CN100364672C - 纳米晶体表面涂层和肽亲水脂分子纳米纤维向其上附着的方法和材料 - Google Patents
纳米晶体表面涂层和肽亲水脂分子纳米纤维向其上附着的方法和材料 Download PDFInfo
- Publication number
- CN100364672C CN100364672C CNB2004800074809A CN200480007480A CN100364672C CN 100364672 C CN100364672 C CN 100364672C CN B2004800074809 A CNB2004800074809 A CN B2004800074809A CN 200480007480 A CN200480007480 A CN 200480007480A CN 100364672 C CN100364672 C CN 100364672C
- Authority
- CN
- China
- Prior art keywords
- coating
- amphipath
- peptide
- matrix
- calcium phosphate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Materials For Medical Uses (AREA)
Abstract
包含肽亲水脂分子和表面修饰的基质的生物相容复合物以及向其上附着的相关方法。
Description
本申请要求分别于2003年02月11日和2003年08月18日提交的美国临时申请系列号60/446,421和60/495,965的优先权利益,其中每个以其全部内容引入这里作为参考。
按照分别从能源部和国家科学基金会授予西北大学的资金No.DEFG02-OOER45810和DMR0108342,美国政府享有本发明的某些权利。
背景技术
组织工程使用生物相容支架的技术,提供了目前用于修复和重建外科(例如,颅颌面和脊柱外科手术)的修复材料的可行的替代物。这些材料还有希望形成用于替换患病的,有缺陷的或损伤的组织的组织或器官等同物。相容的生物可降解的材料可用作支架,该支架启动和维持组织或骨生长,但是其在机体内随着时间而自然降解。这种材料还可用于控释治疗材料(例如,遗传物质,细胞,激素,药物或前体药物)到预先确定的区域。用于产生这些支架的聚合物,例如聚乳酸,聚原酸酯和聚酐,很难铸模而且特别导致细胞附着差以及掺入到应用该组织工程材料的位点较差。除了一些例外,它们还缺乏生物学相关信号。
自组装的肽-亲水脂分子(amphiphile)纳米纤维(nanofiber)已经用于指导生物矿物例如羟磷灰石的生长。这些纳米纤维包含肽-亲水脂分子,其由与相对亲水的肽头基偶联的疏水脂族尾组成。肽头基可包括至少2个部分:结构部分和功能部分。结构部分可能包括2到4个半胱氨酸残基,其通过纤维内单个肽亲水脂分子之间的二硫键形成可用于共价稳定自组装的肽亲水脂分子结构。可选择地,结构部分可包含其它的残基,例如,如丝氨酸,亮氨酸,丙氨酸或甘氨酸。虽然这些残基可能不促进纳米纤维的共价稳定,它们可能参与装配的纳米纤维中的结构组织形成,例如β-折叠形成。功能性头基可能由不同的氨基酸组合组成,其包括例如位于离分子的脂族尾最远的分子末端附近的羧基,巯基,胺,磷酸盐和羟基官能团的一部分。含有羧基的残基的实例包括天冬氨酸或谷氨酸。含有胺或胍盐的残基的实例分别包括赖氨酸或精氨酸。当肽亲水脂分子在含水的条件下进行自组装时,可以预期这些功能性残基将显示在它们可与其它的部分反应以结合肽亲水脂分子的自组装微团(通常是纳米纤维)表面附近。
这些自组装纳米纤维材料的多用性和功能,证明可用于组织修复,细胞生长或器官重构。术语组织包括肌肉,神经,血管和骨组织,以及组织的其它常见的理解。本发明还可应用于神经元轴突向外生长的调节,抑制或促进,以及神经细胞之间细胞-基质(substrate)粘附的调节,抑制或促进。把这些肽亲水脂分子组合物涂层在支架和植入物例如不锈钢斯滕特支架,用于对神经进行电刺激的电极,或基于金属的矫形植入物表面,可进一步增强现存的组织工程策略。重要地,多种肽信号可用于相同的超分子自组装肽亲水脂分子,以实现不同的和可能协同的作用。
这种系统的肽亲水脂分子组合物,可包括具有能分子间交联的残基的肽成分。半胱氨酸残基的巯基部分可用于通过引入适当的氧化剂或在生理条件下形成分子间二硫键。相反地这种键可被引入到该系统中的还原剂或在还原条件下裂解。半胱氨酸残基的浓度,当使用时,还可以改变以控制纳米纤维系统的化学和/或生物学稳定性,并从而使用纳米纤维作为载体控制细胞或其它有益药剂的治疗送递或释放速度。例如,可引入酶到这种纳米纤维中,以通过二硫键的水解而控制它们的生物降解速度。这种降解和/或半胱氨酸残基的浓度可用于多种组织工程应用中。这种肽亲水脂分子的巯基官能团还可用于把超分子结构结合到表面上。肽亲水脂分子的生物学部分的互补性质可模拟在天然存在的肽中发现的氨基酸序列。由具有RGD肽序列的肽-亲水脂分子纳米纤维组成的自组装凝胶,模拟胶原原纤维的功能来组织和指导羟磷灰石晶体的生长。这种肽中其它可能有用的氨基酸序列可包括YIGSR和IKVAV氨基酸序列。自组装肽亲水脂分子中的这种氨基酸序列可能对细胞生长和神经再生具有协同作用。植入的或送递到机体的基质上的细胞的生长会有益于人造心脏的植入,恢复神经功能,愈合植入血管;通过在纤维网格上培养表皮细胞来形成皮肤植入物和制备“人造皮肤”。
对血管内皮和中层的损害,例如经常出现于气囊血管成形术和支架操作的过程中,已经发现会刺激新内膜增殖,导致动脉粥样硬化血管的再狭窄。正常内皮,其衬于血管内,独特地并完全与血液相容。内皮细胞开始新陈代谢过程,其主动地阻止血管壁中的血小板沉积与血栓形成。血管系统内损伤的动脉表面很容易发生血栓形成。虽然全身的药物已经用于预防凝血和抑制血小板凝聚,还需要直接治疗损伤的动脉表面以预防血栓形成与随后的内膜平滑肌细胞增殖。
已经设计由金属例如钛和它的合金组成的斯滕特支架以促进有组织的内皮细胞生长。这种斯滕特支架在斯滕特支架体的至少一部分的表面包括许多凹坑,优选以规律的模式排列于至少斯滕特支架体的内表面,例如华夫格。其它的斯滕特支架具有在斯滕特支架体中包括许多褶,脊,通道或孔的表面特征,其中至少一些孔穿过斯滕特支架体的内部和外部侧面(也即,穿透斯滕特支架体),而且大小为能促进有组织的细胞生长。
定向的细胞例如神经细胞和内皮细胞在可植入的表面和支架上的生长,将合乎机体内细胞,器官和组织再生和生长的需要。需要提供外科植入物,其能促进组织,血管组织,神经和细胞在外科植入物周围的组织上或其中的生长。需要新的和更好的支架,植入物,斯滕特支架和电极放入机体中,这些材料适于促进浸润细胞长成有组织的细胞结构,例如发生在血管发生和/或新血管形成的过程中,以帮助修复损伤的机体器官和血管。
作为相关考虑的一部分,钛和它的合金已经广泛地用作骨骼植入物材料,其中金属的高强度对重量比,坚韧性,和天然形成氧化层的生物惰性特性导致了广泛的临床成功。但是随着组织工程的发展,研究人员已经研究了利用把磷酸钙涂层在基于钛的植入物表面,以引入生物学活性元件到原本惰性的氧化金属表面。体外试验表明,磷酸钙可形成能增强细胞附着和增殖的骨传导性涂层。体内模型显示,当钛表面涂布有不同的磷酸钙涂层(通常为羟磷灰石(Ca10(PO4)2(OH)2))时,植入物界面的强度增加。研究还表明,在植入物-组织界面这些磷酸钙涂层的降解促进了新生骨的加速形成。
用这些磷酸钙涂层对Ti进行涂布的常用方法包括等离子体喷涂,电泳,溶胶-凝胶和溶液-相沉淀。例如等离子体喷涂或溶胶凝胶等方法趋向于产生致密的,经常高度结晶的磷灰石相,相选择性极小或无,而且这些方法中的一些也不能涂布多孔钛质结构的内表面。用于生长的这些方法中的许多包括极长的生长时间,数周到数个月,对晶体大小或形状控制低,并缺乏任何附加的化学官能度,例如有机大分子所提供的那些化学官能度。有机大分子已知在生物矿物晶体修饰中起作用。另外,在多孔表面形成簇晶的地方,表面涂层常常小于100%。不过,溶液-相生长能使磷酸钙涂层的成核现象直接发生于植入物表面,甚至多孔表面上。此外,这种湿化学方法允许不仅形成羟磷灰石,而且还形成其它的生物学相关的磷酸钙相,例如磷酸八钙(Ca8H2(PO4)6·5H2O)羟磷灰石的前体。这些涂层的溶液-相生长还允许引入有机大分子到涂层中,这是一种一些高温涂层方法例如等离子体喷涂不可能具有的特征。
已经研究了不同的生物学大分子与磷酸钙涂层之间的相互作用。在存在生物分子例如白蛋白,纤连蛋白和聚(氨基酸)时,磷酸钙涂层的生长基本上被抑制。例如,聚(L-赖氨酸),是大家公认的具有优良的化学官能度的细胞粘附促进剂,但是显示抑制磷灰石在钛合金表面的生长。聚(氨基酸)已被用作成核剂和大分子系绳,以通过在聚(氨基酸)-涂层的基于钛的表面上生长含有聚(L-赖氨酸)的有机磷灰石来解决该问题。该方法在几个涂层步骤和层中使用聚(氨基酸);它还产生相对大的有机磷灰石簇晶,其在具有细孔结构的涂层结构中可能是不利的。研究的一个可替代的方法是,在预先存在的磷酸钙层上生长包含白蛋白的磷酸钙涂层。
需要在可植入的金属表面形成聚胺-修饰的纳米结构的磷酸钙涂层。生长到磷酸钙晶种上,新材料结合了在可植入表面溶液-相磷酸钙生长的多用性和简单与聚(胺)的化学和生物学功能。
用生物矿物涂布材料表面是需要的,以便基本上所有的表面都被涂布,而且该涂层提供了有利的表面用于化学修饰,肽亲水脂分子纳米纤维连接,细胞与组织生长和粘着。如果该涂层可用于适于植入到患者中的材料,而且该涂层在生理条件下是可降解的,将是更理想的。
概述
部分地,本发明的实施方案涉及使自组装的肽亲水脂分子与其它的材料例如金属结合。新形成的键将使原始的自组装肽亲水脂分子纳米纤维或球形微团装配结合到另一种材料。合适的自组装纳米纤维或微团与第二表面的结合,可用于进一步使细胞或组织定向生长于该第二表面。可选择地,肽亲水脂分子可结合到表面上,并用于肽亲水脂分子纳米纤维的定向生长,或可用于启动纳米纤维结构在材料表面的自组装。当感兴趣的材料为斯滕特支架时,这种表面可用于组织修复,使细胞附着于植入物,并使诸如再狭窄的情况最小化。
肽亲水脂分子与第二表面的结合可通过肽亲水脂分子,或包含它们的自组装的纳米纤维或微团与该表面的物理吸附,化学吸附或共价连接来进行。这种结合的实例包括但不限于自组装的纳米结构与表面之间的离子,配位,螯合,酰胺或酯键。这种结合方案预期可提供一种用于使肽纳米结构与其它的材料,包括金属表面,聚合物,肽-修饰的生物材料涂层或包含其它肽的结构连接的稳定的机制。该连接会使包含肽的微团被强力地稳定于材料表面。这种送递方案适于从修饰细胞-特异性行为到药物送递范围的应用。在一个实施方案中,肽亲水脂分子纳米纤维包含富含羧基的肽序列。这种肽亲水脂分子结合于显示游离胺的表面。可选择地,肽亲水脂分子纳米纤维可包含显示游离胺的残基,而第二表面或结构将显示羧基官能团。
关于这种功能修饰的表面,考虑这段到0025段(包括端点)的实施方案。本发明的一个实施方案,是一种可植入基质上的有机修饰的生物矿物涂层,该可植入基质表面已经预先植有矿物。在一个优选的实施方案中,该有机修饰的涂层包括涂布于已经预先植有磷酸钙的金属基质上的磷酸钙。本发明的一个实施方案是用生物矿物涂层对基质进行涂布的方法。
本发明的实施方案包括钛表面上的聚(L-赖氨酸)-修饰的纳米结构的磷酸钙涂层,该涂层生长于该金属表面上的磷酸钙晶种上。
在本发明的一个实施方案中,在预先种有晶种的基质上的涂层由(钙-)金属缺乏的(磷酸八钙)矿物组成,其晶体生长被破坏并由聚胺修饰,而且优选为包括在矿化过程中存在的氨基酸例如聚(L-赖氨酸)的聚胺。而且相信(聚(L-赖氨酸))聚(氨基酸)紧密地掺入到矿物相中。
本发明的一个实施方案是一种组合物,其用于涂布具有修饰的晶体材料表面的基质,以促进细胞附着,组织生长,或用于送递治疗组合物。涂层溶液包括溶解晶体材料的溶液和聚胺和优选多肽或其酸盐。组合物包括感兴趣的溶解晶体材料和聚胺,其中聚胺可包括氨基酸单体。聚合物优选包括当其掺入到矿物中时具有用于与肽,肽亲水脂分子,蛋白质和细胞形成键的游离官能团的氨基酸。优选的聚合物包括赖氨酸单体,更优选为聚赖氨酸或其酸盐。
一个实施方案中,涂层可用于细胞生长和细胞粘附,而且涂层在生理条件下容易降解。
本发明的另一个实施方案是用于生长细胞,组织,或用于释放治疗组合物的基质。这种基质可用于体外培养细胞或组织,或者它可用于体内生长或培养细胞或组织例如骨。基质由生物相容的材料制成,该材料的表面已经预先种晶了矿物晶体,然后用其正常晶体结构通过掺入聚胺,优选多肽到材料内进行修饰的矿物或材料进行涂布。基质上的涂层可更进一步地通过另一个键例如二硫键或酰胺键连接涂层材料中的聚胺,或通过其它键连接到晶体材料本身而与肽结合。
可选择地,基质上的涂层可能与自组装的肽亲水脂分子,或交联的自组装肽亲水脂分子结合,优选通过酰胺键。对基质进行涂层的材料还可包括本身可与肽或自组装的肽亲水脂分子结合的氧化物,氢氧化物,磷酸盐,碳酸盐,乙二酸盐和这些离子的组合。
本发明的另一个实施方案是一种用于修饰涂层于基质上的材料的形态的方法。该方法包括,预先种晶生物学相容的基质,然后用溶解的晶体材料,或具有聚胺或聚(氨基酸)或其酸加成盐的生物矿物的溶液组合物来处理预先种晶晶体的基质,其将掺入到晶体材料或生物矿物中以形成纳米晶体矿物。可通过涂布基质的组合物和方法来控制得到的涂层的形态。该方法可更进一步包括结合分子与掺入到涂层的纳米晶体材料中的聚胺的作用。
本发明得到的具体实施的涂层的形态由小于纯无机矿物涂层1-2个数量级的不规则形态组成。这种增强的结构和减小的形态尺寸,将有利于促进细胞附着,增殖,和传播到涂有这种有机修饰的材料的单片基质或表面。此外,与矿物复合物的酶-易损的有机成分结合的涂层的被破坏的差结晶的特性,有利于使涂层尤其适于天然再吸收和重建过程。最后,聚氨基酸掺入到涂层中,通过位于赖氨酸聚合物侧链上的游离胺或硫化物基团,而提供额外的化学官能度。这种化学官能度可用于生物分子例如生长因子,生物学相关的肽序列或治疗药物的掺入或共价附着。
新材料联合了钛上溶液-相磷酸钙生长的多用性和简单性与聚(L-赖氨酸)的化学和生物学功能。
因此,本发明的实施方案还可包括涂层于可植入支架,外科装置,电极,斯滕特支架及其它基质表面上的自组装肽亲水脂分子。这些表面上包括肽亲水脂分子的涂层可增强细胞的生长并由此增强体内组织的生长。
本发明的一个实施方案提供了一种自组装肽-亲水脂分子微团的系统,球形的或圆柱形的,包括存放到基质上的一种或多种生物学信号。肽亲水脂分子中结构肽序列的变异,可使装配的纳米纤维可逆地交联到基质上达到更好的或更低的结构稳定性,或可控制包囊在纳米纤维的疏水内芯中的或吸附于它们的亲水性表面上的分子的送递速度。
在另一个实施方案中,肽亲水脂分子的肽元件优选为羧基终止的,以便一旦装配成纤维,这些纤维可参与更进一步或尿素结合,以使金属表面或某些其它类型表面功能化。
本发明的另一个实施方案是一种方法,其用于制备和利用自组装肽亲水脂分子纳米纤维涂层的表面作为用于细胞生长和植入的临时支架。
本发明的另一个实施方案是生物可降解的,无毒的自组装肽亲水脂分子纳米纤维涂层表面和支架,其在植入之后立即可用于体外和体内细胞生长,作为内皮细胞,器官组织和神经细胞的支持结构。
本发明的另一个实施方案是一种方法,其用于装配和构建生物可降解的自组装肽亲水脂分子纳米纤维涂层表面和支架,在表面或支架植入之后,提供用于细胞生长的支持物,但是允许和增强生长细胞团块的血管形成。
本发明的另一个实施方案是一种自组装肽亲水脂分子纳米纤维涂层表面,其具有化学上不同的自组装肽亲水脂分子涂层的结构域,以便不止一种细胞可生长,或者可控制基质上的细胞的生长速率。
本发明的另一个实施方案是一种可植入的自组装肽亲水脂分子纳米纤维涂层的斯滕特支架,其适于促进血管或斯滕特支架植入其中的其它管状腔内的血管发生。
本发明的另一个实施方案是一种可植入的自组装肽亲水脂分子纳米纤维涂层的斯滕特支架,其适于增强或刺激新内膜浸润,但是伴随浸润细胞的组织化以便导致新血管形成。
本发明的另一个实施方案是一种可植入的自组装肽亲水脂分子纳米纤维涂层的斯滕特支架,当培养在富含细胞的体外环境中时,或当植入到管状体腔例如血管中时,其适于促进活细胞的向内生长。
本发明的另一个实施方案是一种自组装的肽亲水脂分子纳米纤维涂层的斯滕特支架,具有生长贯穿孔的活细胞和/或其它设计用于当细胞植入到管状体腔或器官中时促进细胞生长成为有组织的细胞结构的表面特征。
本发明的另一个实施方案是一种自组装的肽亲水脂分子纳米纤维涂层的斯滕特支架,其中对活细胞进行遗传工程操作以产生治疗生物活性剂,该生物活性剂将从涂层纳米纤维释放,例如选择用于抑制或促进植入的斯滕特支架内的血管发生或内膜增殖。
本发明的另一个实施方案提供了一种技术,通过该技术来自需要的器官的功能性细胞生长于涂有由自组装肽亲水脂分子组成的纳米纤维的支架上。涂层的支架可用于体内或体外-使用细胞培养技术,接着在附着和平衡之后,转移支架-细胞复合物到患者的适于附着,生长和功能的位点。在细胞培养期间,供给养分和生长因子,允许如所需的附着,存活或生长。可选择地,养分和生长因子由自组装的肽亲水脂分子微团包封。
使用自组装肽亲水脂分子纳米纤维涂层的支架或外科装置用于生长细胞和组织是有益的,因为它的高表面积可允许许多位点用于细胞粘着和生长。涂层的纤维性质允许养分通过扩散穿透生长的细胞培养物直到新血管形成。对于将在组织培养中构建并随后成功地植入的器官,基质必需具有足够的表面积并暴露于养分,以便在植入之后血管生长之前发生细胞生长和分化。植入之后,随着细胞增殖发生,该结构必须允许养分和废物的扩散,以及持续的血管向内生长。从自组装肽亲水脂分子制备的纳米纤维凝胶和微团具有高表面积,并理想地适于提供好的生长环境。
附图描述
部分而言,参考以下的说明书,附带的权利要求和附图,本发明的实施方案的其它方面,特征,益处和优点将是明显的:
图1A:用于钛箔上的磷酸钙涂层生长的实验安排(图解)。图1B图解使用的箔样品,箔下面免于溶液沉淀析出。
图2:样品预先种植晶体和磷酸钙涂层生长期间,反应溶液的时间依赖性pH变化。
图3A-B:扫描电子显微照相数字图像,其比较了钛箔上的纯无机OCP(A)和pLys-CP(B)涂层。插图(b)是高倍放大的图像,其显示了pLys-CP涂层的纳米级特性。
图4:OCP和pLys-CP的粉末XRD图案。OCP的主要衍射平面被标记。
图5:Ti上的OCP和pLys-CP涂层的反射FTIR光谱。无机涂层模式显示了OCP的特征条带,而pLys-CP涂层显示了伴随存在结晶性差OCP和聚(L-赖氨酸)。1350和2000之间与高于3400的高频带被认为应归于来自反射实验设备周围的水。
图6A-B:A)预先用CaCl2和Na2HPO4种植晶体10分钟的钛表面的扫描电子显微照相数字图象。没有可见的磷酸钙晶种;B)预先用CaCl2和Na2HPO4种植晶体2小时的钛表面的扫描电子显微照相数字图象。2小时的生长之后,晶种在Ti表面上清楚可见。
图7:扫描电子显微照相数字图象和相应的EDS模式显示OCP涂层对比pLys-CP涂层的不同降解行为。比例尺线是1微米。EDS图表中的X轴表示能量(eV),EDS模式通过3000与3500eV之间的背景强度进行标准化。
图8:通过XPS测定的S∶N比率举例说明了半胱氨酸对OCP和pLys-CP涂层的结合亲和力。硫和氮在OCP样品中基本上都没检测到。误差线表示来自重复测量的±1标准偏差。
图9是可用于附着到本发明涂层的肽的图解结构例示,其中(PO4)表示磷酸化丝氨酸;
图10A-B(A)附着于本发明的聚(L-赖氨酸)修饰的磷酸钙结构涂层的自组装肽亲水脂分子纳米纤维束的扫描电子显微照相的数字图象;(B)(a)中自组装纳米纤维的更高放大倍数的扫描电子显微照相,显示了单根纤维层;
图11A-C培养(A)1天,(B)4天和(C)7天之后,前成骨细胞小鼠颅盖细胞铺展到钛箔上的pLys-CP涂层的扫描电子显微照相数字图象。
图12:与氨基-硅烷化的钛表面共价连接的肽亲水脂分子纳米纤维的扫描电子显微照相数字图象,显示了与Ti表面共价结合的这些纤维的低倍和高倍放大图像;
详细描述
本发明的实施方案通常涉及使自组装肽亲水脂分子纳米纤维或微团涂层结合到将置于哺乳动物机体内的第二基质上。这种基质可包括多孔的支架,电极和外科植入物如斯滕特支架。自组装肽亲水脂分子纳米纤维涂层由具有能促进细胞和组织生长和粘附于基质的氨基酸的肽亲水脂分子组成。优选地,肽-亲水脂分子的设计与功能模仿天然存在的结构如蛋白质,细胞和胶原。基质可在机体外使用以在基质上生长细胞,然后置于机体内;可选择地,涂层过的基质可直接置于机体内,并促进细胞或组织的生长。纳米纤维或微团还可包封活性化合物以促进这种细胞和组织的生长。在描述本组合物和方法之前,应当理解,本发明不限于所述的特定的分子,组合物,方法或方案,因为这些可以改变。还应当理解,本说明书中使用的术语只用于描述特定的方案或实施方案的目的,而不是试图限制本发明的范围,其只通过附带的权利要求进行限定。
还必须注意,如这里和附带的权利要求中所使用的,单数形成包括复数形式,除非上下文中另外有清楚说明。因此,例如,涉及一个“细胞”是涉及一个或多个细胞及本领域技术人员已知的其同等物,等等。除非另外进行定义,这里使用的所有技术和科学术语具有与本领域普通技术人员通常所理解的相同的含义。虽然与这里所述的那些类似的或等同的任何方法和材料都可用于实施或测试本发明的实施方案,但是现在所描述的方法,装置和材料是优选的。这里提及的所有出版物都引入作为参考。本文不能理解为承认本发明无权因在先的发明而先于这些公开。
在描述本组合物和方法之前,应当理解,本发明不限于所述的特定的分子,组合物,方法或方案,因为这些可以改变。还应当理解,本说明书中使用的术语只用于描述特定的方案或实施方案的目的,而不是试图限制本发明的范围,其只通过附带的权利要求进行限定。
用于结合肽亲水脂分子与第二表面的偶联剂,可以是通过肽亲水脂分子,或它们的自组装的球形微团或纳米纤维与第二表面的物理吸附,化学吸附或共价植入。偶联剂结合的实例包括但不限于,自组装纳米纤维或微团与表面之间的离子键,配位键,螯合键,金属硫化物键,酰胺或酯键。这种结合方案预期可提供一种用于使肽纳米结构附着于第二表面材料的稳定机制,该第二表面材料包括但不限于,其它的自组装肽亲水脂分子,细胞表面,蛋白质,软骨,金属,合金,陶瓷,玻璃,矿物质,聚合物和生物相容的植入物例如斯滕特支架,支架,电极和正牙质。该附着将允许包含肽的微团强力稳定于材料表面。在一个实施方案中,使用包含富含羧基的肽序列的肽亲水脂分子纳米纤维。这种肽亲水脂分子与显示游离胺的表面结合。
在偶联的一个实施方案中,肽亲水脂分子纳米纤维与氨基-硅烷化的金属表面如钛或金属合金结合。用于形成肽亲水脂分子和具有这种氨基硅烷表面基团的表面之间的酰胺键的化学制剂和方法类似于肽合成中所使用的那些(Knorr,et al;Fields et al;Wellings,etal.;其中的方法以其全部内容引入这里作为参考)。反应在极性有机溶剂中进行,极性有机溶剂例如但不限于,N,N-二甲基甲酰胺(DMF)或N-甲基吡咯烷酮(NMP),二者都能溶解氨基酸。该方法还包括利用化合物例如O-苯并三唑-N,N,N′,N′-四甲基-脲-六氟-磷酸盐(HBTU)作为催化剂,以增加肽亲水脂分子上羧酸官能团的反应性。其它的肽偶联剂或活化剂包括但不限于:二环己基碳二亚胺(DCC);O-(7-氮杂苯并三唑-1-基)-1,1,3-,3-四甲基脲六氟磷酸盐(HATU);和苯并三唑-1-基-氧三吡咯烷磷六氟磷酸盐(PyBOP)。这些反应性酸基团然后在碱性质子sink,二异丙基乙胺(DIEA)存在下与游离胺反应,最后导致最终的消除反应以除去HBTU和水,之后留下稳定的酰胺键。
金属和金属合金氧化物表面可用各种氨基-硅烷进行修饰以用于生物学应用的。这些修饰可用于不同的肽亲水脂分子或自组装的微团附着到氧化物表面。例如,TiOz-钝化的钛表面与所需的氨基-硅烷一起孵育,产生氧化物-溶剂界面的Ti-O-Si键,将氨基硅烷与氧化的金属表面共价连接。这种安排留下了暴露用于与适合的肽亲水脂分子进行标准酰胺-偶联反应的游离胺;该游离胺束缚于金属表面和纳米纤维上暴露的羧酸以形成酰胺键,使纤维与硅烷化的Ti表面共价连接。
本发明的一个实施方案中,标准的酰胺偶联反应用于预先装配的,交联的肽纳米纤维。例如,肽亲水脂分子的稀释溶液,其满足如上所述的组成要求并保持于弱还原剂(例如二硫苏糖醇(DTT))溶液中,在酸性条件下自组装以形成肽纳米纤维。这些纳米纤维通过添加非破坏性的氧化剂,例如碘,形成稳定的分子间、纤维内二硫键,而进行交联。得到的这些纤维的悬浮液、用水进行透析以除去所有的还原或氧化剂(例如DTT和碘)。该交联纤维的经透析悬浮液然后进行冻干,干燥纤维通过剧烈搅拌和超声处理而重悬于可溶解肽的极性有机溶剂例如DMIF或NMP中。纤维的共价交联使它们稳定于非水环境中。
基质优选为生物相容的材料,可包括但不限于商品纯钛,钛合金,或其它的金属例如铬和它的合金,不锈钢如Hastalloy,316L和304,并呈现一个氧化物表面,其可以在有机非极性溶剂,有机极性溶剂并最终在蒸馏水中进行超声波净化。净化的金属或合金然后在例如温和的氢氟酸中进行腐蚀,之后在硝酸中再钝化。钝化的基质样品在蒸馏水中彻底地进行清洗并干燥。经净化的钝化的样品然后通过真空干燥进行脱水,并在氨基硅烷化之前贮藏于室温以上的温度下。干燥的钝化的表面引入到氨基硅烷的稀释溶液中,例如溶于无水的疏水性有机溶剂如甲苯的氨基丙基三乙氧基硅烷(APTES),在氮气氛下。氨基-硅烷化的金属基质,然后在有机的非极性溶剂,有机的极性溶剂,最后在水中进行彻底地清洗,之后在惰性气体下于升高的温度(例如100℃)退火。基质还可包括但不限于生物相容的聚合物,或各种碳化物,硼化物和氮化物。
在另一个偶联剂实施方案中,具有氧化表面的金属沉浸于CaCl2和Na2HPO4,或其它类似盐的溶液中,以用磷酸钙预先种晶晶体到表面。该预先种晶晶体的基质然后沉浸于包含聚(L-赖氨酸),CaCl2和Na2HPO4的溶液中。样品用水进行清洗并于室温干燥。聚(L-赖氨酸)掺入到得到的新形成的磷酸钙涂层的矿物相中,而且来自聚(L-赖氨酸)侧链的游离胺显示于有结构的涂层表面。其它的矿物质可用于代替磷酸钙,例如但不限于碳酸钙。许多不同的胺或聚胺,有机酸或聚有机酸可掺入到矿物中。任何这种胺或聚胺(包括聚(L-赖氨酸)可以物理吸附,化学吸附或共价移植到钝化的金属表面上。参考后面的论述,图1-11和实施例2-5。如美国专利号6,051,272中所述,氨基酸和聚胺酸也可用于处理该表面,其以其全部内容引入这里。还可能在缺乏空气时进行结合反应,借此含硫的化合物如半胱氨酸,可用于氧化金属表面(其氧化物已经除去),从而在那里形成直接的键。这将是一种使氨基酸,肽,蛋白质或聚(氨基酸)直接偶联到金属的方法。
第二表面可终止于羧酸基团作为偶联剂。例如,3-巯基丙酸可用于衍生一些带有羧酸基团的金属表面。可选择地,可以对聚合材料如聚乙烯进行氧化以提供羧酸终止的表面。这些羧酸终止的表面可与带有胺或羟基的肽亲水脂分子反应,并使它们与第二表面结合。
在另一个实施方案中,例如,两组肽亲水脂分子纤维可独立地自组装,交联,透析,冻干并悬浮于溶剂中。一组纳米纤维富含羧基官能团,而另一组可富含游离胺。如果在HBTU和DIEA的存在下合并,这些单独的纳米纤维可结合到一起。这种应用可用于结合可彼此协力工作的不同的氨基酸序列。这种应用可进一步结合金属表面修饰,其中一种肽亲水脂分子纤维类型可附着于如上所述的表面,互补的纤维类型可与那些附着的纤维连接,形成一种双层的不同共价连接的纳米纤维。如上所述方法的另一个实施方案包括使用除了钛以外的金属表面。能合理地预期,氨基硅烷化可以在呈现合适的氧化物的任何表面进行,包括但不限于钛合金,硅,钽,铬和包含铬的合金(包括不锈钢)。在这方面还可使用各种陶瓷的第二基质,包括矾土和各种形式的二氧化硅。
肽-亲水脂分子和它们的自组装纳米纤维可促进细胞粘附和生长于它们的表面。例如,在其它地方已经发现细胞粘附配体RGD在整联蛋白-介导的细胞粘附中起重要作用。具有酸性氨基酸和有RGD配体的氨基酸的肽-亲水脂分子种类可用于介导细胞粘附于肽-亲水脂分子,它们的自组装纳米纤维或微团或纳米纤维凝胶。在其它的论文中已经鉴定了氨基酸序列IKVAV对神经元生长和发育是重要的。因此,具有酸性氨基酸和IKVAV序列的肽-亲水脂分子种类可用于实施本发明的实施方案,以介导神经元生长到肽-亲水脂分子,它们的自组装纳米纤维,微团或纳米纤维凝胶。在其它的论文中已经鉴定了氨基酸序列YIGSR在促进神经细胞之间的细胞-基质粘附中是重要的,而且还可能在轴突导向中起作用。因此,具有酸性氨基酸和YIGSR序列的肽-亲水脂分子种类可用于实施本发明的实施方案,以促进神经细胞之间的细胞-基质粘附于肽-亲水脂分子,它们的自组装纳米纤维,微团或它们的纳米纤维凝胶。
例如在牙本质中,磷蛋白家族包含许多重复的氨基酸序列Asp-Ser(P)-Ser(P)和Ser(P)-Asp-Ser(P)。这些大规模磷酸化的蛋白质被怀疑在羟磷灰石矿化中起作用。因此,磷酸丝氨酸残基可掺入到肽序列中,该肽序列自组装之后,允许纤维显示类似于由长肽片段所呈现的高度磷酸化的表面。这种肽部分地获得磷蛋白中发现的磷酸基团的重复组构。
用于实施本发明的实施方案的各种C或N终止的肽-亲水脂分子可使用标准的芴基甲氧基羰基化学方法在自动肽合成仪上制备。肽亲水脂分子溶液可通过改变pH,添加盐,或通过添加带电荷的或螯合的肽亲水脂分子而形成纳米纤维。可用于本发明的实施方案中的典型肽亲水脂分子显示于下面的表1-3。肽亲水脂分子如表1-3中所列的那些形成纳米纤维描述于Hartgerink,et al,Science,294,1683-1688,(2001),和Hartgerink et al.,PNAS,99,5133-5138,(2002);包括了其内容以其全部内容作为参考。其它的肽亲水脂分子可如本领域技术人员所知的,使用已知的方法和合成技术或取决于所需的亲水脂分子组成或肽序列对其进行直接改进,来进行制备。例如,这里提供的肽亲水脂分子可如同时待审申请2002年11月14日提交的系列号10/294,114和2003年02月18日提交的系列号10/368,517中所述的进行制备,表征和/或装配,其中每个都以其全部内容引入这里作为参考。没有限制的,如其相应的表,附图和实施例中所述的,这些引入申请中的肽亲水脂分子,也可以用于本发明的复合物和方法。
表1 | |||
PA | N-末端 | 肽(N到C) | C-末端 |
1 | C16 | CCCCGGGS(P)RGD | H |
2 | C16 | CCCCGGGS(P) | H |
3 | C12 | CCCCGGGS(P)RGD | H |
4 | C10 | CCCCGGG S(P)RGD | H |
5 | C14 | CCCCGGGS(P)RGD | H |
6 | C10 | GGGS(P)RGD | H |
7 | C16 | GGGS(P)RGD | H |
8 | C16 | AAAAGGGS(P)RGD | H |
9 | C10 | AAAAGGGS(P)RGD | H |
10 | C16 | CCCCGGGS(P)KGE | H |
11 | C10 | AAAAGGGS(P)KGE | H |
12 | C16 | AAAAGGGS(P)KGE | H |
13 | C22 | CCCCGGGS(P)RGD | H |
14 | C16 | CCCCGGGSRGD | H |
15 | C16 | CCCCGGGEIKVAV | H |
16 | C16 | CCCCGGGS(P)RGDS | H |
根据所需的细胞或组织生长,磷酸化部分可能是不需要的。如上所讨论的,肽组分的特定序列促进了细胞粘附或相互作用。参考PA的10-12和15,根据细胞靶可利用非-RGD序列。尤其,在其它的论文中已经鉴定了IKVAV序列对神经元生长和发育是重要的。因此,本发明的亲水脂分子组合物可包括具有这种序列的肽成分用于相应用途。最后,根据表1,应注意几种PA组合物不包括半胱氨酸残基。虽然半胱氨酸氨基酸可用于增强分子间纳米纤维的稳定性,但是它对于微团或纳米纤维的自组装不是必需的,对于使肽亲水脂分子或它们的微团与第二表面结合也不是必需的。在一个优选的实施方案中,存在半胱氨酸氨基酸以在肽偶联反应期间稳定自组装微团或纳米纤维。
自组装成纤维和微团的Triblock bola亲水脂分子也可用于实施本发明。
在一个实施方案中,添加了一种或多种这里所述的亲水脂分子组合物的水溶液,和足以在生理条件下诱导胶凝作用的因子或试剂。各种PA组合物的这种胶凝作用和/或自组装成纳米纤维,可在基本上中性的pH条件下,通过干燥,引入多价的,二价的或更高价的金属离子,螯合,和/或联合带不同电荷的亲水脂分子而实现。
表2 | ||||
PA | N-末端 | 肽(N到C) | C-末端 | pH 7的<u>净电荷</u> |
17 | C16 | CCCCGGGS(P)RGD | COOH | -3 |
18 | C16 | AAAAGGGS(P)RGD | COOH | -3 |
19 | C10 | AAAAGGGS(P)RGD | COOH | -3 |
20 | C16 | CCCCGGGSRGD | COOH | -1 |
21 | C16 | CCCCGGGEIKVAV | COOH | -1 |
22 | C16 | CCCCGGGKIKVAV | COOH<sub>2</sub> | +1 |
电极,斯滕特支架,支架,或外科装置或其它的第二表面,可用包含肽亲水脂分子的纳米纤维或微团以多种方式进行涂层。第二表面,它的表面上含有胺或羧酸基团,可置于已经透析过的预先自组装肽亲水脂分子纳米纤维或微团的悬浮液中。可选择地,纳米纤维凝胶的小样品可涂于电极,斯滕特支架,支架或外科装置上一段时间,然后用溶剂进行洗涤以除去过量的凝胶。肽亲水脂分子的溶液还可喷雾或气雾化到基质上以对基质进行涂层,然后把基质暴露于酸性蒸气中以形成纳米纤维或微团。
可选择地,电极,斯滕特支架,支架,外科装置被置于一定体积的肽亲水脂分子中,除去,并暴露于酸性蒸汽,浸入盐溶液中,或包含肽亲水脂分子的溶液以形成纳米纤维。第二基质上的涂层可结合这些方法进行,而且可根据需要进行重复以确保用于计划用途的足够涂层。涂层的基质然后用例如NMP中的HBTU和DIEA进行处理,以使肽亲水脂分子偶联到第二表面。
纳米纤维中具有半胱氨酸氨基酸的这种涂层基质暴露于氧化剂如氧,碘,过氧化氢或臭氧,可用于共价捕获和形成二硫键。这种涂层可提供热稳定性给涂层于支架和装置上的纳米纤维,接着其可被加热以增强细胞生长速度。
其它的化合物可掺入到或包封于组成涂层的自组装肽亲水脂分子核心。在植入或送递纳米纤维涂层的第二基质到机体后,这些化合物可增强血管的向内生长。养分,生长因子,分化或去分化的诱导物,免疫调节剂,炎症抑制剂,增强或允许淋巴网络或神经纤维向内生长的生物学活性化合物,和药物,也可以掺入到自组装肽亲水脂分子纳米纤维涂层中。已经测试了影响细胞增殖的许多试剂作为用于狭窄和再狭窄的药理学治疗以图减慢或抑制平滑肌细胞增殖。这些组合物可包括肝素,香豆素,阿司匹林,鱼油,钙拮抗剂,甾体和前列环素。这种试剂可系统地包封于纤维中,或另外可使用药物送递导管在更局部的基础上送递。尤其,包含一种或多种药物的生物可降解肽亲水脂分子纳米纤维基质可在治疗位点植入。随着纳米纤维降解,药物在治疗位点直接释放。
许多细胞可生长于具有自组装肽亲水脂分子纳米纤维涂层的电极,斯滕特支架,支架,外科装置上。支架或外科植入物涂层由具有选择用于该特定类型细胞的最佳生长的肽的自组装肽亲水脂分子组成。例如具有RGD,IKVAV,KGE,RGDS肽序列的肽亲水脂分子,和由它们或它们的组合所组成的自组装纳米纤维,对于细胞生长可能是最佳的。
适于植入的细胞的实例包括但不限于,肝细胞和胆管细胞,胰腺的胰岛细胞,甲状旁腺细胞,甲状腺细胞,肾上腺-下丘脑-垂体轴的细胞包括产生激素的生殖腺细胞,上皮细胞,神经细胞,心肌细胞,血管细胞,淋巴管细胞,肾细胞,肠细胞,形成骨的细胞,形成软骨的细胞,形成平滑肌的细胞和形成骨骼肌的细胞。
第二表面应该做成最大化表面积的形状,以允许养分和生长因子充足扩散到附着于自组装肽亲水脂分子的细胞。充分扩散通过致密排列的细胞,可在类似于在机体中出现的那些的条件下,在大约200到300微米的范围内发生,其中养分和氧从血管扩散到周围的组织中。
在本发明中,细胞可最初使用组织培养领域的技术人员已知的技术进行培养。然而,一旦细胞已经开始生长并覆盖自组装肽亲水脂分子涂层的电极,斯滕特支架,支架或外科装置,它们就被植入到患者的适于附着,生长与功能的位点。支架上生物可降解的自组装肽亲水脂分子涂层的一个优点是,生血管化合物可直接掺入到自组装肽亲水脂分子纳米纤维中,以便随着纳米纤维涂层在体内的降解,它们慢慢地释放。随着细胞-自组装肽亲水脂分子纳米纤维结构被血管化和该结构的降解,细胞将根据它们的固有特性分化。
次级结构,例如多孔的支架,可用自组装肽亲水脂分子纳米纤维组合物涂层,其可在体外制备用于植入以在体内产生功能性的器官组织。支架是涂有自组装肽亲水脂分子纳米纤维的三维结构,其可以是生物相容的,生物可降解的或非生物可降解的。这种支架的实例包括获自Porex Corporation,Fairburn,GA;Mykrolis CorporationBillerica,MA和Robocasting,Albuquerque,NM的多孔陶瓷材料。纳米纤维或微团具有带有氨基酸的肽亲水脂分子,其能诱导和支持细胞生长和附着。来源于不同组织的细胞在体外附着于纤维表面,以能有效产生功能性组织(优选在体内)的量均匀地贯穿纳米纤维涂层的支架。可选择地,组织或细胞体外生长于营养液中的自组装肽亲水脂分子纳米纤维涂层的支架上,以形成细胞-支架组合物,其植入到患者具有足够的血管形成的位置,以允许血管生长成为细胞-支架组合物。生长因子,刺激血管发生的化合物和免疫调节剂,可与对细胞-支架组合物进行涂层的纳米纤维结合。包含不同细胞群的肽亲水脂分子纳米纤维细胞-支架组合物的组合可进行植入。
如果合适,免疫抑制剂药物可在第二表面或支架,植入物或电极的位点注射。可选择地,免疫抑制剂药物可掺入到对支架或外科植入物进行涂层的自组装纳米纤维或微团中。
在某些条件下,机体天然产生在其许多效应之中能影响细胞凋亡的另一种药物。如Amin等在美国专利号5,759,836中所解释的,其以其全部内容引入这里作为参考,一氧化氮(NO)由一种可诱导酶-氧化氮合酶产生,其属于有益于动脉体内平衡的蛋白质家族。然而,一氧化氮在调节凋亡中的作用是复杂的。促凋亡作用似乎与病理生理学条件有关联,其中可诱导的氧化氮合酶产生大量的NO。相反,抗凋亡作用源于内皮NO的连续低水平释放,内皮NO抑制凋亡,并认为促成NO的抗动脉粥样硬化功能。Dimmeler在“一氧化氮和凋亡:一氧化氮的双重作用的另一个范例”(Nitric Oxide 14:275-281,1997)中论述了一氧化氮的促-和抗-凋亡作用。包封氧化氮合酶的自组装肽亲水脂分子纳米纤维可用于涂层植入的外科装置如斯滕特支架。
在一个实施方案中,支架或外科植入物用由表1和表2中的肽亲水脂分子组成的纳米纤维进行涂层。斯滕特支架,支架,电极或外科装置可由任何合适的物质形成,如本领域已知的物质,其可改造(例如,模制,模压,纺织等等)以适于包含所需的表面特征。优选的支架和斯滕特支架由包含金属,陶瓷或聚合纤维的材料形成,其均匀地放置以形成三维无纺基质,并烧结以形成显示高孔隙度的曲径结构,一般在大约百分之50到大约百分之85的范围内,优选至少大约百分之70。支架纤维一般直径在大约1微米到25微米的范围内。次级结构中的平均有效孔径可以是以便增加细胞向内生长到孔和间隙中的大小,例如平均直径在大约1微米到大约100微米的范围内。
涂有自组装肽亲水脂分子纳米纤维的基质表面(也即,电极,外科装置或植入物,斯滕特支架或支架),可由生物相容的材料形成,所述材料包含金属和合金,例如不锈钢,钽,镍钛合金,耐蚀游丝合金;陶瓷如蓝宝石或四氮化三硅,聚合物如聚四氟乙烯,PFA或聚乙烯;或这些材料的组合。支架和/或纳米纤维可以是生物可降解的或不能生物降解的。支架或斯滕特支架可完全由自我支撑和模制的纳米纤维凝胶制成;对于合适的应用,纳米纤维凝胶可以是可降解的。涂层的支架或植入物可以用胞外成分例如胶原,纤粘连蛋白,层粘连蛋白和这些成分的复杂混合物进行涂层。当细胞生长在培养物中,为了除了植入以外的目的时,不可降解的材料尤其有用,因为优选的基质结构可提供的固定细胞密度高于只通过扩散供给养分时正常可达到的固定细胞密度。斯滕特支架,支架或外科植入物可由生物相容的非多孔聚合物形成,或由通过在其固化之前掺入可溶解的盐粒,然后溶解掉该盐粒以在那里留下真空和间隙而制成多孔的聚合物形成。聚合物可以是生物稳定的或生物可吸收的,例如许多医学级塑料,包括但不限于,高密度聚乙烯,聚丙烯,聚氨酯,聚砜,尼龙和聚四氟乙烯。多孔聚合物斯滕特支架体可通过本领域已知的方法,制成孔的平均直径在大约30微米到大约65微米的范围内。
自组装肽亲水脂分子纳米纤维所呈现的生物学信号,必须适于将被植入的细胞或组织的种类,以及使细胞最大暴露于周围环境。它还必须设计成能增强细胞促进血管形成和支架或组织浸润的能力。
在本发明的一个实施方案中,斯滕特支架涂有自组装肽亲水脂分子纳米纤维。涂层的斯滕特支架体可由具有模压或模制到表面的表面特征的生物相容的聚合物或生物相容的金属形成。应该如本领域技术人员已知的,提供合适的弹性给斯滕特支架,用于在机体内的操作。例如,本发明的斯滕特支架体,可由多孔的生物相容的材料例如烧结金属纤维的多孔基质或聚合物形成,其中孔大小为能促进那里的内向生长细胞的组织形成。自组装肽亲水脂分子纳米纤维应用于聚合物或金属的表面和/或贯穿孔。
当涂层的斯滕特支架培养于富含细胞的培养基中时,或当涂层的斯滕特支架植入到个体例如哺乳动物的血管或其它的管状体腔中时,自组装肽亲水脂分子纳米纤维涂层的斯滕特支架体设计成能促进活细胞对斯滕特支架的浸润和定殖。更进一步地,选择涂层的斯滕特支架体中的表面特征,使浸润和定殖自组装肽亲水脂分子纳米纤维涂覆的斯滕特支架的活细胞以特殊的模式进行细胞生长,其通过涂层的斯滕特支架体的表面特征的放置和大小确定。这种预先确定的细胞生长模式的一个实例是血管发生和/或新血管形成。
如果如本领域已知的,涂层的表面在细胞培养条件下,培养在富含细胞的培养基中(例如,0.8毫升培养基中6-10×104内皮细胞),穿有孔的自组装肽亲水脂分子纳米纤维涂层的表面(也即,斯滕特支架,电极或支架),可很容易地长有活细胞。这种细胞培养方法描述于例如上文的D.A.Dichek,et al.中,其以其全部内容引入这里作为参考。具有这种孔的自组装肽亲水脂分子纳米纤维涂层表面或基质,可容易地被来自周围的细胞环境的细胞浸润,以便产生类似于周围机体环境的有组织的细胞结构。
基质(也即,电极,支架,斯滕特支架或外科装置)的表面,可包含一层生物相容的物质,其在含水环境中展开或增稠以呈现三维形式,其中该层覆盖了基质表面的至少一部分。例如,生物相容的物质可以是或包括一种或多种水凝胶,以致当水凝胶层接触含水环境时吸水后膨胀而产生多孔的三维层。可选择地,水凝胶可更进一步地包括肽亲水脂分子或自组装肽亲水脂分子。在斯滕特支架的情况中,水凝胶和肽纳米纤维的膨胀支撑了周围的组织,并提供内皮细胞生长的位点。
置于宿主个体机体中需要其的位点之后,自体细胞天然地侵入自组装肽亲水脂分子纳米纤维涂层基质(支架,斯滕特支架,电极或外科装置),并自发地产生有组织的细胞结构,该有组织的细胞结构根据基质植入的机体位点的细胞组成而改变。例如,在细胞培养实验室中,在植入之前,可使用本领域已知的方法,使内皮或其它合适的细胞侵入自组装肽亲水脂分子涂层斯滕特支架,以产生活的纳米纤维涂层斯滕特支架。例如,活的肽亲水脂分子纳米纤维涂层基质可根据本发明获得,其中肽亲水脂分子纳米纤维涂层基质长有选自内皮细胞,平滑肌细胞,白细胞,单核细胞,上皮细胞,多形核白细胞,淋巴细胞,嗜碱性白细胞,成纤维细胞,干细胞,上皮细胞,嗜酸性粒细胞等等和其中任何两种或多种的组合的活细胞。
典型的血管内斯滕特支架的外径在大约2.0毫米到大约6.0毫米的范围内,壁厚度在大约0.1毫米到大约12毫米的范围内,例如大约0.1毫米到大约1.0毫米。当然,特定的大小取决于要植入斯滕特支架之处的解剖学。斯滕特支架可以是可扩展的,例如,这种设计公开于例如美国专利号5,059,211中,其引入这里作为参考,其描述了由多孔聚合材料制成的可扩展的斯滕特支架。斯滕特支架可通过导管送递。
本方法的一个优点是,它提供了一种用于具有必需的生物学功能的实质细胞的选择性移植的方法,而没有过路白血球和抗原呈递细胞的移植。结果是大大减低了组织排斥的风险,而不必利用药物。本发明具有超过用于治疗器官功能丧失的其它方法的另一个优点,因为当在培养中可对细胞进行操作,以引入新基因制造缺乏的蛋白质产物,或它们可被修饰以抑制细胞表面上的抗原表达,以便当得不到相同HLA组织型的细胞时,不需要免疫抑制。
可使用本领域已知的任何外科技术,取决于将被治疗的特定机体器官,将本发明的自组装肽亲水脂分子纳米纤维涂层基质(斯滕特支架,电极,支架)植入。
本发明治疗方法的实施方案中,自组装肽亲水脂分子纳米纤维涂层的第二基质中向内生长的活细胞可包封有益的生物活性剂。例如,涂层的纳米纤维可包封植入基质的个体的自体细胞,在植入之前种入基质中的能天然生产所需生物活性剂的细胞,或进行遗传修饰以生产所需的生物活性剂的细胞。用于实施本发明方法的能天然生产一种或多种生物活性剂的活细胞包括内皮细胞,平滑肌细胞,白细胞,单核细胞,多形核白细胞,淋巴细胞,嗜碱性白细胞,成纤维细胞,干细胞,上皮细胞,嗜酸性粒细胞等等,及其合适的组合。这种细胞可以是供体或者自体的细胞。
可选择地,对用于本发明治疗方法的实施方案的涂层中的纳米纤维包封的细胞或化合物可进行改造以表达和释放生物活性剂,作为对送递合适的化合物到患者中产生应答,以便重组基因产物送递到植入涂层的第二基质的位点。
使用例如涂有包含合适的神经细胞生长肽序列的自组装肽亲水脂分子纳米纤维的电极或其它表面,也可促进神经生长。在神经沿着纤维的长度生长之后,把该结构植入到从神经起源延伸到需要神经功能的区域的合适位置。
在使用具有供一个或多个细胞系附着的纳米纤维单涂层的支架或外科植入物的方法的变异中,涂层的支架构建成具有不同的自组装纳米纤维的涂层,以便对于各个群体,最初细胞附着和生长分别单独发生。单一的支架也可由不同的材料形成,以使各种类型细胞的附着最佳化。附着是细胞和结构组合物的功能。例如,用纳米纤维对外科植入物进行涂层,该纳米纤维由具有磷酸化氨基酸和RGD肽序列的胶原样肽亲水脂分子组成,可增加细胞的粘附。在另一个实例中,自组装肽亲水脂分子纳米纤维(具有磷酸化氨基酸和RGD肽序列),可涂层到生物可降解的支架上。在支架植入和降解之后,血管细胞形成合适的连接用于送递血液到所需的位置。用于器官排泄的管道可以类似的方式构建,通常利用细胞固有的行为。还可助长淋巴网络和神经纤维的向内生长。
任选地,用于生长于纳米纤维涂层的表面或支架上的细胞,可获自供体或宿主个体,进行处理,并体外培养于纳米纤维涂层支架上,然后再引入到个体中。在目前优选的实施方案中,移植的细胞是个体“自体的”,指细胞的供体和受体是同一个。
根据本发明方法的实施方案,适于通过包封于涂布支架、电极、斯滕特支架或外科装置的自组装肽亲水脂分子纳米纤维送递的生物活性剂,包括哺乳动物机体利用其刺激血管发生的那些生物活性剂,包括那些调节伤口中毛细血管形成,吸引平滑肌以涂覆和支持毛细血管的生物活性剂。这种可包封于涂层的纳米纤维中的生物活性剂的实例包括血管内皮细胞生长因子(VEGF),成纤维细胞生长因子(FGF),尤其是FGF-1,血管生成素1,凝血酶,等等。适于根据本发明方法送递的生物活性剂的另外的例子包括抗增殖,抗再狭窄或凋亡剂,例如血小板衍生生长因子-A(PDGF-A),转化生长因子β(TGF-β),核因子-Kβ(NF-Kp),可诱导的氧化还原作用-控制的转录因子,等等。
本说明书中所述的方法,可用于送递特异性生物功能性肽序列到生物材料或其它表面,其可激活或修饰不同的生物学应答。这种应答可包括与结合到基质或生物材料的肽的选择性结合,改善或增加细胞增殖,或甚至生物支架的选择性降解。这一方案甚至可用于药物送递。药物或其它的治疗分子,可掺入到稳定的微团装配中,或者它们可与纳米纤维表面化学结合。可以预期,这些方法将有很大的可能性应用于包括骨修复,牙齿修复和心血管斯滕特支架修饰的领域。
如上所述,本发明的方法和组合物,还可提供用于以单片形式或更优选作为基质上的涂层的正常结晶材料的纳米晶体或结晶性差相的生长。通过使预先种晶矿物到它的表面上的基质与包括溶解的晶体材料和掺入到涂层的晶体材料中并减小该材料的结晶域的大小的添加剂的溶液接触,而形成纳米晶体相。添加剂提供纳米晶体形态,还提供另外的反应官能度,用于使涂层与其它的分子进行化学反应。组合物提供了具有涂层的基质增加的表面覆盖度,尤其是那些具有小的特征例如孔和通道的基质。涂层的基质可用于体外或体内细胞生长于纳米晶体涂层基质材料上。
本发明的组合物优选为一种溶液,其包括但不限于,有机添加剂例如聚胺或其酸加成盐,和材料的溶解组分。晶体材料的组分可以是分子或离子。溶液应能溶解晶体组分以及添加剂。溶液可以是水溶液,有机溶液,或其组合,其可包括有机液体例如乙醇,胺与它们的酸加成盐,氨基酸,表面活性剂以及晶体材料的可溶性组分。
组合物中的有机添加剂可包括聚胺,酸或它们的盐,其中该添加剂破坏晶体生长并结果形成正常晶体材料的纳米晶体相。可选择添加剂来控制它对涂层降解的反应性。其它的添加剂可以是聚(氨基酸),或带有侧基例如羧酸,磺酸,磷酸,胺基,硫醇,羟基或这些基团的组合的其它聚合物。聚合物中的这些基团可用于通过二硫键,酰胺或肽键与其它的生物学相关分子例如肽结合。溶液中聚合物或它的盐的浓度可低于大约100毫摩尔,优选10-20mM,而且浓度可用于控制涂层的形态。可以预期,较低浓度的添加剂将比较高浓度的有机添加剂对结晶形态产生较少的破坏。用于本发明的聚合物可来源于天然来源,通过本领域技术人员已知的固相合成技术制备,或它们可从供应商例如Aldrich Chemical,Milwaukee WI购买。
优选地,如图3A和图3B所示,其中掺入了有机添加剂的基质上的涂层,结果形成了一种材料,其形态部件(feature)小于由材料的溶液沉积到没有有机添加剂的基质上所形成的形态部件。优选地,涂层的部件为其大小小于大约2000纳米。基质上的涂层的厚度可小于大约50微米,优选小于大约10微米,更优选小于1微米。较薄的涂层提供用于细胞附着,和降低对多孔的基质如钛或钽的生物泡沫中的小孔特征的阻塞。
优选地,添加有机添加剂将影响晶体形成,以产生纳米晶体或差结晶矿物相。这种特性使涂层材料在细胞重建期间尤其容易受到酸降解。可选择地,涂层材料可在生理条件下容易受到生物酶例如但不限于链霉蛋白酶和胰蛋白酶的酶促攻击。当矿物复合物的有机组分被酶消化时,这种酶可破坏涂层。掺入到涂层中的添加剂对这两种主要降解方法即酸的和酶促的方法敏感是理想的,以便容易进行体内天然的骨重建过程。材料涂层中不同有机添加剂对酸或酶促消化的敏感性,可在用生物学活性酶或生理溶液处理制备的涂层的基质期间,通过涂层形态(例如,通过扫描电子显微术)和化学(例如,X射线光电子光谱学)随时间的改变来进行监测。来自这些降解涂层的矿物副产物预期是可用于形成新矿化组织的有用的原材料。
用于涂层的材料可溶于溶液中。可用于这种涂层的无机材料可包括但不限于羟磷灰石,氟磷灰石,氟磷灰石碳酸盐,羟磷灰石碳酸盐和这些的组合。还可用的是磷酸钙,草酸钙,碳酸钙和这些无机材料的组合。磷酸钙可包括但不限于二水磷酸二钙,磷酸八钙,镁取代磷酸钙。无机离子例如但不限于,Zn+2或Mg+2,还可与Ca+2盐联合,以预先种晶或掺入到涂层中。这些无机材料和这些材料的盐,可从天然来源或从化学制剂供应商例如Aldrich Chemical,Milwaukee WI获得。溶液中涂层材料的每种组分的浓度优选小于大约100毫摩尔。
涂层溶液的温度可用于控制涂层过程的速度和形态。溶液的温度不应该降解有机聚胺。温度可低于大约75℃,并优选在大约5℃到40℃的范围内。
待涂层的基质优选是生物学相容的材料,而且可包括聚合物,金属,金属合金,陶瓷或这些的组合。在涂层之前,基质优选具有用于它的计划用途的形状。植入物例子可包括髋和膝植入物,用于骨折骨的板和钉,牙齿植入物,及其它重建体。用于实施本发明的基质可具有氧化物表面,氢氧化物表面或这些基团的组合,涂覆基质的至少一部分表面。涂层优选具有包含官能团的表面,所述官能团容许将沉积到该表面上的矿物或其它材料的晶种层的晶核形成。该表面中的官能团的例子包括但不限于,氧化物,氢氧化物,磷酸盐和碳酸盐。用于实施本发明的金属和合金可包括但不限于,钛及其合金,外科用钢,汞合金,Co-Cr合金,钽或硅和硅基材料。基质优选为钛合金的合金,它的一个例子是称为Ti-6Al-4V的钛合金,其可用于整形外科和牙齿植入物。金属或合金可以是块状材料,多孔泡沫,或涂层或沉积物作为在另一基质如陶瓷上的附着膜。合适的陶瓷材料呈现氧化物和氢氧化物官能团,例如矾土,蓝宝石和磷酸钙陶瓷例如烧结磷灰石。
可使用涂层组合物的组分或结构上与它类似的物质进行基质的预先种晶。可通过使基质与无有机添加剂的涂层溶液接触,来对基质预先种晶涂层材料。例如,CaCl2和Na2HPO4的种植组合物溶液可用于接触基质,然后用包含CaCl2,Na2HPO4和聚(L-赖氨酸)的溶液对其进行涂层。基质优选与CaCl2接触,然后与Na2HPO4接触。预先种晶在基质上形成涂层材料的晶种层是理想的。还可通过其它的方法形成晶种涂层,包括但不限于,化学蒸气沉积法,原子层化学蒸气沉积法或喷涂。
涂有包含有机添加剂的涂层材料的基质,可用于细胞,组织的生长或附着,或用于释放治疗组合物。组织的例子可包括但不限于骨和牙质。通过把涂层的基质置于含合适的细胞,养分,及其它用于细胞组织生长的试剂的容器中,涂层的基质可用于体外培养细胞或组织。涂层基质或与上面带有细胞培养物的基质,在植入之后可用于在患者体内生长或培养细胞,组织,牙质或骨。基质将由生物相容的材料制成,其涂有通过在材料之中掺入有机添加剂例如聚(氨基酸)而进行修饰的材料。
涂有材料和有机添加剂的基质,可更进一步地修饰以包含其它的分子,例如但不限于氨基酸,肽或自组装肽亲水脂分子,与涂层结合。例如,掺入pLys到Ca-P层,还引入用于连接有功能的生物分子到涂层的有价值的化学纽带。聚(L-赖氨酸)的带正电荷的游离胺侧链可用作结合接头,通过与带负电荷分子的静电相互作用,或者通过形成赖氨酸游离胺与靶分子上的羧酸之间的酰胺链。掺入到涂层中的有机添加剂的化学官能度可用于掺入生物分子例如生长因子,肽序列或治疗药物。肽或自组装肽亲水脂分子还可与掺入到涂层材料中的有机添加剂例如聚(氨基酸)的反应基团结合,或通过结合分子或自组装亲水脂分子到晶体材料本身。这种键包括但不限于酰胺,酯和二硫键。与涂层中的有机添加剂结合的肽优选包含可用于不同类型细胞附着的氨基酸序列。具有可用于不同类型细胞附着于其上的氨基酸序列的不对称肽的例子包括但不限于表3中的那些肽。对称肽亲水脂分子,例如美国专利号5,670,483和美国专利号5,955,343中所述的那些,其以其全部内容引入这里作为参考,也可用于实施本发明。Bola亲水脂分子和自组装bola亲水脂分子也可用于结合到本发明的涂层。具有与不同类型细胞附着于其上相关的氨基酸序列的自组装肽亲水脂分子的例子,可以从表3的肽进行制备。
表3肽亲水脂分子;S(P)表示磷酸化丝氨酸 | |||
PA | N-末端 | 肽(N到C) | C-末端 |
1 | C16 | CCCCGGGS(P)RGD | H |
2 | C16 | CCCCGGGS(P) | H |
3 | C12 | CCCCGGGS(P)RGD | H |
4 | CI0 | CCCCGGGS(P)RGD | H |
5 | C14 | CCCCGGGS(P)RGD | H |
10 | C16 | CCCCGGGS(P)KGE | H |
11 | CI0 | AAAAGGGS(P)KGE | H |
12 | C16 | CCCCGGGS(P)DS(P)D | |
13 | C22 | CCCCGGGS(P)RGD | H |
14 | C16 | CCCCGGGSRGD | H |
15 | C16 | CCCCGGGEIKVAV | H |
16 | C16 | CCCCGGGS(P)RGDS | H |
可选择地,基质上的涂层还可通过与涂层的键而与肽或自组装肽亲水脂分子结合。与基质上的涂层结合的自组装肽亲水脂分子,可更进一步地包含包封的药物或治疗剂,能促进细胞粘附的药物,生长因子或生物学相关的肽序列。肽亲水脂分子可具有氨基酸例如巯基部分或其它用于交联,以增强与基质涂层结合的自组装肽亲水脂分子的稳定性。
掺入到基质上的涂层材料中的聚合结构,可更进一步地与分子例如但不限于生长因子,治疗药物,肽和自组装肽亲水脂分子结合。与分子的结合可通过范德瓦耳斯相互作用,离子键,氢键作用或螯合作用。可选择地,基质上的涂层材料可通过多种键包括但不限于二硫键,优选酯或聚胺和肽之间的酰胺键,而与肽或自组装肽亲水脂分子结合。涂层中的聚合物与肽之间的酰胺键的形成,可在极性有机溶剂中进行,例如但不限于N,N-二甲基甲酰胺(DMF)或N-甲基吡咯烷酮(NMP),二者都能溶解氨基酸。该方法还包括,利用化合物例如O-苯并三唑-N,N,N′,N′-四甲基脲-六氟-磷酸盐(HBTU)作为催化剂,以增强肽亲水脂分子上的羧酸官能团的反应性。其它的肽偶联剂或活化剂包括但不限于:二环己基碳二亚胺(DCC);O-7-氮杂苯并三唑-1-基)-1,1,3-3-四甲基脲-六氟磷酸盐(HATU);和苯并三唑-1-基-氧三吡咯烷磷六氟磷酸盐(PyBOP)。这些反应性酸基团然后与游离胺进行反应,然后质子sink二异丙基乙胺(DIEA)的存在有助于最后的消除反应,以除去HBTU和水,留下稳定的酰胺键。自组装肽亲水脂分子可在结合或附着于基质上的涂层之前通过二硫键交联。
对基质进行涂层的材料可由掺入添加剂的金属缺乏的矿物组成。掺入到涂层中的添加剂可存在至多大约25%重量或较少,而且相较于没有添加剂的涂层中的微晶,其可减小存在于涂层中的微晶的大小。添加剂可包括但不限于聚(氨基酸)。例如,基质可由钙缺乏的磷酸八钙矿物组成,其晶体生长已经被矿化期间存在的聚胺,聚(L-赖氨酸)破坏和修饰。不希望受理论的限制,可能是在结晶过程期间,聚(L-赖氨酸)紧密地掺入到钙缺乏的磷酸八钙材料中。如通过比较图3a和图3b所示,从这种有机修饰获得的涂层的形态由比纯无机的(磷酸八钙)矿物涂层小1-2个数量级的不规则部件组成。这种增加的结构和降低的部件大小预期对细胞附着,增殖而且扩散具有有利的影响。此外,涂层的被破坏的差结晶的特性,结合矿物复合物的易受酶攻击的有机组分,将使它尤其适于天然的再吸收和重建过程。最后,掺入聚氨基酸到材料涂层中,通过侧链上的游离胺或酸,提供了附加的化学官能度。这种化学官能度,可用于掺入生物分子例如生长因子,生物学相关的肽序列或治疗药物。
本发明的一个实施方案是一种把材料涂层到可植入基质上的方法。该方法包括,用溶解的涂层材料和有机添加剂的溶液组合物,对具有与涂层相容的晶种层的生物相容的基质进行涂层。该方法可更进一步地包括,在基质上制备晶种层,和使分子或自组装超分子结构与基质上的涂层材料结合的步骤或行为。涂层组合物可通过本领域技术人员已知的用于使基质与组合物接触或用组合物对基质进行涂层的方法而应用于预先种晶的基质。可通过把基质浸渍于包括材料和聚合物,例如CaCl2,Na2HPO4和聚(L-赖氨酸)的组合物中,来对基质进行涂层。例如,可把预先种晶的基质置于补充有聚(氨基酸)酸的CaCl2溶液中。然后添加盐例如Na2HPO4到这种组合中,并孵育样品。涂层步骤可重复一次或多次。对有孔或通道的基质,优选通过使组合物流过基质(优选用于小孔)或穿过基质,而对基质进行涂层。可利用使用泵和组合物贮槽的闭环流动系统,并通过泵,阀或流量控制器控制流速。可选择地,基质可使用雾化器或其它的喷雾器进行喷雾涂层。用新鲜的涂层组合物对基质进行多层涂层,可在基质上产生增加的涂层厚度和均匀性。涂层材料优选包含1-15%的有机添加剂,按重量计算。
图3A和图3B举例说明了聚胺例如聚(L-赖氨酸)对预先种晶的生物相容的钛基质上的磷酸八钙生长的显著影响。图3A中的扫描电子显微照相显示,纯无机涂层由大的(>1微米),形成良好的,板片样的磷酸八钙盐晶体组成。相反,图3b所示的聚(L-赖氨酸)-修饰的涂层,由比矿物的纯无机形式小1-2个数量级的变形的,不规则形状的,结晶性差的部件组成。组成这些材料的许多特征的规模小于100纳米,赋予材料真正纳米级的结构。这种纳米级的结构或形态,可促进细胞附着和播散到涂层基质或涂层的单片样品上。这种pLys-OCP涂层的X射线衍射更进一步地说明了它结晶性差的特性,其使材料在细胞重建期间将对酸降解途径尤其敏感。用生物酶例如链霉蛋白酶处理pLys-OCP,通过SEM和能量分散X射线光谱学(EDS)显示,当酶消化矿物复合物的有机组分时,材料的涂层结构和形态被破坏。结晶性差的有机-材料复合物涂层,不但尤其适于酸降解,而且适于酶促消化,这是体内天然骨再吸收的两种主要方式。
聚胺如聚(L-赖氨酸)的存在,不仅影响涂层形态,微晶大小和重建可能,而且它还提供化学功能性元件给该系统。掺入到矿物涂层中的聚(L-赖氨酸)的侧链包含可用于化学反应的游离胺。例如,这些胺可与生物学相关的肽序列上的游离酸形成酰胺键。图9举例说明了可自组装形成纳米纤维的肽亲水脂分子,其中分子的脂族尾螯合到纤维的中间,而且功能性肽序列暴露于装配的纳米纤维的外侧。分子中的半胱氨酸残基可暴露于氧化条件,从而通过形成分子间二硫键而共价稳定纳米纤维。暴露在分子外侧的羧酸可与来自聚(L-赖氨酸)的游离胺反应而形成酰胺键,使肽亲水脂分子纳米纤维与有结构的plys-OCP表面共价连接。图10A显示纳米纤维束附着于钛表面上的聚(L-赖氨酸)修饰的磷酸钙涂层上。在较高放大倍数的图10B中,有可能分辨单个的纳米纤维(看箭头),其涂覆下面的(L-赖氨酸)修饰的磷酸钙涂层的结构部件。用于该实例的肽亲水脂分子仿造磷蛋白-一种与控制牙齿中的矿化作用相关的牙质特异性蛋白质。当然,几乎任何肽亲水脂分子纳米纤维都可用于本应用,只要它暴露了必要的羧酸用于形成酰胺键。相反地,可类似地掺入有机添加剂到显示游离酸的磷酸钙涂层中,以结合显示游离胺的PA纳米纤维。肽亲水脂分子是可附着于pLys-OCP表面的超分子聚集体的一个例子,但是这种化学官能度也可类似地用于单个分子或肽序列的附着。例如肽序列arg-gly-asp(RGD),其通常与细胞附着相关,可偶联到表面以增加细胞附着于plys-OCP表面。
多种物理学和化学分析可用于表征通过本发明的方法和组合物制备的涂层。本领域技术人员可使用方法例如XRD,RFTIR,XPS,TGA和元素分析,来确定与没有添加剂的晶体涂层相比,添加剂修饰的涂层具有降低的部件大小。还可用这些方法测定使用不同量的添加剂对形态的影响。例如,可通过XRD和FTIR观察到的涂层结晶度的破坏,以及通过涂层的化学反应性或促进细胞附着的能力,来证明添加剂掺入到矿物相中。
实施例1
呈现二氧化钛表面的商品纯钛或任何钛合金,在有机非极性溶剂,有机极性溶剂,最后在蒸馏水中进行超声波净化。净化的钛在于硝酸中再钝化之前,在温和的氢氟酸,硝酸溶液中腐蚀。钝化的样品在蒸馏水中彻底清洗并干燥。净化的钝化样品然后通过真空干燥脱水,并在氨基-硅烷化之前于120℃贮存。在氮条件下,干燥的钝化表面引入到氨基硅烷的稀释溶液中,例如溶于无水的疏水有机溶剂例如甲苯中的氨基丙基三乙氧基硅烷(APTES)。在于氮条件下60℃退火1小时之前,氨基-硅烷化过的钛基质在有机非极性溶剂,有机极性溶剂,并最后在水中彻底地清洗。
PA纳米纤维与氨基-硅烷化过的TiO2表面共价结合。添加O-苯并三唑-N,N,N′,N′-四甲基-脲-六氟-磷酸盐(HBTU)和二异丙基乙胺(DIEA)的溶液到在N,N-二甲基甲酰胺(DMF)中的交联纳米纤维的悬浮液中,以提供对纳米纤维上每个游离羧酸稍微小于1当量(0.95)的DIEA,和对氨基-硅烷化过的钛表面上每个估计的游离胺大约6当量。在暴露于氨基-硅烷化过的钛表面之前,该溶液孵育几分钟。一旦引入,氨基-硅烷化过的钛在用水彻底清洗并于室温干燥之前,在纳米纤维反应溶液中振荡至少1小时。图12A和12B显示,与Ti表面共价结合的这些纤维的低倍和高倍放大图像。
实施例2
预装配肽纳米纤维与钛表面上的聚(L-赖氨酸)修饰的磷酸钙涂层的共价连接。PA纳米纤维制备:肽纳米纤维如上进行装配,交联,透析,冻干并重悬于DMF中。
磷酸钙涂层制备:钛箔如上进行净化,腐蚀,钝化和清洗。然而,不对其进行干燥并用APTES处理,而是把钛箔沉浸于CaCl2和Na2HPO4的溶液中至少30分钟,以用磷酸钙对表面进行预先种晶。样品用水清洗并于室温干燥之前,将这种预先种晶溶液替换为包含聚(L-赖氨酸,CaCl2和Na2HPO4)的溶液至少3小时。相信聚(L-赖氨酸)掺入到所得到的新形成的磷酸钙涂层的矿物相中,而且来自聚(L-赖氨酸)侧链的游离胺显示于有结构的涂层表面。
PA纳米纤维与氨基-硅烷化过的聚(L-赖氨酸)修饰的磷酸钙涂覆的TiO2表面共价结合。添加O-苯并三唑-N,N,N′,N′-四甲基-脲-六氟-磷酸盐(HBTU)和二异丙基乙胺(DIEA)的溶液到在N,N-二甲基甲酰胺(DMF)中的交联纳米纤维的悬浮液中,以提供对纳米纤维上每个游离羧酸稍微小于1当量(0.95)的HBTU,和对暴露于赖氨酸修饰的磷酸钙涂层钛表面上每个估计的游离胺大约6当量的DIEA。在暴露于涂层的钛表面之前,该溶液孵育几分钟。一旦引入,钙磷酸盐涂层的钛在用水彻底清洗并于室温干燥之前,在纳米纤维反应溶液中振荡至少1小时。图10A是扫描电子显微照片,其显示了附着于有结构的涂层表面的纤维束。图10B是更高放大倍数的图像,揭示了涂层于磷酸钙涂层上的构造结构上的单个纤维层。
实施例3
pLys-OCP生长的方法:钛表面连续地在有机非极性溶剂,有机极性溶剂和水中净化。在用于表面钝化的更浓的硝酸溶液中再钝化之前,净化的钛箔在温和的氢氟酸,硝酸溶液中简短地腐蚀,以除去存在的表面氧化物。酸处理过的样品然后用蒸馏水彻底地清洗,并在室温下置于由2mM CaCl2和1.2mM Na2HPO4组成的预先种晶溶液中至少30分钟。较长的暴露时间(至多24小时)可导致较好的覆盖。预先种晶之后,样品然后置于由2mM CaCl2,1.2mM Na2HPO4,补充有1mM聚(L-赖氨酸)组成的新鲜矿化溶液中,并在室温下孵育至少3小时。可重复该矿化步骤以增加涂层厚度。矿化的样品用蒸馏水彻底清洗,并在室温下干燥。
实施例4
化学试剂购自Sigma-Aldrich(St.Louis,MO).溶剂获自Fisher Scientific,(Hanover Park,IL)。钛箔获自Goodfellow,Inc.(Berwyn,PA)。
商品纯钛(Ti)箔(0.032mm)切成大小为5×8mm的矩形切片。将每个样品的一角弯曲垂直对着箔面。钛箔然后在试剂级二氯甲烷,丙酮和去离子水中进行超声波净化各15分钟。净化的箔然后在置于40%硝酸(HNO3)40分钟进行表面钝化之前,在0.25%氢氟酸(HF),2.5%(HNO3)中腐蚀1分钟。酸处理过的样品然后用去离子水彻底地清洗。如图1中所示,净化的钝化样品置于24-孔组织培养聚苯乙烯(TCPS)有孔平板的孔中,折叠的角朝下,有效地悬浮箔的下面于TCPS表面之上。该结构确保在钛基质下面观察到的任何涂层直接生长于箔表面上,而不简单地是脱离溶液的附着沉淀的结果。
然后通过把样品置于2mM CaCl2的溶液中,并添加Na2HPO4(终浓度1.2mM),在室温下10分钟到24小时的时间段,来对样品进行预先种晶。对照预先种晶溶液包括单独的2mM CaCl2,单独的1.2mM Na2HPO4,单独的1.2mM NaCl,2mM CaCl2与1.2mM Na2HPO4和1mM聚(L-赖氨酸)(MW=37,000)。预先种晶之后,样品然后置于补充有1mM聚(L-赖氨酸)的2mL新鲜的2mM CaCl2溶液中。然后添加Na2HPO4(终浓度1.2mM),样品在室温下孵育于该矿化溶液中至少3个24小时。重复该矿化过程再一次。这些矿化溶液的pH用Fisherbrand电子pH计监测。矿化的样品用去离子水彻底清洗,并通过真空干燥进行干燥。干燥样品然后通过X射线光电子显微术(XPS),反射的傅里叶变换红外光谱学(RFTIR),和扫描电子显微术包括能量分散X射线分析(EDS)进行检查。XPS使用Omicron XPS以15kV和20mA进行,光谱使用EIS软件(v 2.1.0)进行处理。使用Bio-Rad FTS-40 FTIR分光光度计(4000-700cm-1,64扫描,2cm-1分辨率),利用空白Ti箔作为背景,对涂层的箔基质进行RFTIR。在Hitachi S4500场致发射扫描电子显微镜中以20kV用Princeton Gamma Tech X射线检测器进行检查之前,SEM样品用3nm的金-钯进行涂层。
然后通过一系列水清洗,接着离心和冻干,来收集非附着的沉淀。干燥沉淀使用Rigaku D-Max X射线粉末衍射仪于40kV和20mA通过粉末X射线衍射(XRD)进行测试。干燥沉淀中的水和有机物含量使用TA仪器Hi Res TGA 2950通过高分辨率热重分析(TGA)进行测定。样品以3℃/分钟加热到450℃,并保持120分钟。
对涂有OCP和pLys-CP如上所述生长的箔样品进行降解实验。样品在Millipore水中进行彻底地清洗,并通过真空干燥进行干燥之前,把样品置于1ml的每种单独的降解溶液中24小时。基于酶的溶液包括,溶于Hanks平衡盐溶液(HBSS)中的0.25%胰蛋白酶,和溶于HBSS中的0.2%链霉蛋白酶。使用HBSS(pH7.4)和pH为7,6,5,4,3和2柠檬酸盐缓冲溶液,通过pH变化来进行涂层降解。处理的样品在SEM中于20kV通过EDS探测100s,然后用3nm Au-Pd溅射涂层用于在20ky时成像。
通过使Boc-S-叔丁基巯基-L-半胱氨酸(Boc-Cys(StBu)-OH)与暴露于pLys-CP涂层上的游离胺偶联,来衡量化学官能度。OCP和pLys-CP涂层都如上所述制备。使用定量茚三酮试验来测量游离胺的表面浓度。简而言之,在添加60%乙醇,并用溶于二氯甲烷的氯化四乙铵清洗之前,干燥样品用溶于乙醇的苯酚与溶于吡啶的氰化钾的混合物于100℃处理5分钟。于570nm测量得到的紫色溶液的吸光率,并与从分级的pLys溶液测量的标准曲线进行比较。未用于茚三酮反应的样品,在包含0.1%Boc-Cys(StBu)-OH的0.4mL二甲基甲酰胺(DMF)中振荡过夜,同时还有0.95摩尔当量的1-H-苯并三唑,1-[双(二甲氨基)亚甲基]-六氟磷酸盐(1-),3-氧化物(HBTU)和0.5mM二异丙基乙胺(DIEA)。在不存在HBTU或DIEA时,对照样品暴露于半胱氨酸化合物。来自每组反应条件的样品的一半在去离子水中彻底地清洗,而另一半在于去离子水中彻底清洗之前在饱和NaCl溶液中洗涤10分钟。清洗的样品进行干燥,然后通过XPS于225W(15kV和15mW)检验。
磷酸钙生长反应通过目测以及通过监控反应pH进行跟踪。氯化钙溶液在大约pH5.8-5.9时开始澄清并变成无色。在添加磷酸盐溶液数秒内,pH迅速上升到大约pH7.8,产生细小的白色沉淀。在纯无机反应中,该悬浮的沉淀在接下去的3-4小时变得越来越粗,沉降在反应孔中。然而,含有pLys的溶液中的沉淀保持极为细小,而且具有较低的沉降倾向。图2显示了反应pH的变化,从添加磷酸盐(大约1分钟)之后的平衡点追踪至24小时。pH踪迹特征为相对逐渐的pH降低,被恰好在1小时从大约pH7.6到pH7.2的单个突然降低中断。值得注意的是,在包含pLys的反应溶液中,pH的显著降低开始得更早,而且最终pH保持稍微高于无机对照的最终pH。
这些反应产生的涂层的SEM显微照相如图3所示。图3A中的涂层是纯无机的,而图3B中的涂层已经通过掺入pLys进行修饰。纯无机涂层由长度和宽度通常超过1微米,形态与磷酸八钙(OCP)一致的,大的,薄的,板片样的磷酸钙晶体组成。涂层的厚度为大约4-7微米(2-3结晶大小),并且在涂层的整个厚度中晶体定向成平行和垂直于样品表面。相反,pLys-修饰的磷酸钙(pLys-CP)由变形的,破坏的晶体组成,其比它们的无机对应物小1个数量级。图3B中的高倍放大插图说明了,这些结构进一步由大小小于100nm的亚结构组成,揭示了修饰的涂层中的纳米级特性。该涂层,也是2-3个部件厚,通常1微米厚或更小,但是在整个箔表面保持均一。
OCP沉淀的TGA产生了大约9.5±0.2%的质量改变,该值与预期从水合的OCP晶体的失水量(9.2%)相当一致。对pLys-修饰的沉淀的分析显示了类似的失水量,但是产生了23±1%的总质量损失,这说明矿物由14%的聚(L-赖氨酸)组成。元素分析显示了14.2±0.2%的总碳,氢和氮含量(质量计),证实了来源于TGA的赖氨酸含量。此外,元素分析中碳与氮的质量比为2.6,其与预期的聚(L-赖氨酸)中碳与氮的比2.57一致。这种一致性排除了pLys-CP包含显著量的任何碳化的磷酸钙种类的可能性。
pLys-CP沉淀的X射线衍射图案,如图4所示,显示了与结晶性差的磷酸钙一致的相对弱的,宽的衍射峰。这些宽峰在获自无机对照的OCP晶体衍射图案上显现。图4举例说明了OCP(100),(010)和(002)的区别的衍射间距。
检查图5中的反射FTIR光谱,无机涂层产生了对应于963,1025,1037,1078和1115cm-1处的PO4 3-延伸的条带。此外,存在磷酸八钙特征性的清楚条带,例如那些于873和917cm-1来自HPO4 2-中的P-OH延伸的条带。比较起来,pLys-CP光谱较好地描述了结晶性差的或无定形的磷酸钙,在963,1025和1115cm-1处有宽PO4 3-条带。无机样品中清晰的HPO4 2-条带,已经被大约880cm-1处的单一,宽HPO4 2-条带替代。而且,pLys-CP光谱清楚地揭示了,矿物中存在聚(L-赖氨酸),通过2990和2850cm-1之间的CH2和CH3条带,1650cm-1处的强NH2变形条带和3073cm-1处的NH3 +条带表明。这些观察共同说明了,聚(L-赖氨酸)已经掺入到磷酸钙矿物系统中,而且已经破坏了天然形成磷酸八钙相的结晶作用。通过XPS进行的涂层和预处理分析下面总结于表4。
表4:磷酸钙预处理和涂层的XPS分析
涂层 | 结合能量eV(±0.1) | Ca∶P比 | |||||
Ca2p<sub>3/2</sub> | Ca2p<sub>1/2</sub> | P2p | O1s | N1s | C1s | ||
OCP | 347.2 | 350.9 | 132.7 | 531.0 | - | 284.8 | 1.31±0.02 |
PLys-CP | 347.2 | 350.8 | 132.8 | 531.0 | 400.2 | 284.8 | 1.15±0.02 |
预先种晶2小时 | 347.2 | 350.8 | 133.2 | 531.1 | - | 284.9 | 1.30±0.06 |
预先种晶10分钟 | 347.0 | 350.6 | 133.2 | 531.5 | - | 284.8 | 1.55±0.06 |
只有CaCl<sub>2</sub> | 347.0 | 350.8 | - | 531.3 | - | 284.8 | - |
只有Na<sub>2</sub>HPO<sub>4</sub> | - | - | - | 530.9 |
对于OCP和pLys-CP涂层的钙,磷和氧结合能量,与以前出版公开的磷酸钙例如OCP的值相当一致。pLys-CP扫描中于400.2eV的氮峰证实了在该修饰的涂层中存在聚(L-赖氨酸)。根据等式1中的表达确定钙磷比:
等式1中,Ix是元素“x”相应的XPS峰的强度,Sx是元素“x”的灵敏度因子。无机涂层中1.31的比率与OCP的期望值(1.33)相当一致。pLys-CP涂层中1.14的值与钙缺乏的OCP一致。XPS数据还提供了一些有关预先种晶过程的信息。首先,该数据显示了,在不存在磷酸盐时,少量的钙单独可吸附于Ti表面,而24小时后磷酸盐单独不能显著地与裸露的Ti表面结合。可选择地,用CaCl2和Na2HPO4共同处理表面,结果在少至10分钟内形成相对富含Ca的磷酸钙复合物。然而,直到大约1.5-2小时,在SEM中也没有可见的晶体形成的指示。然而,至2小时,图6中可见的小微晶已经装饰了金属表面,而且钙磷比率已经下降到1.3。
钛表面上这种晶种层的形成,使pLys-CP能成功生长于Ti表面。下面的表5总结了来自多种预先种晶处理的覆盖结果。
表5:pLys-CP生长对Ti表面预先种晶方法的依赖性
预先种晶处理(24小时,除非另有说明) | 随后的pLys-CP涂层生长 |
2mM CaCl<sub>2</sub>+1.2mM Na<sub>2</sub>HPO<sub>4</sub>+pLys | 可以忽略的 |
2mM CaCl<sub>2</sub> | 可以忽略的 |
1.2mM Na<sub>2</sub>HPO<sub>4</sub> | 可以忽略的 |
2mM NaCl | 可以忽略的 |
2mM CaCl<sub>2</sub>+1.2mM Na<sub>2</sub>HPO<sub>4</sub>(10分钟) | 25-50%覆盖 |
2mM CaCl<sub>2</sub>+1.2mM Na<sub>2</sub>HPO<sub>4</sub>(30分钟) | 75%覆盖 |
2mM CaCl<sub>2</sub>+1.2mM Na<sub>2</sub>HPO<sub>4</sub>(>3小时) | 100%表面覆盖 |
从该表清楚可见,预先种晶处理包括钙和磷酸盐,产生了用于pLys-OCP涂层生长的足够的表面。有趣的是,CaCl2预处理,其确实导致了钙吸附到金属表面,不足以促进随后的pLys-CP生长。类似地,单独Na2HPO4处理不能促进金属表面上随后的pLys-CP形成。磷酸钙矿物复合物的预先种晶层能成功地促进plys-CP的均匀生长。
还发现pLys-CP涂层对生物学相关的降解条件尤其敏感。表6总结了这些观察,而图7举例说明了SEM显微照相与相应的EDS图案,以显示降解对涂层的影响。
表6:酸和酶促降解条件下的涂层稳定性
降解溶液 | OCP涂层是否稳定? | 1)pLys-OCP涂层是否稳定? |
pH7.4缓冲的hanks平衡盐溶液(HBSS) | 是 | 2)是 |
pH7.4缓冲的MEM-含有10%胎牛血清的培养基 | 是 | 3)是 |
pH7.0柠檬酸盐缓冲液 | 是 | 4)否(晶种层稳定) |
pH6.0柠檬酸盐缓冲液 | 否 | 5)否 |
溶于HBSS中的0.2%胰蛋白酶,pH7.4 | 是 | 6)否(晶种层稳定) |
溶于HBSS中的0.2%链霉蛋白酶,pH7.4 | 是 | 7)否(晶种层稳定) |
测试持续24小时,发现OCP和pLys-CP涂层在pH7.4缓冲的培养基中都相对稳定。然而,当pH降低到7时,OCP涂层大部分稳定,Ca和P EDS强度稍微降低说明了很有限的溶解度。有结构的pLys-CP涂层明显地溶解,之后留下的好象是无机预先种晶层的残余物,通过如图7所示的结构证明。EDS分析显示了,Ca和P峰强度的大大降低,但是由于残余的无机晶种在该pH是稳定的,峰没有完全消失。在pH6稍微酸性的条件下,两种涂层都完全溶解。这些基质的显微照片显示空白,EDS扫描显示没有钙或磷酸盐的证据。用缓冲于pH7.4的胰蛋白酶和链霉蛋白酶的酶溶液处理涂层,显示纯无机涂层是稳定的,而pLys-CP涂层又是不稳定的,之后只留下无机的预先种晶层和Ca和P的小EDS峰。
掺入pLys到Ca-P层还引入用于连接有功能的生物分子与涂层的有价值的化学纽带。聚(L-赖氨酸)的带正电荷的游离胺侧链,可用作结合接头,通过与带负电荷分子的静电相互作用,或者通过形成赖氨酸游离胺与靶分子上的羧酸之间的酰胺链。这些结合方案通过附着半胱氨酸分子到pLys-CP涂层上来证实。结合于表面的半胱氨酸,通过图8的XPS光谱中于164eV处出现硫(1s)结合能量峰来显示。这些光谱的S∶N摩尔比率的比较,如图8所示,提供了不同样品中硫含量的半定量比较。这些数据首先说明了,半胱氨酸只与pLys-CP结合,而且当添加HBTU和DIEA到反应中时,存在显著更多的半胱氨酸,也许是由于增加了形成的酰胺键的键稳定性。当这些样品在饱和盐水溶液中进行清洗时,在HBTU和DIEA中处理的样品的S∶N比率保持统计学上不能区别。当用饱和盐水清洗时,在不存在HBTU和DIEA下与pLys-CP结合的半胱氨酸显然被置换,如通过S∶N比率的大大降低所表明。
上面的观察描述了一种钛表面上的新的磷酸钙-有机复合物涂层。XRD,RFTIR,XPS,TGA和元素分析共同地说明了,把pLys掺入到这种新的涂层中,产生了结晶性差的,磷酸八钙盐的钙缺乏的复合物。SEM检查揭示,pLys对OCP晶体形成的强烈的变形影响。得到的涂层由纯无机OCP涂层中形成的干净的,尖锐的晶体上所示的,不规则的,纳米级部件组成。可通过XRD和FTIR观察涂层结晶度的破坏,以及通过涂层的酶促的分解,来证明pLys掺入到矿物相中。如果聚合物仅仅涂层到小的,修饰的晶体的外表面上,那些晶体将很大程度上预期保持存在,如在无机对照中一样。然而,pLys-CP涂层中有机组分的酶促降解后,pLys-修饰的涂层崩解,之后只留下无机晶种。该结果强烈地说明了,pLys掺入到整个磷酸钙结构中。一个利用半胱氨酸的很基本的验证中说明了生物分子与pLys-CP中游离的胺纽带的共价酰胺偶联。自然地,整个pLys-CP涂层的赖氨酸聚合物中酰胺键的存在,混淆了半胱氨酸和pLys之间酰胺键的直接鉴定。然而,这种偶联可通过经验推断来揭示。当通过XPS进行检验时,半胱氨酸的硫含量使它成为结合于样品表面的半胱氨酸的化学上独特的标记。pLys-CP样品中XPS硫峰的选择性出现说明了,半胱氨酸与涂层的pLys组分之间相互作用。这种相互作用可采取两种形成:静电和共价。材料的静电结合包括半胱氨酸的带负电荷游离酸与pLys侧链上的带正电荷游离胺之间的吸引。在不存在HBTU和DIEA时,可能是这种静电引力将半胱氨酸与pLys-CP结合。用盐水清洗经历这种相互作用的样品,导致了氯离子取代半胱氨酸,和存在于样品上的硫量的明显减少。这种取代支持了结合的静电特性。相反,当在存在酰胺连接试剂HBTU和DIEA时引入半胱氨酸到游离胺,形成的酰胺键允许半胱氨酸存留在pLys-CP表面上。这种存留对酰胺偶联剂存在的依赖性,和结合对静电取代的不敏感性,强烈地说明了半胱氨酸共价地,酰胺偶联到pLys涂层。
尽管不希望受理论限制,pLys-CP涂层在氧化的钛表面上生长的机制包括几个连续的步骤。磷酸钙在钛表面上的成核现象被认为与在生理pH时装饰天然形成的二氧化钛(TiO2)表面的羟基离子相关。上面提供的XPS数据显示,在预先种晶阶段期间,单独Ca2+,而不是单独PO4 3-,适度地与氧化的钛表面结合。然而,同时引入Ca2+和PO4 3-,导致磷酸钙复合物的迅速形成,其1.55的Ca∶P比率与无定形的磷酸钙一致。这些复合物,可能通过钙离子与装饰氧化物表面的羟基之间最初的相互作用,在金属表面成核。随着时间的过去,这些聚集体成熟,重新组织以掺入附加的磷酸盐到它们的结构中。几个小时之后,这些聚集体长成如图6所示的矿物部件(OCP),其Ca∶P比率从1.55降低到1.33。然而,当聚(L-赖氨酸)在这些成核现象阶段期间存在时,磷酸钙不能成功地直接在金属表面成核,大概是由于pLys上带正电荷侧链干扰了钙-羟基相互作用。已经表明,带正电荷的pLys容易与钛的羟基化氧化物表面结合。则可以合理得出结论,pLys可阻断氧化物表面必要的成核羟基。这种现象解释了pLys-CP为什么不能直接生长于裸露的Ti表面。然而,当表面装饰有磷酸钙晶种时,存在很多可用的成核位点,而且pLys不能完全抑制矿物相的继续生长。显然这些磷酸钙晶种促进了pLys-CP涂层的均匀生长。虽然这种生长的机制不是显而易见的,可以设想新矿物生长作为被破坏的取向附生的部分。新矿物成核并长出表面上已存在的钙和磷酸盐,随着其掺入到涂层中,pLys扭曲了新形成的OCP晶体。
这种pLys-CP涂层的XPS Ca/P比率中显示的钙缺乏说明了,二价的钙离子被带正电荷的聚合物侧链通过电荷排斥或结晶位点阻碍而从新形成的晶体排除出去。而且,带正电荷的pLys侧链与带负电荷的磷酸盐离子之间可能存在一些优先的相互作用。该情况可有助于阐明pLys-CP的pH追踪中早期开始的矿物形成。在矿化的早期阶段,这种磷酸盐亲和力将产生局部富含磷酸盐的Ca-P聚集体,其能依次触发结晶作用早期开始。这种磷酸盐结合亲和力当然会破坏适当的晶体形成,并产生富含磷酸盐的,或缺乏钙的OCP晶体。plys与Ca-P矿物组分之间的两种相互作用中的任何一种均可负责pLys-CP涂层中所见的扭曲结构的形成。
本发明的pLys-CP涂层提供了许多优于其它磷酸钙涂层的优点,尤其是从临床的观点。涂层的溶液相生长使它的应用适于所有的表面类型,包括多孔表面,其中目前采纳的磷酸钙生长方法例如等离子喷涂可能是不可行的。pLys-CP涂层具有很大的表面积和部件大小与天然骨中发现的磷灰石结晶相当一致。这种纳米级的结构与高的表面积是另外的特性,其预期能促进最初的细胞粘附,扩展和增殖,这对形成稳定的组织植入界面很重要。作为这种作用的一个强调,聚(L-赖氨酸)已经成为大家公认的胞粘附促进剂,而且它在pLys-CP中的显著存在预期能更进一步地增强细胞粘附到植入物涂层。这种pLys组分不仅增加了作为细胞粘附剂的生物学活性,而且它还提供了供其它生物活性剂附着的化学功能性纽带。这种方法可容易地用于连接生物相关的肽,例如arg-gly-asp(RGD),治疗分子例如骨形态发生蛋白质或抗炎药物到植入物涂层。还有利的是,该涂层还对生物降解敏感,通过pH和酶介导的机制,这是用于天然骨中破骨细胞再吸收的两种主要机制。涂层溶解可加速新生骨形成并增加植入物界面的强度。已经对该涂层进行了工程改造以作为骨传导表面,其可容易地再循环,作为构件库用于新的生物生成矿化作用。
预先种晶层的用途是可用于促进其它有机修饰材料生长到表面上。本发明中,引入到矿物涂层的有机分子可对一些性质例如涂层形态和降解发挥作用。对降解的有机影响可用于对治疗分子的时间依赖性释放进行工程改造,该治疗分子掺入到矿物中或化学附着于pLys。可选择的有机组分还可用于改变形态学的影响或材料降解的速度。显然这种用于表面涂层的方法提供了许多广泛的和不同的潜在应用,其能大大影响矫形和牙齿植入物涂层。
实施例5
该实施例举例说明了肽亲水脂分子纳米纤维化学附着于钛基质上的pLys-OCP涂层:肽亲水脂分子纳米纤维与pLys-OCP是基于标准的酰胺偶联反应,用于预先装配的,交联的肽纳米纤维。具体而言,肽亲水脂分子的稀释溶液,其包含肽部分的C-末端附近的羧酸,和结构肽部分的至少2个半胱氨酸(参见图9和Hartgerink et al.,PNAS,vol 99,pp 5133-5138,2002和其中的参考文献,参考其中用于制备这种肽的方法和材料,它们以其全部内容引入这里作为参考),保持于弱还原剂(例如二硫苏糖醇(DTT))溶液中,在酸性条件下自组装以形成肽纳米纤维。这些纳米纤维可通过添加非破坏性的氧化剂,例如碘,形成稳定的分子间,纤维内二硫键,而进行交联。得到的这些纤维的悬浮液用水进行透析以除去所有的还原或氧化剂(例如DTT和碘)。该交联纤维的经透析悬浮液然后进行冻干,干燥纤维通过剧烈振荡和超声处理而重悬于可溶解肽的极性有机溶剂例如N,N-二甲基甲酰胺(DMF)或NMP中。纤维的共价交联使它们稳定于无水的环境中。
添加O-苯并三唑-N,N,N’,N’-四甲基脲-六氟-磷酸盐(HBTU)和二异丙基乙胺(DIEA)的溶液,到在N,N-二甲基甲酰胺(DMF)中的交联纳米纤维的悬浮液中,以提供对于纳米纤维上每个游离羧酸稍微小于大约1当量(0.95)的HBTU,和对于暴露于赖氨酸修饰的磷酸钙涂层钛表面上每个估计的游离胺大约6当量的DIEA。该溶液在暴露于涂层的钛表面之前先孵育几分钟。一旦引入,钙-磷酸盐涂层的钛在用水彻底清洗并在室温下干燥之前,在纳米纤维反应溶液中振荡至少1小时。图10A是扫描电子显微照片,其显示了附着于有结构的涂层表面的纤维束。图10B是更高放大倍数的图像,其展现了涂覆于磷酸钙涂层的构造结构的单根纤维层。
用前成骨细胞小鼠颅盖细胞进行的初步体外试验证明了pLys-CP涂层的生物相容性。钛箔样品如上所述用无机OCP以及聚(L-赖氨酸)修饰的磷酸钙进行涂层。基质在置于无菌的组织培养聚苯乙烯24-孔平板中之前,于115℃高压灭菌30分钟。
无限增殖的小鼠颅盖前成骨细胞(MC3T3-E1)在T-75烧瓶中培养于包含10%胎牛血清(Hyclone,Logan UT)和1%青霉素/链霉素的MEM-α中。培养基补充有30mM β-磷酸甘油和50μg/mL抗坏血酸。在大约90%汇合时,通过用0.25%胰蛋白酶,1mM乙二胺四乙酸(EDTA)处理,从T-烧瓶移出细胞。通过添加培养基终止胰蛋白酶处理,并通过离心沉淀细胞。细胞重悬于培养基中,并以5×103细胞/cm2的密度涂板到涂层的箔基质上。添加新鲜培养基到1mL/样品的总体积。细胞在孵育器中于37℃和5%CO2培养7天,每3天更换培养基。
样品以1天,4天和7天的间隔从它们的培养孔移出,并固定于溶于0.1M二甲胂酸钠缓冲液的2.5%戊二醛中。样品在于二甲胂酸钠缓冲液中彻底清洗之后,在溶于0.1M二甲胂酸钠缓冲液的1%四氧化锇中后固定1小时。固定的样品然后在梯度的乙醇溶液(50%,70%,80%,90%,95%,100%)中脱水,并通过乙醇-CO2交换进行临界点干燥。干燥的样品用3nm的金-钯进行溅射涂层,并通过扫描电子显微术进行检查。
体外研究的结果表明,培养于这些基质上的细胞保持活力,扩散并增殖,在7天的过程中在pLys-CP涂层上形成融合的细胞层。图11A显示了在1天之后涂层上铺展的单个细胞,而图11B显示了4天之后表面上铺展的多个细胞。图11C中,7天之后,增殖细胞形成的融合细胞层是可见的。该实验证明了,该材料是无毒的,并确实促进了细胞粘附和扩散,这种行为对于正常成骨细胞功能是关键的。
本发明实施方案的方法和材料,将非常适于用生骨的钙-磷酸盐涂层来对基于钛的矫形植入物材料进行涂层。如上所述的详细的实施例举例说明了,这种涂层材料组成是高度有结构的,而且可完全地涂覆暴露于反应溶液的表面。这种涂层对细胞附着,扩散,增殖,而且可能对成骨细胞分化,可具有有利的影响。这种影响可显著提高组织与植入物表面的整合。涂层内有机大分子的掺入,增加了可用于生物学功能性材料与涂层表面结合的化学官能度,所述材料包括肽微团,单个的肽序列,或其它的治疗分子例如药物或生长因子。材料的低结晶度和易受酶攻击的大分子的整合,可使材料成为用于缓慢释放这些大分子的有用的系统。类似地,该涂层的潜在可降解性,使它成为用于随后的新生骨基质的生物矿化的钙和磷酸盐材料的现成的来源。
虽然本发明参考其某些优选实施方案非常详细地进行了描述,但是其它的方案是可能的。例如,治疗大分子可直接掺入到矿物相中,代替聚胺。聚胺如聚(L-赖氨酸)的取代不必限于治疗分子,其它的氨基酸,可能包含游离酸(如谷氨酸或天冬氨酸),可掺入到矿物相中。这些分子将在材料表面呈现不同的化学官能团,而且可能甚至改变对无机材料进行修饰的方式。而且,钙-磷酸盐比率和浓度的变异,磷酸钙的不同相,例如羟磷灰石,磷酸三钙,透钙磷石或三斜磷钙石,可使用这里所述的方法涂层于基质表面,以产生具有不同化学,构造或材料特性的涂层。因此,附带的权利要求的实质和范围不应限于本说明书中包含的描述和优选的方案。
序列表
<110>Northwestern University
<120>纳米晶体表面涂层和肽亲水脂分子纳米纤维向其上附着的方法和材料
<130>8256
<140>US 10/777,030
<141>2004-02-11
<150>US 60/446,421
<151>2003-02-11
<150>US 60/495,965
<151>2003-08-18
<160>16
<170>PatentIn version 3.2
<210>1
<211>5
<212>PRT
<213>智人(Homo sapiens)
<400>1
Tyr Ile Gly Ser Arg
1 5
<210>2
<211>5
<212>PRT
<213>智人
<400>2
Ile Lys Val Ala Val
1 5
<210>3
<211>12
<212>PRT
<213>智人
<220>
<221>S
<222>(9)..(9)
<223>磷酸化丝氨酸
<220>
<221>S
<222>(11)..(11)
<223>磷酸化丝氨酸
<400>3
Cys Cys Cys Cys Gly Gly Gly Ser Ser Asp Ser Asp
1 5 10
<210>4
<211>11
<212>PRT
<213>智人
<220>
<221>S
<222>(8)..(8)
<223>磷酸化丝氨酸
<400>4
Cys Cys Cys Cys Gly Gly Gly Ser Arg Gly Asp
1 5 10
<210>5
<211>8
<212>PRT
<213>智人
<220>
<221>S
<222>(8)..(8)
<223>磷酸化丝氨酸
<400>5
Cys Cys Cys Cys Gly Gly Gly Ser
1 5
<210>6
<211>7
<212>PRT
<213>智人
<220>
<221>S
<222>(4)..(4)
<223>磷酸化丝氨酸
<400>6
Gly Gly Gly Ser Arg Gly Asp
1 5
<210>7
<211>11
<212>PRT
<213>智人
<220>
<221>S
<222>(8)..(8)
<223>磷酸化丝氨酸
<400>7
Ala Ala Ala Ala Gly Gly Gly Ser Arg Gly Glu
1 5 10
<210>8
<211>11
<212>PRT
<213>智人
<220>
<221>S
<222>(8)..(8)
<223>磷酸化丝氨酸
<400>8
Cys Cys Cys Cys Gly Gly Gly Ser Lys Gly Glu
1 5 10
<210>9
<211>11
<212>PRT
<213>智人
<220>
<221>S
<222>(8)..(8)
<223>磷酸化丝氨酸
<400>9
Ala Ala Ala Ala Gly Gly Gly Ser Lys Gly Glu
1 5 10
<210>10
<211>11
<212>PRT
<213>智人
<400>10
Cys Cys Cys Cys Gly Gly Gly Ser Arg Gly Asp
1 5 10
<210>11
<211>13
<212>PRT
<213>智人
<400>11
Cys Cys Cys Cys Gly Gly Gly Glu Ile Lys Val Ala Val
1 5 10
<210>12
<211>12
<212>PRT
<213>智人
<220>
<221>S
<222>(8)..(8)
<223>磷酸化丝氨酸
<400> 12
Cys Cys Cys Cys Gly Gly Gly Ser Arg Gly Asp Ser
1 5 10
<210>13
<211>13
<212>PRT
<213>智人
<400>13
Cys Cys Cys Cys Gly Gly Gly Lys Ile Lys Val Ala Val
1 5 10
<210>14
<211>4
<212>PRT
<213>智人
<400>14
Arg Gly Asp Ser
1
<210>15
<211>11
<212>PRT
<213>智人
<220>
<221>S
<222>(8)..(8)
<223>磷酸化丝氨酸
<400>15
Cys Cys Cys Cys Gly Gly Gly Ser Lys Gly Glu
1 5 10
<210>16
<211>11
<212>PRT
<213>智人
<220>
<221>S
<222>(8)..(8)
<223>磷酸化丝氨酸
<220>
<221>S
<222>(10)..(10)
<223>磷酸化丝氨酸
<400>16
Cys Cys Cys Cys Gly Gly Gly Ser Asp Ser Asp
1 5 10
Claims (20)
1.一种纳米结构的生物相容复合物,其包含生物相容的基质,位于这种所述的基质上的磷酸钙组分;和位于所述磷酸钙组分上的纳米结构的矿物相,所述的矿物相包含磷酸钙和聚(L-赖氨酸)。
2.权利要求1的复合物,其中所述矿物相的钙含量小于化学计量量,而且所述的聚(L-赖氨酸)掺入到所述的磷酸钙内。
3.权利要求1的复合物,其中所述的矿物相与酸和降解酶中至少之一反应。
4.权利要求1的复合物,还包含与所述聚(L-赖氨酸)偶联的肽亲水脂分子的纳米纤维,至少一种所述肽亲水脂分子包含羧基官能团。
5.权利要求4的复合物,其中至少一种所述肽亲水脂分子包含RGD序列。
6.权利要求4的复合物,还包含哺乳动物前成骨细胞细胞培养物。
7.权利要求1的复合物,其中所述基质包含钛。
8.一种促进胺修饰的磷酸钙组合物生长的方法,所述方法包括:提供生物相容的基质;使基本上单相的磷酸钙组分沉积于所述基质上;和引入所述基质到磷酸钙培养基中,所述培养基包含聚(L-赖氨酸)组分。
9.权利要求7的方法,其中所述基质接触包含反应性钙试剂和反应性磷酸盐试剂的培养基,所述接触进行的时间足以使所述磷酸钙组分沉积于所述基质上。
10.权利要求8的方法,其中所述磷酸钙培养基包含反应性钙试剂和反应性磷酸盐试剂中的至少一种。
11.权利要求10的方法,其中至少一种所述试剂包含所述聚(L-赖氨酸)组分。
12.权利要求8的方法,其中所述沉积包括形成结晶磷酸钙,而且所述引入将聚(L-赖氨酸)掺入到磷酸钙相中。
13.权利要求12的方法,其中所述引入诱导产生了包含磷酸钙和聚(L-赖氨酸)的纳米结构的组分。
14.一种使肽亲水脂分子与生物相容的基质偶联的方法,所述方法包括:提供生物相容的基质;使基本上单相的磷酸钙组分沉积于所述基质上;使矿物相沉积于所述磷酸钙相上,所述矿物相包含磷酸钙和掺入其中的聚(L-赖氨酸);和使所述聚(L-赖氨酸)与肽亲水脂分子接触,至少一种所述亲水脂分子包含羧基官能团。
15.权利要求14的方法,其中所述肽亲水脂分子包括纳米纤维组件。
16.权利要求14的方法,其中所述基质接触包含反应性钙试剂和反应性磷酸盐试剂的培养基,所述接触进行的时间足以使所述磷酸钙组分沉积于所述基质上。
17.权利要求14的方法,其中所述矿物相是钙试剂和磷酸盐试剂的反应产物,并在所述反应期间引入聚(L-赖氨酸)。
18.权利要求14的方法,还包括使所述矿物相与酸和降解酶中至少之一接触。
19.权利要求14的方法,其中至少一种所述肽亲水脂分子包含RGD序列。
20.权利要求14的方法,还包括在所述肽亲水脂分子上培养哺乳动物细胞。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US44642103P | 2003-02-11 | 2003-02-11 | |
US60/446,421 | 2003-02-11 | ||
US60/495,965 | 2003-08-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1761531A CN1761531A (zh) | 2006-04-19 |
CN100364672C true CN100364672C (zh) | 2008-01-30 |
Family
ID=36707304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004800074809A Expired - Fee Related CN100364672C (zh) | 2003-02-11 | 2004-02-11 | 纳米晶体表面涂层和肽亲水脂分子纳米纤维向其上附着的方法和材料 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN100364672C (zh) |
ZA (1) | ZA200506384B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102225964A (zh) | 2003-12-05 | 2011-10-26 | 西北大学 | 自组装的肽两亲物和用于生长因子传递的相关方法 |
AU2010236584A1 (en) | 2009-04-13 | 2011-11-10 | Northwestern University | Novel peptide-based scaffolds for cartilage regeneration and methods for their use |
KR20130032507A (ko) * | 2011-09-23 | 2013-04-02 | 포항공과대학교 산학협력단 | 유기 금속을 포함하는 자기조립성 고분자를 포함하는 전극 및 그 제조 방법 |
CN107074982B (zh) * | 2014-07-28 | 2019-11-05 | 阿诺梅拉有限公司 | 用于产生官能化纳米晶纤维素的方法和由此产生的官能化纳米晶纤维素 |
JP7523153B2 (ja) * | 2022-04-13 | 2024-07-26 | コリア ユニバーシティ リサーチ アンド ビジネス ファウンデーション | カルシウムイオンを含む自己組み立て複合体 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5733868A (en) * | 1996-04-16 | 1998-03-31 | Depuy Orthopaedics, Inc. | Poly(amino acid) adhesive tissue grafts |
US6051272A (en) * | 1996-03-15 | 2000-04-18 | The Board Of Trustees Of The University Of Illinois | Method for synthesizing organoapatites on to surgical metal alloys |
CN1338315A (zh) * | 2001-10-12 | 2002-03-06 | 清华大学 | 用于骨修复的纳米晶磷酸钙胶原基复合材料的制备方法 |
CN1381615A (zh) * | 2002-03-01 | 2002-11-27 | 西安交通大学 | 多孔纳米氧化钛基复相生物活性表层及其制备工艺 |
-
2004
- 2004-02-11 CN CNB2004800074809A patent/CN100364672C/zh not_active Expired - Fee Related
-
2005
- 2005-08-10 ZA ZA200506384A patent/ZA200506384B/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6051272A (en) * | 1996-03-15 | 2000-04-18 | The Board Of Trustees Of The University Of Illinois | Method for synthesizing organoapatites on to surgical metal alloys |
US5733868A (en) * | 1996-04-16 | 1998-03-31 | Depuy Orthopaedics, Inc. | Poly(amino acid) adhesive tissue grafts |
CN1338315A (zh) * | 2001-10-12 | 2002-03-06 | 清华大学 | 用于骨修复的纳米晶磷酸钙胶原基复合材料的制备方法 |
CN1381615A (zh) * | 2002-03-01 | 2002-11-27 | 西安交通大学 | 多孔纳米氧化钛基复相生物活性表层及其制备工艺 |
Also Published As
Publication number | Publication date |
---|---|
ZA200506384B (en) | 2006-04-26 |
CN1761531A (zh) | 2006-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7390526B2 (en) | Methods and materials for nanocrystalline surface coatings and attachment of peptide amphiphile nanofibers thereon | |
Stewart et al. | A review of biomimetic surface functionalization for bone-integrating orthopedic implants: Mechanisms, current approaches, and future directions | |
Hasan et al. | Surface functionalization of Ti6Al4V via self-assembled monolayers for improved protein adsorption and fibroblast adhesion | |
Balasundaram et al. | A perspective on nanophase materials for orthopedic implant applications | |
EP1385449B1 (de) | Biologisch funktionalisierte, metabolisch induktive implantatoberflächen | |
Balasundaram et al. | Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD | |
Miao et al. | Fabrication and evaluation of Zn containing fluoridated hydroxyapatite layer with Zn release ability | |
EP0983095B1 (de) | Peptid-beschichtete implantate und verfahren zu ihrer herstellung | |
US20060216494A1 (en) | Organic-inorganic nanocomposite coatings for implant materials and methods of preparation thereof | |
Choi et al. | Fabrication of gelatin/calcium phosphate composite nanofibrous membranes by biomimetic mineralization | |
JP2005506879A (ja) | 抗生リン酸カルシウムコーティング | |
CN101862473A (zh) | 用于骨连接的方法和装置 | |
Spoerke et al. | Synthesis of a poly (L-lysine)-calcium phosphate hybrid on titanium surfaces for enhanced bioactivity | |
Han et al. | In situ silk fibroin-mediated crystal formation of octacalcium phosphate and its application in bone repair | |
Nathanael et al. | In vitro and in vivo analysis of mineralized collagen-based sponges prepared by a plasma-and precursor-assisted biomimetic process | |
de Jonge et al. | In vitro responses to electrosprayed alkaline phosphatase/calcium phosphate composite coatings | |
Du et al. | Rapid biomimetic mineralization of hydroxyapatite-g-PDLLA hybrid microspheres | |
Harding et al. | Bioinspired deposition-conversion synthesis of tunable calcium phosphate coatings on polymeric hydrogels | |
CN100364672C (zh) | 纳米晶体表面涂层和肽亲水脂分子纳米纤维向其上附着的方法和材料 | |
Sammons | Biological responses to hydroxyapatite | |
Lee et al. | Effects of the surface characteristics of nano-crystalline and micro-particle calcium phosphate/chitosan composite films on the behavior of human mesenchymal stem cells in vitro | |
DE19755801A1 (de) | Mit die Zelladhäsion vermittelnden Peptiden beschichtete Implantate und Verfahren zu ihrer Herstellung | |
Verma | Design of polymer-biopolymer-hydroxyapatite biomaterials for bone tissue engineering: through molecular control of interfaces | |
Storrie | Cellular interactions with bio-inspired, nanoscale inorganic and organic materials for human repair | |
Ramirez Rodriguez | Mineralization of Recombinant Collagen-Like Peptide to Design Hybrid Scaffolds for Bone Tissue Regeneration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080130 |