Verfahren zur Herstellung neuer Indenopyridinderivate
Die Erfindung betrifft ein Verfahren zur Herstellung neuer (4aRS,5SR,9bRS) - 1,3 ,4,4a,5,9b - Hexahydro- 5- phenyi-2H-indeno[ 1, 2-c]pyridine der Formel I, worin
R1 für Wasserstoff, Chlor, Brom, Fluor oder eine niedere
Alkylgruppe und R2 für Wasserstoff, Chlor, Brom,
Fluor, eine niedere Alkyl-, Alkylthio- oder Alkoxygruppe oder für Trifluormethyl stehen, und ihrer Säureaddi tionssalze.
Verbindungen mit dem in Formel XIII wiedergege benen Grundkörper besitzen im tricyclischen Ringsystem zumindest 3 Asymmetriezentren, und zwar die Kohlefn- stoffatome in den Positionen 4a, 5 und 9b. Es sind daher theoretisch mindestens 4 Isomere möglich, die sich durch die Stellung der Substituenten an den Asymme- triezentren unterscheiden.
Für die Bezeichnung wird die Nomenklatur von R. 5.
Cahn, C. K. Ingold und V. Prelog; Angewandte Chemie
78, 413 (1966) verwendet: Benennung Stellung der Wasserstoffatome a-Reihe: (4aRS,5SR,9bSR) 4a/9b trans 4a/5 trans ss-Reihe: (4aRS,5SR,9bRS) 4a/9b cis 4a/5 trans y-Reihe: (4aRS,5RS,9bRS) 4a/9b cis 4a/5 cis
Erfindungsgemäss gelangt man zu den (4aRS,5SR,-
9bRS)-Verbindungen der Formel I, indem man eine (4aRS,5RS,9bRS)-Verbindung der Formel I im alkalischen Medium erhitzt, und die erhaltenen Verbindungen gewünschtenfalls in ihre Säureadditionssalze überführt.
(4aRS,5RS,9bRS)-Verbindungen der Formel I werden als Ausgangsprodukte in dem erfindungsgemässen Verfahren benötigt. Diese Verbindungen können erhalten werden, indem man a) entweder Verbindungen der Formel II oder IIa, worin R1 und R2 obige Bedeutung besitzen, oder deren Gemische oder Verbindungen der Formel III, worin R2 und R1 obige Bedeutung besitzen, zu Verbindungen der Formel 1 reduziert, oder b) Verbindungen der Formel Ia, worin R1 und R2 obige Bedeutung besitzen, mit einem Chlorameisensäureester der Formel IV, worin R4 eine niedere Alkylgruppe, die Phenyl- oder Benzylgruppe bedeutet, zu Urethanen umsetzt und diese Urethane durch saure Hydrolyse in die Verbindungen der Formel I überführt.
Verbindungen der Formel Ia können z. B. erhalten werden, indem man entweder Verbindungen der Formel lib oder IIc, worin R1 und R2 obige Bedeutung besitzen, oder Verbindungen der Formel IIIa, worin R1 und R2 obige Bedeutung besitzen, wie unter Verfahren a) beschrieben, reduziert.
Verbindungen der Formel Imid, IIe oder IIIb, worin R1 und R2 obige Bedeutung besitzen und R3 für Wasserstoff oder Methyl steht, können z.B. folgendermassen erhalten werden:
Man setzt Isonicotinsäureester der Formel VI mit Verbindungen der Formel V, worin X Chlor oder Brom bedeutet, zu den PyridiniumhÅalogeniden der Formel VII, worin X obige Bedeutung besitzt, um, z. B.
durch mehrstündiges Erhitzen der Komponenten in einem unter den Reaktionsbedingungen inerten Lösungsmittel, beispielsweise in einem niederen Alkohol, wie Methanol. Durch Reduktion z. B. mittels Natriumborhydrid erhält man aus den Verbindungen der Formel VII die Tetrahydroisonicotinsäureester der Formel VIII.
Diese werden mit der Magnesiumverbindung der Formel IX, worin R1 und X obige Bedeutung besitzen, umgesetzt; man gelangt dann durch Hydrolyse der entstandenen Produkte zu den Verbindungen der Formel X, worin R1 obige Bedeutung besitzt. Diese werden entweder direkt durch Erhitzen mit Polyphosphorsäure oder durch Hydrolyse zur freien Carbonsäure, Herstellung des Säurechlorids, z. B. mittels Thionylchlorid, und Cyclisierung mit Hilfe von Friede1-Crafts-KataWsatoren, wie z.B. wasserfreies Aluminiumchlorid, zu den Verbindungen der Formel XIa, worin R1 obige Bedeutung besitzt, umgesetzt.
Ketone der Formel Xib, worin R1 obige Bedeutung besitzt, können aus Ketonen der Formel XIa erhalten werden, indem man die Verbindungen der Formel XIa mit einem Chiorameisensäureester der Formel IV zu Urethanen umsetzt und diese Urethane durch saure oder alkalische Hydrolyse in die Verbindungen der Formel XIb überführt.
Die Ketone der allgemeinen Formel XI, worin R1 und R3 obige Bedeutung besitzen, werden durch Reaktion mit einer metallorganischen Verbindung der allgemeinen Formel XII, worin R2 und X obige Bedeutung besitzen, und anschliessende Hydrolyse der Komplexe in Verbindungen der Formel IIIb übergeführt. Aus den Hydroxyverbindungen der Formel IIIb kann man dann, z. B. durch Behandeln mit starken Säuren oder Säurehalogeniden, Wasser abspalten und so die Verbindungen der Formeln IId und IIe oder deren Gemische erhalten.
Die durch R1 und R2 symbolisierten niederen Alkyl-, bzw. Alkoxy- und Alkylthiogruppen bestehen vorzugsweise aus 1 bis 4, insbesondere aus 1 bis 2 Kohlenstoffatomen.
Aus den Basen der Formel I können in bekannter Weise die Säureadditionssalze hergestellt werden und umgekehrt.
Soweit die Herstellung der Ausgangsverbindungen nicht beschrieben wird, sind diese bekannt oder nach an sich bekannten Verfahren bzw. analog zu den hier beschriebenen oder analog zu an sich bekannten Verfahren herstellbar.
Die Verbindungen der Formel I und ihre pharmakologisch verträglichen Säureadditionssalze besitzen bei geringer Toxizität interessante pharmakodynamische Eigenschaften und können daher als Heilmittel verwendet werden.
Die Verbindungen sind serotoninantagonistisch wirksam, wie aus den Ergebnissen des Serotonintoxizitätstests am Meerschweinchen, dem Serotonin-Pfotenödem-Versuch an der Ratte und der Beeinflussung der pressorischen Serotonin-Blutdruck-Reaktion am Hund hervorgeht. Die zu verwendenden Dosen variieren naturgemäss je nach der Art der Administration und des zu behandelnden Zustandes. Im allgemeinen werden jedoch befriedigende Resultate mit einer Dosis von 0,05 bis 30 mg/kg Körpergewicht erhalten; diese Dosis kann nötigenfalls in 2 bis 3 Anteilen oder auch als Retardform verabreicht werden. Für grössere Säugetiere liegt die Tagesdosis bei etwa 1 bis 30 mg. Für orale Applikationen enthalten die Teildosen etwa 0,3 bis 15 mg der Verbindungen der Formel I neben festen oder flüssigen Trägersubstanzen oder Verdünnungsmitteln.
Weiters zeigen die Verbindungen auch antiphlogistische Wirkung (Carrageen-Ödem und traumatisches Ödem an der Ratte) und können als Antiphlogistica bzw.
Exsudationshemmer eingesetzt werden. Die zu verabreichenden Dosen variieren naturgemäss je nach der Art der Administration und des zu behande'lnden Zustandes.
Im allgemeinen werden jedoch befriedigende Resultate mit einer Dosis von etwa 1 bis 30 mg/kg Körpergewicht erhalten; diese Dosis kann nötigenfalls in 2 bis 3 Anteilen oder auch als Retardform verabreicht werden. Für grössere Säugetiere liegt die Tagesdosis bei etwa 30 bis 100 mg. Für orale Applikationen enthalten die Teildosen etwa 10 bis 50 mg der Verbindungen der Formel Ia neben festen oder flüssigen Trägersubstanzen oder Verdünnungsmitteln.
In den nachfolgenden Beispielen, die die Erfindung näher erläutern, ihren Umfang aber in keiner Weise einschränken sollen, erfolgen alle Temperaturangaben in Celsiusgraden und sind unkorrigiert.
Beispiel 1 (4aRS,5SR,9bRS)-1,3,4,4a,5,9b-Hexahydro-
5-phenyl-2H-indeno[1,2-c]pyridin
10 g (4aRS,5RS,9bRS)-1,3,4,4a,5,9b-Hexahydro-5- phenyl-2Hnindenq[l,2 < ]pyridin-hydrochlorid (Herstek lung siehe Beispiel 2) werden mit einer Lösung von 80 g Kaliumhydroxid in 200 ml Butanol 24 Stunden unter Rückfluss gekocht. Dann giesst man auf 1000 ml Wasser, schüttelt zweimal mit Äther aus, wäscht die Ätherlösung mit Natriumchloridlösung und dampft sie nach Trocknen über Magnesfumsulfat ein. Das zurückbleibende Öl wird in Isopropanol gelöst und mit ätherischem Chlorwasserstoff versetzt, worauf (4aRS,5SR,9bRS)-1,3,4,4a,5-9b- Hexahydro-5 -phenyl 2H- indeno 1:1,2 - -dJ pyridin - hydro- chlorid kristallisiert.
Es schmilzt nach Kristallisation aus Isopropanol bei 287-289 C unter Zersetzung.
Beispiel 2 (4aRS,5RS,9bRS)-1 ,3,4,4a,5,9I > Hexahydro-
5-phenyl-2H-indeno[1,2-c]pyridin (Ausgangsprodukt für Beispiel 1)
Die Verbindung kann nach folgenden Verfahren hergestellt werden:
A) Zur Lösung von 15 g Chlorameisensäureäthylester in 60 ml Benzol tropft man während 1/2 Stunde bei 7e750C die Lösung von 12 g (4aRS,5RS,9bRS) 1,3 ,4,4a,5 ,9b - Hexahydro-2-methyl-5 -phenyl-2H-indeno- [1,2-c]pyridin in 120 ml abs. Benzol. Dann kocht man 21/2 Stunden unter Rückfluss, kühlt ab, filtriert etwas ausgeschiedenes (4aRS,SRS,9bRS) - 1,3,4,4a,5,9b - Hexa hydro-2-methyl-5-phenyl-2H-indeno[ 1, 2c1pyridin.hydr chlorid ab und dampft das Filtrat ein.
Das zurückbleibende ölige, rohe (4aRS,5RS,9bRS)-2-Äthoxycarbonyl 1,3,4,4a,5,9b-hexahydro-5-phenyt-2H-indeno[1,2-c]pyri- din wird mit einer Mischung von 75 ml Eisessig und 75 ml konz. Salzsäure 16 Stunden am Rückfluss gekocht.
Dann dampft man im Vakuum zur Trockene ein, löst den Rückstand in wenig Isopropanol und versetzt mit Äther, worauf das Hydrochlorid der im Titel genannten Verbindung kristallisiert. Es wird aus Isopropanol/ Ather umkristallisiert und schmilzt dann bei 23W232 C unter Zersetzung.
Das Ausgangsmaterial kann nach einer der folgenden Methoden hergestellt werden:
Verfahren 1:
Die Lösung von 30 g 2-Methyl-5-phenyl-1,3,4,9b tetrahydroW2H-indeno[1,2-c]pyridin in 200 mi Eisessig wird 20 Stunden bei 400 C mit Platinoxid-Katalysator und Wasserstoff bei einem Anfangsdruck von 5 atü geschüttelt. Dann filtriert man den Katalysator ab, dampft die Lösung im Vakuum ein, verteilt den Rückstand zwischen verdünnter Natronlauge und Methylenchlorid, trocknet die Methylenchloridlösung über Magnesiumsulfat und dampft sie ein. Die zurückbleibende Base wird in Isopropanol gelöst und mit ätherischem
Chlorwasserstoff versetzt, worauf (4aRS,5RS,9bRS) 1,3,4,4a,5,9b-Hexahydro-2-methyl-5-phenyl-2H-indeno [1,2-c]pyridin-hydrochllorid kristallisiert.
Smp. nach Umkristallisation aus Isopropanol 270-2720 C (Zers.).
Verfahren ll:
Die Lösung von 20 g 2-Methyl-5-phenyl-1,3,4,9b tetrahydro-2H-ideno[ 1,2-cyridin und 8,0 g Malonsäure in 100 ml Methanol wird 2 Stunden am Rückfluss gekocht und dann auf 0 C abgekühlt, worauf 2-Methyl 5-phenyl-1,2,3,4-tetrahydro-5H-indeno[1,2-c]pyridin- hydrogenmalonat kristallisiert. Es schmilzt nach Kristallisation aus Methanol bei 163-165 C (Zers.).
Die Lösung von 10 g 2-Methyl-5-phenyl-1,2,3,4 tetrahydro-5H-indeno[1 1 ,2-c]pyridin-hydrogenmalonat in 100 ml Eisessig wird mit 0,5 g Platinoxid und Wasserstoff bei Normaldruck geschüttelt. Wenn die berechnete Menge Wasserstoff aufgenommen ist (nach etwa 24 Std.), wird, wie in Verfahren I beschrieben, weiter aufgearbeitet. Man erhält (4aRS,5RS,9bRS)-1,3,4,4a,5,9b-Hexa- hydro-2-methyl-5-phenyl-2H-indeno[ 1, 2c]pyridin-hydro- chlorid vom Smp. 270-272 C (Zers.).
Verfahren 111:
In die Lösung von 5,0 g (4aRS,5SR,9bSR) 1,3,4,4a,5, 9b-Hexahydro-2-methy1-5 -penyl-5 (2H)indeno- [1,2-c]pyridinol in 70 ml abs. Ather und 150 ml flüssigem Ammoniak werden während 1 Stunde 3,6 g Natrium in kleinen Portionen eingetragen, wobei die Temperatur auf etwa -350 C gehalten wird. Man rührt dann noch 3 Stunden ohne weitere Kühlung, trägt Eis ein, trennt die Ätherschicht ab, wäscht sie mit Natriumchloridlösung und dampft sie nach Trocknen über Ma gnesiumsulfat ein. Das zurückbleibende Ö1 ist ein Isomerengemisch der (4aRS,5RS,9bRS)- und der (4aRS, 5SR,9bRS)-Verbindung, wobei die erstere überwiegt.
Es wird in Isopropanol gelöst und mit ätherischem Chlorwasserstoff in das Hydrochlorid übergeführt. Nach Umkristallisation aus Isopropanol wird reines (4aRS,5RS,9bRS)-1,3,4,4a,5,9b-Hexahydro-2-methyl-5-phenyl-2H- indeno[l,2-c]pyrid3n-hydrochlbrid vom Smp. 270 bis 2720 C (Zers.) erhalten.
B) Die Lösung von 5,0 g 5-Phenyl-1,3,4,9b-tetra- hydro-2H-indeno[1,2-c]pyridin-hydrochlorid in 100 ml Eisessig wird bei einem Anfangsdruck von 6 atü mit Platinoxid und Wasserstoff geschüttelt, bis die berechnete Menge Wasserstoff aufgenommen ist (etwa 24 Stunden).
Dann filtriert man den Katalysator ab, dampft im Vakuum ein und kristallisiert das zurückbleibende (4aRS, 5RS,9bRS) -1,3,4,4a,5,9b-Hexahydro-5-phenyl - 2Hindeno[1,2-c]pyridin-hydrochlorid zweimal aus Isopro panot/Äther um. Smp. 230-232 C (Zers.).
C) In die Lösung von 5,0 g (4aRS,5SR,9bSR)1,3,4,4a,5,9b- Hexahydro-5-phenyl-5(2H)-indeno[1,2-c] pyridinol in 70 ml Äther und 150 ml flüssigem Ammoniak werden bei -35 C während 1 Stunde 3,6 g Natrium in kleinen Portionen eingetragen. Dann rührt man noch 4 Stunden ohne weitere Kühlung, trägt Eis ein, trennt die Ätherschicht ab, wäscht sie mit Natriumchloridlösung und dampft sie nach Trocknen über Magnesiumsulfat ein. Das zurückbleibende Öl wird im Kugelrohr bei einer Badtemperatur von 1500 C bei 0,05 Torr destilliert.
Das fast farblose, zähe Destillat ist ein Isomerengemisch von (4aR5,5RS,9bRS)-1,3,4,4a,5,9b-Hexahydro-5 - phenyl-2H-indeno[1,2-c]pyridin und (4aRS,5SR,9bRS) 1,3,4,4a,5,9b - Hexahydro - 5- -phenyl- 2H - indeno[1 ,2-c] - pyridin. Isomerenverhältnis nach NMR und Gaschro- matogramm 7:3.
EMI3.1
EMI4.1
Process for the preparation of new indenopyridine derivatives
The invention relates to a process for the preparation of new (4aRS, 5SR, 9bRS) -1,3, 4,4a, 5,9b-hexahydro-5-phenyi-2H-indeno [1, 2-c] pyridines of the formula I, in which
R1 for hydrogen, chlorine, bromine, fluorine or a lower one
Alkyl group and R2 for hydrogen, chlorine, bromine,
Fluorine, a lower alkyl, alkylthio or alkoxy group or stand for trifluoromethyl, and their acid addition salts.
Compounds with the basic structure shown in formula XIII have at least 3 centers of asymmetry in the tricyclic ring system, namely the carbon atoms in positions 4a, 5 and 9b. Theoretically, at least 4 isomers are therefore possible, which differ in the position of the substituents on the asymmetric centers.
The nomenclature of R. 5.
Cahn, C. K. Ingold, and V. Prelog; applied Chemistry
78, 413 (1966) used: Designation position of the hydrogen atoms a-row: (4aRS, 5SR, 9bSR) 4a / 9b trans 4a / 5 trans ss-series: (4aRS, 5SR, 9bRS) 4a / 9b cis 4a / 5 trans y-row: (4aRS, 5RS, 9bRS) 4a / 9b cis 4a / 5 cis
According to the invention, one arrives at the (4aRS, 5SR, -
9bRS) compounds of the formula I by heating a (4aRS, 5RS, 9bRS) compound of the formula I in an alkaline medium and, if desired, converting the compounds obtained into their acid addition salts.
(4aRS, 5RS, 9bRS) compounds of the formula I are required as starting products in the process according to the invention. These compounds can be obtained by a) reducing either compounds of the formula II or IIa, in which R1 and R2 have the above meaning, or their mixtures or compounds of the formula III, in which R2 and R1 have the above meaning, to compounds of the formula 1, or b) compounds of the formula Ia, in which R1 and R2 have the above meanings, with a chloroformic acid ester of the formula IV, in which R4 converts a lower alkyl group, which is phenyl or benzyl group, to urethanes and these urethanes by acid hydrolysis into the compounds of the formula I convicted.
Compounds of formula Ia can, for. B. be obtained by either compounds of the formula lib or IIc, in which R1 and R2 have the above meaning, or compounds of the formula IIIa, in which R1 and R2 have the above meaning, as described under process a), reduced.
Compounds of the formula imide, IIe or IIIb, in which R1 and R2 have the above meanings and R3 is hydrogen or methyl, can e.g. can be obtained as follows:
Isonicotinic acid esters of the formula VI are used with compounds of the formula V, in which X is chlorine or bromine, to give the pyridinium halides of the formula VII in which X has the above meaning, e.g. B.
by heating the components for several hours in a solvent which is inert under the reaction conditions, for example in a lower alcohol such as methanol. By reducing z. B. by means of sodium borohydride, the tetrahydroisonicotinic acid esters of the formula VIII are obtained from the compounds of the formula VII.
These are reacted with the magnesium compound of the formula IX, in which R1 and X are as defined above; hydrolysis of the resulting products then gives the compounds of the formula X in which R1 has the above meaning. These are either directly by heating with polyphosphoric acid or by hydrolysis to the free carboxylic acid, production of the acid chloride, e.g. B. by means of thionyl chloride, and cyclization with the aid of Friede1-Crafts KataWsatoren, such as e.g. anhydrous aluminum chloride, converted to the compounds of the formula XIa, in which R1 has the above meaning.
Ketones of the formula Xib, where R1 has the above meaning, can be obtained from ketones of the formula XIa by reacting the compounds of the formula XIa with a chloroformic acid ester of the formula IV to give urethanes and these urethanes into the compounds of the formula XIb by acidic or alkaline hydrolysis convicted.
The ketones of the general formula XI, in which R1 and R3 have the above meanings, are converted into compounds of the formula IIIb by reaction with an organometallic compound of the general formula XII, in which R2 and X have the above meanings, and subsequent hydrolysis of the complexes. From the hydroxy compounds of formula IIIb you can then, for. B. by treatment with strong acids or acid halides, split off water and thus obtain the compounds of the formulas IId and IIe or mixtures thereof.
The lower alkyl or alkoxy and alkylthio groups symbolized by R1 and R2 preferably consist of 1 to 4, in particular 1 to 2, carbon atoms.
The acid addition salts can be prepared from the bases of the formula I in a known manner, and vice versa.
If the preparation of the starting compounds is not described, they are known or can be prepared by processes known per se or analogously to those described here or analogously to processes known per se.
The compounds of the formula I and their pharmacologically acceptable acid addition salts have interesting pharmacodynamic properties with low toxicity and can therefore be used as medicaments.
The compounds are serotonin-antagonistic, as can be seen from the results of the serotonin toxicity test on guinea pigs, the serotonin paw edema test on rats and the influence on the pressoric serotonin-blood pressure reaction on dogs. The doses to be used naturally vary depending on the type of administration and the condition to be treated. In general, however, satisfactory results are obtained with a dose of 0.05 to 30 mg / kg body weight; if necessary, this dose can be administered in 2 to 3 portions or as a sustained-release form. For larger mammals, the daily dose is around 1 to 30 mg. For oral administration, the partial doses contain about 0.3 to 15 mg of the compounds of the formula I in addition to solid or liquid carriers or diluents.
Furthermore, the compounds also show anti-inflammatory effects (carrageenan edema and traumatic edema in rats) and can be used as anti-inflammatory agents or
Exudation inhibitors are used. The doses to be administered naturally vary depending on the type of administration and the condition to be treated.
In general, however, satisfactory results are obtained at a dose of about 1 to 30 mg / kg body weight; if necessary, this dose can be administered in 2 to 3 portions or as a sustained-release form. For larger mammals, the daily dose is around 30 to 100 mg. For oral administration, the partial doses contain about 10 to 50 mg of the compounds of the formula Ia in addition to solid or liquid carriers or diluents.
In the following examples, which explain the invention in more detail but are not intended to restrict its scope in any way, all temperatures are given in degrees Celsius and are uncorrected.
Example 1 (4aRS, 5SR, 9bRS) -1,3,4,4a, 5,9b-Hexahydro-
5-phenyl-2H-indeno [1,2-c] pyridine
10 g (4aRS, 5RS, 9bRS) -1,3,4,4a, 5,9b-hexahydro-5-phenyl-2Hnindenq [l, 2 <] pyridine hydrochloride (production see Example 2) are mixed with a solution of 80 g of potassium hydroxide in 200 ml of butanol boiled under reflux for 24 hours. Then it is poured into 1000 ml of water, extracted twice with ether, the ethereal solution is washed with sodium chloride solution and, after drying, it is evaporated over magnesium sulfate. The remaining oil is dissolved in isopropanol and mixed with ethereal hydrogen chloride, whereupon (4aRS, 5SR, 9bRS) -1,3,4,4a, 5-9b-hexahydro-5-phenyl 2H- indeno 1: 1,2 - -dJ pyridine hydrochloride crystallizes.
After crystallization from isopropanol, it melts at 287-289 C with decomposition.
Example 2 (4aRS, 5RS, 9bRS) -1, 3,4,4a, 5,9I> Hexahydro-
5-phenyl-2H-indeno [1,2-c] pyridine (starting material for example 1)
The connection can be made using the following methods:
A) To a solution of 15 g of ethyl chloroformate in 60 ml of benzene, the solution of 12 g (4aRS, 5RS, 9bRS) 1,3, 4,4a, 5, 9b - hexahydro-2-methyl is added dropwise over 1/2 hour at 7e750C -5-phenyl-2H-indeno- [1,2-c] pyridine in 120 ml of abs. Benzene. It is then refluxed for 21/2 hours, cooled, and some precipitated (4aRS, SRS, 9bRS) - 1,3,4,4a, 5,9b - hexa hydro-2-methyl-5-phenyl-2H-indeno are filtered [1, 2c1pyridin.hydr chloride from and the filtrate evaporated.
The remaining oily, crude (4aRS, 5RS, 9bRS) -2-ethoxycarbonyl 1,3,4,4a, 5,9b-hexahydro-5-phenyte-2H-indeno [1,2-c] pyridine is with a Mixture of 75 ml of glacial acetic acid and 75 ml of conc. Hydrochloric acid refluxed for 16 hours.
Then it is evaporated to dryness in vacuo, the residue is dissolved in a little isopropanol and ether is added, whereupon the hydrochloride of the compound named in the title crystallizes. It is recrystallized from isopropanol / ether and then melts at 23W232 C with decomposition.
The starting material can be produced by one of the following methods:
Procedure 1:
The solution of 30 g of 2-methyl-5-phenyl-1,3,4,9b tetrahydroW2H-indeno [1,2-c] pyridine in 200 ml of glacial acetic acid is 20 hours at 400 ° C. with a platinum oxide catalyst and hydrogen at an initial pressure shaken from 5 atmospheres. The catalyst is then filtered off, the solution is evaporated in vacuo, the residue is partitioned between dilute sodium hydroxide solution and methylene chloride, the methylene chloride solution is dried over magnesium sulphate and evaporated. The remaining base is dissolved in isopropanol and with ethereal
Hydrogen chloride is added, whereupon (4aRS, 5RS, 9bRS) 1,3,4,4a, 5,9b-hexahydro-2-methyl-5-phenyl-2H-indeno [1,2-c] pyridine hydrochloride crystallizes.
After recrystallization from isopropanol 270-2720 C (decomp.).
Procedure ll:
The solution of 20 g of 2-methyl-5-phenyl-1,3,4,9b tetrahydro-2H-ideno [1,2-cyridine and 8.0 g of malonic acid in 100 ml of methanol is refluxed for 2 hours and then up 0 C cooled, whereupon 2-methyl 5-phenyl-1,2,3,4-tetrahydro-5H-indeno [1,2-c] pyridine hydrogen malonate crystallizes. After crystallization from methanol, it melts at 163-165 ° C. (decomp.).
The solution of 10 g of 2-methyl-5-phenyl-1,2,3,4 tetrahydro-5H-indeno [1 1, 2-c] pyridine hydrogen malonate in 100 ml of glacial acetic acid is mixed with 0.5 g of platinum oxide and hydrogen Shaken normal pressure. When the calculated amount of hydrogen has been absorbed (after about 24 hours), further work-up is carried out as described in method I. (4aRS, 5RS, 9bRS) -1,3,4,4a, 5,9b-hexa-hydro-2-methyl-5-phenyl-2H-indeno [1,2c] pyridine hydrochloride of mp. 270-272 C (dec.).
Procedure 111:
In the solution of 5.0 g (4aRS, 5SR, 9bSR) 1,3,4,4a, 5, 9b-hexahydro-2-methy1-5 -penyl-5 (2H) indeno- [1,2-c] pyridinol in 70 ml of abs. Ether and 150 ml of liquid ammonia are introduced over 1 hour, 3.6 g of sodium in small portions, the temperature being kept at about -350 ° C. The mixture is then stirred for a further 3 hours without further cooling, ice is introduced, the ether layer is separated off, washed with sodium chloride solution and, after drying, evaporated over magnesium sulfate. The remaining oil is an isomeric mixture of the (4aRS, 5RS, 9bRS) and the (4aRS, 5SR, 9bRS) -compounds, the former predominating.
It is dissolved in isopropanol and converted into the hydrochloride with ethereal hydrogen chloride. After recrystallization from isopropanol, pure (4aRS, 5RS, 9bRS) -1,3,4,4a, 5,9b-hexahydro-2-methyl-5-phenyl-2H-indeno [1,2-c] pyrid3n-hydrochloride from M.p. 270-2720 C (dec.).
B) The solution of 5.0 g of 5-phenyl-1,3,4,9b-tetrahydro-2H-indeno [1,2-c] pyridine hydrochloride in 100 ml of glacial acetic acid is at an initial pressure of 6 atm Platinum oxide and hydrogen shaken until the calculated amount of hydrogen is absorbed (about 24 hours).
The catalyst is then filtered off, evaporated in vacuo and the remaining (4aRS, 5RS, 9bRS) -1,3,4,4a, 5,9b-hexahydro-5-phenyl-2-hindeno [1,2-c] pyridine crystallizes -hydrochloride twice from isopropyl alcohol / ether. M.p. 230-232 C (dec.).
C) In the solution of 5.0 g (4aRS, 5SR, 9bSR) 1,3,4,4a, 5,9b-hexahydro-5-phenyl-5 (2H) -indeno [1,2-c] pyridinol in 70 ml of ether and 150 ml of liquid ammonia are introduced in small portions at -35 C for 1 hour, 3.6 g of sodium. The mixture is then stirred for a further 4 hours without further cooling, ice is introduced, the ether layer is separated off, washed with sodium chloride solution and, after drying, evaporated over magnesium sulfate. The remaining oil is distilled in a bulb tube at a bath temperature of 1500 C at 0.05 Torr.
The almost colorless, viscous distillate is an isomer mixture of (4aR5,5RS, 9bRS) -1,3,4,4a, 5,9b-hexahydro-5-phenyl-2H-indeno [1,2-c] pyridine and (4aRS , 5SR, 9bRS) 1,3,4,4a, 5,9b - hexahydro - 5 - phenyl - 2H - indeno [1,2-c] - pyridine. Isomer ratio according to NMR and gas chromatogram 7: 3.
EMI3.1
EMI4.1