的制造方法,其特征在于,所述含所述原料碳氢化物气体燃烧时,所述含原料碳氢化物气体中的碳相对于所述含氧气体中的氧的元素组成比为1.00以上、且在1.56以下。
12.如权利要求11所述的富勒烯的制造方法,其特征在于,所述含氧气体是浓度99%以上的氧气。
13.如权利要求11所述的富勒烯的制造方法,其特征在于,所述含原料碳氢化物气体经预热,从所述喷出部喷出到所述富勒烯反应炉内。
14.如权利要求11所述的富勒烯的制造方法,其特征在于,所述含氧气体经预热,从所述喷出部喷出到所述富勒烯反应炉内。
15.如权利要求11所述的富勒烯的制造方法,其特征在于,在所述富勒烯反应炉的上部设置具有所述喷出部的喷管,在所述富勒烯反应炉的下部设置将含有在所述富勒烯反应炉内生成的煤状物的气体排出的排出部。
16.如权利要求11所述的富勒烯的制造方法,其特征在于,在所述富勒烯反应炉内生成的煤状物中的富勒烯含率,超过7质量%、且在50质量%以下。
CNB2004800158895A 2003-06-10 2004-06-07 富勒烯的制造方法 Expired - Lifetime CN100381356C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003165384 2003-06-10
JP165384/2003 2003-06-10

Publications (2)

Publication Number Publication Date
CN1802315A CN1802315A (zh) 2006-07-12
CN100381356C true CN100381356C (zh) 2008-04-16

Family

ID=33549211

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800158895A Expired - Lifetime CN100381356C (zh) 2003-06-10 2004-06-07 富勒烯的制造方法

Country Status (5)

Country Link
US (1) US20060140845A1 (zh)
EP (1) EP1642866A1 (zh)
CN (1) CN100381356C (zh)
RU (1) RU2005141129A (zh)
WO (1) WO2004110927A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002326799B2 (en) * 2001-08-31 2008-08-14 Nano-C, Inc. Method for combustion synthesis of fullerenes
AU2003301691B2 (en) * 2002-07-03 2009-01-22 Nano-C, Inc. Separation and purification of fullerenes
EP2080952A1 (en) * 2008-01-17 2009-07-22 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Burner and method for alternately implementing an oxycombustion and an air combustion
WO2009093370A1 (ja) * 2008-01-21 2009-07-30 Nikkiso Co., Ltd. カーボンナノチューブ製造装置
CN101597052B (zh) * 2009-07-06 2011-06-15 中国科学院化学研究所 一种利用煤或石墨燃烧法大规模生产富勒烯的方法
RU2489350C2 (ru) * 2011-11-16 2013-08-10 Общество с ограниченной ответственностью "Центр перспективных углеродных материалов" Способ получения углеродных наноматериалов и устройство для его реализации
CN103112842B (zh) * 2013-02-28 2015-04-22 深圳市通产丽星股份有限公司 一种富勒烯的制备方法
RU2556926C1 (ru) * 2014-05-30 2015-07-20 Федеральное государственное бюджетное учреждение науки Объединенный институт высоких температур Российской академии наук Способ непрерывного получения графенов
CN106744815A (zh) * 2017-03-07 2017-05-31 内蒙古碳谷科技有限公司 一种用于制备富勒烯的燃烧装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5273729A (en) * 1991-05-24 1993-12-28 Massachusetts Institute Of Technology Combustion method for producing fullerenes
US5985232A (en) * 1994-03-30 1999-11-16 Massachusetts Institute Of Technology Production of fullerenic nanostructures in flames
US20030044342A1 (en) * 2001-08-30 2003-03-06 Alford J. Michael Burners and combustion apparatus for carbon nanomaterial production

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656414A (ja) * 1992-08-03 1994-03-01 Mitsui Eng & Shipbuild Co Ltd フラーレン類の製造方法
JPH11179129A (ja) * 1997-12-25 1999-07-06 Nkk Corp 電気炉の排ガス処理方法及び装置
US6887291B2 (en) * 2001-08-30 2005-05-03 Tda Research, Inc. Filter devices and methods for carbon nanomaterial collection
JP2003221216A (ja) * 2001-11-22 2003-08-05 Mitsubishi Chemicals Corp フラーレン類の製造方法及びその装置
AU2003301691B2 (en) * 2002-07-03 2009-01-22 Nano-C, Inc. Separation and purification of fullerenes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5273729A (en) * 1991-05-24 1993-12-28 Massachusetts Institute Of Technology Combustion method for producing fullerenes
US5985232A (en) * 1994-03-30 1999-11-16 Massachusetts Institute Of Technology Production of fullerenic nanostructures in flames
US20030044342A1 (en) * 2001-08-30 2003-03-06 Alford J. Michael Burners and combustion apparatus for carbon nanomaterial production

Also Published As

Publication number Publication date
RU2005141129A (ru) 2006-06-10
CN1802315A (zh) 2006-07-12
WO2004110927A1 (ja) 2004-12-23
US20060140845A1 (en) 2006-06-29
EP1642866A1 (en) 2006-04-05

Similar Documents

Publication Publication Date Title
US7157066B2 (en) Combustion process for synthesis of carbon nanomaterials from liquid hydrocarbon
CN100381356C (zh) 富勒烯的制造方法
RU2316471C2 (ru) Горелки, аппарат и способ сгорания для производства углеродных наноматериалов
US6015540A (en) Method and apparatus for thermally reacting chemicals in a matrix bed
JP5155390B2 (ja) 触媒気相反応のための機器および方法ならびにその使用
CN101184692B (zh) 连续操作式活性炭制造装置和方法
CZ298233B6 (cs) Ohrívák, jeho pouzití, a zpusob vnásení tepla do procesu reakcního zpracování
CN1246141A (zh) 具有能减少热冲击破坏的预热鞘的燃料引射器喷嘴
KR101638266B1 (ko) 혼합기/유동 분배기
KR20150068318A (ko) 직접 냉각에 의한 연속적인 슬래그 취급을 위한 시스템 및 방법
US9290384B2 (en) Process for preparing acetylene and synthesis gas
US3565968A (en) Cracking and recovery of hydrocarbons
CN104379501B (zh) 制备乙炔和合成气的方法
CA2738003C (en) Device for burning a fuel/oxidant mixture
JP3718516B2 (ja) フラーレンの製造方法
RU2294894C2 (ru) Способ и установка для получения терморасширенного графита
KR19990035072A (ko) 활성탄 연속제조장치 및 제조방법
RU2791574C1 (ru) Способ поточной стадийной термохимической деструкции углеродсодержащих веществ и устройство для его реализации
US20040187383A1 (en) Process for carrying out a high-temperature reaction, reactor for carrying out the process, process for the scale-up of a reactor, and use
CN2668246Y (zh) 管式反应器
JP2005060196A (ja) フラーレンの製造設備及び方法
JP2005170695A (ja) フラーレン類の製造方法
RU170335U1 (ru) Устройство для получения терморасширенного графита
JP2010058059A (ja) 球状粒子の製造方法
RU2087185C1 (ru) Реактор для получения ацетилена из углеводородов

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20080416