CN100341184C - 燃料电池电源及其运行方法以及使用它的便携式电子装置 - Google Patents

燃料电池电源及其运行方法以及使用它的便携式电子装置 Download PDF

Info

Publication number
CN100341184C
CN100341184C CNB2005100057941A CN200510005794A CN100341184C CN 100341184 C CN100341184 C CN 100341184C CN B2005100057941 A CNB2005100057941 A CN B2005100057941A CN 200510005794 A CN200510005794 A CN 200510005794A CN 100341184 C CN100341184 C CN 100341184C
Authority
CN
China
Prior art keywords
fuel cell
cell power
anode
fuel
output voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005100057941A
Other languages
English (en)
Other versions
CN1691386A (zh
Inventor
小山彻
久保田修
本棒英利
相马宪一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of CN1691386A publication Critical patent/CN1691386A/zh
Application granted granted Critical
Publication of CN100341184C publication Critical patent/CN100341184C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

提供一种燃料电池电源及其运行方法以及使用它的便携式电子装置。因为在现有的循环使用液体燃料的燃料电池中,使用检测液体燃料的浓度并保持规定的浓度的浓度控制结构,所以供给高浓度的液体燃料的泵和供给水的泵等多个泵是必需的。这些多个泵的使用,使燃料电池电源内的泵等的辅机占有的空间变大,结果产生燃料电池电源本身会大型化的问题。本发明可提供一种具有利用一个泵以时间分割的方式向阳极供给液体燃料和水的单元的燃料电池。

Description

燃料电池电源及其运行方法以及使用它的便携式电子装置
技术领域
本发明涉及在燃料中使用甲醇等液体的燃料电池电源及其运行方法以及使用燃料电池电源的便携式电子装置。
背景技术
燃料电池,因为利用电化学反应直接将燃料具有的化学能变换为电能,所以其特征为能量效率高。另外,因为燃料电池,在只更换或补充燃料时,发电可连续进行,不需要像在二次电池的场合观察到的那样为了充电而暂时停止便携式电子装置的工作。因此,近年来,作为便携式电子装置用的电源单元非常受到注目。
其中,正在研究使用体积能量密度比氢气等气体大的液体燃料,例如,甲醇、乙醇、丙醇、二甲醚及乙二醇等的燃料电池,正在进行开发便携式电子装置用的电源单元。
近年来,使用甲醇作为液体燃料的燃料电池的所谓直接型甲醇燃料电池(DMFC)的研究开发日益盛行。
其中,提出了可以将甲醇水溶液内的甲醇水溶液的初始浓度变成高浓度而提高燃料的利用效率和提高DMFC的输出的燃料电池发电装置(例如,参照专利文献1)。此专利文献1,是利用从电池得到的总电量评价甲醇水溶液容器的甲醇水溶液的浓度,并相应于此评价后的甲醇水溶液浓度控制供给到电池的甲醇水溶液的流量的燃料电池发电装置。另外,此专利文献1,作为可以长时间驱动的装置,还具有第2甲醇水溶液容器和第2供液泵作为对上述甲醇水溶液容器补充甲醇水溶液的甲醇补充单元用来控制向电池供给的甲醇水溶液的流量的燃料电池发电装置(燃料电池电源)。
专利文献1:日本专利中请特开2003-22830号公报(第2页)。
发明内容
然而,因为在现有的循环使用液体燃料的燃料电池中,使用检测液体燃料的浓度并保持规定的浓度的浓度控制结构,所以供给高浓度的液体燃料的泵和供给水的泵等多个泵是必需的。这些多个泵的使用,使燃料电池电源内的泵等的辅机占有的空间变大,结果产生燃料电池电源本身会大型化的问题。
本发明的目的在于使燃料电池电源比需要多个泵的燃料电池电源小型化。
本发明提供的一种具有利用一个泵以时间分割的方式向阳极供给液体燃料和水的单元的燃料电池。
根据本发明,可以减少泵的数目而使燃料电池小型化。
附图说明
图1为用来说明直接甲醇燃料电池的结构的示图。
图2用来说明燃料电池电源的结构示图。
图3为用来说明燃料电池电源的液体燃料和水的流动的示图。
图4为调整在燃料电池电源中使用的液体燃料的浓度的处理例程I的流程图。
图5为调整在燃料电池电源中使用的液体燃料的浓度的处理例程II的流程图。
图6为用来说明在燃料电池电源中使用的送液泵的概略构造的示图。
图7为用来说明在燃料电池电源中使用的可进行时间分割的送液泵的概略构造的示图。
图8为示出在实施例5的燃料电池电源中使用的可进行时间分割的送液泵的送液量和浓度随时间变化的示图。
图9为示出在实施例6的燃料电池电源中使用的可进行时间分割的送液泵的送液量和浓度随时间变化的示图。
图10为示出实施例1的燃料电池电源的电压-电流特性的示图。
图11为为示出实施例1的燃料电池电源连续发电时的时间和输出电压的关系的示图。
图12为示出比较例1的燃料电池电源的电压-电流特性的示图。
图13为为示出比较例1的燃料电池电源连续发电时的时间和输出电压的关系的示图。
图14为用来说明本发明的笔记本型个人计算机的概略结构的示图。
图15为示出本发明的PDA的外观的照片。
图16为用来说明本发明的PDA的概略结构的示图。
图17为用来说明比较例1中使用的燃料电池电源的结构的示图。
具体实施方式
下面,对本发明的燃料电池电源及使用该燃料电池电源的便携式电子装置的实施方式予以详细说明。不过,本发明并不受限于以下的实施方式。
首先,举出标准的DMFC作为使用液体燃料的燃料电池的一例进行说明。图1为示出DMFC的概略结构的示图。DMFC100,包括:固体高分子电解质膜102;在此固体高分子电解质膜102的两面上把阳极催化层103及阴极催化层104接合成为一体的电解质膜/电极接合体(MEA;膜电极组合体);以及分别在阳极催化层103和阴极催化层104的外侧密接的阳极扩散层105和阴极扩散层106。另外,在阳极扩散层105的外侧还配置燃料流路板107。此燃料流路板107上形成具有燃料供给口108和燃料排出口109的燃料流路110。
经送液泵对燃料供给口108供给甲醇水溶液。另外,同样,在阴极扩散层106的外侧还配置空气流路板111。在空气流路板111上形成具有空气供给口112和空气排出口113的空气流路114。利用吹风机及送风泵等向空气供给口112供给空气等氧化剂(此处为氧气)。利用送液泵从甲醇水溶液容器送出的甲醇水溶液、向燃料流路板107的燃料供给口108供给的甲醇水溶液流过燃料流路板107的沟槽的部分(燃料流路110)。流过燃料流路110的甲醇水溶液,通过浸入到与燃料流路板107相接的阳极扩散层105,将甲醇水溶液均匀地供给阳极催化层103。另外,将阳极催化层103和阳极扩散层105合起来称为阳极电极(负极)或阳极气体扩散电极,此处略称阳极电极120。同样,阴极催化层104和阴极扩散层106合起来称为阴极电极(负极)或阴极气体扩散电极,此处略称阴极电极130。
下面,对供给阳极催化层103的甲醇水溶液的反应予以说明。甲醇水溶液按照下面,对(1)式所示的反应分解为二氧化碳气体(CO2)、氢离子(H+)及电子(e-)。
CH3OH+H2O→CO2+6H++6e-           (1)
生成的质子在固体高分子电解质膜102中从阳极120侧移动到阴极130侧,在阴极催化层104上空气中的氧气(O2)和电子(e-)按照(2)式发生反应而生成水(H2O)。
6H++3/2O2+6e-→3H2O              (2)
根据上述反应式(1)、反应式(2)电化学反应的全化学反应式,以反应式(3)式表示。DMFC,按照(3)式将化学能直接变换为电能而发生电动势。
CH3OH+3/2O2→CO2+3H2O            (3)
然而,流过DMFC100的燃料流路板107的甲醇水溶液,不能全部浸入到阳极扩散层105。一部分甲醇水溶液不进行反应式(1)的反应,从燃料流路板107的燃料排出口109原样不变流出。因此,成为供给DMFC的甲醇水溶液的利用效率(反应效率)降低的问题。为了提高此效率,也尝试改善燃料流路板107的结构等,但现状是此利用效率尚未提高。因此,为提高此利用效率,从燃料流路板107的燃料排出口109排出的甲醇水溶液一旦返回甲醇水溶液的容器,也尝试再次利用。
然而,在阳极催化层103中,因为如上述(1)式所示,甲醇水溶液和水是以1比1(摩尔比)反应,甲醇水溶液(分子量=32)一方的消耗量与水相比为约1.8倍。因此,在使从燃料流路板107排出的甲醇水溶液原样不变返回甲醇水溶液的贮藏容器时,此贮藏容器内的甲醇水溶液的浓度逐渐变薄。于是,在将循环使用而浓度变薄的甲醇水溶液原样不变使用时,因为电池内部甲醇不足,上述反应式(1)所示的反应不能充分地进行,而发生电动势(输出电压)急剧减小的问题。
另外,供给到图1的阳极催化层103的甲醇水溶液中的甲醇和水,按照(1)式所示的反应式生成质子(H+)、二氧化碳气体(CO2)及电子(e-)。生成的二氧化碳气体从阳极催化层103通过阳极扩散层105沿着燃料流路110从燃料排出口109排出。此生成的二氧化碳气体有时在阳极内的阳极催化层103或阳极扩散层105中,从在甲醇水溶液中的微小气泡状态成长为大气泡,此二氧化碳气体大气泡,特别是有时经常妨碍阳极扩散层105中的液体燃料的流动。因此,供给到阳极催化层103的甲醇水溶液会变得不足而使发电能力降低(输出电压降低)。
于是,也需要使生成的这种二氧化碳气体从阳极内的阳极催化层103或阴极扩散层顺利排出而不会妨碍对供给到阳极催化层103的甲醇水溶液的供给。
在图2中示出本发明的燃料电池电源的结构。
在图2中,燃料电池电源1,主要包括:燃料电池部10、液体燃料供给部20、控制部30、电力贮藏部40以及氧化剂气体供给单元50。
燃料电池部10,由与图1所示的DMFC100相同的液体燃料电池构成。燃料电池部10,是利用由液体燃料供给部20供给的液体燃料(以下采用甲醇作为代表例进行说明)和由氧化剂气体供给单元50供给的氧化剂气体(以下采用空气作为代表例进行说明)的电化学反应发电的部分。液体燃料供给部20,由贮藏水的容器21、贮藏高浓度的甲醇水溶液的容器22以及向液体燃料供给部20供给高浓度的甲醇水溶液和水的送液泵23构成。控制部30,由以微型计算机为中心的逻辑电路构成,具有利用CPU进行信号处理的信号处理单元31;利用ROM或RAM等的存储器进行存储的存储单元32;输入输出各种信号的输入输出板(未图示)等。控制部30,是对整个燃料电池电源1进行控制的单元,利用微型计算机进行对供给到燃料电池部10的高浓度的甲醇水溶液和水的供给量及该供给用送液泵23的控制;对电力贮藏部40的控制;以及对从氧化剂气体供给单元50向燃料电池部10供给的空气吹风机的控制。电力贮藏部40,由DC-DC变换器(斩波器)41和蓄电部42(可充放电的锂离子二次电池及超电容等)构成。电力贮藏部40,是将借助燃料电池部10的发电所得到的直流电力利用DC-DC变换器(斩波器)41进行升压,以该经过升压的直流电力对可充放电的锂离子二次电池及超电容等的蓄电部42进行充电并将充电到蓄电部42的电力供给对外部负载放电的部分。另外,此蓄电部42的锂离子二次电池及超电容等,在燃料电池电源1的启动时或在与燃料电池部10的放电电力相比外部电路需要的电力大时,可通过放电供给该所需电力。另外,蓄电部42的锂离子二次电池及超电容,可应用于控制部30及送液泵23以及空气吹风机51等的电源(未图示)。氧化剂气体供给单元50,是利用空气吹风机51向燃料电池部10供给空气等氧化剂气体的单元。
下面根据图3对本发明的燃料电池电源1的实施方式予以更详细的说明。
首先,对作为液体燃料的甲醇水溶液的流动予以说明。供给燃料电池部10,即DMFC100,的甲醇水溶液,是由送液泵23从液体燃料供给部20的水容器21和甲醇水溶液容器22交互供给水及甲醇水溶液。通过对从液体燃料供给部20的水容器21供给的水的流路和从甲醇水溶液容器22供给的甲醇水溶液的流路交互地利用设置于送液泵23的入口侧的电磁阀24对水的流路和甲醇水溶液的流路进行切换,进行这种水和甲醇水溶液的交互供给。另外,也可以不利用电磁阀24而只利用送液泵23对水和甲醇水溶液进行相互供给。这种交互供给的水和甲醇水溶液,从燃料流路板107的燃料供给口108供给DMFC100并通过燃料流路110从燃料排出口109排出。于是,该排出的甲醇水溶液,在将生成的二氧化碳气体在气液分离部25中去除之后,在送液泵23的出口侧管道中将从送液泵23交互供给的水或甲醇水溶液混合再次供给燃料流路板107的燃料供给口108。流过燃料流路110的甲醇水溶液,浸入到由碳纸这样的多孔质体构成的阳极扩散层105,并经过此阳极扩散层105供给阳极催化层103。此时,甲醇水溶液,浸入到与燃料流路板107的凸部(不与燃料流路110相当的部分)相接的阴极扩散层,供给到阳极催化层103。供给到阳极催化层103的甲醇水溶液,按照上述的反应式(1)离解为二氧化碳气体和和质子及电子。生成的质子,在固体高分子电解质膜102中从阳极侧阴极侧移动。此质子按照上述的反应式(2)与在阴极催化层104上供给的空气中的氧气成分和阴极催化层104上的电子发生反应而生成水。生成的水,在气液分离器52中将空气分离之后,回收到水容器21用于对甲醇水溶液的浓度调整。另外,生成的电子,通过阳极催化层103和燃料流路板107,供给到电力贮藏部40。供给到阴极催化层104的空气,借助氧化剂气体供给单元50的空气吹风机51供给空气流路板111的供给口112,借助设置于空气流路板111上的空气流路114,经阴极扩散层106,供给到阴极催化层104。供给的此空气,在阴极催化层104中发生反应而生成水。
下面,对DMFC100的结构进行详细说明。DMFC100包括:在固体高分子的电解质膜102的两面上接合成为一体的MEA;分别在此阳极催化层103和阴极催化层104的外侧密接的阳极扩散层105;阴极扩散层106以及在此阳极扩散层105、阴极扩散层106的外侧上还分别密接的燃料流路板107及空气流路板111。此燃料流路板107上形成具有燃料供给口108和燃料排出口109的燃料流路110。在空气流路板111上形成具有空气供给口112和空气排出口113的空气流路114。在本实施方式中使用的固体高分子电解质膜102,只要是具有质子传导性的固体高分子电解质膜,没有特别的限制。具体而言,例如,有以Nafion(注册商标,杜邦公司)、Aciplex(注册商标,旭化成工业株式会社制)、Flemion(注册商标,旭硝子株式会社制)的商品名公知的聚全氟磺酸膜为代表的氟素类固体高分子电解质膜;在日本专利申请特开平9-102322号公报中公开的由通过碳化氟类乙烯单体和碳化氢类乙烯单体共聚合生成的具有主链和磺酸基的碳化氢类侧链构成的磺酸型聚苯乙烯接枝四氟乙烯共聚物(ETFE)膜;在日本专利申请特开平9-102322号公报中公开的磺酸型聚苯乙烯接枝ETFE膜;在美国第4012303号专利及美国第4605485号专利中公开的由碳化氟类乙烯单体和碳化氢类乙烯单体共聚生成的膜、将α,β,β-三氟乙烯接枝聚合并将磺酸基导入其中作成的固体高分子电解质膜的磺酸型聚(三氟乙烯)-接枝-ETFE膜等部分氟化固体高分子电解质膜;在日本专利申请特开平6-93114号公报中公开的磺化聚醚酮醚固体高分子电解质膜;在日本专利申请特开平9-245818号公报及日本专利申请特开平11-116679号公报中公开的磺化聚醚醚砜固体高分子电解质膜;在日本专利申请特开平10-503788号公报中公开的磺化丙烯腈·丁二烯·苯乙烯聚合物固体高分子电解质膜;在日本专利申请特开平11-510198号公报中公开的磺化多硫固体高分子电解质膜、磺化聚苯撑固体高分子电解质膜;以及在日本专利申请特开2002-110174号公报、在日本专利申请特开2003-100317号公报和在日本专利申请特开2003-187826号公报中公开的将烯化磺酸基导入的芳香族碳化氢类固体高分子电解质膜等各种碳化氢类固体高分子电解质膜等。其中,从甲醇的渗透性观点出发,芳香族碳化氢类固体高分子电解质膜是优选的。从甲醇的渗透性、膨润性及耐久性的观点出发,将烯化磺酸基导入的芳香族碳化氢类固体高分子电解质膜是特别优选的。另外,通过使用将钨氧化物水合物、锆氧化物水合物及锡氧化物水合物等或硅钨酸、硅钼酸、钨磷酸、磷钼酸等的质子导电性无机物在耐热性树脂微分散的复合电解质膜等,可以制作出可以在更高温区运转的燃料电池。另外,因为这些质子导电性的酸性电解质膜,一般是质子与水进行水合,此水合的酸性电解质膜由于水的膨润的影响,在干燥时和湿润时膜产生变形。并且,离子导电性足够高。
有时膜的机械强度不够。作为这种场合的对策,使用机械强度、耐久性、耐热性优异的纤维的无纺布或织布作为芯材,或在制造电解质膜时将这些纤维作为填料添加进行补强,在提高电解质膜及进一步提高可靠性方面是有效的方法。在膜上开孔,将电解质填充到该空中的方法也有效。另外,为了降低电解质膜的燃料渗透性(穿过,crossover),也可以使用在聚苯并咪唑类中以硫酸、磷酸、磺酸类及膦酸进行掺杂的膜。
作为此固体高分子电解质膜102的磺酸当量(指干燥树脂),优选是0.5~2.0毫当量/g,更优选是0.7~1.6毫当量/g的范围。在磺酸当量小于此范围时,膜的离子传导电阻变大(离子导电性降低),另一方面,在磺酸当量大于此范围时,易于溶解于水,不是优选的。
对固体高分子电解质膜102的厚度没有特别限制,但优选是10~200μm。30~100μm是特别优选的。要得到在实用上可以耐受的强度的膜,厚于10μm是优选的,为了减小膜电阻,即提高发电性能,优选是薄于200μm。此电解质膜的厚度,在采用溶液铸造法时,可以通过电解质溶液浓度或在基板上涂敷的电解质溶液的厚度进行控制。在从熔融状态制膜时的电解质膜的厚度,可通过对利用熔融压制法或熔融积压法等制得的规定厚度的膜以规定的倍率进行延伸来控制。另外,在制造本实施方式中使用的固体高分子电解质膜102时,通常在高分子中使用的增塑剂、稳定剂、脱型剂等添加剂,只要不违反本实施方式的目的,都可以使用。
在作为燃料电池使用时的MEA中使用的电极的催化层,是由导电材料和由高导电材料承载的催化金属的微粒构成的,根据需要也可以包含疏水剂及粘结剂。另外,也可以在此催化层的外侧设置由不承载催化剂导电材料和和根据需要包含的疏水剂及粘结剂构成的层。作为在此电极的催化层中使用的催化金属,只要是可以促进氢的氧化反应及氧的还原反应的金属就可以,例如,可以举出的有铂、金、银、钯、铱、铑、钌、铁、钴、镍、铬、钨、锰、钒或它们的合金。在这种催化剂中,特别是作为阴极催化剂的铂,作为阳极催化剂的铂-钌合金是经常使用的。作为催化剂的金属的粒径,通常为10~300埃。使这些催化剂附着于碳等载体上可减少催化剂的使用量,在成本上有利。在电极成形状态下,使用的阳极催化剂的量为0.5~20mg/cm2,优选为5~15mg/cm2,使用的阴极催化剂的量为0.01~10mg/cm2,优选为0.1~10mg/cm2。阳极催化剂量比阴极催化剂量多是优选的。阳极催化层103,由于从阳极催化剂的甲醇和水发生质子和电子的反应式(1)的反应很慢,比阴极催化层104厚是优选的。阳极催化层103的厚度为20~300μm,特别是50~200μm是优选的。阴极催化层104的厚度为3~150μm,特别是5~50μm是优选的。阳极催化层103、阳极扩散层105,为了易于与甲醇等燃料水溶液濡湿,优选是进行亲水处理。反之,为了防止阴极催化层104及阴极扩散层106产生的水发生滞留,优选是进行疏水处理。
对阳极催化层103及阳极扩散层105进行亲水处理的方法,例如,有下述的方法:首先,利用从过氧化氢、次氯酸钠、过锰酸钾、盐酸、硝酸、磷酸、硫酸、发烟硫酸、氟酸、醋酸、臭氧等之中选出的氧化剂对在阳极催化层103及阳极扩散层105中使用的碳素(碳)材料进行处理,之后将氢氧根、磺酸基、羧酸基、磷酸基、硫酸酯基、羰基、氨基等亲水基导入碳素(碳)材料。另外,对于将亲水基导入此碳素(碳)材料的方法,也可使用电解氧化(阳极氧化)、水蒸气氧化产生的激活处理,添加亲水性表面活性剂等方法。
由于用来易于与此甲醇燃料濡湿的阳极催化层103的亲水化处理及上述(1)式的反应支配全反应的速度,为使接触时间延长,使反应更多产生而将阴极催化层104做得更厚;或者进行阳极扩散层105的亲水化处理及进行阴极扩散层106的疏水化;在阳极上按照上述(1)式的反应生成的二氧化碳气体和在阴极中通过反应生成的水可顺利地从电池向外排出;以及可以使电池的输出电压变得更高等等因素,所以不仅对层叠型的稀释循环型燃料电池,而且多包含不使用泵和吹风机送入燃料和空气而依靠自然扩散供给的所谓的被动平面型全部液体燃料电池都有效。
只要承载催化剂的导电材料是各种金属及碳素(碳)材料等的电子导电性物质,可以是其中的任何一种。其中,作为碳素材料,例如,可以举出的有:炉法碳黑、槽法碳黑、乙炔黑、非晶碳、碳纳米管、碳纳米角、活性炭、石墨等。这些材料可以单独或混合使用。碳素(碳)粒子的粒径,例如,为大于等于0.01μm小于等于0.1μm,优选是大于等于0.02μm小于等于0.06μm。进行疏水处理的疏水剂,例如,可以使用氟化碳、聚四氟乙烯等。作为粘接剂,在本实施方式的电极催化剂覆盖用的5wt%聚全氟碳磺酸电解质的水/乙醇溶液(溶剂为将水、异丙醇、正丙醇以重量比20∶40∶40混合使用:弗鲁克米克(フルカ ケミカ)公司制)原样不变使用时,从粘接性观点考虑是优选的,但使用其他各种树脂也可以。在此场合,添加具有疏水性的氟素树脂是优选的,特别是使用具有优异耐热性、耐酸性的材料是优选的,例如,聚四氟乙烯、四氟乙烯-全氟烷基乙烯醚共聚体以及四氟乙烯-六氟丙烯共聚体。
对于作为燃料电池使用时的电解质膜和电极的接合法没有特别的限制,可以应用在日本专利申请特开平5-182672号及日本专利申请特开2003-187824号公报中公开的公知的方法。作为MEA的制作方法,例如,有如下方法:将由碳承载的Pt催化粉和聚四氟乙烯悬浊液混合,涂敷于碳纸之上,经热处理而形成催化层。接着,将与电解质膜相同的电解质溶液涂敷于催化层上,利用热压法使其与电解质膜成为一体。此外,还有预先将与电解质膜相同的电解质溶液覆盖于Pt催化粉之上的方法;将催化剂浆料涂敷于电解质膜一方之上的方法;利用非电解电镀法将电极设置于电解质膜上的方法;使铂族金属络离子吸附于电解质膜上之后进行还原的方法等。固体高分子型燃料电池是这样构成的,即,在以上述方式形成的电解质膜和气体扩散电极的接合体的外侧上形成燃料流路和氧化剂流路的带有沟槽的集电体,此集电体由配置的燃料配流板和氧化剂配流板组成,将这样形成的制品作为电池单体,将多个这样的电池单体中间夹着冷却板等层叠构成上述固体高分子型燃料电池。为了连接电池单体,除了层叠,也可以使用平面连接法。连接电池单体的方法,采用哪一个并没有特别限制。燃料电池,在使其在高温下工作时,由于电极的催化剂激活,电极过电压降低,是优选的,但对工作温度没有限制。也可使液体燃料气化而在高温下工作。
下面,对供给到DMFC100的甲醇水溶液的浓度调整和供给方法予以说明。首先,对供给到DMFC100的甲醇水溶液的浓度进行说明。在采用氟素类固体高分子电解质膜时,供给到DMFC100的甲醇水溶液的浓度控制为3~15wt%,优选是将浓度控制为5~10wt%。此时,在甲醇水溶液的浓度高于15wt%时,因为透过电解质膜的甲醇量有增加的倾向,甲醇的利用效率降低,不是优选的。同样,在甲醇水溶液的浓度低于3wt%时,因为DMFC100的输出电压降低,不是优选的。另外,在采用芳香族碳化氢类固体高分子电解质膜时,因为透过此电解质膜的甲醇量少,DMFC100内的甲醇水溶液的合适浓度范围为5~64wt%,优选是20~60wt%。下面,对甲醇水溶液的浓度调整方法予以说明。在阳极催化层103中,甲醇水溶液中的甲醇,是按照上述(1)式的反应式消耗,所以甲醇水溶液中的甲醇浓度逐渐变薄。因此,从燃料流路110排出的甲醇水溶液,在经过气液分离器25将二氧化碳气体除去之后,直接返回DMFC100时,在电池内部会产生甲醇不足而使电动势急剧减小的问题。
于是,由设置在DMFC100中的甲醇浓度传感器240检测甲醇水溶液的浓度并将该信息发送到控制部30。控制部30,通过从信号处理单元31输出信号进行控制使甲醇水溶液中的甲醇浓度成为预先在存储单元32中设定的浓度。就是说,控制部30,在利用送液泵23输送甲醇水溶液或水时,从信号处理单元31输出信号,以便利用设置于送液泵23的入口侧的电磁阀24以时间分割方式对连接甲醇水溶液容器22的出口和送液泵23的入口的流路与连接水容器21的出口和送液泵23的入口的流路进行切换。另外,也可以不利用电磁阀24而只利用送液泵23对水和甲醇水溶液进行相互供给。
图4和图5示出利用控制部30对供给到DMFC100的甲醇水溶液的浓度调整方法。图4为表示利用电磁阀24时的甲醇水溶液的浓度调整处理例程I的流程图。图5为表示不利用电磁阀24时的甲醇水溶液的浓度调整处理例程II的流程图。在图4中,当此处理例程I开始时,控制部30,进行以下的执行步骤。就是说,读入由设置于DMFC100上的甲醇浓度传感器240检出的甲醇浓度(步骤S1)。之后,根据甲醇浓度传感器240给出的检测信号判断DMFC100的甲醇水溶液的浓度是否处于合适范围(步骤S2)。在步骤S2中,在判断DMFC100的甲醇水溶液的浓度不在合适范围内时,就改变利用电磁阀24切换上述甲醇水溶液的流路和水的流路的定时(预先存储于存储器中的定时)(步骤S3)而结束此处理例程I。在步骤S2中,在判断DMFC100的甲醇水溶液的浓度在合适范围内时,就返回到步骤S1,再次读入甲醇浓度。
在图5中,当开始此处理例程II时,控制部30,进行以下的执行步骤。就是说,读入由设置于DMFC100上的甲醇浓度传感器240检出的甲醇浓度(步骤S11)。
之后,根据甲醇浓度传感器240给出的检测信号判断DMFC100的甲醇水溶液的浓度是否处于合适范围(步骤S12)。在步骤S2中,在判断DMFC100的甲醇水溶液的浓度不在合适范围内时,就改变供给上述甲醇水溶液和水的送液泵23的时间分配定时(预先存储于存储器中的定时)(步骤S13)而结束此处理例程II。在步骤S12中,在判断DMFC100的甲醇水溶液的浓度在合适范围内时,就返回到步骤S11,再次读入甲醇浓度。
这样进行的浓度控制,是在利用送液泵23输送甲醇水溶液或水时,根据预先存储于存储器中的定时利用设置于送液泵23的入口侧的电磁阀24以时间分割方式对连接甲醇水溶液容器22的出口和送液泵23的入口的流路与连接水容器21的出口和送液泵23的入口的流路进行切换,以便使浓度处于上述适当浓度范围。对利用上述电磁阀24切换甲醇水溶液的流路和水的流路的定时没有特别限制。然而,在以利用脉动将从DMFC100内的燃料流路110顺利排出二氧化碳气体为目的时,利用电磁阀24切换甲醇水溶液的流路和水的流路的定时,在1秒内容易启动100次至0.001次,优选是50次至0.2次的脉动的定时是适当的。对于甲醇水溶液容器22中的甲醇水溶液的浓度没有特别限制,但因为甲醇水溶液的浓度高时,包含的甲醇量多,在体积相同时,连续使用时间延长,所以甲醇水溶液的浓度高为优选。此甲醇水溶液的浓度为30~100wt%是一般情况,大于等于90wt%是特别优选的。另外,在送液泵23采用时间分割型泵时,因为是以左右的隔壁的体积决定送液的比率,甲醇水溶液容器22中的甲醇水溶液的浓度由左右的隔壁的体积比决定。
下面,对利用一个送液泵23以时间分割方式分别对液体燃料(甲醇水溶液)或水进行输送的方法予以说明。只要此方法是利用一个送液泵23以时间分割方式分别对甲醇水溶液或水进行输送的方法,就没有特别限制。作为该具体方法,存在下面的方法。
(1)在利用送液泵23输送甲醇水溶液或水时,对连接甲醇水溶液容器22的出口和送液泵23的入口的流路与连接水容器21的出口和送液泵23的入口的流路,利用设置于送液泵23的入口侧的电磁阀24进行切换的定时以时间分割方式输送甲醇水溶液或水的方法。
(2)在泵的入口处采用具有多于等于两个容积的压电泵及柱塞泵等之时,向具有此多于等于两个容积的泵的入口供给的甲醇水溶液和水在各个定时以时间分割方式输送的方法。
在方法(1)中使用的送液泵,如果是可以输送液体燃料的泵,可以使用而没有特别的限制。作为这种泵,存在:(A)涡轮型泵:(A-1)涡流泵;扩散泵等离心泵;(A-2)涡轮斜流泵;斜流泵等斜流泵;(A-3)轴流泵;(B)容积型泵:(B-1)活塞泵;压电泵;柱塞泵;隔膜泵等往复泵;(B-2)齿轮泵;螺杆泵等旋转泵;(C)特殊泵:涡流齿轮泵(级联泵);气泡泵(空气升液泵);射流泵等。
另外,方法(2)是利用压电泵及柱塞泵的方法。压电泵及柱塞泵,通常是在一个泵体中吸入液体期间,在另一个泵体中排出同样的液体,其设计使得永远可以均匀地输送同一量的液体。此方法(2),例如,是利用在压电泵及柱塞泵的一个泵体入口与供给甲醇水溶液等液体燃料的流路相连接,而另一个泵体入口与供给水的流路相连接时,则在吸入甲醇水溶液期间排出水,反之,在吸入水期间,排出甲醇水溶液。就是说,是一种对甲醇水溶液和水向DMFC100输送时的定时分别进行时间分割的送液方法。
图6和图7示出压电送液泵的概略构造。图6是用于方法(1)的压电送液泵,而图7是用于方法(2)的压电送液泵。之所以采用这种压电送液泵是因为对于需要在低功耗情况下将少量液体以高压力头送入的DMFC100而言是最合适的。首先,对图6所示的现有的压电送液泵的动作原理予以说明。逆流防止阀304是只能向一个方向打开的单向阀。在图6中,在由聚偏氟乙烯构成的双压电晶片振子301向着图6中的右方位置变化时,左侧的流体的入口侧的逆流防止阀304A打开,左侧的流体出口侧的逆流防止阀304C关闭。此时,流体从流体的入口303吸入到左侧的隔壁室内。并且此时,右侧的流体的入口侧的逆流防止阀304B关闭,在流体出口侧的逆流防止阀304D打开,右侧的隔壁室内存在的流体向外送出。反之,在双压电晶片振子301向左侧移动时,右侧的隔壁室内存在的流体从隔壁室内向外送出,与其相反流体进入左侧的隔壁室内。因为双压电晶片振子301以振幅306根据频率左右运动,通过这种反复动作,向一个方向发送的送液量根据频率而改变,在高频时送液量多。
下面,对图7所示的本实施方式的压电送液泵的动作原理予以说明。在图7中,由聚偏氟乙烯构成的双压电晶片振子401向着图7中的右方位置变化时,左侧的流体B的出口408的逆流防止阀402-B2关闭,流体便携式电子装置送入左侧的隔壁室内。另一方面,右侧的流体A的入口405的逆流防止阀402-A2打开,在右侧的隔壁室内存在的流体A送出。反之,在双压电晶片振子401向左侧移动时,左侧存在的流体B从隔壁室内送出,流体A进入右侧的隔壁室内。因为双压电晶片振子401以振幅403根据频率左~右运动,通过这种反复动作,流体A和流体B交互送液。送液量根据频率而改变,在高频时送液量多。图8示出时间分割型压电送液泵的送出的送液量和浓度随时间变化的关系。图中的a表示甲醇水溶液的供给,图中的b表示水的供给。此图8示出在利用时间分割型压电送液泵向DMFC100发送的液体中存在脉动及浓度梯度。另外,通过改变压电送液泵的隔壁室的左右体积,可以改变输送的液体的量的比。具体而言,在图9中示出在将水流过的隔壁室的体积设定为甲醇水溶液流过的隔壁室的体积的二倍时的送液量和浓度随时间变化。在将图9与图8比较时,水的送液量(图中的b)与图8相比,图9输送的大约为图8的两倍。因此,在时间分割型压电送液泵中,隔壁室内的体积比的改变也有效。
下面,通过实施例及比较例对本发明的特征进行举例说明,但本发明并不限定于此。
(1)结构
<实施例1>
在实施例1中使用的本实施方式的燃料电池电源的结构,采用与图2所示的燃料电池电源的结构相同的结构。此处,具体地在实施例1中使用。
下面,对构成DMFC100的固体高分子电解质膜102、阳极催化层103、阴极催化层104、阳极扩散层105、阴极扩散层106、燃料流路板107以及空气流路板111依此详细说明。作为固体高分子电解质膜102,使用聚全氟碳磺酸膜(商品名:Nafion117;杜邦公司)。阳极催化层103,是利用由在碳素承载体上使铂和钌的原子比调整为1/1的铂/钌合金微粒以50wt%分散承载的催化剂粉末和作为粘接剂采用的5wt%浓度的溶解聚全氟碳磺酸电解质的水/乙醇混合溶液(溶剂为将水、异丙醇、正丙醇以重量比20∶40∶40混合使用:弗鲁克米克公司制)的浆料,借助筛网印刷法在聚四氟乙烯膜上形成宽10mm×20mm,厚度约80μm的多孔质催化层,通过干燥而得到的。此时,催化剂的附着量为6mg/cm2。阴极催化层104,是利用由在碳素承载体上承载30wt%的铂微粒的催化剂粉末和作为粘接剂利用的5wt%浓度的溶解聚全氟碳磺酸电解质的水/乙醇混合溶液(溶剂为将水、异丙醇、正丙醇以重量比20∶40∶40混合使用:弗鲁克米克公司制)的浆料,借助筛网印刷法在聚四氟乙烯膜上形成宽10mm×20mm,厚度约50μm的多孔质催化层,通过干燥而得到的。此时,催化剂的附着量为3mg/cm2
下面,对MEA电极的制造方法予以说明。MEA电极,利用(1)将阳极催化层103接合到固体高分子电解质膜102的单侧的面上;(2)在未接合阳极催化层103的固体高分子电解质膜102的表面上接合阴极催化层104而制成。阳极催化层103与固体高分子电解质膜102的接合,是在阳极催化层103表面上使用5wt%的Nafion117的水/乙醇混合溶液(溶剂为将水、异丙醇、正丙醇以重量比20∶40∶40混合使用:弗鲁克米克公司制)约0.5ml浸透之后,叠置于固体高分子电解质膜102的发电(电极)部分之上,加上约1kg的载荷在80℃下加热3小时而达成的。阴极催化层104与固体高分子电解质膜102的接合,是在阴极催化层104表面上使用5wt%的Nafion117的水/乙醇混合溶液(溶剂为将水、异丙醇、正丙醇以重量比20∶40∶40混合使用:弗鲁克米克公司制)约0.5ml浸透之后,将此阴极催化层104叠置于上述固体高分子电解质膜102与阳极催化层103接合的一面的反对侧一面的发电(电极)部分之上,加上约1kg的载荷在80℃下干燥3小时而达成的。
下面,对阳极扩散层105和阴极扩散层106的制造方法予以说明。按照碳素粉末烧制后的重量为40wt%的标准添加疏水剂聚四氟乙烯微粒的水性分散液(氟素树脂弥散体D-1,达肯(ダイキン)公司制)混匀形成的浆料状混合物,在厚度约350μm,孔隙率为87%的碳布承载体的一面上涂敷,厚度约为20μm,在室温下干燥后在270℃烧制约3小时而制成碳素片。将制作的此碳素片切成与上述的MEA的阳极电极的尺寸相同的形状作为阳极扩散层105。按照碳素粉末烧制后的重量成为40wt%的标准添加疏水剂聚四氟乙烯微粒的水性分散液(氟素树脂弥散体D-1,达肯公司制)混匀形成的浆料状混合物,在厚度约350μm,孔隙率为87%的碳布承载体的一面上涂敷,厚度约为20μm,在室温下干燥后在270℃烧制约3小时而制成碳素片。将得到的此碳素片切成与上述的MEA的阴极电极的尺寸相同的形状作为阴极扩散层106。
在固体高分子电解质膜102的一面上一体化接合阳极催化层103,在其相反侧一面上一体化接合阴极催化层104而成的MEA的阳极催化层103与阳极扩散层105密接,另一侧的阴极催化层104与阴极扩散层106密接。空气流路板111配置于阴极扩散层106的外侧,设置有具有空气供给口112和空气排出口113的空气流路114。利用氧化剂气体供给单元50的吹风机51供给空气。另一方面,燃料流路板107配置于阳极扩散层105的外侧,设置有具有燃料供给口108和燃料排出口109的燃料流路110。向此燃料流路板107供给的甲醇水溶液的浓度由控制部30控制在适当浓度范围。此控制,对利用设置于送液泵23的入口侧的电磁阀24以时间分割方式对连接甲醇水溶液容器22的出口和送液泵23的入口的流路与连接水容器21的出口和送液泵23的入口的流路进行切换进行控制。另外,为了使由于(1)式的反应在阳极上产生的二氧化碳气体从此电池顺利排出,作为易于产生脉动的定时,电磁阀24的切换以在1秒内进行50次至0.2次的定时进行。
另外,在以下的<实施例2>至<实施例14>以及<比较例1>中使用的燃料电池电源的说明中,对于与在此实施例1中使用的燃料电池电源不同的特征部分予以说明,对共同的部分的说明则省略。
<实施例2>
将在实施例1中使用的碳素粉末20g和200ml的发烟硫酸(浓度60%)在300ml的烧瓶中混合,在氮气流下在60℃的温度下保持2天使其进行反应。反应的液体从黑色变为茶色。之后,将此烧瓶的温度冷却到室温,再利用冰进行冷却的同时将此反应液一边搅拌一边缓慢加到装有600ml的蒸馏水的烧瓶中,在反应液全部加入之后进行过滤。于是,将过滤后的沉淀物以蒸馏水充分进行清洗,利用蒸馏水清洗此沉淀物要一直清洗到清洗液成为中性为止。之后,再依次利用甲醇、乙醚将其洗净之后,在40℃下进行真空干燥而得到碳素粉末的衍生物。对此碳素粉末进行红外线分光吸收光谱测定的结果,确认了在1225cm-1及1413cm-1处有基于-OSO3H基的吸收。另外,确认了在1049cm-1处有基于-OH基的吸收。这一点,表示在利用此发烟硫酸处理过的碳素粉末的表面上导入了-OSO3H基和-OH基。利用此发烟硫酸处理过的碳素粉末的甲醇水溶液的接触角与未利用发烟硫酸处理过的碳素粉末的甲醇水溶液的接触角相比较小,是亲水性的。另外,利用此发烟硫酸处理过的碳素粉末与未利用此发烟硫酸处理过的碳素粉末相比较,导电性也更好。将利用此发烟硫酸处理过的碳素粉末添加到5wt%的Nafion117的水/乙醇混合溶液(溶剂为将水、异丙醇、正丙醇以重量比20∶40∶40混合使用:弗鲁克米克公司制)形成的浆料状混合物在厚度约350μm,孔隙率为87%的阳极扩散层105的碳布承载体的一面上涂敷,厚度约为20μm,在100℃下干燥后制成碳素片。除了将得到的碳素片切成与上述的MEA的阳极电极的尺寸相同的形状作为阳极扩散层105以外,利用与实施例1完全相同的结构的燃料电池电源进行了实验。
<实施例3>
将在实施例1中使用的约350μm、孔隙率为87%的碳布浸入到装有发烟硫酸(浓度60%)的烧瓶中进行与实施例2的发烟硫酸处理的碳素粉末同样的处理。其结果,经过此发烟硫酸处理的碳布,是在表面上导入了-OSO3H基和-OH基亲水性及导电性优异的制品。除了将经过此发烟硫酸处理的碳布用作阳极扩散层105以外,利用与实施例2完全相同的结构的燃料电池电源进行了实验。
<实施例4>
将实施例1的固体高分子电解质膜102的聚全氟碳磺酸膜改变为使用磺甲基化聚醚砜碳化氢类电解质膜。另外,除了阳极催化层103的粘接剂使用30wt%磺甲基化聚醚砜碳化氢类电解质以外,利用与实施例2完全相同的结构的燃料电池电源进行了实验。在此场合,阳极催化层103,以下述方式制作。首先,对在用作阳极催化层103的承载体的碳素粉末上的铂和钌的原子比为1/1的铂/钌合金微粒的催化剂以50wt%进行分散承载的催化剂粉末进行调整。之后,将此催化剂粉末和由30wt%的磺甲基化聚醚砜碳化氢类电解质的水/乙醇混合溶液(为将水、异丙醇、正丙醇以重量比20∶40∶40混合的溶剂)和分散剂及疏水剂构成的浆料通过调整借助筛网印刷法在聚四氟乙烯膜上形成厚度约80μm的多孔质催化层,将此多孔质催化层用作阳极催化层103。
<实施例5>
除了对供给到实施例4中使用的DMFC100的甲醇水溶液的浓度调整,不使用电磁阀24而只使用图7所示的时间分割型压电送液泵以外,利用与实施例4完全相同的结构的燃料电池电源进行了实验。
<实施例6>
除了使用了对在实施例5中使用的时间分割型压电送液泵的隔壁室的左右的体积进行改变,使水流过的隔壁室的体积成为甲醇水溶液流过的隔壁室的体积的两倍的时间分割型压电送液泵以外,利用与实施例5完全相同的结构的燃料电池电源进行了实验。
<实施例7>
除了将阳极催化层103的厚度从80μm增加到150μm,将阴极催化层104的厚度从50μm减小到25μm以外,利用与实施例5完全相同的结构的燃料电池电源进行了实验。
<实施例8>
除了在阳极扩散层105中使用了将实施例1中使用的碳素粉末利用与实施例2相同的发烟硫酸进行处理得到的亲水性碳素粉末以外,利用与实施例7完全相同的结构的燃料电池电源进行了实验。
<实施例9>
除了在阳极扩散层105中使用了将实施例3中使用的碳布利用与实施例3相同的发烟硫酸进行处理并将得到的亲水碳布以外,利用与实施例8完全相同的结构的燃料电池电源进行了实验。
<实施例10>
除了使用碳纸代替用作阳极扩散层105的承载体的碳布以外,利用与实施例8完全相同的结构的燃料电池电源进行了实验。
<实施例11>
将实施例7中使用的阴极催化层104以下述方式制作。首先,对在用作阴极催化层104的承载体的碳素粉末上的铂和钌的原子比为1/1的铂/钌合金微粒的催化剂以50wt%进行分散承载的催化剂粉末进行调整。之后,将此催化剂粉末和由30wt%的磺甲基化聚醚砜碳化氢类电解质的水/乙醇混合溶液(为将水、异丙醇、正丙醇以重量比20∶40∶40混合的溶剂)和分散剂及疏水剂构成的浆料进行调整,借助筛网印刷法在聚四氟乙烯膜上形成厚度约25μm的多孔质催化层。将此多孔质催化层用作阴极催化层104。另外,阴极扩散层106使用承载碳的碳纸。除了改变阴极催化层104、阴极扩散层106以外,利用与实施例10完全相同的结构的燃料电池电源进行了实验。
<实施例12>
除了将阳极催化层103的厚度从150μm改变为200μm,将阴极催化层104的厚度从25μm改变为15μm以外,利用与实施例11完全相同的结构的燃料电池电源进行了实验。
<实施例13>
除了将阳极催化层103的厚度从200μm改变为100μm,将阴极催化层104的厚度从15μm改变为10μm和将在实施例1中使用的碳素粉末利用与实施例2相同的发烟硫酸进行处理所得到的亲水性碳素粉末用作阳极催化层103的承载体以外,利用与实施例12完全相同的结构的燃料电池电源进行了实验。
<实施例14>
除了将阳极催化层103的厚度从100μm改变为50μm,将阴极催化层104的厚度从10μm改变为5μm以外,利用与实施例13完全相同的结构的燃料电池电源进行了实验。
<比较例1>
在比较例1中使用的燃料电池电源的结构如图17所示。在此比较例1中使用的燃料电池电源的结构与实施例1的燃料电池电源的结构,除了液体燃料供给部20的结构不同这一点以外,使用结构完全相同的燃料电池电源。就是说,在液体燃料供给部20的结构中,比较例1中所使用的燃料电池电源,与实施例1比较,只有还使用了供水泵210、高浓度甲醇水溶液供给泵220、甲醇水溶液浓度调整容器230、甲醇浓度传感器240、DMFC供给用泵250这一点不同。此比较例1使用的泵,采用了图6所示的压电泵。供给DMFC100的燃料流路板107的甲醇水溶液的浓度的调整方法,是根据甲醇浓度传感器240的检测浓度,利用分别直接连接水容器21和甲醇水溶液容器22的供水泵210和高浓度甲醇水溶液供给泵220对供给甲醇水溶液浓度调整容器230的供给量进行控制的方法。
(2)实验方法
从<实施例15>起到<实施例28>以及<比较例2>中所使用的燃料电池电源,是在以下的条件下进行实验和评价的。首先,供给阳极的甲醇水溶液,以0.2ml/min的流量供给以维持2M的浓度。供给阴极的空气,以500ml/min的流量供给。其次,对上述燃料电池电源的评价是根据(i)电压-电流特性(DMFC的设定温度为70℃);(ii)连续输出特性(DMFC的设定温度为70℃,设定电流密度为100mA/cm2)。
(3)结果
下面按照从<实施例1>起到<实施例14>以及<比较例1>的顺序示出对上述(i)和(ii)的特性评价的结果。
(实施例1)
在图10上示出DMFC的电压-电流特性结果。如图10所示,在100mA/cm2的电流密度时的DMFC的输出电压为450mV。在图11中示出在100mA/cm2的电流密度下连续发电时的输出电压随时间的变化。根据图11,此DMFC的输出电压,即使是连续运行5小时,输出电压也保持一定,输出电压一次也未降低。
另外,在从<实施例2>起到<实施例14>中,因为DMFC的电压-电流特性结果和在以100mA/cm2的电流密度连续发电时的输出电压随着时间变化的状态与<实施例1>的图10和图11示出的状态大致相同,所以从<实施例2>起到<实施例14>中将这些示图省略而分别示出在100mA/cm2的电流密度下DMFC的输出电压和可以以100mA/cm2的电流密度连续发电的时间。
(实施例2)
由DMFC的电压-电流特性结果,在100mA/cm2的电流密度时的DMFC的输出电压为470mV。在100mA/cm2的电流密度下可以连续发电的时间为8小时,其间,输出电压保持一定,输出电压一次也未降低。
(实施例3)
由DMFC的电压-电流特性结果,在100mA/cm2的电流密度时的DMFC的输出电压为480mV。在100mA/cm2的电流密度下可以连续发电的时间为8小时,其间,输出电压保持一定,输出电压一次也未降低。
(实施例4)
由DMFC的电压-电流特性结果,在100mA/cm2的电流密度时的DMFC的输出电压为480mV。在100mA/cm2的电流密度下可以连续发电的时间为16小时,其间,输出电压保持一定,输出电压一次也未降低。
(实施例5)
由DMFC的电压-电流特性结果,在100mA/cm2的电流密度时的DMFC的输出电压为480mV。在100mA/cm2的电流密度下可以连续发电的时间为16小时,其间,输出电压保持一定,输出电压一次也未降低。
(实施例6)
由DMFC的电压-电流特性结果,在100mA/cm2的电流密度时的DMFC的输出电压为480mV。在100mA/cm2的电流密度下可以连续发电的时间为16小时,其间,输出电压保持一定,输出电压一次也未降低。
(实施例7)
由DMFC的电压-电流特性结果,在100mA/cm2的电流密度时的DMFC的输出电压为530mV。在100mA/cm2的电流密度下可以连续发电的时间为14.4小时,其间,输出电压保持一定,输出电压一次也未降低。
(实施例8)
由DMFC的电压-电流特性结果,在100mA/cm2的电流密度时的DMFC的输出电压为550mV。在100mA/cm2的电流密度下可以连续发电的时间为14.4小时,其间,输出电压保持一定,输出电压一次也未降低。
(实施例9)
由DMFC的电压-电流特性结果,在100mA/cm2的电流密度时的DMFC的输出电压为570mV。在100mA/cm2的电流密度下可以连续发电的时间为14.4小时,其间,输出电压保持一定,输出电压一次也未降低。
(实施例10)
由DMFC的电压-电流特性结果,在100mA/cm2的电流密度时的DMFC的输出电压为570mV。在100mA/cm2的电流密度下可以连续发电的时间为14.4小时,其间,输出电压保持一定,输出电压一次也未降低。
(实施例11)
由DMFC的电压-电流特性结果,在100mA/cm2的电流密度时的DMFC的输出电压为580mV。在100mA/cm2的电流密度下可以连续发电的时间为14.4小时,其间,输出电压保持一定,输出电压一次也未降低。
(实施例12)
由DMFC的电压-电流特性结果,在100mA/cm2的电流密度时的DMFC的输出电压为620mV。在100mA/cm2的电流密度下可以连续发电的时间为14.4小时,其间,输出电压保持一定,输出电压一次也未降低。
(实施例13)
由DMFC的电压-电流特性结果,在100mA/cm2的电流密度时的DMFC的输出电压为640mV。在100mA/cm2的电流密度下可以连续发电的时间为14.4小时,其间,输出电压保持一定,输出电压一次也未降低。
(实施例14)
由DMFC的电压-电流特性结果,在100mA/cm2的电流密度时的DMFC的输出电压为650mV。在100mA/cm2的电流密度下可以连续发电的时间为14.4小时,其间,输出电压保持一定,输出电压一次也未降低。
(比较例1)
在图12中示出DMFC的电压-电流特性结果。如图所示,在100mA/cm2的电流密度时的DMFC的输出电压为450mV。在图13中示出在100mA/cm2的电流密度下连续发电5小时时的输出电压随时间的变化。根据图13,此DMFC的输出电压,由于在开始此电源的运行36分钟之后及63分钟之后发生的二氧化碳气体使燃料的甲醇水溶液向阳极的供给变得不稳定,产生输出电压一时降低的问题。另外,在300分钟之后发生很大的二氧化碳气体的气泡妨碍甲醇燃料的供给,使输出电压大幅度降低。此处,对于从上述实施例1起至实施例14及从比较例1得到的结果,在表1中汇总示出(i)在100mA/cm2的电流密度时的DMFC的输出电压;(ii)在100mA/cm2的电流密度下可以连续发电的时间。
<表1>
                     表1
  输出电压(mV)  能否连续运行5小时?   连续运行时间(hr)
  实施例15   450  是   5
  实施例16   470  是   8
  实施例17   480  是   ↑
  实施例18   480  是   16
  实施例19   480  是   ↑
  实施例20   480  是   ↑
  实施例21   530  是   14.4
  实施例22   550  是   ↑
  实施例23   570  是   ↑
  实施例24   570  是   ↑
  实施例25   580  是   ↑
  实施例26   620  是   ↑
  实施例27   640  是   ↑
  实施例28   650  是   ↑
  比较例2   450  否   5以下
注:输出电压是在电流密度为100mA/cm2时的值。
由此表1和图10至图13的结果可分别得出上述实施例1至实施例14示出的以下的效果。
在实施例1中,在将图10所示的实施例1的DMFC的电压-电流特性的结果和图12示出的比较例1的DMFC的电压-电流特性的结果进行比较时,两者的电压-电流特性大致相同,在100mA/cm2的电流密度时的输出电压都是450mV。
下面,在对图11所示的实施例1的DMFC连续发电的时间和输出电压的关系与图13所示的比较例1的燃料电池电源连续发电的时间和输出电压的关系进行比较时,实施例1在5小时连续发电中输出电压稳定,输出电压一次也未发生降低。另一方面,比较例1,在5小时连续发电中输出电压不稳定,输出电压发生降低。其理由,是因为实施例1在向DMFC供给甲醇水溶液时,给出脉动,所以在阳极上发生的二氧化碳气体可以顺利地从DMFC上除去,与此相对,因为比较例1在向DMFC供给甲醇水溶液时不给出脉动,所以在阳极上发生的二氧化碳气体不能顺利地从DMFC上除去。如上所述,对实施例1与比较例1进行比较的结果,实施例1的燃料电池电源,通过利用电磁阀以时间分割方式对甲醇水溶液和水进行输送,可以将在比较例1中使用的三个送液泵减少一个,所以可以节省空间和减轻重量。此外,因为实施例1的燃料电池电源可以在向DMFC供给甲醇水溶液时给出脉动而从DMFC顺利地除去在阳极上发生的二氧化碳气体,可以以稳定的输出电压(450mV)连续发电。
在对实施例2的DMFC的电压-电流特性的结果和实施例1的DMFC的电压-电流特性结果进行比较时,实施例2的100mA/cm2的电流密度的DMFC的输出电压是470mV,此输出电压比实施例1的输出电压高约20mV。其次,在比较实施例2的DMFC连续发电时的时间和输出电压的关系与实施例1的燃料电池电源的连续发电时的时间和输出电压的关系时,实施例2的燃料电池电源可以以稳定的输出电压(470mV)连续发电的时间为8小时,此时间比实施例1的可以连续发电的5小时也长约3小时。如上所述,对实施例1与比较例1进行比较的结果,实施例2,在实施例1对比较例1得到的效果之外,100mA/cm2的电流密度的DMFC的输出电压与实施例1相比大约高20mV,并且得到可以以稳定的输出电压连续发电的时间比实施例1大约长3小时的效果。这一效果应该是对阳极扩散层的碳素粉末进行亲水化处理所致。就是说,因为通过这种亲水化处理,使阳极扩散层变得易于受到甲醇水溶液的濡湿,可以有更多量的甲醇水溶液顺利地浸透阳极催化层103,所以反应可进一步进行而输出电压变得更大。并且,因为通过该亲水性处理,在阳极上生成的二氧化碳气体的气泡不会在阳极扩散层105内成长为大气泡,而是在微小的状态原样不变地从阳极扩散层105离开,所以可以向阳极顺利地供给甲醇水溶液,可以以稳定的电压长时间连续发电。
在对实施例3的DMFC的电压-电流特性的结果和实施例2的DMFC的电压-电流特性结果进行比较时,实施例3的100mA/cm2的电流密度的DMFC的输出电压是480mV,此输出电压比实施例2的输出电压高约10mV。其次,实施例3的DMFC连续发电时的时间和输出电压的关系与实施例2的燃料电池电源的连续发电时的时间和输出电压的关系相同。如上所述,对实施例3与实施例2进行比较的结果,实施例3,在实施例2对实施例1得到的效果之外,100mA/cm2的电流密度的DMFC的输出电压与实施例2相比大约高10mV。这一效果应该是实施例3对在实施例2中使用的阳极扩散层的碳布还进行亲水化处理所致。就是说,因为通过这种亲水化处理,使阳极扩散层变得易于受到甲醇水溶液的濡湿,可以有更多量的甲醇水溶液顺利地浸透阳极催化层103,所以反应可进一步进行而输出电压变得更大。并且,因为通过该亲水化处理,在阳极上生成的二氧化碳气体的气泡不会在阳极扩散层105内成长为大气泡,而是在微小的状态原样不变地从阳极扩散层105离开,所以可以向阳极顺利地供给甲醇水溶液,可以以稳定的电压长时间连续发电。
在对实施例4的DMFC的电压-电流特性的结果和实施例1的DMFC的电压-电流特性结果进行比较时,实施例4的100mA/cm2的电流密度的DMFC的输出电压是480mV,此输出电压比实施例1的输出电压高约30mV。实施例4与实施例1的差别是实施例4使用碳化氢类电解质作为电解质膜及粘接剂,与此相对,实施例1使用氟素类电解质膜作为电解质膜及粘接剂。是由于在实施例4中使用的碳化氢类电解质的离子传导性比在实施例3中使用的氟素类电解质的大,即DMFC的内部电阻小。在比较实施例4的DMFC连续发电时的时间和输出电压的关系与实施例1的燃料电池电源的连续发电时的时间和输出电压的关系时,实施例4的燃料电池电源可以以稳定的输出电压连续发电的时间为16小时,是实施例1的可以连续发电时间5小时的2倍以上。
其次,在比较实施例4的DMFC连续发电时的时间和输出电压的关系与实施例1的燃料电池电源的连续发电时的时间和输出电压的关系时,实施例4的燃料电池电源可以以稳定的输出电压连续发电的时间为16小时,此时间是实施例1的可以连续发电时间的2倍以上的时间长度。如上所述,实施例4和实施例1比较的结果,可以得到实施例4可以以稳定的输出电压连续发电的时间为实施例1的可以连续发电时间的2倍以上的时间长度的效果。此效果是将固体高分子电解质膜和阳极的粘接剂改变为碳化氢类电解质膜所致,此碳化氢类电解质膜,与实施例1使用的氟素类电解质膜相比,穿过(crossover)的甲醇少。由于固体高分子电解质膜的穿过的甲醇少使甲醇水溶液中的甲醇的浓度变化小,有助于燃料电池的稳定性增加和燃料的利用效率的提高。
在对实施例5的DMFC的电压-电流特性的结果和实施例4的DMFC的电压-电流特性结果进行比较时,实施例5的100mA/cm2的电流密度的DMFC的输出电压是480mV,此输出电压与实施例4的输出电压相同。在比较实施例5的DMFC连续发电时的时间和输出电压的关系与实施例4的燃料电池电源的连续发电时的时间和输出电压的关系时,实施例5的燃料电池电源的可以连续发电的时间与实施例4的相同。如上所述,实施例5和实施例4比较的结果,实施例5,在供给到DMFC的甲醇水溶液的浓度调整中不使用电磁阀而只使用时间分割型压电送液泵可以得到与实施例4同样的效果。
在对实施例6的DMFC的电压-电流特性的结果和实施例5的DMFC的电压-电流特性结果进行比较时,实施例6的100mA/cm2的电流密度的DMFC的输出电压是480mV,此输出电压与实施例5的输出电压相同。
其次,在比较实施例6的DMFC连续发电时的时间和输出电压的关系与实施例5的燃料电池电源的连续发电时的时间和输出电压的关系时,实施例6的燃料电池电源的可以连续发电的时间与实施例5的相同。如上所述,实施例6和实施例5比较的结果,实施例6,在供给到DMFC的甲醇水溶液的浓度调整中不使用电磁阀而只改变时间分割型压电送液泵的隔壁室的左右的体积进行送液,也可以得到与实施例5同样的效果。
在对实施例7的DMFC的电压-电流特性的结果和实施例5的DMFC的电压-电流特性的结果进行比较时,实施例7的100mA/cm2的电流密度的DMFC的输出电压是530mV,此输出电压比实施例5的输出电压高约50mV。
其次,在比较实施例7的DMFC连续发电时的时间和输出电压的关系与实施例5的燃料电池电源的连续发电时的时间和输出电压的关系时,实施例7的燃料电池电源可以以稳定的输出电压连续发电的时间为14.4小时,此时间比实施例5可以连续发电时间短一些。如上所述,比较实施例7和实施例5的差别的结果,实施例7,在实施例5对实施例1至4得到的效果之外,100mA/cm2的电流密度的DMFC的输出电压与实施例5相比大约高50mV,并且得到可以以稳定的输出电压连续发电的时间比实施例5短一些的效果。这一效果,将阳极催化层103的厚度从80μm增加到150μm,将阴极催化层104的厚度从50μm减小到25μm。因为通过增加阳极催化层103的厚度,甲醇水溶液和阳极催化剂接触的面积增加,在阳极催化层103中的甲醇水溶液和水的反应可以更进一步进行,可有助于提高燃料的利用效率。另外,之所以将阴极催化层104的厚度减薄,有效地使用空气,即氧气,DMFC做得不厚,是由于铂等催化剂的成本高,在不降低燃料电池的输出的条件下尽量减小阴极催化剂的量可减少铂的总使用量,可以降低总成本。特别是,减小阴极的厚度可有效地使用氧气,对提高电池性能是有效的。
在对实施例8的DMFC的电压-电流特性的结果和实施例7的DMFC的电压-电流特性结果进行比较时,实施例8的100mA/cm2的电流密度的DMFC的输出电压是550mV,此输出电压比实施例7的输出电压高约20mV。其次,在比较实施例8的DMFC连续发电时的时间和输出电压的关系与实施例8的燃料电池电源的连续发电时的时间和输出电压的关系时,实施例7的燃料电池电源可以连续发电的时间与实施例7相同。如上所述,实施例8和实施例7比较的结果,实施例8,在实施例7对实施例5得到的效果之外,100mA/cm2的电流密度的DMFC的输出电压与实施例7相比大约高20mV。此输出电压变得更大是因为阳极扩散层的碳素粉末经过亲水处理,就是说,因为通过对阳极扩散层的碳素粉末进行这种亲水化处理,使阳极扩散层变得易于受到甲醇水溶液的濡湿,可以有更多量的甲醇水溶液顺利地浸透阳极催化层103。因此,阳极催化层103中的甲醇和水的反应更进一步地进行,输出电压变得更大。
在对实施例9的DMFC的电压-电流特性的结果和实施例8的DMFC的电压-电流特性结果进行比较时,实施例9的100mA/cm2的电流密度的DMFC的输出电压是570mV,此输出电压比实施例8的输出电压高约20mV。其次,在比较实施例9的DMFC连续发电时的时间和输出电压的关系与实施例8的燃料电池电源的连续发电时的时间和输出电压的关系时,实施例9的燃料电池电源可以连续发电的时间与实施例8相同。如上所述,实施例9和实施例8比较的结果,实施例9,在实施例8对实施例7得到的效果之外,100mA/cm2的电流密度的DMFC的输出电压与实施例8相比大约高20mV。该使输出电压变得更高的效果应该是通过对阳极扩散层105的碳布承载体进行亲水处理,使阳极扩散层变得易于被甲醇水溶液濡湿,可以有更多量的甲醇水溶液更进一步顺利地浸透阳极催化层。
在对实施例10的DMFC的电压-电流特性的结果和实施例8的DMFC的电压-电流特性结果进行比较时,实施例10的100mA/cm2的电流密度的DMFC的输出电压是570mV,此输出电压比实施例8的输出电压高约20mV。
其次,在比较实施例10的DMFC连续发电时的时间和输出电压的关系与实施例8的燃料电池电源的连续发电时的时间和输出电压的关系时,实施例10的燃料电池电源可以连续发电的时间与实施例8相同。如上所述,实施例10和实施例8比较的结果,由于将阳极扩散层从碳布改变为碳纸的效果,可使输出电压进一步提高。这一点表示,作为阳极扩散层,碳纸比碳布效果更优异。
在对实施例11的DMFC的电压-电流特性的结果和实施例10的DMFC的电压-电流特性结果进行比较时,实施例10的100mA/cm2的电流密度的DMFC的输出电压是580mV,此输出电压比实施例10的输出电压高约10mV。其次,在比较实施例11的DMFC连续发电时的时间和输出电压的关系与实施例10的燃料电池电源的连续发电时的时间和输出电压的关系时,实施例11的燃料电池电源可以连续发电的时间与实施例10相同。
如上所述,实施例11和实施例10比较的结果,实施例11,在实施例10对实施例9得到的效果之外,100mA/cm2的电流密度的DMFC的输出电压与实施例10相比大约高10mV。该使输出电压变得更高的效果是由于将阴极催化层的粘接剂从氟素类电解质改变为碳化氢类电解质,使离子传导性进一步提高而内部电阻减小和输出电压增大。
在对实施例12的DMFC的电压-电流特性的结果和实施例11的DMFC的电压-电流特性结果进行比较时,实施例12的100mA/cm2的电流密度的DMFC的输出电压是620mV,此输出电压比实施例11的输出电压高约50mV。其次,在比较实施例12的DMFC连续发电时的时间和输出电压的关系与实施例11的燃料电池电源的连续发电时的时间和输出电压的关系时,实施例12的燃料电池电源可以以稳定的输出电压连续发电的时间与实施例11相同。如上所述,实施例12和实施例11比较的结果,实施例12,在实施例11对实施例10得到的效果之外,100mA/cm2的电流密度的DMFC的输出电压与实施例11相比大约高40mV。这一效果,通过将阳极催化层103的厚度从150μm增加到200μm,甲醇水溶液和阳极催化剂接触的面积进一步增加,在阳极催化层103中的甲醇水溶液和水的反应可以更进一步进行,所以输出电压增高。另外,阴极催化层104的厚度从25μm减小到15μm,氧气的利用效率增加也有助于输出电压提高。
在对实施例13的DMFC的电压-电流特性的结果和实施例11的DMFC的电压-电流特性结果进行比较时,实施例13的100mA/cm2的电流密度的DMFC的输出电压是640mV,此输出电压比实施例11的输出电压高约60mV。
其次,在比较实施例13的DMFC连续发电时的时间和输出电压的关系与实施例11的燃料电池电源的连续发电时的时间和输出电压的关系时,实施例13的燃料电池电源可以连续发电的时间与实施例11相同。如上所述,实施例13和实施例11比较的结果,实施例13,在实施例11对实施例10得到的效果之外,100mA/cm2的电流密度的DMFC的输出电压与实施例11相比大约高60mV。这一效果,将阳极催化层103的厚度从150μm减小到100μm,尽管甲醇水溶液和阳极催化剂接触的面积减小,因为通过对阳极扩散层103的碳素进行亲水化处理,使甲醇水溶液和阳极催化剂的接触的机会增加,通过将阴极催化层104的厚度从25μm减小到10μm,氧气一直扩散到阴极的内部,可以提高氧气的利用效率而使输出电压提高。
在对实施例14的DMFC的电压-电流特性的结果和实施例13的DMFC的电压-电流特性结果进行比较时,实施例14的100mA/cm2的电流密度的DMFC的输出电压是650mV,此输出电压比实施例13的输出电压高约10mV。其次,在比较实施例14的DMFC连续发电时的时间和输出电压的关系与实施例13的燃料电池电源的连续发电时的时间和输出电压的关系时,实施例14的燃料电池电源可以连续发电的时间与实施例13相同。如上所述,实施例14和实施例13比较的结果,实施例14,在实施例13对实施例12得到的效果变大,100mA/cm2的电流密度的DMFC的输出电压与实施例13相比大约可高10mV。特别是,将阴极催化层104的厚度减薄对提高氧气的利用效率而使输出电压提高是有效的。
(3)应用例
<应用例1>
图14示出利用了燃料电池电源的笔记本型个人计算机的燃料电池电源和高浓度甲醇水溶液的贮藏容器的概略结构。此笔记本型个人计算机500的燃料电池电源501使用实施例12所示的燃料电池电源。另外,高浓度甲醇水溶液的贮藏容器采用可以将使用后变空的高浓度的甲醇水溶液的容器以充满的容器进行更换的盒式的燃料盒502。此笔记本型个人计算机500,在平均12W输出时可连续使用8小时。
<应用例2>
图15和图16示出使用燃料电池电源的PDA(Personal DigitalAssistant的略称,也称为便携式信息终端)。图16示出此PDA(便携式信息终端)的外观照片。
图16示出此PDA(便携式信息终端)600的燃料电池电源和高浓度甲醇水溶液的贮藏容器的概略结构。燃料电池电源601使用实施例13所示的燃料电池电源。另外,高浓度甲醇水溶液的贮藏容器采用可以将使用后变空的高浓度的甲醇水溶液的容器以充满的容器进行更换的盒式的燃料盒602。此PDA(便携式信息终端)600可连续使用8小时。另外,使用实施例13的燃料电池电源的便携式电话机(未图示)可连续工作50小时。此时,在燃料电池的输出降低时,可利用便携式电话机的方法模式附属的振动功能使便携式电话机振动而再次提高燃料电池的输出,输出也会稳定。这是因为在阳极上产生的二氧化碳气体由于振动而不会成长为大气泡,可以以微小气泡原样不变形式排出而使阳极内燃料可以均匀供给。
使用液体燃料的燃料电池存在下述(1)至(5)的问题。
(1)在现有的循环使用液体燃料的燃料电池中,因为使用检测液体燃料的浓度并保持规定的浓度的浓度控制结构,必须具有输送高浓度液体燃料的泵和输送水的泵等多个泵。此多个泵的使用,加大燃料电池电源内泵等辅机占有的空间,结果燃料电池电源本身大型化。
(2)在利用上述化学式(1)进行反应而在阳极上生成的二氧化碳气体不能顺利地从阳极排出时,因为不能向阳极供给足够的甲醇等液体燃料,电池的输出将不稳定或降低。
(3)因为供给到阳极的甲醇等液体燃料不能充分浸入阴极扩散层,输出和燃料的利用率降低。
(4)因为供给到阳极的甲醇等液体燃料不能与阳极顺利地进行反应,输出和燃料的利用率降低。
(5)因为供给到阴极的氧气不能到达阴极催化层内部,质子的氧化不会发生,输出和燃料的利用率降低。
上述(2)~(5),不仅是稀释循环型的积层燃料电池电源也是自然呼气的板(平面)型燃料电池电源共同的问题。
从实施例1至实施例14及应用例1至2得到的本实施方式的效果可汇总如下:
(1)因为不需要设置保持甲醇等液体燃料的浓度为规定的浓度所需要的多个泵,所以可提供能够实现小型轻量化的燃料电池电源及其运行方法以及使用燃料电池电源的便携式电子装置。
(2)此外,由于可以顺利地排出阳极内的二氧化碳气体而可以向阳极均匀供给甲醇等液体燃料,所以可提供能够增加输出的燃料电池电源及其运行方法以及使用燃料电池电源的便携式电子装置。
(3)此外还有,因为供给到阳极的甲醇等液体燃料可以充分浸入到阳极扩散层,所以可提供能够增加燃料电池电源及使用该燃料电池电源的便携式电子装置的输出和燃料的利用效率的燃料电池电源及其运行方法以及使用燃料电池电源的便携式电子装置。
(4)此外,因为通过加厚阳极催化层使进行甲醇和水的反应的催化剂的量增加,所以可提供能够促进甲醇等液体燃料的反应而使输出和燃料的利用效率增加的燃料电池电源及其运行方法以及使用燃料电池电源的便携式电子装置。
(5)此外,通过使阴极催化层减薄,氧气可充分地一直扩散到阴极催化层而使氧气可得到有效的利用,所以可提供能够增加输出的燃料电池电源及其运行方法以及使用燃料电池电源的便携式电子装置。
(6)此外还有,因为可以永远顺利地排出由于燃料电池的反应而发生的二氧化碳气体,所以可提供能够长时间连续使用的燃料电池电源及其运行方法以及使用燃料电池电源的便携式电子装置。
(7)因为使用本实施方式的燃料电池电源及其运行方法以及使用燃料电池电源的便携式电子装置可以长时间连续使用,所以装有二次电池的便携式电话机、便携式个人计算机、便携式音频及视频机器、其他便携式信息终端中附设的充电器及二次电池就不再需要装载了,可以使用原来内置的电源。
本实施方式的目的是提供不需要设置多个泵的可以小型轻量化的燃料电池电源及其运行方法以及使用燃料电池电源的便携式电子装置。本实施方式的另一个目的是提供可以顺利地从阳极排出由于反应发生的二氧化碳气体而可以提高输出的燃料电池电源及其运行方法以及使用燃料电池电源的便携式电子装置。
此外,本实施方式的另一个目的是提供使供给到电池的甲醇等液体燃料可以充分浸入到阳极扩散层而能够增加输出和燃料的利用效率的燃料电池电源及其运行方法以及使用燃料电池电源的便携式电子装置。
此外还有,本实施方式的另一个目的是提供能够促进供给到阳极的甲醇等液体燃料的反应而使输出和燃料的利用效率增加的燃料电池电源及其运行方法以及使用燃料电池电源的便携式电子装置。
此外,本实施方式的另一个目的是提供可以顺利地排出由于燃料电池的反应而发生的二氧化碳气体而能够以稳定的输出长时间连续使用的燃料电池电源及其运行方法以及使用燃料电池电源的便携式电子装置。可以顺利地排出由于燃料电池的反应而发生的二氧化碳气体而能够以稳定的输出长时间连续使用。此外,使供给到电池的甲醇等液体燃料可以充分浸入到阳极扩散层而能够增加输出和燃料的利用效率。此外还有,能够促进供给到阳极的甲醇等液体燃料的反应而使输出和燃料的利用效率增加。

Claims (13)

1.一种燃料电池电源装置,包括:具有阳极、与该阳极相对配置的阴极、夹在该阳极和阴极之间的固体高分子电解质膜的燃料电池部;以及向上述阳极供给液体燃料和水的液体燃料供给部,其特征在于:
上述液体燃料供给部是利用一个泵以时间分割方式交替地向上述阳极供给液体燃料和水的单元。
2.如权利要求1所述的燃料电池电源装置,其特征在于:上述液体燃料供给部是利用电磁阀以一个泵以时间分割方式向上述阳极供给液体燃料和水的单元。
3.如权利要求1所述的燃料电池电源装置,其特征在于:上述液体燃料供给部是利用压电泵以一个泵以时间分割方式向上述阳极供给液体燃料和水的单元。
4.如权利要求1所述的燃料电池电源装置,其特征在于:上述液体燃料供给部是利用柱塞泵以一个泵以时间分割方式向上述阳极供给液体燃料和水的单元。
5.如权利要求1所述的燃料电池电源装置,其特征在于:
上述阳极,在与上述固体高分子电解质膜接触的一侧的面上具有阳极催化层,在该阳极催化层的不与上述固体高分子电解质膜接触的一侧的面上具有阳极扩散层,在该阳极扩散层的外侧具有液体燃料流路板;
上述阴极,在与上述固体高分子电解质膜接触的一侧的面上具有阴极催化层,在该阴极催化层的不与上述固体高分子电解质膜接触的一侧的面上具有阴极扩散层,在该阴极扩散层的外侧具有氧化剂气体流路板;
上述阳极扩散层经过了亲水化处理。
6.如权利要求5所述的燃料电池电源装置,其特征在于:
在上述阳极催化层中使用的碳素承载体经过了亲水化处理。
7.如权利要求5所述的燃料电池电源装置,其特征在于:
上述固体高分子电解质膜是导入了烯化磺酸基的芳香族碳化氢类电解质膜;在上述阳极催化层中使用的粘接剂是导入了烯化磺酸基的芳香族碳化氢类电解质。
8.如权利要求5所述的燃料电池电源装置,其特征在于:
上述阳极催化层的厚度比上述阴极催化层的厚度大。
9.如权利要求5所述的燃料电池电源装置,其特征在于:
在上述阴极催化层中使用的粘接剂是导入了烯化磺酸基的芳香族碳化氢类电解质。
10.一种便携式电子装置,其特征在于:在移动装置中使用了如权利要求1所述的燃料电池电源装置。
11.如权利要求10所述的便携式电子装置,其特征在于:上述便携式电子装置是笔记本型个人计算机。
12.如权利要求10所述的便携式电子装置,其特征在于:上述便携式电子装置是便携式信息终端。
13.如权利要求10所述的便携式电子装置,其特征在于:上述便携式电子装置是便携式电话机。
CNB2005100057941A 2004-04-26 2005-01-25 燃料电池电源及其运行方法以及使用它的便携式电子装置 Expired - Fee Related CN100341184C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004130274 2004-04-26
JP2004130274 2004-04-26
JP2004207996 2004-07-15

Publications (2)

Publication Number Publication Date
CN1691386A CN1691386A (zh) 2005-11-02
CN100341184C true CN100341184C (zh) 2007-10-03

Family

ID=35346638

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100057941A Expired - Fee Related CN100341184C (zh) 2004-04-26 2005-01-25 燃料电池电源及其运行方法以及使用它的便携式电子装置

Country Status (1)

Country Link
CN (1) CN100341184C (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5248070B2 (ja) * 2007-09-25 2013-07-31 株式会社東芝 燃料電池発電システム
US8647784B2 (en) * 2008-11-19 2014-02-11 Hitachi, Ltd. Fuel cell stack start method preventing cathode deterioration

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5766786A (en) * 1994-07-20 1998-06-16 Daimler-Benz Aktiengesellschaft Method and system for metered supply of methanol and/or water to a fuel-cell system
CN1474473A (zh) * 2002-08-19 2004-02-11 乐金电子(天津)电器有限公司 燃料电池系统的燃料供给装置
CN1489233A (zh) * 2002-08-30 2004-04-14 雅马哈发动机株式会社 直接改性型燃料电池系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5766786A (en) * 1994-07-20 1998-06-16 Daimler-Benz Aktiengesellschaft Method and system for metered supply of methanol and/or water to a fuel-cell system
CN1474473A (zh) * 2002-08-19 2004-02-11 乐金电子(天津)电器有限公司 燃料电池系统的燃料供给装置
CN1489233A (zh) * 2002-08-30 2004-04-14 雅马哈发动机株式会社 直接改性型燃料电池系统

Also Published As

Publication number Publication date
CN1691386A (zh) 2005-11-02

Similar Documents

Publication Publication Date Title
CN100336261C (zh) 燃料电池组
US8722220B2 (en) Hydrophobic catalyst layer for polymer electrolyte fuel cell and method of producing the same, and polymer electrolyte fuel cell and method of producing the same
CN1262032C (zh) 高分子电解质膜与其制造方法以及用其制造的固体高分子型燃料电池
US20050238932A1 (en) Fuel cell power source, method of operating thereof and portable electronic equipment
CN1781203A (zh) 燃料电池用电极,燃料电池及其制造方法
US7704629B2 (en) Direct oxidation fuel cells with improved cathode gas diffusion media for low air stoichiometry operation
CN1990525A (zh) 电解质膜、其制造方法、膜电极组件、燃料电池及其运转方法
CN1305647A (zh) 高分子电解质燃料电池
CN1697228A (zh) 燃料电池的活化方法
CN1639901A (zh) 包括含乙烯基的膦酸的混合物、含聚乙烯膦酸的聚合物电解质膜及其在燃料电池中的应用
CN1638176A (zh) 有机燃料电池及其运行方法和电极制作方法
CN1679188A (zh) 液体燃料供给类型燃料电池、燃料电池电极以及它们的生产方法
CN1976100A (zh) 燃料电池用膜电极接合体和燃料电池
CN1764001A (zh) 用于直接氧化燃料电池的聚合物电解液及其制备方法以及包含它的直接氧化燃料电池
CN1604377A (zh) 燃料电池、电子设备和商业方法
CN1941466A (zh) 燃料电池用电极、膜电极复合体、燃料电池及制造该电极的方法
CN1287476C (zh) 复合电解质膜和含该膜的燃料电池
CN1788379A (zh) 膜电极复合体和使用了该膜电极复合体的固体高分子型燃料电池
CN1776942A (zh) 燃料电池的电极和膜电极组件及包括它的燃料电池系统
WO2012081153A1 (ja) 燃料電池システムおよびその制御方法
CN1851968A (zh) 直接氧化型燃料电池及其制造方法
CN1604372A (zh) 液体燃料混合装置及采用它的直接液体给料燃料电池
CN1630124A (zh) 燃料电池系统及燃料电池系统中的发电方法
CN1614802A (zh) 燃料电池及燃料电池系统
CN100341184C (zh) 燃料电池电源及其运行方法以及使用它的便携式电子装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071003

Termination date: 20130125

CF01 Termination of patent right due to non-payment of annual fee