CN100364108C - 含有有机半导体的夹心型场效应晶体管及制作方法 - Google Patents

含有有机半导体的夹心型场效应晶体管及制作方法 Download PDF

Info

Publication number
CN100364108C
CN100364108C CNB021294585A CN02129458A CN100364108C CN 100364108 C CN100364108 C CN 100364108C CN B021294585 A CNB021294585 A CN B021294585A CN 02129458 A CN02129458 A CN 02129458A CN 100364108 C CN100364108 C CN 100364108C
Authority
CN
China
Prior art keywords
clumps
trees
bamboo
mountain valley
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB021294585A
Other languages
English (en)
Other versions
CN1398004A (zh
Inventor
闫东航
王军
张坚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Flexible Display Technology Co ltd
Original Assignee
Changchun Institute of Applied Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Applied Chemistry of CAS filed Critical Changchun Institute of Applied Chemistry of CAS
Priority to CNB021294585A priority Critical patent/CN100364108C/zh
Publication of CN1398004A publication Critical patent/CN1398004A/zh
Priority to JP2003081384A priority patent/JP2004088066A/ja
Priority to EP03254458A priority patent/EP1394873A3/en
Priority to US10/645,642 priority patent/US6914258B2/en
Application granted granted Critical
Publication of CN100364108C publication Critical patent/CN100364108C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/80Constructional details
    • H10K10/82Electrodes
    • H10K10/84Ohmic electrodes, e.g. source or drain electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/20Organic diodes
    • H10K10/26Diodes comprising organic-organic junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/491Vertical transistors, e.g. vertical carbon nanotube field effect transistors [CNT-FETs]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/311Phthalocyanine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene

Landscapes

  • Thin Film Transistor (AREA)

Abstract

一种含有有机半导体的夹心型场效应晶体管,包括衬底(1),在衬底(1)上形成栅电极(2),栅绝缘层(3)形成在衬底(1)和栅电极(2)上,其特征在于有源层(4)形成在栅绝缘层(3)上,并露出部分绝缘层(3),源/漏电极(5)形成在部分有源层(4)和部分栅绝缘层(3)上,有源层(6)形成在露出的栅绝缘层(3)、有源层(4)、源电极和漏电极栅(5)上。本发明充分发挥有机半导体低温加工的优点,采用两种或两种以上材料共同构成有源半导体层,增强有源层与源和漏电极有效接触,降低器件的阈值电压,并且半导体和源漏电极能够与绝缘层牢固连接。

Description

含有有机半导体的夹心型场效应晶体管及制作方法
技术领域
本发明涉及场效应晶体管(FET)及其制作方法,特别涉及含有有机半导体的夹心源电极和漏电极结构的场效应晶体管及其制作方法(下称为夹心型场效应晶体管)。
背景技术
近年来,有关有机半导体材料的研究异常活跃。有机场效应晶体管的性能已经超过非晶硅薄膜晶体管(a-Si:H TFT)的水平。特别是一些有机小分子齐聚物(如Pentacene、Tetracene等)的室温载流子迁移率已经超过1(平方厘米每伏每秒)。因此,有机场效应晶体管在柔性集成电路和有源矩阵显示等方面具有实际应用的潜力。有机场效应晶体管一般采用底电极几何构型和顶电极几何构型两种器件结构来实现,国际专利WO 99/40631还公布了直立几何构型的器件结构,图1给出现有技术来实现场效应晶体管三种几何构型的例子,其中1是衬底,2是栅电极,3是绝缘层、4是有源层,5是源和漏电极。底电极构型器件和直立构型器件具有容易集成加工的优点,但是,后制备的有机半导体与源和漏电极的有效接触困难,使这两种构型器件的性能比顶电极构型器件性能低。由于有机半导体材料一般对在无机半导体器件的加工中常用的一些化学溶剂敏感,采用常规的无机半导体器件加工工艺来加工顶电极构型器件也因此受到限制。
现有有机半导体一般是同一分子材料作为场效应晶体管的有源层。美国专利US 5629530公布了电子给体和受体有机分子共同构成场效应晶体管的有源层,由于该类半导体是利用P型和N型掺杂导电的原理,所以其场效应晶体管器件的开关电流比和迁移率性质都很低。
发明内容
本发明的目的是提供一种场效应晶体管器件,使有源半导体层与源和漏电极形成有效接触,并且容易集成加工。
本发明的另一目的是提供一种制作场效应晶体管的方法。
为实现上述目的,根据本发明的一方面,场效应晶体管包括衬底1,在衬底1上形成栅电极2,栅绝缘层3形成在衬底1和栅电极2上,其特征在于有源层4形成在栅绝缘层3上,并露出部分绝缘层3,源/漏电级5形成在部分有源层4和部分栅绝缘层3上,有源层6形成在露出的栅绝缘层3、有源层4、源电极和漏电极栅5上。
根据本发明的另一方面,场效应晶体管的制作方法包括步骤:
a.在衬底上形成导电材料,并采用光刻方法形成栅电极;
b.在衬底和栅电极上形成绝缘层;
c.在绝缘层上气相沉积半导体层,并留有部分绝缘层裸露;
d.在裸露的绝缘层和半导体层上形成导电材料,并采用光刻方法或剥离方法形成源电极和漏电极;
e.在源电极、漏电极、裸露半导体层和裸露的绝缘层上气相沉积或旋涂半导体层。
本发明充分发挥有机半导体低温加工的优点,采用两种或两种以上材料共同构成有源半导体层,增强有源层和源漏电极的有效接触,降低器件的阈值电压,并且半导体和源漏电极能够与绝缘层紧密连接。
附图说明
图1a是现有技术的顶电极构型场效应晶体管实例。
图1b是现有技术的底电极构型场效应晶体管实例。
图1c是现有技术的立式构型场效应晶体管实例。
图2是本发明夹心型场效应晶体管的实施例结构。
图3是本发明夹心型场效应晶体管的实施过程。
图4是本发明夹心型场效应晶体管实施例1中有源层采用不完整酞箐铜层、酞箐铜与酞箐铜复合层、酞箐镍与酞箐镍复合层、酞箐铜与酞箐镍复合层的输出特性曲线。
图5a是本发明夹心型场效应晶体管实施例2中有源层采用酞箐铜与酞箐铜复合层和酞箐铜与酞箐钕复合层以及酞箐钕单层器件的输出特性曲线。
图5b是本发明夹心型场效应晶体管实施例2中有源层采用酞箐铜与酞箐铜复合层和酞箐铜与酞箐钕复合层的转移特性曲线。
图6是本发明酞箐铜与酞箐镍共晶的有机半导体作为有源层的顶电极构型器件的输出特性曲线。
具体实施方式
下面结合附图描述本发明。图2是本发明夹心几何结构的场效应晶体管的结构,将导电材料层设置于衬底1上构成栅电极2,绝缘材料设置于衬底和栅电极上构成栅绝缘层3,具有空洞的半导体材料设置于栅绝缘层上构成部分有源层4,导电材料设置于具有空洞的半导体层和栅绝缘层上构成源和漏电极5,另外部分的半导体材料6设置于栅绝缘层、半导体层、源电极和漏电极栅上与具有空洞的半导体构成有源层。
在本发明实施例中,一种有源半导体是采用现有P型半导体CuPc和NiPc的共晶和层状复合构成。在器件中该有源半导体与其中单一材料比较,开关电流比没有显著损失,而阈值电压有显著降低,载流子迁移率性质有显著提高。其原理是几种材料混合、共晶和层状复合构成的半导体与源和漏电极的表面接触比单一材料与源和漏电极的表面接触得到显著改善。
在本发明实施例中,一种有源半导体是采用现有P型半导体CuPc和电阻性材料NdPc2的层状复合构成。在器件中该有源半导体与其中单一材料比较,开关电流比和载流子迁移率有显著提高,阈值电压有显著降低。其原理是两种分子层状复合构成的半导体与源和漏电极的表面接触比CuPc与源和漏电极的表面接触好,同时NdPc2增强了CuPc的场效应传输性质。
酞箐铜与酞箐镍共晶场效应晶体管输出特性曲线也见图6,在VG为-30V时其饱和区的空穴载流子迁移率为0.04cm2/V.s,开关电流比为4×105,在VG为-30V时的阈值电压为-8V。
本发明的有机半导体,是由单一分子材料表现出半导体或导体性质的多种分子材料混合、共晶和层状复合构成,其场效应晶体管器件的性质(迁移率、阈值电压和开关电流比)与单一材料的器件比较得到显著改善。
下面通过实施例进一步描述本发明,实施例所用步骤显示在图3中。
实施例1:
实验所用酞箐铜(CuPc)、酞箐锌(ZnPc)、酞箐镍(NiPc)、酞箐钴(CoPc)、自由酞箐(H2Pc)、酞箐氧钛(TiOPc)、酞箐氧钒(VOPc)和并五苯(Pentacene)是商业产品,经过升华纯化后使用。
在7059玻璃衬底或柔性塑料衬底1上用射频磁控溅射方法镀上一层金属Ta膜,厚度约200纳米,并光刻成栅极形状2;在栅极上用直流磁控溅射方法反应溅射一层Ta2O5作为栅绝缘层3,厚度约100纳米;然后采用分子气相沉积方法制备酞箐铜的有源层4,厚度约20纳米;接着制作Au的源电极和漏电极5,厚度约50纳米;最后,分子气相沉积一层约30纳米有源层6,是酞箐铜、酞箐锌、酞箐镍、酞箐钴、自由酞箐、酞箐氧钛、酞箐氧钒和并五苯中的一种。
没有沉积有源层6的器件和酞箐铜的夹心型场效应晶体管在VG为-30V时的输出特性曲线见图4,没有表现出明显场效应现象。
酞箐铜和酞箐铜夹心型场效应晶体管在VG为-30V时的输出特性曲线见图4,其饱和区的空穴载流子迁移率为0.01cm2/V.s,阈值电压为-18V,开关电流比为4×104
酞箐镍与酞箐镍夹心型场效应晶体管在VG为-30V时输出特性曲线也见图4,其饱和区的空穴载流子迁移率为0.005cm2/V.s,开关电流比为4×104,在VG为-30V时的阈值电压为-16V。
酞箐铜与酞箐镍夹心型场效应晶体管在VG为-30V时输出特性曲线也见图4,其饱和区的空穴载流子迁移率为0.01cm2/V.s,开关电流比为4×105,在VG为-30V时的阈值电压为-13.5V。
酞箐铜与酞箐镍夹心场效应晶体管的性质与酞箐铜夹心型场效应晶体管和酞箐镍夹心型场效应晶体管的性质相比较,开关电流比没有明显变化,阈值电压明显降低。表1列出已有的有机半导体夹心型场效应晶体管的性质,其中迁移率和阈值电压是VG为-30V时的性质。
表1
半导体4   半导体6     空穴迁移率cm<sup>2</sup>/V.s   阈值电压-V
酞箐铜酞箐镍酞箐铜   酞箐铜(CuPc)酞箐镍(NiPc)酞箐镍(NiPc)     0.010.0050.01     181613.5
酞箐铜/酞箐酞箐铜酞箐铜酞箐铜酞箐铜酞箐铜酞箐铜   镍(共晶)酞箐锌(ZnPc)酞箐钴(CoPc)自由酞箐(H<sub>2</sub>Pc)酞箐氧钛(TiOPc)酞箐氧钒(VOPc)并五苯(Pentacene)     0.040.0060.0030.0070.0090.010.01     85111717158
实施例2:
实验所用双酞箐金属(La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Y,Zr,Hf,Sn)、自由萘酞箐、萘酞箐钴、萘酞箐铜、萘酞箐锌和萘酞箐镍是采用文献[(1)J.Jiang,R.C.W.Liu,T.C.W.Mack,T.D.W.Chan,D.K.P.Ng,Polyhedron,1997,16,515;(2)W.Liu,J.Jiang,D.Du,D.P.Arnold,Aust.J.Chem.,2000,53,131;(3)R.Polley,M.Hanack,J.Org.Chem.,1995,60,8278;(4)M.hanack,R.Polley,S.Knecht,U.Schlick,Inorg.Chem.,1995,34,3621;(5)M.L.Kaplan,A.J.Lovinger,W.D.Reents,jun,P.H.Schmidt,Mol.Cryst.Liq.Cryst.,1984,112,345.]方法合成,并升华纯化后使用。
在7059玻璃衬底或柔性塑料衬底1上用射频磁控溅射方法镀上一层金属Ta膜,厚度约200纳米,并光刻成栅极形状2;在栅极上用直流磁控溅射方法反应溅射一层Ta2O5作为栅绝缘层3,厚度约100纳米;然后采用分子气相沉积方法制备酞箐铜的有源层4,厚度约20纳米;接着采用光刻技术制作Au的源电极和漏电极5,厚度约50纳米;最后,分子气相沉积一层约30纳米有源层6,是双酞箐金属(La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Y,Zr,Hf,Sn)、自由萘酞箐、萘酞箐钴、萘酞箐铜、萘酞箐锌和萘酞箐镍中的一种。
酞箐钕顶电极场效应晶体管和酞箐铜与酞箐钕夹心型场效应晶体管转移特性曲线见图5,酞箐钕顶电极场效应晶体管没有表现出场效应现象,夹心型场效应晶体管表现出稳定的场效应现象,其VG为-30V时饱和区的空穴载流子迁移率为0.5cm2/V.s,VG为-30V时的阈值电压为-12V。表2列出含新型有机半导体的夹心型场效应晶体管性质,其中迁移率是VG为-30V时的性质。
表2
半导体4     半导体6   空穴迁移率cm<sup>2</sup>/V.s
酞箐铜酞箐铜酞箐铜酞箐铜酞箐铜酞箐铜酞箐铜酞箐铜酞箐铜酞箐铜酞箐铜酞箐铜酞箐铜酞箐铜酞箐铜酞箐铜酞箐铜酞箐铜酞箐铜酞箐铜酞箐铜酞箐铜酞箐铜   双酞箐镧(LaPc<sub>2</sub>)双酞箐铈(CePc<sub>2</sub>)双酞箐镨(PrPc<sub>2</sub>)双酞箐钕(NdPc<sub>2</sub>)双酞箐钐(SmPc<sub>2</sub>)双酞箐铕(EuPc<sub>2</sub>)双酞箐钆(GdPc<sub>2</sub>)双酞箐铽(TbPc<sub>2</sub>)双酞箐镝(DyPc<sub>2</sub>)双酞箐钬(HoPc<sub>2</sub>)双酞箐铒(ErPc<sub>2</sub>)双酞箐铥(TmPc<sub>2</sub>)双酞箐镱(YbPc<sub>2</sub>)双酞箐镥(LuPc<sub>2</sub>)双酞箐钇(YPc<sub>2</sub>)双酞箐锆(ZrPc<sub>2</sub>)双酞箐铪(HfPc<sub>2</sub>)双酞箐锡(SnPc<sub>2</sub>)自由萘酞箐(H<sub>2</sub>Nc)萘酞箐钴(CoNc)萘酞箐铜(CuNc)萘酞箐锌(ZnNc)萘酞箐镍(NiNc)   0.020.0170.0250.0150.010.030.0250.0090.020.010.050.030.030.070.050.060.020.0070.010.080.020.050.02
实施例3:
实验所用氟代酞箐铜和氟代酞箐锌是商业产品,经过升华纯化后使用。
在7059玻璃衬底或柔性塑料衬底1上用射频磁控溅射方法镀上一层金属Ta膜,厚度约200纳米,并光刻成栅极形状2;在栅极上用直流磁控溅射方法反应溅射一层Ta2O5作为栅绝缘层3,厚度约100纳米;然后采用分子气相沉积方法制备氟代酞箐铜的有源层4,厚度约20纳米;接着采用光刻技术制作Au的源电极和漏电极5,厚度约50纳米;最后,分子气相沉积一层约30纳米氟代酞箐铜的有源层6。夹心场效应器件的饱和区的电子迁移率为0.02cm2/V.s。氟代酞箐铜与氟代酞箐锌夹心型场效应晶体管的饱和区的电子迁移率为0.016cm2/V.s。
本发明不限于上述各个实施例。一般来说,本专利所公开的夹心型场效应晶体管可以加工形成二维和三维的集成器件中的元件。这些集成器件可能应用在柔性集成电路、有源矩阵显示等方面。使用基于本发明的场效应晶体管元件可以低温加工。加工本发明的双极型场效应晶体管不限于传统的光刻工艺,也可以采用打印、印刷等加工方法。

Claims (12)

1.一种含有有机半导体的夹心型场效应晶体管,包括衬底(1),在衬底(1)上形成栅电极(2),栅绝缘层(3)形成在衬底(1)和栅电极(2)上,其特征在于有源层(4)形成在栅绝缘层(3)上,并露出部分绝缘层(3),源/漏电极(5)形成在部分栅绝缘层上的有源层(4)和部分栅绝缘层(3)上,有源层(6)形成在露出的栅绝缘层(3)、栅绝缘层上的有源层(4)、源电极和漏电极栅(5)上。
2.按权利要求1所述的场效应晶体管,其特征在于所述的栅绝缘层上的有源层(4)是具有空洞的半导体材料。
3.按权利要求2所述场效应晶体管,其特征在于所述的半导体材料是有机半导体材料或有机/无机杂化材料。
4.按权利要求3所述场效应晶体管,其特征在于所述的有机半导体材料是两种或两种以上分子构成的混合、共晶或层状复合的固态材料。
5.按权利要求4所述的场效应晶体管,其特征在于所述的有机半导体材料的载流子迁移率在10-3cm2/Vs以上。
6.按权利要求1所述的场效应晶体管,其特征在于所述的栅绝缘层上的有源层(4)和有源层(6)的半导体材料是相同的。
7.按权利要求1所述的场效应晶体管,其特征在于所述的栅绝缘层上的有源层(4)和有源层(6)的半导体材料是不相同的。
8.按权利要求1所述的场效应晶体管,其特征在于所述的栅绝缘层上的有源层(4)和有源层(6)的半导体材料是共晶的。
9.按权利要求1所述的场效应晶体管,其特征在于所述的栅绝缘层上的有源层(4)和有源层(6)分别由CuPc、NiPc、ZnPc、H2Pc、TiOPc、VOPc、F16CuPc、F16ZnPc和Pentacene之一或至少两种材料构成。
10.按权利要求1所述的场效应晶体管,其特征在于,栅绝缘层上的有源层(4)是CuPc、NiPc、ZnPc、H2Pc、F16CuPc、F16ZnPc和Pentacene其中的一种或至少两种材料构成,有源层(6)是双酞箐金属、H2Nc、CoNc、CuNc、ZnNc和NiNc中的一种或至少两种材料构成。
11.按权利要求10所述的场效应晶体管,其特征在于,双酞箐金属为La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Y、Zr、Hf或Sn。
12.一种含有有机半导体的夹心型场效应晶体管的制作方法,包括步骤:
a.在衬底上形成导电材料,并采用光刻方法形成栅电极;
b.在衬底和栅电极上形成绝缘层;
c.在绝缘层上气相沉积半导体层,并留有部分绝缘层裸露;
d.在裸露的绝缘层和半导体层上形成导电材料,并采用光刻方法或剥离方法形成源电极和漏电极;
e.在源电极、漏电极、裸露半导体层和裸露的绝缘层上气相沉积或旋涂半导体层。
CNB021294585A 2002-08-28 2002-08-28 含有有机半导体的夹心型场效应晶体管及制作方法 Expired - Lifetime CN100364108C (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CNB021294585A CN100364108C (zh) 2002-08-28 2002-08-28 含有有机半导体的夹心型场效应晶体管及制作方法
JP2003081384A JP2004088066A (ja) 2002-08-28 2003-03-24 有機半導体を含むサンドイッチ型電界効果トランジスタ及びその製造方法
EP03254458A EP1394873A3 (en) 2002-08-28 2003-07-16 The field effect transistor in sandwich configuration having organic semiconductors and manufacturing process thereof
US10/645,642 US6914258B2 (en) 2002-08-28 2003-08-21 Field effect transistor in sandwich configuration having organic semiconductors and manufacturing process thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB021294585A CN100364108C (zh) 2002-08-28 2002-08-28 含有有机半导体的夹心型场效应晶体管及制作方法

Publications (2)

Publication Number Publication Date
CN1398004A CN1398004A (zh) 2003-02-19
CN100364108C true CN100364108C (zh) 2008-01-23

Family

ID=4746256

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021294585A Expired - Lifetime CN100364108C (zh) 2002-08-28 2002-08-28 含有有机半导体的夹心型场效应晶体管及制作方法

Country Status (4)

Country Link
US (1) US6914258B2 (zh)
EP (1) EP1394873A3 (zh)
JP (1) JP2004088066A (zh)
CN (1) CN100364108C (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2404082A (en) * 2003-07-12 2005-01-19 Hewlett Packard Development Co Semiconductor device with metallic electrodes and method of forming a device
JP4194436B2 (ja) * 2003-07-14 2008-12-10 キヤノン株式会社 電界効果型有機トランジスタ
EP1580822A1 (de) * 2004-03-24 2005-09-28 Samsung SDI Co., Ltd. Organischer Feldeffekttransistor und Verfahren zu dessen Herstellung
KR20060080446A (ko) * 2005-01-05 2006-07-10 삼성전자주식회사 수직형 유기 박막 트랜지스터 및 유기 발광 트랜지스터
CN100466125C (zh) * 2005-04-18 2009-03-04 中国科学院长春应用化学研究所 含有有机异质结的电接触材料及其器件
GB2430546A (en) * 2005-09-20 2007-03-28 Seiko Epson Corp A semiconductor film comprising domains of an organic semiconductor and a method of its fabrication
CN100456517C (zh) 2007-01-23 2009-01-28 中国科学院长春应用化学研究所 轴向取代酞菁化合物用于制备有机薄膜晶体管的应用
JP5303955B2 (ja) * 2008-02-19 2013-10-02 ソニー株式会社 半導体装置および有機半導体薄膜
KR100982952B1 (ko) 2008-03-25 2010-09-17 홍익대학교부설과학기술연구소 단채널 효과를 방지하는 유기 박막 트랜지스터, 그것의제조방법 및 이를 포함하는 박막 트랜지스터 어레이 기판
CN103094478B (zh) * 2013-01-21 2015-01-21 中国科学技术大学 基于硅-分子复合体系单分子负微分电阻器件及制备方法
CN110218978B (zh) * 2019-07-22 2021-05-11 绍兴文理学院 一种基于铜箔基底的有机单分子层薄膜制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2627629A1 (fr) * 1988-02-19 1989-08-25 Madru Roger Transistor a effet de champ utilisant des metallophtalocyanines dopees comme materiau actif
US4987430A (en) * 1987-11-09 1991-01-22 Christian Clarisse Organic semiconductor device based on phthalocyanine
US5629530A (en) * 1994-05-16 1997-05-13 U.S. Phillips Corporation Semiconductor device having an organic semiconductor material
CN1293825A (zh) * 1998-01-16 2001-05-02 薄膜电子有限公司 场效应晶体管
CN1312958A (zh) * 1998-06-19 2001-09-12 薄膜电子有限公司 集成无机/有机互补薄膜晶体管电路及其制造方法
US20020066900A1 (en) * 2000-12-05 2002-06-06 International Business Machines Corporation Thin film transistors with self-aligned transparent pixel electrode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987430A (en) * 1987-11-09 1991-01-22 Christian Clarisse Organic semiconductor device based on phthalocyanine
FR2627629A1 (fr) * 1988-02-19 1989-08-25 Madru Roger Transistor a effet de champ utilisant des metallophtalocyanines dopees comme materiau actif
US5629530A (en) * 1994-05-16 1997-05-13 U.S. Phillips Corporation Semiconductor device having an organic semiconductor material
CN1293825A (zh) * 1998-01-16 2001-05-02 薄膜电子有限公司 场效应晶体管
CN1312958A (zh) * 1998-06-19 2001-09-12 薄膜电子有限公司 集成无机/有机互补薄膜晶体管电路及其制造方法
US20020066900A1 (en) * 2000-12-05 2002-06-06 International Business Machines Corporation Thin film transistors with self-aligned transparent pixel electrode

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
High Performance Organic FET withDouble-SemiconductorLayers. M. Yoshida,et al.Synthetic Metals,Vol.137 No.1-3. 2002 *
Stacked Pentacene Layer Organic Thin-Film TransistorswithImproved Characteristics. Y. -Y. Lin et al.IEEE Electron Device Letters,Vol.18 No.12. 1997 *
The First Field Effect Transistor Based on anIntrinsicMolecular Semiconductor. M.Madru, et al.Chemical Physics Letters,Vol.142 No.1,2. 1987 *

Also Published As

Publication number Publication date
CN1398004A (zh) 2003-02-19
JP2004088066A (ja) 2004-03-18
EP1394873A3 (en) 2006-10-04
US6914258B2 (en) 2005-07-05
US20040155239A1 (en) 2004-08-12
EP1394873A2 (en) 2004-03-03

Similar Documents

Publication Publication Date Title
Lakshminarayana et al. Modification of acenes for n-channel OFET materials
Liu et al. Hydrothermally treated SnO2 as the electron transport layer in high‐efficiency flexible perovskite solar cells with a certificated efficiency of 17.3%
KR101379616B1 (ko) 계면특성이 향상된 유기박막트랜지스터 및 그의 제조방법
KR100647660B1 (ko) 박막 트랜지스터 및 이를 채용한 평판표시장치
CN100364108C (zh) 含有有机半导体的夹心型场效应晶体管及制作方法
EP1786050A1 (de) Dotiertes organisches Halbleitermaterial
KR100805700B1 (ko) 유기 전자 소자 및 그 제조방법
CN101884108A (zh) 有机半导体装置
Lei et al. Flexible perovskite solar modules with functional layers fully vacuum deposited
US20070196643A1 (en) Conductive layer and organic electroluminescent device including the same
JP2005286329A (ja) 有機電界効果トランジスタ、それを具備する平板ディスプレイ装置、及び有機電界効果トランジスタの製造方法
CN101308904A (zh) 一种有机薄膜晶体管及其制备方法
CN109928903A (zh) 量子点表面配体、量子点薄膜及其制备方法和应用
JP4938974B2 (ja) 有機薄膜トランジスター
CN1437272A (zh) 含有保护层的有机半导体场效应晶体管及制作方法
CN108417736A (zh) 一种过渡金属氧化物作为空穴注入层的制备方法
Oh et al. N-type organic field-effect transistor using polymeric blend gate insulator with controlled surface properties
CN107644936B (zh) 一种有机薄膜晶体管及其制备方法
CN102332534A (zh) 一种n型有机薄膜晶体管及其制备方法
CN109427939A (zh) 一种qled器件及其制备方法
Kim et al. Effects of double heat treatment of NiO hole transport layer on the performance of QLEDs
CN101257093B (zh) 一种有机薄膜晶体管及其制备方法
TWI450429B (zh) 有機薄膜電晶體及其製造方法
Gao Interface electronic structure and organic photovoltaic devices
Zhang et al. A step-wise bilayered hole-injection layer composed of vanadium oxide and PEDOT: PSS for simultaneously enhancing efficiency and stability of organic light-emitting diodes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20180803

Address after: 130000 Chuanyu Jingyue Development Zone, Changchun City, Jilin Province

Patentee after: CHANGCHUN FLEXIBLE DISPLAY TECHNOLOGY Co.,Ltd.

Address before: 130022 No. 159 Renmin Street, Jilin, Changchun

Patentee before: CHANGCHUN INSTITUTE OF APPLIED CHEMISTRY CHINESE ACADEMY OF SCIENCES

TR01 Transfer of patent right
CX01 Expiry of patent term

Granted publication date: 20080123

CX01 Expiry of patent term