CN100364712C - Rare earth Er contained SnZn based leadless solder and its preparation method - Google Patents

Rare earth Er contained SnZn based leadless solder and its preparation method Download PDF

Info

Publication number
CN100364712C
CN100364712C CNB2004101012483A CN200410101248A CN100364712C CN 100364712 C CN100364712 C CN 100364712C CN B2004101012483 A CNB2004101012483 A CN B2004101012483A CN 200410101248 A CN200410101248 A CN 200410101248A CN 100364712 C CN100364712 C CN 100364712C
Authority
CN
China
Prior art keywords
rare earth
solder
snzn
alloy
contained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004101012483A
Other languages
Chinese (zh)
Other versions
CN1621195A (en
Inventor
史耀武
郝虎
雷永平
田君
夏志东
李晓延
郭福
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CNB2004101012483A priority Critical patent/CN100364712C/en
Publication of CN1621195A publication Critical patent/CN1621195A/en
Application granted granted Critical
Publication of CN100364712C publication Critical patent/CN100364712C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The present invention relates to rare earth Er contained SnZn-base lead-free solder and a preparation method thereof which belong to the technical field of manufacturing lead-free solder for electronic packaging in microelectron industry. The solder has the components, in weight percentages, 5 to 9% of Zn, 0 to 1.5 % of Ag, 0.05 to 1.0 % of commercial rare earth Er or simultaneous 3 to 5% of Bi, and Sn in balancing amount. The rare earth Er contained SnZn-base lead-free solder has the preparation method that a salt mixture with the weight ratio of potassium chloride to lithium chloride of (1 to 1.6): (0.8 to 1.2) is melted and poured on Sn; after the Sn is melted, weighed Zn or additional Bi and additional Ag are added in a Sn solution to make the Zn melted; then, the commercial rare earth Er is pressed into the salt mixture and the SnZn-base alloy by a bell jar of which the wall is provided with holes; and the bell jar is rotated, temperature is preserved for 1 to 2 hours after complete melt, and the surface salt mixture is removed after agitation, stationary placement and solidification. The solder of has the advantages of microscopic structure refinement and uniformity, purity increase, convenient smelting, low cost and no pollution, and the wetting technological property and the metallurgy quality are obvious improved.

Description

Rare earth Er contained SnZn base leadless solder
Technical field
A kind of rare earth Er contained SnZn base leadless solder belongs to the assembling of microelectronic industry electronics and uses lead-free brazing manufacturing technology field.
Background technology
Over past ten years, researched and developed out multiple lead-free solder alloy both at home and abroad, patent just relates to hundreds of.The lead-free solder alloy of research mainly concentrates on three temperature sections and several alloy series at present.Wherein, most representative is the middle-temperature section lead-free solder alloy, as Sn-Cu, Sn-Ag, Sn-Zn binary system alloy, and ternary alloy such as Sn-Ag-Cu, Sn-Ag-Bi, Sn-Zn-Bi or multicomponent alloy more.
Basic demand to lead-free brazing should comprise: fusion temperature should be near the SnPb eutectic temperature, and fusion temperature is suitable little at interval; Wetability or soldering processes performance are preferably arranged, and good wetability can reduce weld defect, improve soldering productivity ratio; Good physical and mechanical property as the stability of intensity, creep-resistant property, heating power fatigue resistance, metallography tissue, satisfies the reliability requirement of electronic product; Performances such as good electricity is led, thermal conductance should be arranged in addition; Chemical property is also very important, makes soldered fitting that good corrosion resistance be arranged; Lead-free brazing should not comprise new toxic component; The solder cost is low, in order to applying etc.
From the domestic and international research present situation, most widely used middle-temperature section can realize aborning in a short time unleaded alternative will be Sn-Cu, Sn-Ag binary alloy system and Sn-Ag-Cu ternary alloy system or more multicomponent alloy solder based on this.The Sn-Cu solder will be mainly used in wave-soldering, and the Sn-Ag-Cu brazing filler metal will be mainly used in reflow welding.
At present, the selection of brazing filler metal alloy in fact still is in the stage of fumbling, and main relevant with product or application, major influence factors remains welding temperature and price.When welding temperature was the key issue that must consider, Japan just adopted SnZn base solder alloy to be used for the household appliances manufacturing, 191 ℃-195 ℃ of fusion temperatures, and also cost is low.In the Sn8Zn3Bi alloy,, can improve the decay resistance of Zn in the wet environment with Bi instead of part Zn.Japan generally accepts to contain the solder of Bi.
The SnZn brazing filler metal alloy species that occurs in the world is a lot of at present, representational patent brazing filler metal alloy has: Sn-(6.7-19.2) Zn-(2.7-19.4) In[U.S. Pat P 5242658], Sn-(16-30) Zn-(2-11) Ag[U.S. Pat P 5698160], Sn-(7-11) Zn-(1-5) Bi[U.S. Pat P 6391123] and Sn-(4-10) Zn-(0.05-1) RE[Chinese patent ZL 01131275.0] etc.
The advantage of SnZn eutectic alloy is that fusion temperature is low, and near the SnPb eutectic solder.On the basis of SnZn alloy, add In, Bi, can improve the wettability of solder, reduce the solder fusion temperature, substitute part Zn, can also improve the corrosive nature of SnZn solder alloy with Bi.But too much Bi can increase crystallization range, may cause solder joint to form fire check, or reduces solder joint plasticity.In addition, In is a rare metal, and the abundance in the earth's crust is very low, and costs an arm and a leg, and is not suitable for extensive use.The interpolation of RE has the effect that improves metallurgical microstructure and property, also may improve the soldering processes performance of sprawling.Mainly be to add Ce, La mixed rear earth at present.
Summary of the invention
Effect of the present invention and advantage be, on the basis of low eutectic of fusion temperature or nearly eutectic SnZn alloy, adds a small amount of rare earth Er, or add Ag or Bi simultaneously.Because the metamorphism of rare earth Er, can make solder microstructure thinning, evenly, degree of purity increases, and it is convenient, cheap to smelt, and improves the effect such as processing performance of sprawling of solder.
Rare earth Er contained SnZn base leadless solder involved in the present invention is characterized in that: contain percentage by weight and be 5~9% Zn, and 0~1.5% Ag, 0.05~1% commercially available rare earth Er when the content of Ag is 0%, contains 3~5% Bi, and all the other are Sn.
The invention provides a kind of preparation method of rare earth Er contained SnZn base leadless solder, it is characterized in that:
(1) by weight with potassium chloride: lithium chloride=(1~1.6): the salt-mixture of (0.8~1.2) is watering on the tin that is weighing up after the fusing down at 450 ℃~550 ℃;
(2) temperature is risen to 600 ℃~800 ℃, treat tin fusing after, with the Zn that weighs up or also have Bi or Ag to join in the middle of the tin liquor of fusion, stir, form alloy;
(3) treat its fusing evenly after, commercially available rare earth Er is pressed into rapidly in the alloy of above-mentioned fusion with stainless steel bell jar with holes on the wall, rotate bell jar;
(4) treat that rare earth melts fully after, be incubated 1~2 hour, stir, make the alloy homogenising, leave standstill and come out of the stove, solidify the salt-mixture that the surface is removed in the back.
Performance after improving with the rare earth Er contained lead-free brazing of formal specification the present invention of chart below by the test data of some examples, and compare with the traditional SnZn solder that obtains under the same conditions.
Table 1 is 8 kinds of rare earth Er contained SnZn base leadless solders and traditional SnZn solder component list, forms in the table all to be weight percentage, and Er represents rare earth erbium, gives the liquidus temperature and the solidus temperature of each solder simultaneously.The liquidus curve of solder and solidus temperature record by slow cooling curve.As can be seen from Table 1, example 1~8 of the present invention has the fusion temperature scope close with the SnZn lead-free brazing, is fit to present unleaded soldering processes condition.
Table 2 is comparisons of example 1~8 of the present invention and traditional SnZn lead-free brazing shear strength and spreading area.As can be seen from the table, the shear strength of example 1~8 of the present invention and spreading area and traditional SnZn solder quite or make moderate progress are applicable to the microelectronic industry surface-assembled.
Fig. 1 and Fig. 2 are respectively the rare earth Er contained tin base leadless soldering-flux of the present invention and the comparison of traditional SnZn solder microscopic structure.As can be seen, the solder microscopic structure of adding rare earth Er is tiny, and the crystalline structure that does not add rare earth Er is thick, high directivity, fragility are big.This has also disclosed the reason that rare earth Er contained lead-free brazing can improve the solder metallurgical quality from microcosmic angle.
In addition, because the density of Er is slightly larger than Sn, during alloy smelting, rare earth can not swim in the surface of Sn base alloy, makes that smelting process is more convenient to carry out.
Description of drawings:
Fig. 1: the microscopic structure of the rare earth Er contained unleaded brazing metal of SnZn base.
Fig. 2: the microscopic structure of the unleaded brazing metal of traditional SnZn.
The specific embodiment
Example 1: the potassium chloride and the 20 grams lithium chloride salt-mixtures of 26 grams are watered on 94 gram tin after the fusing down at 460 ℃.Furnace temperature is risen to 620 ℃, 5 gram Zn are joined in the middle of the tin liquor after making the fusing of tin and salt-mixture, constantly stir simultaneously, form alloy; Be pressed into rapidly in the middle of the above-mentioned molten alloy with stainless steel bell jar with holes on the wall rare earth Er, and constantly stir, till rare earth melts fully 1 gram.Be incubated 1 hour, constantly stir, make the alloy homogenising.Leave standstill and come out of the stove, treat to remove surperficial salt-mixture behind the alloy graining.Furnace temperature is reduced to 360 ℃ the solder piece reheated fusing, stand-by into strips at the angle bar top-pour then.
Example 2: the potassium chloride and the 20 grams lithium chloride salt-mixtures of 26 grams are watered on 92.5 gram tin after the fusing down at 460 ℃.Furnace temperature is risen to 780 ℃, 7 gram Zn are joined in the middle of the tin liquor after making the fusing of tin and salt-mixture, constantly stir simultaneously, form alloy; Be pressed into rapidly in the middle of the above-mentioned molten alloy with stainless steel bell jar with holes on the wall rare earth Er, and constantly stir, till rare earth melts fully 0.5 gram.Be incubated 1.5 hours, constantly stir, make the alloy homogenising.Leave standstill and come out of the stove, treat to remove surperficial salt-mixture behind the alloy graining.Furnace temperature is reduced to 380 ℃ the solder piece reheated fusing, stand-by into strips at the angle bar top-pour then.
Example 3: the potassium chloride and the 18 grams lithium chloride salt-mixtures of 23.4 grams are watered on 90.75 gram tin after the fusing down at 490 ℃.Furnace temperature is risen to 680 ℃, 9 gram Zn are joined in the middle of the tin liquor after making the fusing of tin and salt-mixture, constantly stir simultaneously, form alloy; Be pressed into rapidly in the middle of the above-mentioned molten alloy with stainless steel bell jar with holes on the wall rare earth Er, and constantly stir, till rare earth melts fully 0.25 gram.Be incubated 1 hour, constantly stir, make the alloy homogenising.Leave standstill and come out of the stove, treat to remove surperficial salt-mixture behind the alloy graining.Furnace temperature is reduced to 360 ℃ the solder piece reheated fusing, stand-by into strips at the angle bar top-pour then.
Example 4: the potassium chloride and the 20 grams lithium chloride salt-mixtures of 26 grams are watered on 89.95 gram tin after the fusing down at 510 ℃.Furnace temperature is risen to 720 ℃, 10 gram Zn are joined in the middle of the tin liquor after making the fusing of tin and salt-mixture, constantly stir simultaneously, form alloy; Be pressed into rapidly in the middle of the above-mentioned molten alloy with stainless steel bell jar with holes on the wall rare earth Er, and constantly stir, till rare earth melts fully 0.05 gram.Be incubated 2 hours, constantly stir, make the alloy homogenising.Leave standstill and come out of the stove, treat to remove surperficial salt-mixture behind the alloy graining.Furnace temperature is reduced to 400 ℃ the solder piece reheated fusing, stand-by into strips at the angle bar top-pour then.
Example 5: the potassium chloride and the 25 grams lithium chloride salt-mixtures of 32.5 grams are watered on 88.75 gram tin after the fusing down at 500 ℃.Furnace temperature is risen to 720 ℃, 8 gram Zn and 3 gram Bi are joined in the middle of the tin liquor after making the fusing of tin and salt-mixture, constantly stir simultaneously, form alloy; Be pressed into rapidly in the middle of the above-mentioned molten alloy with stainless steel bell jar with holes on the wall rare earth Er, and constantly stir, till rare earth melts fully 0.25 gram.Be incubated 1.5 hours, constantly stir, make the alloy homogenising.Leave standstill and come out of the stove, treat to remove surperficial salt-mixture behind the alloy graining.Furnace temperature is reduced to 380 ℃ the solder piece reheated fusing, stand-by into strips at the angle bar top-pour then.
Example 6: the potassium chloride and the 20 grams lithium chloride salt-mixtures of 26 grams are watered on 86.5 gram tin after the fusing down at 460 ℃.Furnace temperature is risen to 800 ℃, 8 gram Zn and 5 gram Bi are joined in the middle of the tin liquor after making the fusing of tin and salt-mixture, constantly stir simultaneously, form alloy; Be pressed into rapidly in the middle of the above-mentioned molten alloy with stainless steel bell jar with holes on the wall rare earth Er, and constantly stir, till rare earth melts fully 0.5 gram.Be incubated 2 hours, constantly stir, make the alloy homogenising.Leave standstill and come out of the stove, treat to remove surperficial salt-mixture behind the alloy graining.Furnace temperature is reduced to 400 ℃ the solder piece reheated fusing, stand-by into strips at the angle bar top-pour then.
Example 7: the potassium chloride and the 20 grams lithium chloride salt-mixtures of 26 grams are watered on 90.25 gram tin after the fusing down at 550 ℃.Furnace temperature is risen to 800 ℃, 9 gram Zn and 0.5 gram Ag are joined in the middle of the tin liquor after making the fusing of tin and salt-mixture, constantly stir simultaneously, form alloy; Be pressed into rapidly in the middle of the above-mentioned molten alloy with stainless steel bell jar with holes on the wall rare earth Er, and constantly stir, till rare earth melts fully 0.25 gram.Be incubated 2 hours, constantly stir, make the alloy homogenising.Leave standstill and come out of the stove, treat to remove surperficial salt-mixture behind the alloy graining.Furnace temperature is reduced to 400 ℃ the solder piece reheated fusing, stand-by into strips at the angle bar top-pour then.
Example 8: the potassium chloride and the 20 grams lithium chloride salt-mixtures of 26 grams are watered on 89 gram tin after the fusing down at 450 ℃.Furnace temperature is risen to 600 ℃, 9 gram Zn and 1.5 gram Bi are joined in the middle of the tin liquor after making the fusing of tin and salt-mixture, constantly stir simultaneously, form alloy; Be pressed into rapidly in the middle of the above-mentioned molten alloy with stainless steel bell jar with holes on the wall rare earth Er, and constantly stir, till rare earth melts fully 0.5 gram.Be incubated 2 hours, constantly stir, make the alloy homogenising.Leave standstill and come out of the stove, treat to remove surperficial salt-mixture behind the alloy graining.Furnace temperature is reduced to 400 ℃ the solder piece reheated fusing, stand-by into strips at the angle bar top-pour then.
Table 1 brazing filler metal alloy composition and fusion temperature
Example   Sn(wt   %)     Zn(wt%)   Er(wt%)     Bi(wt%)     Ag(wt%) Liquidus temperature (℃) Solidus temperature (℃)
Comparative Examples   91     9     0     0     0     197.9     192.3
Embodiment 1   94     5     1     0     0     210.9     194.0
Embodiment 2   92.5     7     0.5     0     0     200.5     194.0
Embodiment 3   90.75     9     0.25     0     0     197.9     192.7
Embodiment 4   89.95     10     0.05     0     0     198.4     194.0
Embodiment 5   88.75     8     0.25     3     0     194.3     186.3
Embodiment 6   86.5     8     0.5     5     0     193.2     183.7
Embodiment 7   90.25     9     0.25     0     0.5     195.5     191.0
Embodiment 8   89     9     0.5     0     1.5     205.3     194.9
Table 2 shear strength and spreading area
Example Shear strength (MPa) Spreading area (mm2)
Comparative Examples   58.7  41.4
Embodiment 1   36.6  34.4
Embodiment 2   45.1  38.3
Embodiment 3   69.1  43.7
Embodiment 4   64.6  40.4
Embodiment 5   53.6  37.6
Embodiment 6   45.1  42.9
Embodiment 7   52.7  39.9
Embodiment 8   46.8  35.1

Claims (1)

1. rare earth Er contained SnZn base leadless solder is characterized in that: contain percentage by weight and be 5~9% Zn, and 0~1.5% Ag, 0.05~1% commercially available rare earth Er contains 3~5% Bi when the content of Ag is 0%, and all the other are Sn.
CNB2004101012483A 2004-12-17 2004-12-17 Rare earth Er contained SnZn based leadless solder and its preparation method Expired - Fee Related CN100364712C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004101012483A CN100364712C (en) 2004-12-17 2004-12-17 Rare earth Er contained SnZn based leadless solder and its preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004101012483A CN100364712C (en) 2004-12-17 2004-12-17 Rare earth Er contained SnZn based leadless solder and its preparation method

Publications (2)

Publication Number Publication Date
CN1621195A CN1621195A (en) 2005-06-01
CN100364712C true CN100364712C (en) 2008-01-30

Family

ID=34766754

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004101012483A Expired - Fee Related CN100364712C (en) 2004-12-17 2004-12-17 Rare earth Er contained SnZn based leadless solder and its preparation method

Country Status (1)

Country Link
CN (1) CN100364712C (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100462183C (en) * 2006-04-30 2009-02-18 东莞市中实焊锡有限公司 Lead-free anti-oxidation rare-earth-contg. type SnZn alloy welding flux, and its prepn. method
CN103042315B (en) 2013-01-22 2015-05-27 马莒生 Heat-resistant and moisture-resistant low-melting-point lead-free solder alloy
CN104002058B (en) * 2013-02-25 2017-04-05 北京有色金属与稀土应用研究所 A kind of Sn Zn Ag Ni alloy lead-free solders and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW504428B (en) * 2001-12-21 2002-10-01 Chuan-Sheng Liu Vibration-resistant lead-free solder composition
CN1152768C (en) * 2002-07-02 2004-06-09 北京工业大学 High creep resistance rareearth contained tin base leadless soldering-flux and preparation method thereof
CN1161205C (en) * 2001-09-05 2004-08-11 北京工业大学 Rare earth-containing tin-base lead-less brazing alloy and its prepn
CN1175956C (en) * 2002-05-10 2004-11-17 大连理工大学 Leadfree SnZn-base alloy solder containing rare-earth elements

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1161205C (en) * 2001-09-05 2004-08-11 北京工业大学 Rare earth-containing tin-base lead-less brazing alloy and its prepn
TW504428B (en) * 2001-12-21 2002-10-01 Chuan-Sheng Liu Vibration-resistant lead-free solder composition
CN1175956C (en) * 2002-05-10 2004-11-17 大连理工大学 Leadfree SnZn-base alloy solder containing rare-earth elements
CN1152768C (en) * 2002-07-02 2004-06-09 北京工业大学 High creep resistance rareearth contained tin base leadless soldering-flux and preparation method thereof

Also Published As

Publication number Publication date
CN1621195A (en) 2005-06-01

Similar Documents

Publication Publication Date Title
CN100462183C (en) Lead-free anti-oxidation rare-earth-contg. type SnZn alloy welding flux, and its prepn. method
CN101348875A (en) Tin, bismuth and copper type low temperature lead-free solder alloy
CN101491866B (en) Low-temperature leadless cored solder alloy and produced solder paste
CN101780607B (en) Lead-free solder for electronic packaging, assembling and soldering and preparation method thereof
CN101380700A (en) Tin bismuth cuprum series leadless solder and preparation method thereof
CN109352208B (en) Sn-Bi low-silver lead-free solder alloy and preparation method thereof
CN102699563A (en) Low-silver lead-free soft solder
CN103406686A (en) Co-included Sn-Bi-based high-strength lead-free low-temperature welding flux
CN101356293A (en) Lead-free solder with low copper dissolution
CN101862921A (en) Sn-Cu-Ni lead-free solder containing Pr, Sr and Ga
CN101157162A (en) SnAgCu leadless brazing filler metal with antioxygenic performance
CN101585119A (en) Oxidation resistant lead-free solder alloy in low silver
CN100352596C (en) Lead-free soft brazing alloy containing mixed rare earth and production thereof
CN103028863A (en) High-anti-oxidation lead-free solder
CN100467192C (en) Pb-free solder alloy compositions comprising essentially tin, silver, copper and phosphorus
CN102476249A (en) Sn-Ag-Cu welding flux capable of resisting atmospheric corrosion
CN106271187B (en) Lead-free high-temperature oxidation-resistant solder and preparation method thereof
CN102642099A (en) Sn-Zn-based lead-free solder alloy for aluminum bronze soldering and method for preparing same
CN100364712C (en) Rare earth Er contained SnZn based leadless solder and its preparation method
CN102500946A (en) Sn-Ag-Cu-Bi-Er low-silver and lead-free welding flux and preparation method for same
CN1203960C (en) Oxidation-inhibited lead-free welding materials
CN101733575A (en) Tin-zinc-bismuth-copper leadless solder with low cost and welding spot thereof
CN101224526A (en) Lead-free compound solder by Ni particle strengthening tin and silver group and preparing method thereof
CN1285443C (en) Rare earth contained SnAgCuEr tin based leadless solder and its preparation method
CN101088698A (en) No-lead soft brazing alloy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080130

Termination date: 20101217