CH352668A - Process for the production of orally active antidiabetic agents - Google Patents

Process for the production of orally active antidiabetic agents

Info

Publication number
CH352668A
CH352668A CH352668DA CH352668A CH 352668 A CH352668 A CH 352668A CH 352668D A CH352668D A CH 352668DA CH 352668 A CH352668 A CH 352668A
Authority
CH
Switzerland
Prior art keywords
production
methoxypropyl
orally active
antidiabetic agents
toluenesulfonyl
Prior art date
Application number
Other languages
German (de)
Inventor
Haack Erich Dr Dipl-Chem
Hagedorn Adolf Dr Dipl-Chem
Ruschig Heinrich Dr Dipl-Chem
Korger Gerhard Dr Dipl-Chem
Original Assignee
Boehringer & Soehne Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boehringer & Soehne Gmbh filed Critical Boehringer & Soehne Gmbh
Publication of CH352668A publication Critical patent/CH352668A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/04Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor
    • F15B13/042Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure
    • F15B13/043Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with electrically-controlled pilot valves
    • F15B13/0431Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with a single servomotor operated by fluid pressure with electrically-controlled pilot valves the electrical control resulting in an on-off function
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/50Compounds containing any of the groups, X being a hetero atom, Y being any atom
    • C07C311/52Y being a hetero atom
    • C07C311/54Y being a hetero atom either X or Y, but not both, being nitrogen atoms, e.g. N-sulfonylurea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • F15B13/08Assemblies of units, each for the control of a single servomotor only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/08Servomotor systems incorporating electrically operated control means
    • F15B21/085Servomotor systems incorporating electrically operated control means using a data bus, e.g. "CANBUS"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/28Power arrangements internal to the switch for operating the driving mechanism
    • H01H33/30Power arrangements internal to the switch for operating the driving mechanism using fluid actuator
    • H01H33/34Power arrangements internal to the switch for operating the driving mechanism using fluid actuator hydraulic

Description

  

  



  Verfahren zur Herstellung von oral wirksamen Antidiabetika
Der menschliche Diabetes wird heute   üblicher-    weise mit strengen Diätvorschriften und Insulininjektionen behandelt. Es hat aber in den letzten Jahrzehnten nicht an Versuchen gefehlt, das Insulin durch ein per-oral wirksames Antidiabetikum zu ersetzen. Die bisherigen Präparate, z. B. die Bisguanidine mit einem höhermolekularen Alkylenrest, haben wegen ihrer Toxizität auf die Dauer nicht befriedigt. Andere derartige Substanzen (Glucokinine) erwiesen sich als unzuverlässig in der Wirkung. Weitere Verbindungen sind zwar im Tierexperiment als wirksam befunden worden, sind aber wegen ihrer Nebenerscheinungen, z. B. ihrer Toxizität, gar nicht bis in den klinischen Versuch gelant.

   Zu der letzten Gruppe gehören heterocyclische Derivate des Sulfanilamides, nämlich Sulfanilyl-thiodiazole mit einem Athyl-, Isopropyl-oder Butylrest.



   Man wird also von einem Antidiabetikum geringe Toxizität, insbesondere an der Leber, den Nebennieren und dem Zentralnervensystem, und zuverlässige Wirkung verlangen   mussen. Aul3erdem    ist es notwendig, dass die betreffende Substanz nicht stossartig, sondern kontinuierlich wirkt, damit bedrohliche   Hypoglykämien    vermieden werden.



   Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung einer neuen Gruppe von Sulfonamiden, die diesen Ansprüchen weitgehend entsprechen. Während die Sulfanilylthiodiazole nur tierexperimentell eingesetzt werden konnten und unter den zahlreichen übrigen Sulfanilamiden keine blutzuckersenkenden Wirkungen bekanntgeworden sind, haben die neuen Sulfonamide eine zuverlässige und gleichmässige Wirkung auf den Kohlehydrathaushalt des Menschen ohne wesentliche toxische Nebenerscheinungen.



   Es handelt sicli bei den neuen Verbindungen um Sulfonylcarbamide der Formel
EMI1.1     
 in welcher X und Y Wasserstoff, Alkyl-oder Alkoxygruppen bedeuten und gleich oder verschieden sein können, und R einen gesättigten oder ungesättigten offenkettigen oder ringförmigen ein-oder mehrfach die Heteroatome S,   O    oder bzw. und N enthaltenden Kohlenwasserstoffrest bedeutet.



  Die   AminogruppeNHR    kann z. B. bedeuten :
Methoxy-propylamin : -NH-CH2-CH2-CH2-O-CH3  Äthoxy-propylamin: =NH-CH2-CH2-CH2-O-CH2-CH3
Propoxy-propylamin : -NH-CH2-CH2-CH2-O-CH2-CH2-CH3   
Propoxy-athylamin : NH-CH2 CHz O-CH2 CH2 CH3
Athoxy-athylamin : NH-CH2 CH2 O-CH2 CHs     Äthoxy-äthylenoxy-äthylaminl: -NH-CH2-CH2-O-CH=CH-O-CH2-CH3   Methoxy-athylenoxy-athylamin    : -NH-CH2-CH2-O-CH=CH-O-CH3 a-Tetrahydrofuryl-methylamin : 2-Propyl-dioxan-1,   3-amin-5    :   p-Diäthoxy-äthylamin    : Methyl-merkapto-propylamin :   Athyl-merkapto-propylamin    :

   Dimethylaminopropylamin :
EMI2.1     

An sich ist die blutzuckersenkende Wirkung der   N2-substituierten    Sulfonylharnstoffe nicht auf die   erfindungsgemäss    hergestellten Verbindungen mit den oben definierten Resten beschränkt, wie aus eingehenden Untersuchungen der pharmakologischen Eigenschaften dieser Gruppe der Sulfonamide hervorgeht.

   Indessen scheinen Ausmass und Charakter der Nebenwirkungen weitgehend an die Art der   N27    Substituenten gebunden zu sein.   Während nämlich    die höheren Alkylderivate   verhältnismässig    toxisch sind, bewirkt die Anwesenheit von Heteroatomen in den   N,-Substituenten    eine   ilberraschend    starke Herabsetzung der Toxizität ohne entsprechende   Be-      einträchtigung    der antidiabetischen Wirkung ;

   so ist die Dosis letalis z.   B.    beim   Nl-Toluolsulfonyl-N2-    methoxypropyl-harnstoff rund   5-6mal hoher    als beim   Nl-Toluolsulfonyl-N2-n-butyl-harnstoff.    Die die Grundlage der vorliegenden Anmeldung bildende Erkenntnis, dass durch die Anwesenheit der Heteroatome S,   O    oder bzw. und N eine starke Herabsetzung der Toxizität bewirkt wird, findet durch den Vergleich auch der   ilbrigen    Sulfonylharnstoffe ihre Bestätigung und scheint   Ogemeine Giiltigkeit    zu besitzen.



   Die   erfindungsgemäss    hergestellten Verbindungen besitzen keine den Sulfanilamiden vergleichbare bakteriostatische Wirkung, was   fur    gewisse   Fille    bei ihrer Anwendung als blutzuckersenkende Substanzen ein   Vortex    sein kann. So findet z. B. eine Beeinflussung der Darmflora nicht statt, und ebenso bleibt eine durch Dauergebrauch eventuell zu be  fürchtende Gewöhnung    pathogener Keime an Sulfanilamide ausser Betracht.



   Das   erfindungsgemiibe    Verfahren ist dadurch gekennzeichnet,   dal3    man entsprechend substituierte   Benzolsulfonyl-thioharnstoffe,-guanidine    oder-iso  harnstoffäther    der   Formel   
EMI2.2     
 worin Z   =    S oder NH ist, bzw.
EMI2.3     
 durch hydrolytische Massnahmen in die Benzolsulfonylharnstoffe   ubergefuhrt.    Die Umwandlung der Sulfonylguanidine wird   zweckmässig    durch alkalische Hydrolyse (z. B. mittels Alkalihydroxyd), diejenige der   Isoharnstoff-alkyläther    durch saure Hydrolyse   (z.    B. mittels halogenwasserstoff) und diejenige der Thioharnstoffe durch oxydative Hydrolyse (z.

   B. mittels salpetriger   Säure) durchgeführt.   



   Beispiel   I       Nl-(p-Toluolsulfonyl)-N2-(3-methoxypropyl)-harnstoff   
13 g   3-Methoxypropyl-isoharnstoffmethylather-    Methylsulfat (hergestellt aus 3-Methoxypropyl-harnstoff, Schmelzpunkt 73-75  C, und Dimethylsulfat) werden in 50   cm3    Wasser gelöst und unter Rühren zuerst mit 55 g wasserfreiem Kaliumcarbonat, dann mit 15 g p-Toluolsulfochlorid versetzt ; dabei erwärmt sich das Gemisch auf 66  C. Man   hiilt    die Temperatur 30 Minuten auf   600    C. Nach dem Erkalten   fallut    aus dem Reaktionsgemisch ein   O1    aus, das abgetrennt, in 50   cm3    Wasser suspendiert und angesäuert wird.



  Das erhaltene   01    wird nun mit 30 cm3 konz. Salzsaure bis zur Beendigung der Methylchlorid-Entwicklung auf 65  C erhitzt (etwa 1 Stunde). Durch   V. erruhren    der Reaktionslösung mit 100   cms    Wasser erhält man eine kristalline Fällung. Diese wird in schwach   ammoniakalischem Wasser gelbst, mit Aktiv-    kohle behandelt und dann angesäuert, Es fallen 10, 5 g   Nl-(p-Toluolsulfonyl)-N2-(3-methoxypropyl)-    harnstoff vom Smp. 101-105  C aus.



   Beispiel 2    Nl-(p-Toluolsulfonyl)-N2-(3-methoxypropyl)-harnstoff    aus Toluolsulfonyl-methoxypropyl-thioharnstoff
97 g p-Toluolsulfonamid-natrium werden mit   100 cm3    Triglykol verrührt und dann mit 70 g   3-Methoxypropyl-senföl versetzt,    wobei die Reaktionstemperatur bis 80  C ansteigt. Die Mischung wird 3 Stunden im Wasserbad von 90  C gerührt.



  Nach dem Erkalten verdünnt man mit 200 cm3 Wasser und schüttelt das Reaktionsgemisch zweimal mit je   100 cm3 Trichlorathylen.    Das nicht umgesetzte Ausgangsmaterial wird abgesaugt und das wässerige Filtrat angesäuert. Der ausgefallene   Nl-(p-Toluol-    sulfonyl)-N,- (3-methoxypropyl)-thioharnstoff wird durch Lösen in 500 cm3 ammoniakalischem Wasser, Behandeln mit Tierkohle und erneute Fällung   ge-    reinigt ; Schmelzpunkt 120-123  C, Ausbeute 78, 7 g.



   10 g   des Nl-(p-Toluolsulfonyl)-N2-(3-methoxy-    propyl)-thioharnstoffes werden in 50   cm3    Aceton ge  löst    und innerhalb 30 Minuten unter Rühren mit einer Lösung von 2, 5 g Natriumnitrit in 25 cm3 Wasser versetzt. Hierauf gibt man unter Kühlung innerhalb 45 Minuten tropfenweise 20 cm3 5n Essigsäure zu und ruhrt 2 Stunden nach. Durch Zugabe von 50 cm3 Wasser erhält man einen kristallinen Niederschlag, der mit 50   cm3 2 /Oiger Ammoniaklösung    verruhrt wird. Der bei der Reaktion entstandene Schwefel wird abgesaugt und das Filtrat angesäuert, wobei 5, 4 g   Nl-(p-Toluolsulfonyl)-N2-(3-methoxy-      propyl)-harnstoff    vom Schmelzpunkt 99-104  C ausfallen. Aus den Mutterlaugen lassen sich weitere 1, 8 g des Sulfonylharnstoffes gewinnen.



  



  Process for the production of orally active antidiabetic agents
Today, human diabetes is usually treated with strict diet regimes and insulin injections. However, in the last few decades there has been no lack of attempts to replace insulin with a per-orally effective antidiabetic agent. The previous preparations, z. B. the bisguanidines with a higher molecular weight alkylene group have not been satisfactory in the long run because of their toxicity. Other such substances (glucokinins) proved to be unreliable in their effect. Other compounds have been found to be effective in animal experiments, but because of their side effects, e.g. B. their toxicity, did not even get into the clinical trial.

   The last group includes heterocyclic derivatives of sulfanilamides, namely sulfanilyl-thiodiazoles with an ethyl, isopropyl or butyl radical.



   An antidiabetic agent will therefore have to be expected to be of low toxicity, especially in the liver, adrenal glands and central nervous system, and to be reliable. In addition, it is necessary that the substance in question does not act suddenly, but rather continuously, so that threatening hypoglycaemia is avoided.



   The present invention relates to a process for the preparation of a new group of sulfonamides which largely correspond to these claims. While the sulfanilylthiodiazoles could only be used in animal experiments and the numerous other sulfanilamides have no known blood-sugar-lowering effects, the new sulfonamides have a reliable and even effect on the carbohydrate balance of humans without significant toxic side effects.



   The new compounds are sulfonyl carbamides of the formula
EMI1.1
 in which X and Y denote hydrogen, alkyl or alkoxy groups and can be identical or different, and R denotes a saturated or unsaturated open-chain or ring-shaped hydrocarbon radical containing one or more of the heteroatoms S, O or or and N.



  The amino group NHR can e.g. B. mean:
Methoxy-propylamine: -NH-CH2-CH2-CH2-O-CH3 Ethoxy-propylamine: = NH-CH2-CH2-CH2-O-CH2-CH3
Propoxypropylamine: -NH-CH2-CH2-CH2-O-CH2-CH2-CH3
Propoxyethylamine: NH-CH2 CHz O-CH2 CH2 CH3
Ethoxy-ethylamine: NH-CH2 CH2 O-CH2 CHs Ethoxy-ethyleneoxy-ethylamine: -NH-CH2-CH2-O-CH = CH-O-CH2-CH3 methoxy-ethyleneoxy-ethylamine: -NH-CH2-CH2-O -CH = CH-O-CH3 a-tetrahydrofuryl-methylamine: 2-propyl-dioxane-1, 3-amine-5: p-diethoxy-ethylamine: methyl-mercapto-propylamine: ethyl-mercapto-propylamine:

   Dimethylaminopropylamine:
EMI2.1

As such, the blood sugar-lowering effect of the N2-substituted sulfonylureas is not limited to the compounds prepared according to the invention with the residues defined above, as is evident from detailed investigations of the pharmacological properties of this group of sulfonamides.

   However, the extent and nature of the side effects appear to be largely linked to the nature of the N27 substituents. This is because while the higher alkyl derivatives are relatively toxic, the presence of heteroatoms in the N, -substituents causes a surprisingly strong reduction in toxicity without a corresponding impairment of the antidiabetic effect;

   so the dose is letalis z. B. with Nl-toluenesulfonyl-N2-methoxypropyl-urea around 5-6 times higher than with Nl-toluenesulfonyl-N2-n-butyl-urea. The finding, which forms the basis of the present application, that the presence of the heteroatoms S, O or or and N causes a strong reduction in toxicity, is confirmed by a comparison of the other sulfonylureas and seems to be generally valid.



   The compounds prepared according to the invention have no bacteriostatic action comparable to the sulfanilamides, which can be a vortex for certain cases when they are used as blood sugar-lowering substances. So z. B. an influencing of the intestinal flora does not take place, and also any accustoming of pathogenic germs to sulfanilamides, which may be feared due to long-term use, remains out of consideration.



   The process according to the invention is characterized in that correspondingly substituted benzenesulfonyl-thioureas, -guanidines or iso-urea ethers of the formula
EMI2.2
 where Z = S or NH, or
EMI2.3
 converted into benzenesulfonylureas by hydrolytic measures. The sulfonylguanidines are advantageously converted by alkaline hydrolysis (e.g. using alkali hydroxide), that of the isourea alkyl ethers by acid hydrolysis (e.g. using hydrogen halide) and that of the thioureas by oxidative hydrolysis (e.g.

   B. by means of nitrous acid).



   Example I Nl- (p-Toluenesulfonyl) -N2- (3-methoxypropyl) -urea
13 g of 3-methoxypropyl isourea methyl ether methyl sulfate (made from 3-methoxypropyl urea, melting point 73-75 C, and dimethyl sulfate) are dissolved in 50 cm3 of water and, while stirring, first with 55 g of anhydrous potassium carbonate, then with 15 g of p-toluenesulfochloride offset; the mixture warms to 66 ° C. during this process. The temperature is raised to 600 ° C. for 30 minutes. After cooling, an O1 precipitates from the reaction mixture, which is separated off, suspended in 50 cm3 of water and acidified.



  The oil obtained is now concentrated with 30 cm3. Hydrochloric acid heated to 65 C until the evolution of methyl chloride ceased (about 1 hour). A crystalline precipitate is obtained by stirring the reaction solution with 100 cms of water. This is yellow in weak ammoniacal water, treated with activated charcoal and then acidified. 10.5 g of Nl- (p-toluenesulfonyl) -N2- (3-methoxypropyl) urea with a melting point of 101-105 ° C. precipitate.



   Example 2 Nl- (p-Toluenesulfonyl) -N2- (3-methoxypropyl) -urea from Toluenesulfonyl-methoxypropyl-thiourea
97 g of sodium p-toluenesulfonamide are stirred with 100 cm3 of triglycol and then 70 g of 3-methoxypropyl mustard oil are added, the reaction temperature rising to 80 ° C. The mixture is stirred in a water bath at 90 ° C. for 3 hours.



  After cooling, it is diluted with 200 cm3 of water and the reaction mixture is shaken twice with 100 cm3 of trichlorethylene each time. The unreacted starting material is filtered off with suction and the aqueous filtrate is acidified. The precipitated Nl- (p-toluenesulfonyl) -N, - (3-methoxypropyl) thiourea is purified by dissolving it in 500 cm3 of ammoniacal water, treating with animal charcoal and reprecipitation; Melting point 120-123 C, yield 78.7 g.



   10 g of the Nl- (p-toluenesulfonyl) -N2- (3-methoxypropyl) thiourea are dissolved in 50 cm3 of acetone and a solution of 2.5 g of sodium nitrite in 25 cm3 of water is added over a period of 30 minutes while stirring. Then, while cooling, 20 cm3 of 5N acetic acid are added dropwise over the course of 45 minutes and the mixture is stirred for 2 hours. By adding 50 cm3 of water, a crystalline precipitate is obtained, which is stirred with 50 cm3 2 / o ammonia solution. The sulfur formed during the reaction is filtered off with suction and the filtrate is acidified, with 5.4 g of Nl- (p-toluenesulfonyl) -N2- (3-methoxypropyl) urea with a melting point of 99-104 ° C. precipitating out. A further 1.8 g of the sulfonylurea can be obtained from the mother liquors.

 

Claims (1)

PATENTANSPRUCH Verfahren zur Herstellung neuer antidiabetisch wirksamer Benzolsulfonyl-harmstoffe der Formel EMI3.1 in welcher X und Y Wasserstoff, Alkyl-oder Alkoxygruppen bedeuten und gleich oder verschieden sein können und R einen gesättigten oder ungesättigten, ein-oder mehrfach die Heteroatome S, O oder bzw. und N enthaltenden, offenkettigen oder ringförmigen Kohlenwasserstoffrest bedeutet, dadurch gekennzeichnet, dass man entsprechend substituierte Benzolsulfonyl-thioharnstoffe,-guanidine oder-isoharn stoffäther der Formel EMI3.2 worin Z = S oder NH ist, bzw: EMI3.3 durch hydrolytische Massnahmen in die Benzolsulfonylharnstoffe überführt. PATENT CLAIM Process for the production of new anti-diabetic benzenesulfonyl harm substances of the formula EMI3.1 in which X and Y denote hydrogen, alkyl or alkoxy groups and can be identical or different and R denotes a saturated or unsaturated, open-chain or ring-shaped hydrocarbon radical containing one or more of the heteroatoms S, O or and N, characterized in that that one correspondingly substituted benzenesulfonyl-thioureas, -guanidines or-isourea ether of the formula EMI3.2 where Z = S or NH, or: EMI3.3 converted into the benzenesulfonylureas by hydrolytic measures.
CH352668D 1956-03-10 1956-11-01 Process for the production of orally active antidiabetic agents CH352668A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DEL24317A DE1037554B (en) 1956-03-10 1956-03-10 Hydraulically operated electrical multiple switchgear
DEL26013A DE1159541B (en) 1956-03-10 1956-10-18 Hydraulically operated electrical multiple switchgear
DEL32091A DE1148626B (en) 1956-03-10 1958-12-29 Hydraulically operated, electrical multiple switchgear

Publications (1)

Publication Number Publication Date
CH352668A true CH352668A (en) 1961-03-15

Family

ID=27211368

Family Applications (4)

Application Number Title Priority Date Filing Date
CH353348D CH353348A (en) 1956-03-10 1956-11-01 Process for the production of orally active antidiabetic agents
CH352668D CH352668A (en) 1956-03-10 1956-11-01 Process for the production of orally active antidiabetic agents
CH361853D CH361853A (en) 1956-03-10 1957-02-27 Switching machine with heavy current contacts
CH8227659A CH387140A (en) 1956-03-10 1959-12-23 Electro-hydraulically operated, electrical multiple switchgear

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CH353348D CH353348A (en) 1956-03-10 1956-11-01 Process for the production of orally active antidiabetic agents

Family Applications After (2)

Application Number Title Priority Date Filing Date
CH361853D CH361853A (en) 1956-03-10 1957-02-27 Switching machine with heavy current contacts
CH8227659A CH387140A (en) 1956-03-10 1959-12-23 Electro-hydraulically operated, electrical multiple switchgear

Country Status (4)

Country Link
CH (4) CH353348A (en)
DE (3) DE1037554B (en)
FR (2) FR1170283A (en)
GB (2) GB838971A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4340142C2 (en) * 1993-11-25 1995-11-23 Abb Patent Gmbh Hydraulic device for actuating at least one linearly movable component
CN107061796B (en) * 2017-05-19 2023-01-10 浙江工业大学 Rotary gear shifting type multi-oil-way hydraulic control switch

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2308261A (en) * 1939-12-06 1943-01-12 Gen Electric Fluid pressure control system
DE825048C (en) * 1945-10-27 1951-12-17 John Banta Parsons Liquid servomotor
US2631190A (en) * 1950-04-17 1953-03-10 Pacific Electric Mfg Corp Circuit breaker latch mechanism
DE938234C (en) * 1952-08-31 1956-01-26 Siemens Ag Adjustment drive for remote operation of switchgear, controllers, etc. like

Also Published As

Publication number Publication date
FR1170283A (en) 1959-01-13
CH353348A (en) 1961-04-15
CH387140A (en) 1965-01-31
DE1037554B (en) 1958-08-28
CH361853A (en) 1962-05-15
GB838971A (en) 1960-06-22
GB896238A (en) 1962-05-16
DE1159541B (en) 1963-12-19
FR76800E (en) 1961-12-01
DE1148626B (en) 1963-05-16

Similar Documents

Publication Publication Date Title
CH352668A (en) Process for the production of orally active antidiabetic agents
DE1179200B (en) Process for the preparation of N-benzenesulfonyl-N'-methyl-cyclohexylureas
CH370765A (en) Process for the production of orally active antidiabetic agents
DE2021828C3 (en) Benzenesulfonylureas and their pharmacologically non-toxic salts and processes for their preparation and blood sugar-lowering agents containing them
DE1011413B (en) Process for the production of orally active antidiabetic agents
DE1003716B (en) Process for the preparation of new benzenesulfonylureas
AT201608B (en) Process for the production of new sulfonylureas
AT236975B (en) Process for the preparation of new azidobenzenesulfonylureas
CH374984A (en) Process for the preparation of benzenesulfonylureas
CH383947A (en) Process for the production of orally active antidiabetic agents
AT216521B (en) Process for the preparation of new benzenesulfonylureas
AT216008B (en) Process for the production of new sulfonylureas
AT226729B (en) Process for the production of new sulfonylureas
AT200155B (en) Process for the production of new sulfonylureas
CH380717A (en) Process for the production of new sulfonylureas
CH465597A (en) Process for the preparation of new benzenesulfonylureas
DE1012598B (en) Process for the production of orally active antidiabetic agents
AT239236B (en) Process for the production of new sulfonamides and their salts
CH338186A (en) Process for the preparation of an oral anti-diabetic drug
CH338185A (en) Process for the production of an orally active antidiabetic agent
DE1164398B (en) Process for the preparation of antidiabetic derivatives of N-benzenesulfonyl-N-cyclohexylurea
DE1153357B (en) Process for the preparation of azidobenzenesulfonylureas
CH397640A (en) Process for the preparation of new sulfonylureas
CH349972A (en) Process for the production of orally active blood sugar-lowering substances
CH368149A (en) Process for the preparation of sulfonylureas