CH395030A - Process for carrying out endothermic reactions at high temperatures and application of this process for the preparation of a mixture of acetylene and ethylene by splitting hydrocarbons - Google Patents

Process for carrying out endothermic reactions at high temperatures and application of this process for the preparation of a mixture of acetylene and ethylene by splitting hydrocarbons

Info

Publication number
CH395030A
CH395030A CH2860356A CH2860356A CH395030A CH 395030 A CH395030 A CH 395030A CH 2860356 A CH2860356 A CH 2860356A CH 2860356 A CH2860356 A CH 2860356A CH 395030 A CH395030 A CH 395030A
Authority
CH
Switzerland
Prior art keywords
hydrogen
dissociated
reaction
acetylene
application
Prior art date
Application number
CH2860356A
Other languages
German (de)
Inventor
Schallus Erich
Goetz Armin Dr Dipl-Chem
Original Assignee
Knapsack Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Knapsack Ag filed Critical Knapsack Ag
Publication of CH395030A publication Critical patent/CH395030A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/02Preparation, separation or purification of hydrogen cyanide
    • C01C3/0208Preparation in gaseous phase
    • C01C3/025Preparation in gaseous phase by using a plasma
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/04Thermal processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/08Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule
    • C07C4/10Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by splitting-off an aliphatic or cycloaliphatic part from the molecule from acyclic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G15/00Cracking of hydrocarbon oils by electric means, electromagnetic or mechanical vibrations, by particle radiation or with gases superheated in electric arcs
    • C10G15/12Cracking of hydrocarbon oils by electric means, electromagnetic or mechanical vibrations, by particle radiation or with gases superheated in electric arcs with gases superheated in an electric arc, e.g. plasma
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G9/00Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G9/34Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts
    • C10G9/36Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours
    • C10G9/38Thermal non-catalytic cracking, in the absence of hydrogen, of hydrocarbon oils by direct contact with inert preheated fluids, e.g. with molten metals or salts with heated gases or vapours produced by partial combustion of the material to be cracked or by combustion of another hydrocarbon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B7/00Combustion techniques; Other solid-fuel combustion apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00121Controlling the temperature by direct heating or cooling
    • B01J2219/00123Controlling the temperature by direct heating or cooling adding a temperature modifying medium to the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00159Controlling the temperature controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23BMETHODS OR APPARATUS FOR COMBUSTION USING ONLY SOLID FUEL
    • F23B2700/00Combustion apparatus for solid fuel
    • F23B2700/023Combustion apparatus for solid fuel with various arrangements not otherwise provided for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

       

  
 



  Verfahren zur Durchführung endothermer Reaktionen bei hohen Temperaturen und Anwendung dieses Verfahrens zur Herstellung eines Gemisches von Acetylen und Äthylen durch Spaltung von Kohlenwasserstoffen
Zur Zufuhr der Energie bei der Spaltung von Kohlenwasserstoffen zu Acetylen sind beispielsweise folgende Möglichkeiten vorhanden: a) Übertragung der Wärme von einem festen Medium auf flüssigen oder dampfförmigen Kohlenwasserstoff, etwa durch einen Cowper, einen Erhitzer für Wärmesteine oder einen   Koksschacht;    b) Übertragung der Wärme von einem gasförmigen auf ein gasförmiges Medium, etwa durch Flam  menreaktionen;    c) Zufuhr der Energie durch elektrischen Strom, beispielsweise in Form des Lichtbogenverfahrens.



   Trotz der Vielzahl verfahrenstechnischer Ausführungsformen, die für jede Gruppe bekanntgeworden sind, arbeiten die bisherigen Acetylenherstellungsverfahren mit unbefriedigendem energetischem Wirkungsgrad.



   Zum Beispiel wird auf den Wulff-Prozess verwiesen, der eine Ausführungsform nach   a)    darstellt.



  Seine Nachteile bestehen darin, dass ein grosses Speichervolumen bei nur teilweisem Umsatz der angewandten Kohlenwasserstoffe zu Acetylen notwendig ist. Ausserdem fällt zwangläufig eine grössere Olefinmenge an, und schliesslich ist das Verfahren auf Kohlenwasserstoffe mit 1 bis 4 Kohlenstoffatomen beschränkt.



   Auch Anordnungen nach b) wurden bereits in der Literatur beschrieben. Die Nachteile dieser Verfahren bestehen hier aus folgenden Punkten:
Der angewendete Rohstoff wird nicht annähernd vollständig umgesetzt; ausserdem fällt eine grosse Ole finmenge zwangläufig an. Weiter ist Sauerstoff notwendig, da mit Luft nicht genügend hohe Temperaturen erzielt werden können bzw. ein zu verdünntes Acetylengas entsteht. Ausserdem tritt eine Ausbeuteverschlechterung durch Sekundärreaktionen der Verbrennungsprodukte ein. Diese Verbrennungsprodukte, die aus Kohlendioxyd und Wasser bestehen, reagieren unter anderem mit dem Ausgangsmaterial und dem gebildeten Acetylen zu Kohlenoxyd und Wasserstoff.



  Schliesslich sind auch hier die Verfahren auf niedere Kohlenwasserstoffe beschränkt.



   Nach c) arbeiten beispielsweise technisch ausgeführte Lichtbogenverfahren. Bei der Anwendung von Kohlenwasserstoffen in einem solchen Fall ist nur ein etwa 50 % iger Umsatz zu erzielen. Ausserdem entstehen Kosten für die Trennung des Kohlenwasserstoffs vom Wasserstoff und für die nochmalige   Energieauf-    wendung zum Aufheizen. Weiter bilden sich Diacetylen und Russ, und schliesslich sind die Verfahren auf Kohlenwasserstoffe mit einer niederen Zahl von Kohlenstoffatomen beschränkt.



   Zusammenfassend lässt sich über diese Verfahren sagen, dass in jedem Falle weitgehend die Reaktion der Ausführungsform angepasst werden muss.



   Nach der vorliegenden Erfindung, die unter Mitwirkung eines erhitzten Gases durchgeführt wird, wird der als Wärmespender dienende Wasserstoff thermisch mindestens teilweise dissoziiert, der thermisch dissoziierte Wasserstoff ausserhalb des Dissoziierungsortes mit dem Ausgangsmaterial der endothermen Reaktion zuammengebracht, wobei die bei der Wiedervereinigung der Bestandteile des zur Dissoziation gebrachten Wasserstoffs freiwerdende Wärme zur Durchführung der endothermen Reaktion dient und das Reaktionsprodukt abgeschreckt wird. (Seine weitere Zerlegung und Aufarbeitung gehört nicht mehr in den Rahmen der vorliegenden Erfindung.)  
Als zu dissoziierendes Gas wird Wasserstoff verwendet. Dieser wird nicht als Reaktionspartner eingeführt, sondern er wirkt nach seiner mit Hilfe des elektrischen Lichtbogens bewirkten Aufheizung als Energieträger auf das Ausgangsmaterial ein.



   Es handelt sich also um die Ausnutzung der Wärmetönung der Reaktion:    H+H--H2+    100 Kcal.



   Es kann so eine hohe Energiekonzentration im Reaktionsraum erzielt werden.



   Gegenstand des Patentes ist auch eine Anwendung dieses Verfahrens zur Herstellung eines Gemisches von Acetylen und Äthylen, welche dadurch gekennzeichnet ist, dass man als zu dissoziierendes Gas Wasserstoff verwendet, ihn im elektrischen Lichtbogen dissoziiert und ihn in dissoziiertem Zustand mit mehr als zwei C-Atome aufweisenden aliphatischen Kohlenwasserstoffen zusammenbringt, wobei der als Wärmespender dienende Wasserstoff nicht in chemische Reaktion tritt. Der Wasserstoff wird dabei z.

   B. mit einer Strömungsgeschwindigkeit in der Grö ssenordnung von 102 bis 103 m/sec durch den elektrischen Lichtbogen geführt, dabei erhitzt und weitgehend dissoziiert, das heisst in atomaren Zustand gebracht, darauf bei anhaltender   Strömungsgeschwib    digkeit in eine von der   Dissoziationszone    räumlich getrennte, sich aber an sie anschliessende Reaktionszone eingefahren und in dieser mit dem für die Bildung von Acetylen und Äthylen vorgesehenen Ausgangskohlenwasserstoff zusammengebracht wird, worauf das Reaktionsprodukt in an sich bekannter Weise abgeschreckt und aufgearbeitet wird.



   Als aliphatische Kohlenwasserstoffe mit mehr als   2 C    können im vorliegenden Zusammenhang gesättigte, ungesättigte, geradkettige oder verzweigte aliphatische Kohlenwasserstoffe eingesetzt werden.



   Pro Grammatom des in dem als Ausgangsmaterial verwendeten Kohlenwasserstoff enthaltenen Kohlenstoffs werden vorteilhaft 0,05 bis 2,0 Mol Wasserstoff eingesetzt, insbesondere 0,1 bis 1,0 Mol Wasserstoff verwendet.



   Es hat sich gezeigt, dass bei der Herstellung von Acetylen nach der Erfindung die Bildung von Russ sich gänzlich vermeiden lässt. Dieses bedeutet einen wesentlichen Vorteil, der nicht nur auf die Verwendung der bei Rekombination der Atome zu Molekülen freiwerdende Energie zurückzuführen ist, sondern auch darauf, dass der Wasserstoff auf die Gleichgewichtslage der gewünschten Reaktion einen Einfluss hat, das heisst den Reaktionsverlauf in günstigem Sinne beeinflusst.



   Wird durch einen elektrischen Lichtbogen mit hoher Geschwindigkeit, vorzugsweise 100 bis 1000 m pro Sekunde, Wasserstoff geblasen, so werden die Wasserstoffmoleküle zu Atomen dissoziiert. Diese Atome haben bekanntermassen eine Lebensdauer in der Grössenordnung von 0,1 bis 1 Sekunde, die dadurch bedingt ist, dass die Wiedervereinigung zum Molekül nur im Dreierstoss erfolgen kann.



   Es ist bei Berücksichtigung dieser Tatsachen und der hohen Gasgeschwindigkeit verständlich, dass mehrere Meter hinter dem Lichtbogen noch keine Wiedervereinigung zu Molekülen eingetreten ist. Diese Zone, die ausserhalb des elektrischen Lichtbogens liegt, eignet sich, wie gefunden wurde, ausgezeichnet als Reaktionszone zur Herstellung von Acetylen aus aliphatischen Kohlenwasserstoffen mit mehr als   2 C    mit Hilfe von im elektrischen Lichtbogen dissoziiertem Wasserstoff. Werden in diese Zone ausser dem rasch strömenden dissoziierten Wasserstoff Kohlenwasserstoffe mit mehr als 2 C, gleich welcher Molekülgrösse, eingeführt, so tritt folgendes ein: Die Rekombination des Wasserstoffes zum Molekül erfolgt unmittelbar an den eingeführten Kohlenwasserstoffen.



  Es erfolgt Spaltung des Kohlenwasserstoffsmoleküls in Bruchstücke, aus denen Acetylen und Äthylen entstehen, und zwar bedingt durch den Wasserstoff, ohne Bildung von Russ oder höheren Acetylenen, wie Diacetylen. Ein weiterer Vorteil besteht darin, dass es nicht notwendig ist, zugunsten der Acetylenausbeute auf vollständigen Umsatz des Kohlenwasserstoffs zu verzichten.



   Dies bedeutet gegenüber den heute bekannten Verfahren eine bessere Ausnutzung des Ausgangskohlenwasserstoffs und keine Abhängigkeit von bestimmter Molekülgrösse, geringere Aufkonzentrierungskosten des Acetylens durch Abwesenheit von Russ und Diacetylen, Wegfall der Methanwasserstoff Trennung und geringerer Aufwand an elektrischer Energie.



   Bei Anwendung eines elektrischen Lichtbogens und Durchführung einer Reaktion in demselben verläuft die Reaktion nicht optimal, weil der Lichtbogen aus Zonen verschiedener Temperatur besteht und zum Beispiel am Rand kälter ist als in der Mitte.



   Nach der Erfindung verläuft im Gegensatz dazu die gewünschte Reaktion nicht im Lichtbogen, sondern erst danach, also in einem genau abgegrenzten und exakt regelbaren Temperaturgebiet, das es gestattet, optimale Umsätze zu erzielen.



   Beispiel I
Durch die Öffnung 1 eines Lichtbogenofens von 35 kW werden stündlich 4 m3 Wasserstoff, zweckmässig bereits auf   10000 C    vorerhitzt, tangential in die Drallkammer 2 eingeführt. Aus der Drallkammer tritt der Wasserstoff durch die Düse 3 in den Lichtbogen, der zwischen den Elektroden 4 brennt.



  Die Düse wird zweckmässig so bemessen, dass der Wasserstoff mit einer Geschwindigkeit von mindestens 100 m/sec, zweckmässig 1000 m/sec, in den Lichtbogenraum eintritt. Nach Verlassen des Lichtbogens trifft der nunmehr atomare Wasserstoff bei 5 auf stündlich eingeführte 4 m3 Propan, die bei 6 eintreten. Das Propan wird zweckmässig ebenfalls auf etwa 10000 C vorerhitzt zugeführt. Im Reaktionsraum 7 stellt sich die für den optimalen Umsatz günstigste Temperatur von 1200 bis etwa   16000 C    ein. Die Reaktionsprodukte werden durch bei 8 ein  gedüstes Wasser, etwa 1001 pro Stunde, sofort auf 1000 C abgeschreckt. Vom in Form von Propan eingesetzten Kohlenstoff werden erhalten:
85 % in Form von Acetylen
5,3 % in Form von Propylen
8 % in Form von Äthylen
1,7 % in Form von Methan.



  Höhere Acetylene oder Russ treten nicht auf.



   Beispiel 2
Es wird in der gleichen Apparatur und unter denselben Bedingungen wie in Beispiel 1 gearbeitet. Anstelle von Propan werden aber stündlich etwa 5 kg eines abgetoppten Kuweitöles (Siedeintervall   160-3400 C)    im Dampfzustand mit einer Temperatur von etwa 5000 C zugeführt. Es wird vom eingesetzten Kohlenstoff erhalten:
78 % in Form von Acetylen    5, 1 %    in Form von Propylen
13,3 % in Form von Äthylen    3, 2S    in Form von Methan Auch hierbei tritt keine Russbildung ein.



   Beispiel 3
Es wird in der gleichen Apparatur wie in Beispiel 1 und unter den gleichen Bedingungen gearbeitet. Anstelle von Propan werden aber stündlich 4 kg Dodecan im Dampfzustand mit einer Temperatur von etwa   5000 C    eingeführt. Es werden dabei etwa 80 % des eingesetzten Kohlenstoffs in Form von Acetylen und etwa   12%    in Form von Athylen erhalten.   



  
 



  Process for carrying out endothermic reactions at high temperatures and application of this process for the preparation of a mixture of acetylene and ethylene by splitting hydrocarbons
For example, the following options are available for supplying the energy in the splitting of hydrocarbons into acetylene: a) Transfer of heat from a solid medium to liquid or vaporous hydrocarbons, for example by a cowper, a heater for hot stones or a coke shaft; b) transfer of heat from a gaseous to a gaseous medium, for example by flame reactions; c) Supply of energy by electrical current, for example in the form of the electric arc process.



   Despite the large number of procedural embodiments that have become known for each group, the previous acetylene production processes operate with unsatisfactory energetic efficiency.



   For example, reference is made to the Wulff process, which represents an embodiment according to a).



  Its disadvantages are that a large storage volume is necessary with only partial conversion of the hydrocarbons used into acetylene. In addition, a larger amount of olefin is inevitably produced, and finally the process is limited to hydrocarbons with 1 to 4 carbon atoms.



   Arrangements according to b) have also already been described in the literature. The disadvantages of these methods consist of the following points:
The raw material used is not nearly fully implemented; In addition, a large amount of olefin is inevitably produced. Oxygen is also necessary because air cannot achieve high enough temperatures or an acetylene gas that is too diluted is produced. In addition, there is a deterioration in the yield due to secondary reactions of the combustion products. These combustion products, which consist of carbon dioxide and water, react with the starting material and the acetylene that is formed to form carbon dioxide and hydrogen.



  Finally, here too the processes are restricted to lower hydrocarbons.



   According to c), for example, technically executed arc processes work. When using hydrocarbons in such a case, only about 50% conversion can be achieved. In addition, there are costs for the separation of the hydrocarbon from the hydrogen and for the repeated use of energy for heating. Furthermore, diacetylene and carbon black are formed, and finally the processes are limited to hydrocarbons with a low number of carbon atoms.



   In summary, it can be said about these methods that in each case the reaction has to be largely adapted to the embodiment.



   According to the present invention, which is carried out with the help of a heated gas, the hydrogen serving as a heat donor is thermally at least partially dissociated, the thermally dissociated hydrogen is brought together outside the dissociation site with the starting material of the endothermic reaction, with the reunification of the components of the dissociation The heat released by the hydrogen is used to carry out the endothermic reaction and the reaction product is quenched. (Its further decomposition and processing no longer belongs within the scope of the present invention.)
Hydrogen is used as the gas to be dissociated. This is not introduced as a reaction partner, but instead acts as an energy carrier on the starting material after it has been heated with the help of the electric arc.



   It is a matter of exploiting the heat of the reaction: H + H - H2 + 100 Kcal.



   In this way, a high energy concentration can be achieved in the reaction space.



   The subject of the patent is also an application of this process for the production of a mixture of acetylene and ethylene, which is characterized in that hydrogen is used as the gas to be dissociated, it is dissociated in an electric arc and has more than two carbon atoms in a dissociated state Brings aliphatic hydrocarbons together, the hydrogen serving as a heat donor does not enter into chemical reaction. The hydrogen is z.

   B. with a flow velocity in the order of magnitude of 102 to 103 m / sec through the electric arc, heated and largely dissociated, i.e. brought into an atomic state, then with sustained flow velocity in a spatially separated from the dissociation zone, but the reaction zone adjoining it is moved in and brought together with the starting hydrocarbon provided for the formation of acetylene and ethylene, whereupon the reaction product is quenched and worked up in a manner known per se.



   In the present context, saturated, unsaturated, straight-chain or branched aliphatic hydrocarbons can be used as aliphatic hydrocarbons with more than 2 C.



   Per gram atom of the carbon contained in the hydrocarbon used as the starting material, it is advantageous to use 0.05 to 2.0 mol of hydrogen, in particular 0.1 to 1.0 mol of hydrogen.



   It has been shown that in the production of acetylene according to the invention, the formation of soot can be avoided entirely. This means a significant advantage, which is due not only to the use of the energy released when the atoms recombine to form molecules, but also to the fact that the hydrogen has an influence on the equilibrium position of the desired reaction, i.e. it influences the course of the reaction in a favorable sense.



   If hydrogen is blown through an electric arc at high speed, preferably 100 to 1000 m per second, the hydrogen molecules are dissociated into atoms. It is known that these atoms have a lifespan in the order of magnitude of 0.1 to 1 second, which is due to the fact that they can only be reunited to form a molecule in a three-way collision.



   Taking these facts and the high gas velocity into account, it is understandable that several meters behind the arc there has not yet been any reunification into molecules. This zone, which lies outside the electric arc, is, as has been found, excellently suited as a reaction zone for the production of acetylene from aliphatic hydrocarbons with more than 2 C with the aid of hydrogen dissociated in the electric arc. If, in addition to the rapidly flowing dissociated hydrogen, hydrocarbons with more than 2 C, regardless of the molecular size, are introduced into this zone, the following occurs: The recombination of the hydrogen to form the molecule takes place directly on the introduced hydrocarbons.



  The hydrocarbon molecule is split into fragments, from which acetylene and ethylene are formed, due to the hydrogen, without the formation of carbon black or higher acetylenes such as diacetylene. Another advantage is that it is not necessary to forego complete conversion of the hydrocarbon in favor of the acetylene yield.



   Compared to the processes known today, this means better utilization of the starting hydrocarbon and no dependence on specific molecular size, lower concentration costs for acetylene due to the absence of carbon black and diacetylene, elimination of methane hydrogen separation and lower electrical energy consumption.



   When an electric arc is used and a reaction is carried out in the same, the reaction does not proceed optimally because the arc consists of zones of different temperatures and, for example, is colder at the edge than in the middle.



   In contrast to this, according to the invention, the desired reaction does not take place in the arc, but only afterwards, that is to say in a precisely defined and precisely controllable temperature range which allows optimum conversions to be achieved.



   Example I.
4 m3 of hydrogen per hour, expediently preheated to 10,000 ° C., are introduced tangentially into the swirl chamber 2 through the opening 1 of a 35 kW electric arc furnace. From the swirl chamber, the hydrogen passes through the nozzle 3 into the arc, which burns between the electrodes 4.



  The nozzle is expediently dimensioned so that the hydrogen enters the arc chamber at a speed of at least 100 m / sec, expediently 1000 m / sec. After leaving the arc, the now atomic hydrogen encounters 4 m3 propane introduced every hour at 5, which occurs at 6. The propane is expediently also supplied preheated to about 10,000 ° C. The temperature of 1200 to about 16000 ° C. which is most favorable for optimum conversion is established in the reaction chamber 7. The reaction products are immediately quenched to 1000 ° C. by spraying water at about 8 o'clock per hour. From the carbon used in the form of propane the following are obtained:
85% in the form of acetylene
5.3% in the form of propylene
8% in the form of ethylene
1.7% in the form of methane.



  Higher acetylenes or soot do not occur.



   Example 2
The same apparatus and conditions as in Example 1 are used. Instead of propane, however, about 5 kg of a topped off Kuwaiti oil (boiling range 160-3400 C) in a steam state at a temperature of about 5000 C are added every hour. It is obtained from the carbon used:
78% in the form of acetylene 5, 1% in the form of propylene
13.3% in the form of ethylene 3, 2S in the form of methane Here too, no soot formation occurs.



   Example 3
The same apparatus as in Example 1 and under the same conditions are used. Instead of propane, however, 4 kg of dodecane per hour are introduced in the vapor state at a temperature of about 5000 C. About 80% of the carbon used is obtained in the form of acetylene and about 12% in the form of ethylene.


    

Claims (1)

PATENTANSPRUCH 1 Verfahren zur Durchführung endothermer Reaktionen bei hohen Temperaturen mit Hilfe von Wasserstoff als Wärmespender, dadurch gekennzeichnet, dass man den als Wärmespender dienenden Wasserstoff thermisch mindestens teilweise dissoziiert, den thermisch dissoziierten Wasserstoff ausserhalb des Dissoziierungsortes mit dem Ausgangsmaterial der endothermen Reaktion zuammenbringt, wobei die bei der Wiedervereinigung der Bestandteile des zur Dissoziation gebrachten Wasserstoffs freiwerdende Wärme zur Durchführung der endothermen Reaktion dient und das Reaktionsprodukt abschreckt. PATENT CLAIM 1 Process for carrying out endothermic reactions at high temperatures with the aid of hydrogen as the heat donor, characterized in that the hydrogen serving as the heat donor is thermally at least partially dissociated, the thermally dissociated hydrogen is brought together with the starting material of the endothermic reaction outside the dissociation site, with the reunification the heat released by the constituents of the hydrogen which is dissociated serves to carry out the endothermic reaction and quench the reaction product. UNTERANSPRÜCHE 1. Verfahren nach Patentanspruch I, dadurch gekennzeichnet, dass man als zu dissoziierendes Gas Wasserstoff anwendet und dieser kein Reaktionspartner der endothermen Reaktion ist. SUBCLAIMS 1. The method according to claim I, characterized in that hydrogen is used as the gas to be dissociated and this is not a reactant of the endothermic reaction. 2. Verfahren nach Patentanspruch I, dadurch gekennzeichnet, dass die thermische Dissoziation durch direkte Berührung des Gases mit einem elektrischen Lichtbogen bewirkt wird. 2. The method according to claim I, characterized in that the thermal dissociation is brought about by direct contact of the gas with an electric arc. PATENTANSPRUCH II Anwendung des Verfahrens nach Patentanspruch I zur Herstellung eines Gemisches von Acetylen und Äthylen, dadurch gekennzeichnet, dass man als zu dissoziierendes Gas Wasserstoff verwendet, ihn im elektrischen Lichtbogen dissoziiert und ihn in dissoziiertem Zustand mit mehr als zwei C-Atome aufweisenden aliphatischen Kohlenwasserstoffen zusammenbringt, wobei der als Wärmespender dienende Wasserstoff nicht in chemische Reaktion tritt. PATENT CLAIM II Application of the process according to claim I for the production of a mixture of acetylene and ethylene, characterized in that hydrogen is used as the gas to be dissociated, it is dissociated in an electric arc and it is brought together in a dissociated state with aliphatic hydrocarbons having more than two carbon atoms, wherein the hydrogen serving as a heat donor does not enter into a chemical reaction. UNTERANSPRÜCHE 3. Anwendung nach Patentanspruch II, dadurch gekennzeichnet, dass man gesättigte oder ungesättigte, geradkettige oder verzweigte aliphatische Kohlenwasserstoffe verwendet. SUBCLAIMS 3. Use according to claim II, characterized in that saturated or unsaturated, straight-chain or branched aliphatic hydrocarbons are used. 4. Anwendung nach Unteranspruch 3, dadurch gekennzeichnet, dass pro Grammatom im als Ausgangsmaterial verwendeten Kohlenwasserstoff enthaltenem Kohlenstoff 0,05 bis 2,0 Mol Wasserstoff verwendet werden. 4. Application according to dependent claim 3, characterized in that 0.05 to 2.0 mol of hydrogen are used per gram atom in the hydrocarbon used as the starting material carbon. 5. Anwendung nach Unteranspruch 4, dadurch gekennzeichnet, dass zwischen 0,1 und 1,0 Mol Wasserstoff pro Grammatom im als Ausgangsstoff verwendeten Kohlenwasserstoff enthaltenem Kohlenstoff verwendet werden. 5. Application according to dependent claim 4, characterized in that between 0.1 and 1.0 mol of hydrogen per gram atom in the hydrocarbon used as the starting material are used carbon. 6. Anwendung nach Patentanspruch II, dadurch gekennzeichnet, dass bei Zimmertemperatur flüssige Kohlenwasserstoffe vor der Reaktion verdampft werden. 6. Application according to claim II, characterized in that liquid hydrocarbons are evaporated at room temperature before the reaction.
CH2860356A 1955-01-15 1956-01-06 Process for carrying out endothermic reactions at high temperatures and application of this process for the preparation of a mixture of acetylene and ethylene by splitting hydrocarbons CH395030A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DEK24607A DE1012899B (en) 1955-01-15 1955-01-15 Process for carrying out endothermic reactions using an electric arc

Publications (1)

Publication Number Publication Date
CH395030A true CH395030A (en) 1965-07-15

Family

ID=7217070

Family Applications (1)

Application Number Title Priority Date Filing Date
CH2860356A CH395030A (en) 1955-01-15 1956-01-06 Process for carrying out endothermic reactions at high temperatures and application of this process for the preparation of a mixture of acetylene and ethylene by splitting hydrocarbons

Country Status (7)

Country Link
US (1) USRE25218E (en)
BE (1) BE544440A (en)
CH (1) CH395030A (en)
DE (1) DE1012899B (en)
FR (1) FR1149685A (en)
GB (1) GB831522A (en)
NL (1) NL110962C (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3193740A (en) * 1961-09-16 1965-07-06 Nippon Electric Co Semiconductor device
US3309300A (en) * 1963-08-21 1967-03-14 Welsbach Corp Method for the production of ozone using a plasma jet
GB1116521A (en) * 1964-08-24 1968-06-06 Kureha Chemical Ind Co Ltd A process for the thermal cracking of hydrocarbons
US3389189A (en) * 1965-04-06 1968-06-18 Westinghouse Electric Corp Method and equipment for the pyrolysis and synthesis of hydrocarbons and other gasesand arc heater apparatus for use therein
GB2119278B (en) * 1982-04-13 1987-04-15 Michael Paul Neary Improvements in or relating to a chemical method
GB2164581A (en) * 1982-04-13 1986-03-26 Michael Paul Neary Chemical method
RU2158747C1 (en) * 2000-03-21 2000-11-10 Зао "Тк Сибур Нн" Method of direct pyrolysis of methane
AR115968A1 (en) * 2018-08-31 2021-03-17 Dow Global Technologies Llc SYSTEMS AND PROCESSES TO PERFECT HYDROCARBON IMPROVEMENT

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE228539C (en) * 1908-02-26
GB105135A (en) * 1916-04-28 1917-04-05 Anton Victor Lipinski Process and Apparatus for Effecting Chemical Reactions by Means of Electric Arcs.
GB294838A (en) * 1927-12-20 1928-08-02 Norsk Staal Elek Sk Gas Redukt Improved process for the production of reducing gases
DE767708C (en) * 1933-07-21 1953-04-09 E J Du Pont De Nemours And Com Process for the production of hydrocyanic acid

Also Published As

Publication number Publication date
BE544440A (en)
USRE25218E (en) 1962-08-07
FR1149685A (en) 1957-12-30
NL110962C (en)
GB831522A (en) 1960-03-30
DE1012899B (en) 1957-08-01

Similar Documents

Publication Publication Date Title
DE19914226A1 (en) Process for the production of acetylene and synthesis gas
DE1114182B (en) Process for the preparation of gas mixtures containing acetylene and optionally ethylene
CH395030A (en) Process for carrying out endothermic reactions at high temperatures and application of this process for the preparation of a mixture of acetylene and ethylene by splitting hydrocarbons
DE10041739A1 (en) Premix burner block for partial oxidation processes
DE578311C (en) Process for the production of higher carbon hydrocarbons by heating methane
DE960307C (en) Process for the continuous generation of urban gas from oils
DE1021121B (en) Process for the thermal-catalytic conversion of high and high molecular weight, gaseous or liquid hydrocarbons into gases consisting essentially of low molecular weight carbon compounds and hydrogen
DE908491C (en) Method and device for the production of carbon-oxide-rich gas from natural gas and other hydrogen-rich, preferably gaseous fuels, in particular for use as a reducing agent for ores
DE605640C (en) Process for the thermal conversion of saturated or unsaturated hydrocarbons, primarily methane or methane-containing mixtures
AT200567B (en) Process for the production of acetylene and / or ethylene and / or olefins with 2-4 carbon atoms by pyrolytic cleavage of hydrocarbons and apparatus for carrying out the process
AT205154B (en) Process for the thermal / catalytic conversion of higher and high molecular weight, gaseous and / or liquid hydrocarbons into gases, which essentially consist of methane, carbon monoxide and hydrogen
DE886898C (en) Process for the production of technically pure benzene
AT226353B (en) Process for the gasification of low-volatility liquid hydrocarbons
DE921263C (en) Catalytic regenerative process and device for carrying out the process
AT201573B (en) Process for the production of low molecular weight unsaturated hydrocarbons
DE901329C (en) Process and shaft furnace for the extraction of high-quality gases from ash-rich fuels
AT235253B (en) Process and apparatus for the production of acetylene
DE975612C (en) Method for gasifying oil, in particular heating oil
AT210867B (en) Process for the pyrolysis of hydrocarbons
AT231599B (en) Process for refining hydrocarbon oils
AT200127B (en) Process for the pyrolysis of hydrocarbons and furnace for carrying out the process
DE1130100B (en) Process for the production of gas black
AT235302B (en) Process for the production of melamine
AT224617B (en) Process for the production of gas mixtures with a high content of olefins
AT226658B (en) Process for the production of acetylene and ethylene