CN100343647C - 涡轮叶片蠕变伸长应变测量装置 - Google Patents

涡轮叶片蠕变伸长应变测量装置 Download PDF

Info

Publication number
CN100343647C
CN100343647C CNB2004100024341A CN200410002434A CN100343647C CN 100343647 C CN100343647 C CN 100343647C CN B2004100024341 A CNB2004100024341 A CN B2004100024341A CN 200410002434 A CN200410002434 A CN 200410002434A CN 100343647 C CN100343647 C CN 100343647C
Authority
CN
China
Prior art keywords
turbo blade
measurement mechanism
turbine blade
stiff end
elongation strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB2004100024341A
Other languages
English (en)
Other versions
CN1517691A (zh
Inventor
弗里德里希·泽希廷
查尔斯·埃利斯
富田康意
德永有吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/635,494 external-priority patent/US6983659B2/en
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Publication of CN1517691A publication Critical patent/CN1517691A/zh
Application granted granted Critical
Publication of CN100343647C publication Critical patent/CN100343647C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
    • G01B5/205Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures of turbine blades or propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/003Arrangements for testing or measuring
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/30Measuring arrangements characterised by the use of mechanical techniques for measuring the deformation in a solid, e.g. mechanical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/11Purpose of the control system to prolong engine life

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本发明的目的是提供一种用于定量评估涡轮叶片的疲劳寿命的涡轮叶片疲劳寿命评估方法。根据本发明,一种测量装置,包括:第一杆,具有连接到涡轮叶片的内罩板的第一固定端和形成第一凹部的第一相对端;第二杆,具有连接到涡轮叶片的外罩板的第二固定端和形成第二凹部并且具有轴的第二相对端,第一相对端设置在第二凹部中,并且所述轴设置在第一凹部中;以及测量设备,用于测量第一固定端和第二固定端之间的距离。

Description

涡轮叶片蠕变伸长应变测量装置
技术领域
本发明涉及涡轮叶片疲劳寿命的评估方法,涡轮叶片蠕变伸长应变测量装置和涡轮叶片。
背景技术
燃气轮机包括压缩机、燃烧室、和涡轮(未图示)。根据这种燃气轮机,在压缩机中压缩的空气提供给燃烧室,该压缩空气与另外供给的燃料混合并燃烧。在燃烧中产生的燃烧气体提供给涡轮从而在涡轮中产生旋转驱动力。
图6表示上述涡轮的内部结构的示例。如图6所示,在涡轮中,成圆形设置在未图示的转子上的多个涡轮叶片1,与设置在转子周围的定子上的多个涡轮固定叶片2间隔设置在转子的旋转轴线方向(图6中的水平方向)上。并且形成了用于通过燃烧气体的燃烧气体流动通道3。由此,从燃烧室进入燃烧气体流动通道3的燃烧气体使涡轮叶片1旋转并且将旋转力作用于转子。该旋转力使与转子连接的发电机(未图示)旋转从而发电。
然而,在上述的燃气轮机中,还没有开发出用于定量评估和处理涡轮叶片1的疲劳寿命的方法;因此,如果蠕变缺陷突然发生的时候,整个燃气轮机会受到破坏。
发明内容
本发明是鉴于上述情况提出的。本发明的目的是提供一种用于定量评估涡轮叶片的疲劳寿命的涡轮叶片疲劳寿命评估方法,提供一种适用于上述涡轮叶片疲劳寿命评估方法中的涡轮叶片蠕变伸长应变测量装置,和提供一种将上述涡轮叶片疲劳寿命评估方法应用其中的涡轮叶片。
为了解决上述问题,本发明采用以下结构。
即,本发明第一方面的特征是,在涡轮叶片疲劳寿命的评估方法中,如果涡轮叶片纵向的蠕变伸长应变小于初始长度的0.5%,则确定涡轮叶片在其疲劳寿命之内;如果涡轮叶片纵向的蠕变伸长应变为初始长度的0.5%或更大,则确定涡轮叶片已经超出其疲劳寿命。
根据本发明的第一方面,在涡轮叶片疲劳寿命的评估方法中,通过采用充分低于2%,例如为0.5%的蠕变伸长应变作为评估疲劳寿命的参考,可以迅速确定涡轮叶片的疲劳寿命,使得不会发生蠕变缺陷,与此相对,在现有的涡轮叶片中,当由于强度的突然降低而蠕变伸长应变超出2%时会发生断裂。因此,本发明提供了一种测量装置,包括:第一杆,具有连接到涡轮叶片的内罩板的第一固定端和形成第一凹部的第一相对端;第二杆,具有连接到涡轮叶片的外罩板的第二固定端和形成第二凹部并且具有轴的第二相对端,第一相对端设置在第二凹部中,并且所述轴设置在第一凹部中;以及测量设备,用于测量第一固定端和第二固定端之间的距离。
根据本发明的第二方面,一种涡轮叶片蠕变伸长应变测量装置的特征是包括:第一固定端,连接在涡轮叶片的一端;第二固定端,连接在涡轮叶片的另一端;和测量装置,用于测量第一固定端和第二固定端之间的间隔尺寸和基于预定基准尺寸的间隔尺寸变化。
根据本发明第二方面的涡轮叶片蠕变伸长应变测量装置,在将第一固定端连接到涡轮叶片的一端和将第二固定端连接到涡轮叶片另一端的情况下,蠕变伸长应变没有发生的情况下预先测量初始状态的涡轮叶片的长度。此外,在涡轮叶片运转了预定时期后也测量涡轮叶片的长度,并获得在这种运转后的涡轮叶片的长度和上述初始状态的长度之间的差别,从而可以精确获得运转后的蠕变伸长应变的值。
根据本发明第二方面的涡轮叶片蠕变伸长应变测量装置的特征是,测量装置设置在连接部分,该测量装置连接第一固定端和第二固定端迫使第一固定端和第二固定端靠近,并且测量连接部分的伸长尺寸,从而测量涡轮叶片的蠕变伸长应变。
采用根据本发明第三方面的涡轮叶片蠕变伸长应变测量装置,仅通过将第一固定端连接到涡轮叶片的一端,并将第二固定端连接到涡轮叶片的另一端,连接部分自动调整第一固定端和第二固定端之间的间隔使得成为最短距离。
根据本发明第四方面的涡轮叶片的特征是,涡轮叶片用于燃气轮机,且在其上面标明使用前的纵向初始尺寸。
采用根据本发明第四方面的涡轮叶片,不需花费时间查阅如设计图等记录就可以获得多个涡轮叶片中任一个的纵向长度。
采用根据本发明第一方面的涡轮叶片疲劳寿命的评估方法,可以定量评估涡轮叶片的疲劳寿命。其结果,可以防止在涡轮叶片中突然发生蠕变缺陷而导致整个燃气轮机严重破坏的问题。
采用根据本发明第二方面的涡轮叶片蠕变伸长应变测量装置,通过在运转前使用涡轮叶片蠕变伸长应变测量装置来测量涡轮叶片的长度伸长,可以确定蠕变伸长应变。因此,可以根据蠕变伸长应变的值来定量估计在达到疲劳寿命前还剩余多少小时。
采用根据本发明第三方面的涡轮叶片蠕变伸长应变测量装置,因为连接部分自动调整第一固定端和第二固定端之间的间隔尺寸使其成为最小量,可以防止由于不同操作员的操作而引起的测量结果偏差。
采用根据本发明第四方面的涡轮叶片,因为不需花费时间查阅如设计图等记录就可以了解任何期望涡轮叶片的长度,所以能显著降低为了进行涡轮叶片疲劳寿命估计而测量蠕变伸长应变的时间量。此外,可以预先防止由于例如错误辨识产品号码的疏忽而发生的错误。
附图说明
图1是本发明一个实施例的涡轮叶片蠕变伸长应变测量装置的正视图。
图2是沿图1中箭头A-A所示方向看的本发明一个实施例的涡轮叶片蠕变伸长应变测量装置的侧视图。
图3是涡轮叶片蠕变伸长应变测量装置的局部放大图。
图4是本发明一个变形实施例的涡轮叶片蠕变伸长应变测量装置的正视图。
图5是本发明另一个变形实施例的涡轮叶片蠕变伸长应变测量装置的正视图。
图6是用于说明燃气轮机内部结构的视图。
具体实施方式
参照以下附图对利用本发明涡轮叶片蠕变伸长应变测量装置的涡轮叶片疲劳寿命评估方法的一个实施例,和利用上述方法进行评估的涡轮叶片进行说明。此外,这里所阐述的特定的结构和功能说明仅为代表性的,并不限定本发明的范围。
本发明的涡轮叶片在图中没有表示,是在包括压缩机、燃烧室和涡轮的燃气轮机中构成涡轮一部分的构件。即,转子沿轴向支撑从而可以在涡轮中旋转,并且多个涡轮叶片固定在转子周围。此外,涡轮使在燃烧室产生的燃烧气体进入燃烧气体流动通道以膨胀。此外,通过吹动燃烧气体撞击每一个涡轮叶片而使转子旋转,燃烧气体的热能转化为动力转动能以产生驱动力。
图1表示根据本实施例的涡轮叶片10。涡轮叶片10包括安装在转子上的内罩板10a;外罩板10b,在内罩板10a和外罩板10b之间的空间形成燃烧气体流动通道;和在内罩板10a和外罩板10b之间形成的叶片部分10c。参考符号CL表示在涡轮叶片10宽度方向的中央的中央轴线。
如图1所示,在涡轮叶片10的内罩板10a的表面上,标明在运转前的初始状态下纵向长度L。纵向长度L是位于中央轴线CL处的内罩板10a的外表面与外罩板10b的内表面之间的直线尺寸。纵向长度L是在生产后的蠕变伸长应变为0的情况下测量的(例如,图1中,标明“453.025”表示“L=453.025mm”)。
在图1和2中,参考数字20表示用于测量涡轮叶片10的蠕变伸长应变的涡轮叶片蠕变伸长应变测量装置。涡轮叶片蠕变伸长应变测量装置20包括第一固定端21,连接在涡轮叶片10的内罩板10a(一端)上;第二固定端22,连接在外罩板10b(另一端)上;连接部分23,连接第一固定端21和第二固定端22,并且在该方向上施加力,使得第一固定端21和第二固定端22更靠近;和度盘式指示器24(测量装置),用于测量第一固定端21和第二固定端22之间的间隔尺寸L。
第一固定端21是从侧面看接近“L”形状的金属构件,并且具有适合内罩板10a的下游端部分形状的接触面。
第二固定端22是从侧面看接近“L”形状的金属构件,并且具有适合外罩板10b的下游端部分形状的接触面。参考数字22a是调整螺栓,用于在水平方向调整关于第二固定端22位置的涡轮叶片蠕变伸长应变测量装置20的轴线20a。必要时通过对调整螺栓22a的位置进行调整,可以调整涡轮叶片蠕变伸长应变测量装置20的轴线20a,使得涡轮叶片10的中央线CL与涡轮叶片蠕变伸长应变测量装置20的轴线20a平行。因此,可以处理涡轮叶片10的各种形状。
连接部分23包括第一杆31,该第一杆31具有固定在涡轮叶片一端上的第一固定端21;和第二杆32,该第二杆32与在相同轴上的第一杆31的另一端连接,并且具有固定在涡轮叶片另一端上的第二固定端22。
如图3所示,在第一杆31对应第二杆32的连接部分,在轴线20a的方向形成深的凹部31a。在该凹部31a中包含一对直轴套31b和31c,和轴环31d。直轴套31b和31c是圆柱形构件,彼此以预定的间隔固定在凹部31a中。轴环31d也是圆柱形构件,设置在直轴套31b下面。
在第二杆32对应第一杆31的连接部分,在轴线20a的方向形成深的凹部32a。在该凹部32a中,第一杆31的连接部分安装在相同的轴以便滑动,因此,连接部分23的整个长度是可以延伸的。
此外,在第二杆32的连接部分,安装插入凹部31a中的轴32b。轴32b通过直轴套31b、31c和轴环31d插入,从而导向第二杆32在轴线20a的方向上朝向第一杆31滑动。
轴32b的顶端插入压缩弹簧32c作为施力构件。压缩弹簧32c的一端接触轴环31d的底端。压缩弹簧32c的另一端接触在轴32b末端形成的弹簧制动器32b1。因此,压缩弹簧32c迫使第一杆31和第二杆32更加接近。
如图3所示,度盘式指示器24包括安装在第二杆32上的度盘式指示器单元24a;安装在第一杆31上的接触部分24b;和与接触部分24b接触的度盘式指示器单元24a的指针24a1。
通过当第一杆31和第二杆32之间的间隔增加和减小时,由于与接触部分24b的接触而导致的指针24a1的延伸,度盘式指示器单元24a可以精确测量第一杆31和第二杆32之间的间隔尺寸L。对于度盘式指示器单元24a,不仅可以使用测定作为绝对值的间隔尺寸L的测量表,也可以使用测量与预定的基准尺寸(例如,初始状态时的间隔尺寸L)相关的尺寸变化(差别)的测量表。
下面对涡轮叶片疲劳寿命的评估方法进行说明,该方法利用具有上述结构的涡轮叶片蠕变伸长应变测量装置20。首先,在初始状态的涡轮叶片10中,第一固定端21与内罩板10a啮合,当抵抗由压缩弹簧32施加的力而第一杆31和第二杆32之间的间隔延伸时,第二固定端22与外罩板10b啮合。从而,压缩弹簧32c自动调整第一固定端21和第二固定端22之间的间隔使得最小化。因此,度盘式指示器单元24a自动精确指示间隔尺寸L。初始状态下的测量操作只需进行一次,测量结果应该优选地在如上所述的涡轮叶片10的表面标明。
当在预定的时期以后,对运转后的涡轮叶片10进行疲劳寿命评估时,利用如上述的相同方法进行测量。通过获得与初始状态下的测量结果的差别,可以测定经过预定时期后的运转后的蠕变伸长应变。
当评估上述蠕变伸长应变时,优选的是采用以下方法,如果涡轮叶片纵向的蠕变伸长应变小于初始长度的0.5%,则确定涡轮叶片在其疲劳寿命之内;如果涡轮叶片纵向的蠕变伸长应变为初始长度的0.5%或更大,则确定涡轮叶片已经超过其疲劳寿命。
在一般的涡轮叶片中,当蠕变伸长应变超过2%后,涡轮叶片在强度和断裂方面迅速降低。因此,通过采用低于2%,例如为0.5%的蠕变伸长应变作为评估疲劳寿命的基准,可以确定涡轮叶片的疲劳寿命,使得涡轮叶片10的蠕变缺陷不会发生。
同样,通过在每一个运转期间进行这种测量操作,可以确定蠕变伸长应变经时间的变化。从而,根据该变化特性可以估计在达到疲劳寿命前还剩余多少小时。
根据利用这种涡轮叶片蠕变伸长应变测量装置20的涡轮叶片疲劳寿命评估方法,可以定量地估计涡轮叶片10的疲劳寿命。因此,可以防止在涡轮叶片中突然出现蠕变缺陷,而导致整个燃气轮机的严重破坏。
同样,根据本发明,通过将初始状态下的测量结果在涡轮叶片10的表面上标明,在经历的测量中,不需要花时间查阅例如设计图的记录就能知道涡轮叶片的疲劳寿命。因此,可以缩减为了进行涡轮叶片10的疲劳寿命评估而测量蠕变伸长应变的时间。此外,由于将期望了解的测量结果在涡轮叶片的表面上标明,可以防止以后由于例如错误辨识产品号码的疏忽而发生错误。
参照图4和5说明涡轮叶片蠕变伸长应变测量装置20的一个变形实施例。如图4所示的变形例与上述实施例不同,特别在于,利用不同的方法将涡轮叶片蠕变伸长应变测量装置20安装在涡轮叶片10上,且设置测微计40来代替度盘式指示器24。即,在该变形实施例中,通过三点支撑的方法支撑涡轮叶片蠕变伸长应变测量装置20,该方法利用第一固定端41,该固定端接触内罩板10a下游端的平坦的上表面;第二固定端42,该固定端具有一个尖端,该尖端插入在叶片部分10c的下游边缘并且靠近外罩板10b形成的凹处10c1;和第三固定端43,该固定端位于第一固定端41和第二固定端42之间,使得与叶片部分10c的下游边缘接触。此外,由测微计40测量的测量结果可以由刻度标记40a指示。
如图5所示的涡轮叶片蠕变伸长应变测量装置20的变形实施例与上述实施例不同,特别在于,利用不同的方法将涡轮叶片蠕变伸长应变测量装置20固定在涡轮叶片10上,且设置测微计50来代替度盘式指示器24。即,在该变形实施例中,涡轮叶片蠕变伸长应变测量装置20由下列部件支撑:第一固定端51,该固定端具有尖端,该尖端插入在内罩板10a的下游边缘形成的凹处10a1;和第二固定端52,该固定端具有尖端,该尖端插入在叶片部分10c的下游边缘并且靠近外罩板10b形成的凹处10c1。此外,由测微计50测量的测量结果可以由刻度标记50a指示。
这里,优选的是当在上述实施例和变形实施例中考虑涡轮中热膨胀的影响下进行测量,可以得到更精确的结果。
即,在蠕变膨胀变形为零的第一次测量中,记录涡轮叶片10壁中的温度(优选的是将以上纵向尺寸L和壁中温度标记在涡轮叶片10的内罩板10a上)。然后,当评估涡轮叶片10的疲劳寿命时测量壁中温度和纵向尺寸L。只要壁中温度与第一次测量的壁中温度相等,就不必修正温度。当测量的温度之间有差别时,需要考虑热膨胀量来进行修正。即,根据涡轮叶片10的原始数据来计算热膨胀量从而确定需要的修正。此外,从纵向尺寸L的测量结果中减去该热膨胀量;由此,可以使壁温情况与第一次测量一致。如果每次都调整壁温,根据第一次测量得到的温度进行测量也是可以的。在这种情况下,可以省略用来修正热膨胀量的步骤。

Claims (12)

1.一种测量装置,包括:
第一杆,具有连接到涡轮叶片的内罩板的第一固定端和形成第一凹部的第一相对端;
第二杆,具有连接到涡轮叶片的外罩板的第二固定端和形成第二凹部并且具有轴的第二相对端,第一相对端设置在第二凹部中,并且所述轴设置在第一凹部中;以及
测量设备,用于测量第一固定端和第二固定端之间的距离。
2.如权利要求1所述的测量装置,其特征在于,还具有设置在第一和第二杆之间的弹簧,其构造为使得第一和第二固定端朝向彼此偏置。
3.如权利要求1所述的测量装置,其特征在于,还具有用于基于在涡轮叶片上标明的涡轮叶片纵向初始尺寸测量涡轮叶片蠕变伸长应变的装置。
4.如权利要求1所述的测量装置,其特征在于,还包括用于修正涡轮叶片温度的装置。
5.如权利要求2所述的测量装置,其特征在于,所述弹簧设置在第一凹部内。
6.如权利要求1所述的测量装置,其特征在于,所述测量设备包括度盘式指示器。
7.如权利要求6所述的测量装置,其特征在于,所述度盘式指示器包括:
固定在第一杆上的接触部分;以及
度盘式指示器单元,该度盘式指示器单元固定在第二杆上,并具有与所述接触部分接触的指针部分。
8.如权利要求1所述的测量装置,其特征在于,还包括设置在第一凹部中的一对轴套,其用于引导第二杆的滑动运动。
9.如权利要求8所述的测量装置,其特征在于,还包括设置在所述的轴套与轴的端部之间的弹簧,该弹簧构造为将第一和第二固定端朝向彼此偏置。
10.如权利要求9所述的测量装置,其特征在于,还包括设置在弹簧与所述的轴套之间的轴环。
11.如权利要求10所述的测量装置,其特征在于,所述轴的端部包括止挡件,所述弹簧接触上挡件。
12.如权利要求1所述的测量装置,其特征在于,第一固定端和第二固定端中的每一个都具有L形的形状。
CNB2004100024341A 2003-01-22 2004-01-20 涡轮叶片蠕变伸长应变测量装置 Expired - Lifetime CN100343647C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US34792303A 2003-01-22 2003-01-22
US10/347,923 2003-01-22
US10/635,494 US6983659B2 (en) 2003-01-22 2003-08-07 Turbine blade creep life evaluating method, turbine blade creep elongation strain measuring apparatus, and turbine blade
US10/635,494 2003-08-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2007101090310A Division CN101105429B (zh) 2003-01-22 2004-01-20 涡轮叶片疲劳寿命确定方法

Publications (2)

Publication Number Publication Date
CN1517691A CN1517691A (zh) 2004-08-04
CN100343647C true CN100343647C (zh) 2007-10-17

Family

ID=32684722

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100024341A Expired - Lifetime CN100343647C (zh) 2003-01-22 2004-01-20 涡轮叶片蠕变伸长应变测量装置

Country Status (4)

Country Link
US (1) US7552647B2 (zh)
JP (1) JP4310197B2 (zh)
CN (1) CN100343647C (zh)
DE (1) DE102004002712B4 (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4638284B2 (ja) * 2005-06-20 2011-02-23 三菱重工業株式会社 動翼植込み測定要具
US7511516B2 (en) * 2006-06-13 2009-03-31 General Electric Company Methods and systems for monitoring the displacement of turbine blades
EP2037212B1 (en) 2007-09-12 2015-12-30 Siemens Aktiengesellschaft Method and sensor setup for determination of deflection and/or strain
US7493809B1 (en) * 2007-10-04 2009-02-24 General Electric Company Method and system for measuring deformation in turbine blades
US7787996B2 (en) * 2008-01-10 2010-08-31 General Electric Company Determining optimal turbine operating temperature based on creep rate data and predicted revenue data
US7810385B1 (en) * 2008-08-20 2010-10-12 Florida Turbine Technologies, Inc. Process for determining a remaining creep life for a turbine component
JP4750868B2 (ja) * 2009-03-19 2011-08-17 株式会社日立製作所 高温下で使用されるボルトの余寿命診断方法
US8196305B1 (en) * 2011-01-25 2012-06-12 General Electric Company Turbine blade measuring device
CN102261899B (zh) * 2011-04-20 2012-09-05 哈尔滨工业大学 涡轮叶片喉部尺寸测量仪
US8784056B2 (en) 2011-05-18 2014-07-22 General Electric Company System and turbine including creep indicating member
US8746049B2 (en) * 2011-09-06 2014-06-10 General Electric Company Creep indication system and method for determining creep amount
CN102410928B (zh) * 2011-10-25 2013-07-31 中国科学院工程热物理研究所 一种水平轴风力机叶片的疲劳检测方法
US8640531B2 (en) * 2012-04-17 2014-02-04 General Electric Company Turbine inspection system and related method of operation
US9032812B2 (en) * 2012-06-06 2015-05-19 General Electric Company Method and system for determining creep capability of turbine components prior to operation
EP2679778B1 (en) * 2012-06-27 2019-08-21 Ansaldo Energia IP UK Limited A method for measuring geometry deformations of a turbine component
US9494490B2 (en) * 2012-08-14 2016-11-15 General Electric Company Creep life management system for a turbine engine and method of operating the same
US10352794B2 (en) 2012-10-05 2019-07-16 Siemens Energy, Inc. Turbine blade fatigue life analysis using non-contact measurement and dynamical response reconstruction techniques
US9016560B2 (en) 2013-04-15 2015-04-28 General Electric Company Component identification system
CN104374646B (zh) * 2013-08-12 2017-07-14 中航试金石检测科技有限公司 一种棒材蠕变引伸计
CN103472741B (zh) * 2013-08-29 2016-09-14 东方电气风电有限公司 风力发电机叶片疲劳认证试验测试控制系统
US9207154B2 (en) * 2013-10-22 2015-12-08 General Electric Company Method and system for creep measurement
US10024760B2 (en) 2015-12-17 2018-07-17 General Electric Company Methods for monitoring turbine components
US9835440B2 (en) 2015-12-17 2017-12-05 General Electric Company Methods for monitoring turbine components
CN107144478A (zh) * 2016-03-01 2017-09-08 上海艾郎风电科技发展(集团)有限公司 叶片疲劳测试装置及使用其测试叶片的疲劳强度的方法
CN108444665B (zh) * 2018-03-16 2020-12-25 北京化工大学 旋转叶片激振系统及旋转叶片振动测试系统
DE102018204648A1 (de) * 2018-03-27 2019-10-02 Robert Bosch Gmbh Führung, Sensoranordnung und Verfahren
CN112729069B (zh) * 2020-12-24 2022-07-12 中国航发北京航空材料研究院 一种涡轮增压器叶轮叶片外缘缺陷检具及其检验方法
JP7257450B2 (ja) 2021-06-30 2023-04-13 三菱重工業株式会社 スタッドボルトの測長治具及び測長方法
FR3125845B1 (fr) * 2021-07-28 2024-09-06 Safran Aircraft Engines Procédé de détermination du fluage d’aubes
CN113821890B (zh) * 2021-09-28 2024-03-12 西安热工研究院有限公司 一种风电机组叶片疲劳寿命预测装置和方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1532297A (en) * 1921-01-14 1925-04-07 Bausch & Lomb Calipers
US3653128A (en) * 1970-04-03 1972-04-04 Chromalloy American Corp Means for measuring twist in a turbine vane
US4265023A (en) * 1979-04-23 1981-05-05 United Technologies Corporation Turbine blade growth measuring apparatus and method
JPS6043104A (ja) 1983-08-17 1985-03-07 Toshiba Corp 蒸気タ−ビン
CN1010130B (zh) 1985-06-21 1990-10-24 美国通用电气公司 确定涡轮部件已消耗寿命的方法
US4956925A (en) * 1989-09-05 1990-09-18 Westinghouse Electric Corp. Edge thickness caliper
USH1006H (en) * 1990-03-27 1991-12-03 The United States Of America As Represented By The Secretary Of The Air Force Multilevel classifier structure for gas turbine engines
US5166892A (en) * 1990-04-30 1992-11-24 Yamato Scale Company, Limited Device for compensating for time-dependent error due to creep and like of measuring apparatus
US5287631A (en) * 1991-12-16 1994-02-22 Ronald J. Stade Precision extended-length micrometer with displacement meter probe adapter
US5238366A (en) * 1992-07-06 1993-08-24 Westinghouse Electric Corp. Method and apparatus for determining turbine blade deformation
JPH11248605A (ja) 1998-03-05 1999-09-17 Tohoku Electric Power Co Inc ガスタービン翼のクリープ余寿命評価方法およびその装置
JP3673109B2 (ja) 1999-03-03 2005-07-20 株式会社日立製作所 中性子を利用した非破壊的損傷評価方法
US6272759B1 (en) * 1999-04-12 2001-08-14 Amsted Industries Incorporated Sideframe wheelbase gauge
DE19962735A1 (de) * 1999-12-23 2001-06-28 Alstom Power Schweiz Ag Baden Verfahren zur Überwachung des Kriechverhaltens rotierender Komponenten einer Verdichter- oder Turbinenstufe
JP3969518B2 (ja) 2001-05-24 2007-09-05 独立行政法人物質・材料研究機構 仮想タービン計算法
NL1018974C2 (nl) * 2001-09-18 2003-04-04 Kema Nv Werkwijze en inrichting voor het onderzoeken van de rek van langwerpige lichamen.
DE10202810B4 (de) * 2002-01-25 2004-05-06 Mtu Aero Engines Gmbh Turbinenlaufschaufel für den Läufer eines Gasturbinentriebwerks
US7392713B2 (en) * 2002-09-30 2008-07-01 United Technologies Corporation Monitoring system for turbomachinery

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
涡轮叶片蠕变寿命预测方法研究 孟春玲 饶寿期,北京工商大学学报(自然科学报),第20卷第2期 2002 *
涡轮叶片高温伛循环疲劳/蠕变寿命试验评定 王延荣 宋兆泓 侯贵仓,航空动力学报,第17卷第4期 2002 *
考虑蠕变和应力松弛的屐机高温构件寿命分析方法 周柏卓 丛佩红 王维岩 杨士杰,航空动力学报,第18卷第3期 2003 *

Also Published As

Publication number Publication date
DE102004002712A1 (de) 2004-08-05
US20060201257A1 (en) 2006-09-14
US7552647B2 (en) 2009-06-30
DE102004002712B4 (de) 2008-04-10
JP4310197B2 (ja) 2009-08-05
JP2004225692A (ja) 2004-08-12
CN1517691A (zh) 2004-08-04

Similar Documents

Publication Publication Date Title
CN100343647C (zh) 涡轮叶片蠕变伸长应变测量装置
CN101105429B (zh) 涡轮叶片疲劳寿命确定方法
CN105423976B (zh) 用于测量涡轮机中的叶片或导叶的几何参数的工具
CN101725529B (zh) 罗茨式鼓风机转子对准的方法及装置
CN103644855A (zh) 用于测量涡轮构件的几何变形的方法
CN86103018A (zh) 确定涡轮部件剩余有效寿命的方法
EP3085438B1 (en) Calibration method for a thrust load measuring device of a hermetically sealed kneader, and related thrust load measuring device
CA2709938A1 (en) Apparatus for measuring blade tip clearance
CN108132039B (zh) 用于测量涡轮导向叶片喉道最小面积装置的对标装置
CN112781812A (zh) 隔膜压缩机金属膜片疲劳测试方法
US9274027B2 (en) Apparatus and process for measuring the depth of a groove in a rotor of a gas turbine engine
KR20060125067A (ko) 와이퍼암의 제원 측정 장치
CN103644839A (zh) 一种电子数显小角位移测量仪
CN107532958A (zh) 变形测量扭矩仪
CN109059739B (zh) 一种曲轴多档位尺寸误差检测装置
CN103851986B (zh) 一种间隙测量夹具
CN2639842Y (zh) 一种曲轴测量工具
CN112945161B (zh) 深腔内孔零件安装质量的检测装置
CN205300553U (zh) 气门间隙调整垫片选配测量仪
ES2933050T3 (es) Procedimiento de prensado con compensación de errores de posicionamiento durante un proceso de prensado y prensa para la realización de tal procedimiento
CN100370240C (zh) 土体断裂参数的测试方法及其测试仪
CN106323135A (zh) 罗茨叶轮轴承在线检测方法和适用该方法的罗茨风机
CN114526223B (zh) 一种往复压缩机最大静摩擦力矩测量系统及方法
KR200471094Y1 (ko) 컴프레서 휠 블레이드 끝단과 스러스트 링 사이의 길이 측정을 위한 게이지 툴
CN106524848A (zh) 一种叶片锻件千分表卧式检测装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: MITSUBISHI HITACHI POWER SYSTEM LTD.

Free format text: FORMER OWNER: MITSUBISHI JUKOGIO KK

Effective date: 20150410

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20150410

Address after: yokohama

Patentee after: MITSUBISHI HEAVY INDUSTRIES, Ltd.

Address before: Tokyo, Japan

Patentee before: MITSUBISHI HEAVY INDUSTRIES, Ltd.

CX01 Expiry of patent term

Granted publication date: 20071017

CX01 Expiry of patent term