CA2938614A1 - Delivery device for controlled deployement of a replacement valve - Google Patents
Delivery device for controlled deployement of a replacement valve Download PDFInfo
- Publication number
- CA2938614A1 CA2938614A1 CA2938614A CA2938614A CA2938614A1 CA 2938614 A1 CA2938614 A1 CA 2938614A1 CA 2938614 A CA2938614 A CA 2938614A CA 2938614 A CA2938614 A CA 2938614A CA 2938614 A1 CA2938614 A1 CA 2938614A1
- Authority
- CA
- Canada
- Prior art keywords
- delivery system
- shaft
- replacement valve
- nose cone
- tether
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002513 implantation Methods 0.000 claims abstract description 3
- 230000014759 maintenance of location Effects 0.000 claims description 242
- 238000000034 method Methods 0.000 claims description 70
- 210000003709 heart valve Anatomy 0.000 claims description 55
- 210000004115 mitral valve Anatomy 0.000 claims description 51
- 230000007246 mechanism Effects 0.000 claims description 37
- 230000006835 compression Effects 0.000 claims description 24
- 238000007906 compression Methods 0.000 claims description 24
- 239000004033 plastic Substances 0.000 claims description 17
- 229920003023 plastic Polymers 0.000 claims description 17
- 229920000295 expanded polytetrafluoroethylene Polymers 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 7
- 238000011065 in-situ storage Methods 0.000 claims description 7
- 230000036961 partial effect Effects 0.000 claims description 6
- 230000000670 limiting effect Effects 0.000 claims description 3
- 230000037361 pathway Effects 0.000 claims description 3
- 230000000452 restraining effect Effects 0.000 claims description 3
- 239000007943 implant Substances 0.000 description 69
- 239000000463 material Substances 0.000 description 32
- 239000002775 capsule Substances 0.000 description 18
- 230000008878 coupling Effects 0.000 description 14
- 238000010168 coupling process Methods 0.000 description 14
- 238000005859 coupling reaction Methods 0.000 description 14
- 210000005246 left atrium Anatomy 0.000 description 13
- 210000005166 vasculature Anatomy 0.000 description 13
- 210000005240 left ventricle Anatomy 0.000 description 12
- 238000005452 bending Methods 0.000 description 11
- 238000013459 approach Methods 0.000 description 10
- 230000008901 benefit Effects 0.000 description 7
- 239000000560 biocompatible material Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229920002614 Polyether block amide Polymers 0.000 description 6
- 230000000712 assembly Effects 0.000 description 6
- 238000000429 assembly Methods 0.000 description 6
- 230000003447 ipsilateral effect Effects 0.000 description 6
- 210000003698 chordae tendineae Anatomy 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 description 5
- 210000005245 right atrium Anatomy 0.000 description 5
- 238000002324 minimally invasive surgery Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 210000003484 anatomy Anatomy 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 210000001105 femoral artery Anatomy 0.000 description 3
- 210000003191 femoral vein Anatomy 0.000 description 3
- 230000001771 impaired effect Effects 0.000 description 3
- 208000014674 injury Diseases 0.000 description 3
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 3
- 229910001000 nickel titanium Inorganic materials 0.000 description 3
- 210000003492 pulmonary vein Anatomy 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 210000001765 aortic valve Anatomy 0.000 description 2
- 230000001746 atrial effect Effects 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000006735 deficit Effects 0.000 description 2
- 238000002716 delivery method Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000002594 fluoroscopy Methods 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920002725 thermoplastic elastomer Polymers 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 206010001526 Air embolism Diseases 0.000 description 1
- 208000006029 Cardiomegaly Diseases 0.000 description 1
- 206010027727 Mitral valve incompetence Diseases 0.000 description 1
- 206010067171 Regurgitation Diseases 0.000 description 1
- 229920004738 ULTEM® Polymers 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- 210000002376 aorta thoracic Anatomy 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000002355 open surgical procedure Methods 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 230000002685 pulmonary effect Effects 0.000 description 1
- 210000003102 pulmonary valve Anatomy 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000008733 trauma Effects 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- 210000000591 tricuspid valve Anatomy 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 230000002861 ventricular Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2427—Devices for manipulating or deploying heart valves during implantation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2427—Devices for manipulating or deploying heart valves during implantation
- A61F2/2436—Deployment by retracting a sheath
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2427—Devices for manipulating or deploying heart valves during implantation
- A61F2/2439—Expansion controlled by filaments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2442—Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
- A61F2/2466—Delivery devices therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
- A61F2/24—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
- A61F2/2412—Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
- A61F2/2418—Scaffolds therefor, e.g. support stents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0008—Fixation appliances for connecting prostheses to the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2220/00—Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2220/0025—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
- A61F2220/0033—Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementary-shaped recess, e.g. held by friction fit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2230/00—Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2230/0063—Three-dimensional shapes
- A61F2230/0067—Three-dimensional shapes conical
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2250/00—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
- A61F2250/0004—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable
- A61F2250/001—Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable for adjusting a diameter
Landscapes
- Health & Medical Sciences (AREA)
- Cardiology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Prostheses (AREA)
Abstract
Are described herein delivery devices for delivering a prosthesis within a lumen or body cavity for implantation. A delivery system (10) can include a plurality of components which are moveable relative to each other. The delivery system can include a nose cone (28) which can cover at least a first end of the prosthesis (30), an outer elongate member (24) which can cover at least a second end of the prosthesis, and a tether (32) which can at least partially restrain the prosthesis from deployment.
Description
DELIVERY DEVICE FOR CONTROLLED DEPLOYEMENT OF A REPLACEMENT VALVE
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to U.S. Provisional App. No.
61/943,270 filed February 21, 2014, titled PROSTHESIS DELIVERY DEVICE AND METHODS OF
USE, U.S. Provisional App. No. 61/950,748 filed March 10, 2014, titled PROSTHESIS, DELIVERY DEVICE AND METHODS OF USE, and U.S. Provisional App. No. 62/004,637 filed May 29, 2014, titled PROSTHESIS, DELIVERY DEVICE AND METHODS OF USE, each of which is hereby incorporated herein by reference in its entirety and is to be considered a part of this specification.
BACKGROUND
Field
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to U.S. Provisional App. No.
61/943,270 filed February 21, 2014, titled PROSTHESIS DELIVERY DEVICE AND METHODS OF
USE, U.S. Provisional App. No. 61/950,748 filed March 10, 2014, titled PROSTHESIS, DELIVERY DEVICE AND METHODS OF USE, and U.S. Provisional App. No. 62/004,637 filed May 29, 2014, titled PROSTHESIS, DELIVERY DEVICE AND METHODS OF USE, each of which is hereby incorporated herein by reference in its entirety and is to be considered a part of this specification.
BACKGROUND
Field
[0002] Certain embodiments disclosed herein relate generally to prostheses for implantation within a lumen or body cavity and delivery devices for a prosthesis. In particular, the prostheses and delivery devices relate in some embodiments to replacement heart valves, such as replacement mitral heart valves.
Background
Background
[0003] Human heart valves, which include the aortic, pulmonary, mitral and tricuspid valves, function essentially as one-way valves operating in synchronization with the pumping heart. The valves allow blood to flow downstream, but block blood from flowing upstream. Diseased heart valves exhibit impairments such as narrowing of the valve or regurgitation, which inhibit the valves' ability to control blood flow. Such impairments reduce the heart's blood-pumping efficiency and can be a debilitating and life threatening condition. For example, valve insufficiency can lead to conditions such as heart hypertrophy and dilation of the ventricle. Thus, extensive efforts have been made to develop methods and apparatuses to repair or replace impaired heart valves.
[0004] Prostheses exist to correct problems associated with impaired heart valves.
For example, mechanical and tissue-based heart valve prostheses can be used to replace impaired native heart valves. More recently, substantial effort has been dedicated to developing replacement heart valves, particularly tissue-based replacement heart valves that can be delivered with less trauma to the patient than through open heart surgery.
Replacement valves are being designed to be delivered through minimally invasive procedures and even percutaneous procedures. Such replacement valves often include a tissue-based valve body that is connected to an expandable frame that is then delivered to the native valve's annulus.
For example, mechanical and tissue-based heart valve prostheses can be used to replace impaired native heart valves. More recently, substantial effort has been dedicated to developing replacement heart valves, particularly tissue-based replacement heart valves that can be delivered with less trauma to the patient than through open heart surgery.
Replacement valves are being designed to be delivered through minimally invasive procedures and even percutaneous procedures. Such replacement valves often include a tissue-based valve body that is connected to an expandable frame that is then delivered to the native valve's annulus.
[0005] Development of prostheses including but not limited to replacement heart valves that can be compacted for delivery and then controllably expanded for controlled placement has proven to be particularly challenging. An additional challenge relates to the ability of such prostheses to be secured relative to intralumenal tissue, e.g., tissue within any body lumen or cavity, in an atraumatic manner.
[0006] Delivering a prosthesis to a desired location in the human body, for example delivering a replacement heart valve to the mitral valve, can also be challenging.
Obtaining access to perform procedures in the heart or in other anatomical locations may require delivery of devices percutaneously through tortuous vasculature or through open or semi-open surgical procedures. The ability to control the deployment of the prosthesis at the desired location can also be challenging.
SUMMARY
Obtaining access to perform procedures in the heart or in other anatomical locations may require delivery of devices percutaneously through tortuous vasculature or through open or semi-open surgical procedures. The ability to control the deployment of the prosthesis at the desired location can also be challenging.
SUMMARY
[0007] Embodiments of the present disclosure are directed to a prosthesis, such as but not limited to a replacement heart valve. Further embodiments are directed to delivery systems, devices and/or methods of use to deliver and/or controllably deploy a prosthesis, such as but not limited to a replacement heart valve, to a desired location within the body. In some embodiments, a replacement heart valve and methods for delivering a replacement heart valve to a native heart valve, such as a mitral valve, are provided.
[0008] According to some embodiments, a delivery system can be used for controlled deployment of a prosthesis or replacement valve. In some embodiments, the delivery system can comprise a first member, a second member, and a tether.
The first member can be configured to at least partially restrain a first end of the prosthesis or replacement valve. The second member can be configured to at least partially restrain a second end of the prosthesis or replacement valve. The tether can be configured to at least partially encircle the prosthesis or replacement valve and radially restrain at least a portion of the prosthesis or replacement valve after the second member has been removed from the second end of the prosthesis or replacement valve. The tether can be configured to radially restrain at least a portion of the prosthesis or replacement valve while the first member still at least partially restrains the first end of the prosthesis or replacement valve.
The first member can be configured to at least partially restrain a first end of the prosthesis or replacement valve. The second member can be configured to at least partially restrain a second end of the prosthesis or replacement valve. The tether can be configured to at least partially encircle the prosthesis or replacement valve and radially restrain at least a portion of the prosthesis or replacement valve after the second member has been removed from the second end of the prosthesis or replacement valve. The tether can be configured to radially restrain at least a portion of the prosthesis or replacement valve while the first member still at least partially restrains the first end of the prosthesis or replacement valve.
[0009] According to some embodiments, the first member can comprise a first shaft and the second member can comprise a second shaft, the second shaft being positioned over the first shaft and slidable relative to the first shaft. The first member can comprise a nose cone configured to receive and cover the first end of the prosthesis or replacement valve.
The nose cone can be connected to a distal end of the first shaft. The nose cone can comprise a proximally-facing opening to receive at least a first end of the prosthesis or replacement valve. The nose cone can comprise a taper towards the distal end of the nose cone. An outer diameter of the nose cone can be similar to an outer diameter of the second shaft. An outer diameter of the nose cone is similar to an inner diameter of the second shaft.
The first member can comprise an inner retention ring configured to engage the first end of the prosthesis or replacement valve. The inner retention ring can be connected to a distal portion of an inner retention shaft. The inner retention shaft can be positioned between the first shaft and the second shaft and be slidable relative to the first shaft. The inner retention ring can comprise a taper towards a proximal end of the inner retention ring. The inner retention ring can comprise a cavity at or near a distal end of the inner retention ring. The inner retention ring can comprise a compressible member received at least partially within the cavity, the compressible member having a compressed diameter and an expanded diameter.
The nose cone can be connected to a distal end of the first shaft. The nose cone can comprise a proximally-facing opening to receive at least a first end of the prosthesis or replacement valve. The nose cone can comprise a taper towards the distal end of the nose cone. An outer diameter of the nose cone can be similar to an outer diameter of the second shaft. An outer diameter of the nose cone is similar to an inner diameter of the second shaft.
The first member can comprise an inner retention ring configured to engage the first end of the prosthesis or replacement valve. The inner retention ring can be connected to a distal portion of an inner retention shaft. The inner retention shaft can be positioned between the first shaft and the second shaft and be slidable relative to the first shaft. The inner retention ring can comprise a taper towards a proximal end of the inner retention ring. The inner retention ring can comprise a cavity at or near a distal end of the inner retention ring. The inner retention ring can comprise a compressible member received at least partially within the cavity, the compressible member having a compressed diameter and an expanded diameter.
[0010] According to some embodiments, the delivery system can comprise a tether retention assembly configured to restrain the tether such that the tether can be tensioned to restrain at least a portion of the prosthesis or replacement valve. The tether retention assembly can comprise an inner component and an outer component. The outer component can be configured to cooperate with the inner component to restrain the tether.
The inner component can comprise a C-lock. The outer component can comprise a sheath.
The outer component can be moveable relative to the inner component to release the tether.
The tether retention assembly can further comprise a locking shaft. The outer component can be positioned at or near a distal end of the locking shaft. The locking shaft can comprise a radial protrusion which can be configured to maintain radial alignment between the locking shaft and the second shaft. The locking shaft can comprise a guide member for the tether.
The inner component can comprise a C-lock. The outer component can comprise a sheath.
The outer component can be moveable relative to the inner component to release the tether.
The tether retention assembly can further comprise a locking shaft. The outer component can be positioned at or near a distal end of the locking shaft. The locking shaft can comprise a radial protrusion which can be configured to maintain radial alignment between the locking shaft and the second shaft. The locking shaft can comprise a guide member for the tether.
[0011]
According to some embodiments, the second member can comprise an outer elongate hollow member configured to cover at least the second end of the prosthesis or replacement valve. The outer elongate member can be connected to a distal end of the second shaft. The outer elongate hollow member can have a substantially constant diameter throughout the entirety of its length. The diameter of the outer elongate hollow member can be substantially similar to a diameter of the second shaft The outer elongate hollow member can be moveable relative to the first member to uncover the second end of the prosthesis or replacement valve while the first end of the prosthesis or replacement valve remains engaged to the first member. The delivery system can comprise an introducer sheath positioned over the second shaft. The delivery system can comprise a plug, the plug being moveable to engage the first member when the first member is retrieved from a patient. The delivery system can comprise a plug shaft positioned between the first shaft and the second shaft and can be slidable relative to the first shaft. The first shaft can be hollow to receive a guidewire.
According to some embodiments, the second member can comprise an outer elongate hollow member configured to cover at least the second end of the prosthesis or replacement valve. The outer elongate member can be connected to a distal end of the second shaft. The outer elongate hollow member can have a substantially constant diameter throughout the entirety of its length. The diameter of the outer elongate hollow member can be substantially similar to a diameter of the second shaft The outer elongate hollow member can be moveable relative to the first member to uncover the second end of the prosthesis or replacement valve while the first end of the prosthesis or replacement valve remains engaged to the first member. The delivery system can comprise an introducer sheath positioned over the second shaft. The delivery system can comprise a plug, the plug being moveable to engage the first member when the first member is retrieved from a patient. The delivery system can comprise a plug shaft positioned between the first shaft and the second shaft and can be slidable relative to the first shaft. The first shaft can be hollow to receive a guidewire.
[0012]
According to some embodiments, the delivery system can comprise a prosthesis or replacement valve, wherein a first end of the prosthesis or replacement valve engages the first member and a second end of the prosthesis or replacement valve engages the second member.
According to some embodiments, the delivery system can comprise a prosthesis or replacement valve, wherein a first end of the prosthesis or replacement valve engages the first member and a second end of the prosthesis or replacement valve engages the second member.
[0013]
According to some embodiments, a delivery system can be used for controlled deployment of a prosthesis or replacement valve. The delivery system can comprise a nose cone shaft, a nose cone, an inner retention shaft, an inner retention ring, a tether retention member, a locking shaft, an outer elongate hollow member shaft, and an outer elongate hollow member. The nose cone can be connected to the distal end of the nose cone shaft. The nose cone can comprise a proximally-facing opening to receive at least a first end of the prosthesis or replacement valve. The inner retention shaft can be slidable over the nose cone shaft. The inner retention ring can be connected to the distal end of the inner retention shaft. The inner retention ring can be configured to engage the first end of the prosthesis or replacement valve. The tether retention member can be on the inner retention shaft. The locking shaft can be slidable over the inner retention shaft. The locking shaft can be configured to cooperate with the tether retention member to releasably engage a tether attached to the prosthesis or replacement valve. The outer elongate hollow member shaft can be slidable over the locking shaft. The outer elongate hollow member can be connected to the distal end of the outer elongate hollow member shaft. The outer elongate hollow member can have a proximal end and a distal end, the outer elongate hollow member being configured to cover at least the second end of the prosthesis or replacement valve when the first end of the prosthesis or replacement valve is engaged with the inner retention ring and is covered by the nose cone. The outer elongate hollow member can be moveable relative to the nose cone to uncover the second end of the prosthesis or replacement valve while the first end of the prosthesis or replacement valve remains engaged to the inner retention ring and is covered by the nose cone.
According to some embodiments, a delivery system can be used for controlled deployment of a prosthesis or replacement valve. The delivery system can comprise a nose cone shaft, a nose cone, an inner retention shaft, an inner retention ring, a tether retention member, a locking shaft, an outer elongate hollow member shaft, and an outer elongate hollow member. The nose cone can be connected to the distal end of the nose cone shaft. The nose cone can comprise a proximally-facing opening to receive at least a first end of the prosthesis or replacement valve. The inner retention shaft can be slidable over the nose cone shaft. The inner retention ring can be connected to the distal end of the inner retention shaft. The inner retention ring can be configured to engage the first end of the prosthesis or replacement valve. The tether retention member can be on the inner retention shaft. The locking shaft can be slidable over the inner retention shaft. The locking shaft can be configured to cooperate with the tether retention member to releasably engage a tether attached to the prosthesis or replacement valve. The outer elongate hollow member shaft can be slidable over the locking shaft. The outer elongate hollow member can be connected to the distal end of the outer elongate hollow member shaft. The outer elongate hollow member can have a proximal end and a distal end, the outer elongate hollow member being configured to cover at least the second end of the prosthesis or replacement valve when the first end of the prosthesis or replacement valve is engaged with the inner retention ring and is covered by the nose cone. The outer elongate hollow member can be moveable relative to the nose cone to uncover the second end of the prosthesis or replacement valve while the first end of the prosthesis or replacement valve remains engaged to the inner retention ring and is covered by the nose cone.
[0014] According to some embodiments, the nose cone can comprise a taper towards the distal end of the nose cone. An outer diameter of the nose cone can be similar to an outer diameter of at least one of the outer elongate hollow member shaft and the outer elongate hollow member. An outer diameter of the nose cone can be similar to an inner diameter of at least one of the outer elongate hollow member shaft and the outer elongate hollow member. The inner retention ring can comprise a taper towards a proximal end of the inner retention ring. The inner retention ring can comprise a cavity at or near a distal end of the inner retention ring. The inner retention ring can comprise a compressible member received at least partially within the cavity, the compressible member having a compressed diameter and an expanded diameter. The compressed diameter can be approximately equal to an inner diameter of the nose cone and the expanded diameter can be greater than the inner diameter of the nose cone. The locking shaft can comprise a radial protrusion configured to maintain radial alignment between the locking shaft and the outer elongate hollow member shaft. The locking shaft can comprise a guide member for the tether. The outer elongate hollow member can have a substantially constant diameter throughout the entirety of its length. The diameter of the outer elongate hollow member can be substantially similar to a diameter of the outer elongate hollow member shaft.
[0015] According to some embodiments, the delivery system can comprise an introducer sheath having a proximal end and a distal end slidable over the outer elongate hollow member shaft. The tether retention member can comprise a C-lock. The delivery system can comprise a lock at the distal end of the locking shaft to cover the C-lock to releasably retain a tether therein. The delivery system can comprise a plug shaft having a proximal end and a distal end. The plug shaft can be slidable over the locking shaft and the outer elongate hollow member shaft can be slidable over the plug shaft. The delivery system can comprise a plug at the distal end of the plug shaft to engage the nose cone when the nose cone is retrieved from a patient. The nose cone shaft can be hollow to receive a guidewire.
[0016] According to some embodiments, the delivery system can comprise a prosthesis or replacement valve. A first end of the prosthesis or replacement valve can engage the inner retention ring and can be covered by the nose cone. A second end of the prosthesis or replacement valve can be covered by the outer elongate hollow member shaft.
A tether can be connected to the tether retention member, the tether retention member being covered by a lock at the distal end of the locking shaft, the tether wrapping at least partially around the prosthesis or replacement valve and then extending proximally through at least the outer elongate hollow member shaft.
A tether can be connected to the tether retention member, the tether retention member being covered by a lock at the distal end of the locking shaft, the tether wrapping at least partially around the prosthesis or replacement valve and then extending proximally through at least the outer elongate hollow member shaft.
[0017] According to some embodiments, a method of delivery of a prosthesis or replacement valve can comprise: delivering an intralumenal frame assembly to the in situ target location while the frame assembly is in a radially compacted state within an outer member, the frame assembly comprising a frame having a first end, a second end and a longitudinal axis extending between the first and second ends, the frame further comprising a tether encircling at least a portion of the frame, the tether configured to restrain the radial dimension of the frame; at least partially removing the outer member from the frame assembly, wherein the tether restrains the radial dimension of the frame after the outer member is at least partially removed; and releasing the tether from the frame to allow at least a portion of the frame assembly to radially expand.
[0018] According to some embodiments, releasing the tether from the frame can allow the second end of the frame to radially expand while the first end of the frame remains radially restrained. The method can comprise radially expanding the first end of the frame after releasing the tether to allow the second end of the frame to radially expand. The first end of the frame, prior to radial expansion, can be restrained by a nose cone covering at least the first end of the frame. The outer member can be at least partially removed from the frame assembly by moving the outer member relatively away from the nose cone. The outer member can be at least partially removed in a proximal direction from the frame assembly by moving the outer member relatively away from the nose cone.
[0019] According to some embodiments, the intralumenal frame assembly can comprise a plurality of anchors at its second end, wherein the plurality of anchors extend proximally away from the second end of the frame assembly as the outer member is moved proximally. The plurality of anchors can flip to extend distally away from the second end of the frame assembly after the outer member uncovers the plurality of anchors.
The tether can radially restrain the frame assembly during flipping of the anchors. The intralumenal frame assembly can comprise a replacement heart valve. The intralumenal frame assembly can be delivered transapically to a mitral valve location.
The tether can radially restrain the frame assembly during flipping of the anchors. The intralumenal frame assembly can comprise a replacement heart valve. The intralumenal frame assembly can be delivered transapically to a mitral valve location.
[0020] According to some embodiments, a delivery system can be used for controlled deployment of a prosthesis or replacement valve. The delivery system can comprise a delivery catheter, a prosthesis and a cover. The cover can be positioned over a plurality of first anchors of the prosthesis while the first anchors move from pointing in a first longitudinal direction to a second longitudinal direction, thereby preventing or limiting contact between the first anchors and tissue.
[0021] In some embodiments, the prosthesis or replacement valve can comprise a radially compacted replacement valve having a longitudinal axis positioned within the delivery catheter and comprising a plurality of first anchors wherein the first anchors each have an end pointing in a first longitudinal direction in the radially compacted state and the end is configured to change direction to point in a second longitudinal direction, the ends pointing in the second longitudinal direction after the replacement valve is deployed from the delivery catheter.
[0022] In some embodiments, a delivery system can be used for controlled deployment of a replacement valve. The delivery system can comprise a sheath and an expandable cover. The sheath can be configured to surround a radially compacted replacement valve, wherein retraction of the sheath from off of the radially compacted replacement valve allows the radially compacted replacement valve to at least partially expand. The expandable cover can be advanceable over the sheath prior to retraction to allow for expansion of the replacement valve within the expandable cover as the sheath is retracted to prevent or limit contact between the expanding replacement valve and tissue.
[0023] In certain embodiments, a replacement valve can comprise a plurality of anchors that are configured to change direction during expansion. Each of the anchors can have an end, the end pointing in a first direction prior to expansion and in a second direction after at least partial expansion. Each anchor can rotate at least 45 degrees during the partial expansion.
[0024] The delivery device can be used in a number of different methods, for example, a method of delivery of a replacement valve. A method can comprise:
advancing a delivery system holding a radially compacted replacement valve to a native valve, the delivery system comprising: a sheath surrounding the radially compacted replacement valve;
and an expandable cover; withdrawing the sheath to allow the replacement valve to at least partially expand within the expandable cover to prevent or limit contact between the expanding replacement valve and tissue.
advancing a delivery system holding a radially compacted replacement valve to a native valve, the delivery system comprising: a sheath surrounding the radially compacted replacement valve;
and an expandable cover; withdrawing the sheath to allow the replacement valve to at least partially expand within the expandable cover to prevent or limit contact between the expanding replacement valve and tissue.
[0025] In certain embodiments, advancing can further comprise advancing the delivery system to the native valve transapically. An additional step can be advancing the expandable cover over the sheath.
[0026] According to certain embodiments, a method of delivery of a replacement valve can comprise: advancing a delivery system holding a radially compacted replacement valve to a native valve, the delivery system having a longitudinal axis; at least partially expanding the replacement valve radially outward from the longitudinal axis and within an expandable cover to prevent or limit contact between the expanding replacement valve and tissue.
[0027] At least partially expanding the replacement valve can comprise allowing a plurality of anchors to self-expand within the expandable cover. Allowing the plurality of anchors to self-expand can comprise flipping an end of each of the anchors of the plurality of anchors to change a longitudinal orientation of the end from a first longitudinal direction to a second opposite longitudinal direction.
[0028] A delivery system can be used for controlled deployment of a prosthesis.
In some embodiments, the delivery system can include an elongate inner member, an inner retention mechanism on the elongate inner member, and a shaft assembly. The inner retention mechanism can be configured to engage the prosthesis. The shaft assembly can be slidable over the elongate inner member and the inner retention mechanism. The shaft assembly can comprise an outer retention member, a first member and a second member.
The outer retention member, together with the inner retention mechanism can be configured to secure the prosthesis on the delivery system. The first and second members can both be connected to the outer retention member and can facilitate delivery of the prosthesis with stretch and compression resistance while retaining the prosthesis during delivery through tortuous pathways.
In some embodiments, the delivery system can include an elongate inner member, an inner retention mechanism on the elongate inner member, and a shaft assembly. The inner retention mechanism can be configured to engage the prosthesis. The shaft assembly can be slidable over the elongate inner member and the inner retention mechanism. The shaft assembly can comprise an outer retention member, a first member and a second member.
The outer retention member, together with the inner retention mechanism can be configured to secure the prosthesis on the delivery system. The first and second members can both be connected to the outer retention member and can facilitate delivery of the prosthesis with stretch and compression resistance while retaining the prosthesis during delivery through tortuous pathways.
[0029] In accordance with some embodiments a delivery system can comprise an elongate inner member and a shaft assembly configured to be slidable over the elongate inner member. The shaft assembly can be configured to at least partially radially constrain an expandable prosthesis when the expandable prosthesis is provided over the elongate inner member, and the shaft assembly can comprise a compression member and a tension member concentrically arranged.
[0030] In some embodiments, the compression member can surround the tension member. The delivery system can comprise an outer sheath configured to be slidable over the shaft assembly. The outer sheath can be configured to cover a distal end of the expandable prosthesis when the expandable prosthesis is provided over the elongate inner member. The outer sheath can comprise a slotted hypo tube. The slotted hypo tube can be configured to surround the compression member and the tension member when the outer sheath covers the distal end of the expandable prosthesis. At least a segment of the outer sheath can be formed of ePTFE.
[0031] In some embodiments, a flexible delivery system can comprise an elongate inner member, an inner retention mechanism on the elongate inner member, a mid shaft assembly, and an outer sheath. The delivery system can comprise a handle. The inner retention mechanism can be configured to engage a radially compacted proximal end of a replacement mitral valve. The mid shaft assembly can be configured to be slidable over the elongate inner member and the inner retention mechanism. The mid shaft assembly can comprise an outer retention member configured to cover at least the radially compacted proximal end of the replacement mitral valve when the proximal end of the replacement mitral valve is engaged with the inner retention mechanism, a first member having a distal end connected to the outer retention member, and a second member having a distal end connected to the outer retention member and extending along the length of the first member.
The outer sheath can be configured to be slidable over the mid shaft assembly and configured to cover the distal end of the replacement mitral valve. The first member and second member can be positioned between the handle and the outer retention member.
The outer sheath can be configured to be slidable over the mid shaft assembly and configured to cover the distal end of the replacement mitral valve. The first member and second member can be positioned between the handle and the outer retention member.
[0032] In some embodiments, a delivery system can be configured to retain at least a radially compacted proximal end of a replacement mitral valve between an inner retention mechanism and an outer retention member during advancement of the delivery system within the body and the first and second members facilitate advancement with stretch and compression resistance through long and tortuous pathways.
[0033] In some embodiments, the first member can comprise a compression member. The first member can comprise a coiled spring. The second member can comprise a tension member. The second member can comprise a braided wire. The elongate inner member can comprise a tube having a lumen sized and configured to slidably accommodate a guidewire. The delivery system can comprise a nose cone connected to the distal end of the elongate inner member. The inner retention mechanism can comprise a ring comprising a plurality of teeth configured to engage tabs on the proximal end of the prosthesis. The outer retention member can be a ring.
[0034] In some embodiments, the delivery system can comprise a replacement mitral valve having a proximal end and a distal end. The proximal end of the replacement mitral valve can be engaged with the inner retention mechanism on the elongate inner member and can be covered by the outer retention member. The distal end of the replacement mitral valve can be covered by the outer sheath. The outer sheath can comprise a slotted hypo tube. The mid shaft assembly can comprise a plastic tube, wherein both the compression member and the tension member can be connected to the plastic tube. The plastic tube can be positioned between the handle and the compression and tension members.
BRIEF DESCRIPTION OF THE DRAWINGS
BRIEF DESCRIPTION OF THE DRAWINGS
[0035] These and other features, aspects and advantages are described below with reference to the drawings, which are intended to illustrate but not to limit the invention.
[0036] Figure 1A shows an embodiment of a delivery system.
[0037] Figure 1B shows an embodiment of the delivery system of Figure 1A.
[0038] Figures 2A-4B illustrate steps of a deployment method using the delivery system of Figure 1A.
[0039] Figures 5 and 6 show a perspective and side view of an embodiment of a prosthesis in a pre-expanded state.
[0040] Figures 7 and 8 show a perspective and side view of the prosthesis in an expanded state.
[0041] Figure 9 shows another embodiment of a delivery system.
[0042] Figure 10 shows a close-up in view of components of the delivery system of Figure 9.
[0043] Figures 11 and 12 show components of the delivery system of Figure 9 with certain components having been omitted.
[0044] Figure 13 shows further components of the delivery system of Figure 9 with additional components having been omitted.
[0045] Figures 14A-23B illustrate steps of a deployment method using the delivery system of Figure 9.
[0046] Figure 24 illustrates a schematic representation of a prosthesis positioned within the heart.
[0047] Figure 25 shows another embodiment of a delivery system.
[0048] Figure 26 shows a cross-sectional view of the delivery system of Figure 25.
[0049] Figure 27 shows another embodiment of an inner retention mechanism.
[0050] Figure 28 shows a cross-sectional view of the inner retention mechanism of Figure 27.
[0051] Figure 29 shows a cross-sectional view of an embodiment of the inner retention mechanism and nose cone in a first configuration.
[0052] Figure 30 shows a cross-sectional view of the inner retention mechanism and nose cone of Figure 29 in a second configuration.
[0053] Figure 31 shows an embodiment of a delivery system.
[0054] Figure 32 is an exploded view of the distal end of the delivery system of Figure 31.
[0055] Figure 33 is a cross-section view of the distal end of the delivery system of Figure 31.
[0056] Figure 34 shows an exploded view of a mid shaft assembly that may be used in the delivery system of Figure 31.
[0057] Figures 35A-C illustrates a distal end of the delivery system of Figure 31 in a series of positions.
[0058] Figures 36A-C show a handle of the delivery system of Figure 31 in a series of positions.
[0059] Figure 37 shows a prosthesis within a delivery system.
[0060] Figure 38 is a schematic representation showing an access path into the heart.
[0061] Figure 39 illustrates a replacement heart valve deployed in the mitral valve between the left atrium and the left ventricle.
[0062] Figures 40A-B illustrate another embodiment of a delivery system.
DETAILED DESCRIPTION
DETAILED DESCRIPTION
[0063] The present specification and drawings provide aspects and features of the disclosure in the context of several embodiments of replacement heart valves, delivery devices and methods that are configured for use in the vasculature of a patient, such as for replacement of natural heart valves in a patient. These embodiments may be discussed in connection with replacing specific valves such as the patient's aortic or mitral valve.
However, it is to be understood that the features and concepts discussed herein can be applied to products other than heart valve implants. For example, the controlled positioning, deployment, and securing features described herein can be applied to medical implants, for example other types of expandable prostheses, for use elsewhere in the body, such as within an artery, a vein, or other body cavities or locations. In addition, particular features of a valve, delivery device, etc. should not be taken as limiting, and features of any one embodiment discussed herein can be combined with features of other embodiments as desired and when appropriate. While certain of the embodiments described herein are described in connection with a transapical delivery approach, and certain of the embodiments described herein are described in connection with a transfemoral delivery approach, it should be understood that these embodiments can be used for other delivery approaches.
Moreover, it should be understood that certain of the features described in connection with some embodiments can be incorporated with other embodiments, including those which are described in connection with different delivery approaches.
However, it is to be understood that the features and concepts discussed herein can be applied to products other than heart valve implants. For example, the controlled positioning, deployment, and securing features described herein can be applied to medical implants, for example other types of expandable prostheses, for use elsewhere in the body, such as within an artery, a vein, or other body cavities or locations. In addition, particular features of a valve, delivery device, etc. should not be taken as limiting, and features of any one embodiment discussed herein can be combined with features of other embodiments as desired and when appropriate. While certain of the embodiments described herein are described in connection with a transapical delivery approach, and certain of the embodiments described herein are described in connection with a transfemoral delivery approach, it should be understood that these embodiments can be used for other delivery approaches.
Moreover, it should be understood that certain of the features described in connection with some embodiments can be incorporated with other embodiments, including those which are described in connection with different delivery approaches.
[0064] With reference to Figures 1A and 1B, an embodiment of a delivery device or system 10 is shown. The delivery system can be used deploy a prosthesis, such as a replacement heart valve, within the body. Replacement heart valves can be delivered to a patient's heart mitral valve annulus in various ways, such as by open surgery, minimally-invasive surgery, and percutaneous or transcatheter delivery through the patient's vasculature.
The delivery device 10 can be relatively short to more easily be used in an open heart procedure or other more direct procedures than the percutaneous procedure starting at the leg.
At the same time, the delivery device 10 can still be relatively flexible to allow, for example, advancement through the pulmonary veins or the wall of the left atrium and then bending of the delivery device for proper placement at the mitral valve. In this way the illustrated embodiment comprises an elongate, delivery system configured to be advanced in a transapical delivery approach.
The delivery device 10 can be relatively short to more easily be used in an open heart procedure or other more direct procedures than the percutaneous procedure starting at the leg.
At the same time, the delivery device 10 can still be relatively flexible to allow, for example, advancement through the pulmonary veins or the wall of the left atrium and then bending of the delivery device for proper placement at the mitral valve. In this way the illustrated embodiment comprises an elongate, delivery system configured to be advanced in a transapical delivery approach.
[0065] The delivery system 10 can include an elongate shaft assembly 12 comprising a proximal end and a distal end, wherein a handle (not shown) is coupled to the proximal end of the assembly 12. The elongate shaft assembly 12 can be used to hold the prosthesis for advancement of the same through the vasculature to a treatment location. The elongate shaft assembly 12 can include an implant retention area 16 that can be used for this purpose. In some embodiments, the elongate shaft assembly 12 can hold an expandable prosthesis in a compressed state at implant retention area 16 for advancement of the prosthesis within the body. The elongate shaft assembly 12 may then be used to allow controlled expansion of the prosthesis at the treatment location. The implant retention area 16 is shown at the distal end of the delivery device, but may also be at other locations.
[0066] The elongate shaft assembly 12 can include one or more subassemblies as will be described in more detail below. The elongate shaft assembly 12 can be configured to deliver a prosthesis positioned within the implant retention area 16 to a treatment location.
One or more of the subassemblies can then be moved to allow the prosthesis to be released at the treatment location. For example, one or more of the subassemblies may be movable with respect to one or more of the other subassemblies. The handle can include various control mechanisms that be used to control the movement of the various subassemblies.
In this way, the prosthesis can be controllably loaded onto the delivery device 10 and then later deployed within the body.
One or more of the subassemblies can then be moved to allow the prosthesis to be released at the treatment location. For example, one or more of the subassemblies may be movable with respect to one or more of the other subassemblies. The handle can include various control mechanisms that be used to control the movement of the various subassemblies.
In this way, the prosthesis can be controllably loaded onto the delivery device 10 and then later deployed within the body.
[0067] With continued reference to Figures 1A and 1B, it can be seen that the subassemblies of the elongate shaft assembly 12 can include one or more outer sheaths 14, a cover 20, a capsule 24, and a nose cone 28. An implant in a pre-deployed state can be held by the delivery device within the capsule and the nose cone. The capsule and nose cone can be made of polyurethane for atraumatic entry and to minimize injury to tissue.
The nose cone or other parts can also be radiopaque to provide for visibility under fluoroscopy.
The nose cone or other parts can also be radiopaque to provide for visibility under fluoroscopy.
[0068] The implant or prosthesis can take any number of different forms. A
particular example of frame for a prosthesis is shown herein, though it will be understood that other designs can also be used. Additional example designs for a prosthesis are described in U.S. Patent Nos. 8,403,983, 8,414,644, 8,652,203 and U.S. Patent Publication Nos.
2011/0313515, 2012/0215303, 2014/0277390, 2014/0277422, 2014/0277427, the entirety of these patents and publications are hereby incorporated by reference and made a part of this specification.
particular example of frame for a prosthesis is shown herein, though it will be understood that other designs can also be used. Additional example designs for a prosthesis are described in U.S. Patent Nos. 8,403,983, 8,414,644, 8,652,203 and U.S. Patent Publication Nos.
2011/0313515, 2012/0215303, 2014/0277390, 2014/0277422, 2014/0277427, the entirety of these patents and publications are hereby incorporated by reference and made a part of this specification.
[0069] Each of the subassemblies can be made of or attached to tubes that slide within one another. In this way, each of the outer sheaths 14, cover 20, capsule 24, and/or nose cone 28 may move with respect to one or more of the other components or subassemblies. The innermost assembly may include a lumen sized and configured to slidably accommodate a guidewire so that the delivery device 10 can be advanced over the guidewire.
[0070] The various tubes can be a hypodermic tube or hypo tube. The tube can be made from one of any number of different materials including nitinol, stainless steel, and medical grade plastics. The tube can be a single piece tube or multiple pieces connected together. Using a tube made of multiple pieces can allow the tube to provide different characteristics along different sections of the tube, such as rigidity and flexibility. For example, in some embodiments it can be desirable, and/or needful, for the delivery device 10 to have greater flexibility at the distal end of the device, where flexibility is not as necessary for the proximal end.
[0071] Moving now to Figures 2A and 2B, it can be seen that the cover 20 can be advanced over the capsule 24. The cover 20 can be used to allow the implant to expand while reducing and/or preventing contact between the implant and body tissue during all or part of the expansion process. The cover 20 can be made of a plurality of longitudinal struts sufficiently rigid to advance over the capsule after the delivery device has been positioned within the body at or near a treatment location. For example, the delivery device can be advanced into the left ventricle of the heart for a mitral valve replacement and the cover can then be advanced over the capsule prior to expanding all or part of the implant. The cover can also include a film, sheet, fabric, or other material that can be positioned between the struts. This sheet may or may not be flexible. The sheet can initially be folded within an outer sheath and can expand to a larger size after advancing over the capsule.
It will also be understood that in other embodiments, the cover can be positioned over the capsule in an initial state, or prior to advancing the delivery device to the treatment area.
It will also be understood that in other embodiments, the cover can be positioned over the capsule in an initial state, or prior to advancing the delivery device to the treatment area.
[0072] Once the cover is in position, or while the cover is being advanced into position, the capsule 24 can be withdrawn or otherwise removed from covering the implant 30. Removing the capsule can allow the implant to expand, partially or in full. In some embodiments, a separate device can control all or part of the expansion of the implant.
Figures 3A and 3B show the cover 20 over the implant 30 and the capsule 24 withdrawn.
Withdrawing the capsule can also assist the cover in expanding so as not to impede or restrict expansion of the implant. With the implant partially or fully expanded, the cover can then be withdrawn. Figures 4A and 4B show the delivery device after the cover has been withdrawn, with the implant partially expanded. Figures 4A and 4B also show a tether, wire or suture 32 that can be used to at least partially control expansion of the implant. Also, an end portion of the implant remains compacted in the nose cone 28. This can allow the implant to be positioned at a heart location prior to full expansion.
Figures 3A and 3B show the cover 20 over the implant 30 and the capsule 24 withdrawn.
Withdrawing the capsule can also assist the cover in expanding so as not to impede or restrict expansion of the implant. With the implant partially or fully expanded, the cover can then be withdrawn. Figures 4A and 4B show the delivery device after the cover has been withdrawn, with the implant partially expanded. Figures 4A and 4B also show a tether, wire or suture 32 that can be used to at least partially control expansion of the implant. Also, an end portion of the implant remains compacted in the nose cone 28. This can allow the implant to be positioned at a heart location prior to full expansion.
[0073] Figures 4A and 4B also illustrates that the implant 30 has a plurality of anchors 34. In some embodiments, the anchors 34 can point in a first direction prior to expansion and then rotate to point in a second, longitudinally opposite direction after expansion. The anchors can completely flip directions. The cover 20 can beneficially ensure that the anchors do not engage or get caught in tissue during rotation. For example, without a cover during deployment in the left ventricle of the heart, the anchors can easily get caught in the chordae tendineae as they rotate or change directions. Figures 4A and 4B
further illustrate that the tether, wire or suture 32 may extend from within the capsule 24 and wrap around the implant 30, for example at the base of the anchors 34. The tether, wire or suture 32 may thus partial control expansion of the implant by radially restraining expansion of the implant as the anchors 34 are released from the capsule 24.
further illustrate that the tether, wire or suture 32 may extend from within the capsule 24 and wrap around the implant 30, for example at the base of the anchors 34. The tether, wire or suture 32 may thus partial control expansion of the implant by radially restraining expansion of the implant as the anchors 34 are released from the capsule 24.
[0074] Figures 5-8 illustrate an example implant 30 that can be used with the delivery device 10. It can be seen that the anchors 34 can point in a first direction prior to deployment when in the pre-deployment state of Figures 5-6. When deployed, the anchors can rotate to the position shown in Figures 7-8. It will be understood that the implant can be made of a self-expanding material so as to self-expand into the desired shape.
The implant of Figures 5-6 can be cut from a tube to the shape shown and the expanded to the shape of Figures 7-8. The implant can then be compressed back to the shape shown in Figures 5-6 or to a similar shape. Further details of the implant are described in the patents and applications incorporated by reference above.
The implant of Figures 5-6 can be cut from a tube to the shape shown and the expanded to the shape of Figures 7-8. The implant can then be compressed back to the shape shown in Figures 5-6 or to a similar shape. Further details of the implant are described in the patents and applications incorporated by reference above.
[0075] The embodiment of Figures 9-13 illustrates a delivery device or system 100. Delivery system 100 can have components, features, and/or functionality similar to those described with respect to delivery device or system 10. The delivery system 100 can be used to deploy a prosthesis, such as a replacement heart valve as described elsewhere in this specification, within the body. The delivery system 100 can receive and/or cover portions of the prosthesis such as a first end and second end of the prosthesis. For example, the delivery system 100 may be used to deliver a prosthesis 30 such as illustrated in Figures 7 and 8, where the prosthesis includes a first end 33 and a second end 31, and wherein the second end 31 is configured to be deployed before the first end 33. Replacement heart valves can be delivered to a patient' s heart mitral valve annulus or other heart valve location in various ways, such as by open surgery, minimally-invasive surgery, and percutaneous or transcatheter delivery through the patient's vasculature. The delivery system 100 can be relatively short to more easily be used in an open heart procedure or other more direct procedures than the percutaneous procedure starting at the leg. At the same time, the delivery system 100 can still be relatively flexible to allow, for example, advancement through the pulmonary veins or the wall of the left atrium and then bending of the delivery device for proper placement at the mitral valve. In some embodiments, the delivery system 100 is particularly suitable for delivering a replacement heart valve to a mitral valve location through a transapical approach (e.g., through the apex of the heart).
[0076] With reference first to the embodiment of Figures 9 and 10, the delivery system 100 can include a handle 110 and a plurality of sheaths and/or shafts such as the illustrated introducer sheath 112 and outer elongate hollow member shaft 114.
As will be described in further detail below, the plurality of shafts can be sized and shaped to be slidable relative to each other. Accordingly, it should be understood that one or more of the plurality of shafts can be concentric with respect to another of the shafts to facilitate slidable movement of the shafts relative to each other. The plurality of shafts can be coupled to one or more other components of the delivery system 100. In some embodiments, the handle 110 can include a plurality of switches, levers, or other actuatable mechanisms which can be used to control the movement of the one or more shafts of the delivery system 100 and/or to control the operation of other components of the delivery system 100.
As will be described in further detail below, the plurality of shafts can be sized and shaped to be slidable relative to each other. Accordingly, it should be understood that one or more of the plurality of shafts can be concentric with respect to another of the shafts to facilitate slidable movement of the shafts relative to each other. The plurality of shafts can be coupled to one or more other components of the delivery system 100. In some embodiments, the handle 110 can include a plurality of switches, levers, or other actuatable mechanisms which can be used to control the movement of the one or more shafts of the delivery system 100 and/or to control the operation of other components of the delivery system 100.
[0077] With continued reference to the embodiment of Figures 9 and 10, the delivery system 100 can include an introducer sheath 112 and an outer elongate hollow member shaft 114, each having a proximal and distal end. As used to describe the components of the delivery system, "proximal" refers to a location of the component that is closer to the handle 110, and "distal" refers to a location of the component that is further from the handle 110. In some embodiments, the proximal end of the introducer sheath 112 can be coupled to the handle 110. The introducer sheath 112 can be sized and shaped such that introducer sheath 112 is slidable over the outer elongate hollow member shaft 114. For example, in some embodiments, the introducer sheath 112 can be fixed relative to the handle 110 and the outer elongate hollow member shaft 114 can be moved within the introducer sheath 112. In some embodiments, the introducer sheath 112 can be movable relative to the handle 110. As should be understood from the above disclosure, in some embodiments, the introducer sheath 112 can be omitted and the outer elongate hollow member shaft 114 can form the outer shaft of the delivery system 100. For example, the embodiment of Figures 25 and 26 illustrates a delivery system 200 without an introducer sheath 112 and the outer elongate hollow member shaft 214 forming an outer shaft.
[0078] With continued reference to the embodiment of Figures 9 and 10, the outer elongate hollow member shaft 114 can optionally have a distal end coupled to a proximal end of an outer elongate hollow member 116. The outer elongate hollow member 116 can be a sheath or capsule similar to capsule 24 described in connection with delivery system 10. In some embodiments, the outer elongate hollow member shaft 114 and/or the outer elongate hollow member 116 can cover at least a portion of the prosthesis while the prosthesis is being delivered to the deployment site. For example, the outer elongate hollow member shaft 114 and/or the outer elongate hollow member 116 can cover at least the second end 31 of the prosthesis while the first end 33 of the prosthesis is received within nose cone 118. In some embodiments, the outer elongate hollow member 116 can also cover the first end of the prosthesis. The outer elongate hollow member 116 can be sized and shaped such that the elongate hollow member 116 can retain the prosthesis in a compressed state as it is delivered to the deployment site. Accordingly, the outer elongate hollow member shaft 114 can function as a capsule shaft. Optionally, the anchors 34 on the prosthesis may extend proximally toward the handle 110 when the prosthesis is covered by the outer elongate hollow member. The outer elongate hollow member 116 can be moveable relative to the nose cone 118 to uncover the second end of the prosthesis while the first end of the prosthesis remains engaged to an inner retention member (described with respect to Figure 13 below) within the nose cone 118 and remains covered by the nose cone 118.
[0079] As shown in the illustrated embodiment, the outer elongate hollow member 116 includes a taper at a proximal end such that the proximal end of the outer elongate hollow member 116 has an outer diameter which is less than an outer diameter of the distal end of the outer elongate hollow member 116. In some embodiments, the outer diameter of the proximal end of the outer elongate hollow member 116 can be similar to, or equal to, the outer diameter of a distal end of the outer elongate hollow member shaft 114. In some embodiments, the outer elongate hollow member 116 can be collapsible such that, upon retraction towards the introducer sheath 112, the outer elongate hollow member 116 can collapse into the introducer sheath 112. The outer elongate hollow member 116 can be formed from a variety of materials, including ePTFE, as well as other biocompatible materials.
[0080] With reference to the embodiment of Figures 25 and 26, in some embodiments, the outer elongate hollow member shaft 214 can extend over the prosthesis and can be sized and shaped such that it can retain the prosthesis in a compressed state as it is delivered to the deployment site. As shown in the illustrated embodiment, the outer elongate hollow member shaft 214 can have a constant or substantially constant outer diameter throughout the entirety, or a substantial portion of the entirety, of its length.
[0081] As shown more clearly in Figure 26, the outer elongate hollow member shaft 214 can have a taper at its distal end. The outer elongate hollow member shaft can include a marker 217 positioned proximate the distal end. In some embodiments, the outer elongate hollow member shaft 214 can include a first portion 215 and a second portion 216.
This can advantageously allow for the use of two types of material for the outer elongate hollow member shaft 214. For example, as shown in the illustrated embodiment, at least a portion of the first portion 215 can be positioned radially outward from of the second portion 216 relative to a longitudinal axis of the outer elongate hollow member shaft 214. The first portion 215 can be formed from a relatively rigid material, such as PEBAX, ULTEM, PEAK
and any other biocompatible material as desired. This can advantageously provide some degree of rigidity for the outer elongate hollow member shaft 214. The second portion 216 can be formed from a more compliant material, such as PTFE, ePTFE and any other biocompatible material as desired. This can advantageously provide a more compliant inner surface for the outer elongate hollow member shaft 214, which can be beneficial when contacting other components of the delivery system 200 and the prosthesis. In some embodiments, the second portion 216 can be a liner which is applied to the first portion 215.
This can advantageously allow for the use of two types of material for the outer elongate hollow member shaft 214. For example, as shown in the illustrated embodiment, at least a portion of the first portion 215 can be positioned radially outward from of the second portion 216 relative to a longitudinal axis of the outer elongate hollow member shaft 214. The first portion 215 can be formed from a relatively rigid material, such as PEBAX, ULTEM, PEAK
and any other biocompatible material as desired. This can advantageously provide some degree of rigidity for the outer elongate hollow member shaft 214. The second portion 216 can be formed from a more compliant material, such as PTFE, ePTFE and any other biocompatible material as desired. This can advantageously provide a more compliant inner surface for the outer elongate hollow member shaft 214, which can be beneficial when contacting other components of the delivery system 200 and the prosthesis. In some embodiments, the second portion 216 can be a liner which is applied to the first portion 215.
[0082] While the illustrated outer elongate hollow member shaft 214 is shown with multiple portions formed from multiple materials, it is also contemplated that the outer elongate hollow member shaft 214 can be a formed from a single material.
Moreover, in some embodiments, the outer elongate hollow member shaft 214 can include an elongate hollow member similar to outer elongate hollow member 116 which can cover at least a portion of the prosthesis. In some embodiments, the outer elongate hollow member can have a constant or substantially constant outer diameter throughout the entirety, or a substantial portion of the entirety, of its length. The outer diameter of the outer elongate hollow member can be similar to, or equal to, the outer diameter of the outer elongate hollow member shaft 214. In some embodiments, the outer elongate hollow member can be formed from a material different from the outer elongate hollow member shaft 214.
Moreover, in some embodiments, the outer elongate hollow member shaft 214 can include an elongate hollow member similar to outer elongate hollow member 116 which can cover at least a portion of the prosthesis. In some embodiments, the outer elongate hollow member can have a constant or substantially constant outer diameter throughout the entirety, or a substantial portion of the entirety, of its length. The outer diameter of the outer elongate hollow member can be similar to, or equal to, the outer diameter of the outer elongate hollow member shaft 214. In some embodiments, the outer elongate hollow member can be formed from a material different from the outer elongate hollow member shaft 214.
[0083] With reference now to the embodiment of Figures 11 and 12, which illustrates delivery system 100 without the outer elongate hollow member 116 being shown, the delivery system 100 can include a plug shaft 120, a locking shaft 122, and an inner retention shaft 124, each having a proximal and distal end. The distal end of plug shaft 120 can be coupled to the proximal end of a plug 126. In some embodiments, plug shaft 120 can be sized and shaped such that plug shaft 120 is slidable over the locking shaft 122. For example, in some embodiments, the locking shaft 122 can be moved within the plug shaft 120. In some embodiments, the plug shaft 120 can be moved over the locking shaft 122.
Moreover, plug shaft 120 can be sized and shaped such that the outer elongate hollow member shaft 114 is slidable over the plug shaft 120. In some embodiments, the plug 126 can be used to engage the nose cone when the nose cone is retrieved from the patient. For example, the plug 126 can be used to contact the proximal end of the nose cone 118 as the nose cone 118 is retracted proximally toward the plug 126 or as the plug 126 is advanced distally toward the nose cone 118. As should be understood from the above disclosure, in some embodiments, the plug shaft 120 and/or the plug 126 can be omitted from the delivery system 100. For example, the embodiment of Figures 25 and 26 illustrates a delivery system 200 without a plug shaft 120 or plug 126.
Moreover, plug shaft 120 can be sized and shaped such that the outer elongate hollow member shaft 114 is slidable over the plug shaft 120. In some embodiments, the plug 126 can be used to engage the nose cone when the nose cone is retrieved from the patient. For example, the plug 126 can be used to contact the proximal end of the nose cone 118 as the nose cone 118 is retracted proximally toward the plug 126 or as the plug 126 is advanced distally toward the nose cone 118. As should be understood from the above disclosure, in some embodiments, the plug shaft 120 and/or the plug 126 can be omitted from the delivery system 100. For example, the embodiment of Figures 25 and 26 illustrates a delivery system 200 without a plug shaft 120 or plug 126.
[0084] With reference back to the embodiment of Figures 11 and 12, the nose cone 118 can have a tapered distal end. The nose cone 118 can be formed from a relatively rigid, high durometer material such as a metal. The nose cone 118 can have a length, measured from the distalmost end to a proximalmost end, of between approximately 5 mm to 50 mm, between approximately 10 mm to approximately 40 mm, between approximately 15 mm to approximately 25 mm, approximately 20 mm, any other lengths within these ranges, and any other lengths as desired.
[0085] In some embodiments such as that of Figures 25 and 26, the nose cone 218 can have a more elongated shape. As shown in the illustrated embodiment, the tapered portion can be concave thereby forming a more defined distal tip of the nose cone 218. As shown more clearly in Figure 26, the nose cone 218 can include a first portion 219 and a second portion 220. This can advantageously allow for the use of two types of material for the nose cone 218. For example, as shown in the illustrated embodiment, at least a portion of the first portion 219 can be positioned radially outward from of the second portion 220 relative to a longitudinal axis of the nose cone 218. The first portion 219 can be formed from a lower durometer material such as urethane, PEBAX, polysilicone and any other biocompatible material as desired. The second portion 220 can be formed from higher durometer materials such as stainless steels, titanium, and any other biocompatible material as desired. This can advantageously provide additional structural support for the nose cone 218. In some embodiments, the second portion 220 can include threading for attachment to a shaft, such as nose cone shaft 130. In some embodiments, the first portion 219 can be overmolded onto the second portion 220 and/or attached using mechanical fasteners such as screws, bolts, rivets, and threaded couplings, chemical fasteners, such as adhesives, or other types of fastening techniques such as welding. In some embodiments, the nose cone 218 can be a single unit formed from a single material.
[0086] With reference particularly to the embodiment of Figure 26, the outer diameter of the nose cone 218, such as the first portion 219 and/or second portion 220, can be similar to, or equal to, the outer diameter of an outer shaft and/or outer component, such as the outer elongate hollow member shaft 214. As shown in the illustrated embodiment, the first portion 219 has an outer diameter which is similar to that of the outer elongate hollow member shaft 214. This can form a generally smooth transition in diameter between the nose cone 218 and the outer shaft and/or the outer component if and when the nose cone 218 is brought into contact with the outer shaft and/or the outer component. In some embodiments, the nose cone 218 can have an outer diameter of approximately 31 Fr or 32 Fr and the outer shaft and/or outer component can have an outer diameter of approximately 31 Fr or 32 Fr.
[0087] In some embodiments, the outer diameter of the nose cone 218, such as the first portion 219 and/or second portion 220, can be similar to, or equal to, the inner diameter of an outer shaft and/or outer component such that the first portion 219 and/or the second portion 220 can be partially received within the outer shaft and/or outer component. In some embodiments, the nose cone 218 can have an outer diameter of approximately 30 Fr and the outer shaft and/or outer component can have an inner diameter of approximately 30 Fr. In some embodiments, the outer shaft can be an outermost shaft of the delivery system.
[0088] With reference back to the embodiment of Figures 11 and 12, the distal end of locking shaft 122 can be coupled to at least a portion of a tether retention assembly 128. As shown in the illustrated embodiment, the locking shaft 122 is coupled to a lock 129 of the tether retention assembly 128. Lock 129 can function as a sheath of the tether retention assembly 128. The lock 129 can be used to cover a corresponding component of the tether retention assembly 128 such as a tether retention member 134, not shown in Figures 11 and 12 but which will be described in further detail below with respect to Figure 13. In some embodiments, locking shaft 122 can be sized and shaped such that locking shaft 122 is slidable over the inner retention shaft 124. For example, in some embodiments, the inner retention shaft 124 can be moved within the locking shaft 122. In some embodiments, the locking shaft 122 can be moved over the inner retention shaft 124. The locking shaft 122 can cooperate with the tether retention assembly 128 to release a tether 136 (shown in Figure 13) attached to the prosthesis. For example, proximal movement of locking shaft 122 can result in proximal movement of the lock 129 relative to the tether retention member thereby releasing a tether engaged to the tether retention assembly 128. Moreover, locking shaft 122 can be sized and shaped such that the outer elongate hollow member shaft 114 is slidable over the locking shaft 122.
[0089] With continued reference to the embodiment of Figures 11 and 12, the distal end of the inner retention shaft 124 can be coupled to at least a portion of an inner retention member 132 that is positioned within nose cone 118 (not shown in Figures 11 and 12, but shown in Figure 13). In some embodiments, inner retention shaft 124 can be sized and shaped such that inner retention shaft 124 is slidable within the locking shaft 122. For example, in some embodiments, the inner retention shaft 124 can be moved within the locking shaft 122. In some embodiments, the locking shaft 122 can be moved over the inner retention shaft 124. The inner retention shaft 124 can cooperate with the inner retention member 132 and the nose cone 118 to release a first end of the prosthesis from the nose cone 118. In some embodiments, the first end of the prosthesis can be received within a proximally-facing opening 119 (see Figure 11) and covered by the nose cone 118. The first end of the prosthesis can also be engaged with the inner retention member 132.
Accordingly, proximal movement of the inner retention shaft 124 can result in proximal movement of the inner retention member relative to the nose cone 118 which can release the first end of the prosthesis from the nose cone 118. Similarly, distal movement of the nose cone 118 relative to the inner retention shaft 124, and thus the inner retention member, can also release the first end of the prosthesis from the nose cone 118.
Accordingly, proximal movement of the inner retention shaft 124 can result in proximal movement of the inner retention member relative to the nose cone 118 which can release the first end of the prosthesis from the nose cone 118. Similarly, distal movement of the nose cone 118 relative to the inner retention shaft 124, and thus the inner retention member, can also release the first end of the prosthesis from the nose cone 118.
[0090] In some embodiments such as that of Figure 26, the inner locking shaft 222 can include a radial protrusion 224, such as an annular disc, and a lock 229 similar to lock 129. The radial protrusion 224 can assist in maintaining the locking shaft 222 in a desired radial alignment relative to the shaft within which the locking shaft 222 is positioned.
For example, as shown in the illustrated embodiment, the radial protrusion can assist in maintaining concentricity between the locking shaft 222 and another shaft such as the outer elongate hollow member shaft 214 in embodiments without a plug shaft 120 and/or plug 126.
In some embodiments, the locking shaft 222 can include a guide member 226 for the tether, wire or suture 32. As shown in the illustrated embodiment, the guide member can be formed as a hole on the radial protrusion.
For example, as shown in the illustrated embodiment, the radial protrusion can assist in maintaining concentricity between the locking shaft 222 and another shaft such as the outer elongate hollow member shaft 214 in embodiments without a plug shaft 120 and/or plug 126.
In some embodiments, the locking shaft 222 can include a guide member 226 for the tether, wire or suture 32. As shown in the illustrated embodiment, the guide member can be formed as a hole on the radial protrusion.
[0091] In some embodiments, the locking shaft 222 can be retracted via use of a spring loaded actuator. The spring loaded actuator can be similar to spring 1066 described in connection with Figure 36C.
[0092] With reference now to the embodiment of Figure 13, which illustrates delivery system 100 without the outer elongate hollow member 116, nose cone 118, locking shaft 122, and lock 129 being shown, the delivery system 100 can include a nose cone shaft 130 having a proximal and distal end. The distal end of the nose cone shaft 130 can be coupled to a portion of the nose cone 118. In some embodiments, nose cone shaft 130 can be sized and shaped such that inner retention shaft 124 is slidable over the nose cone shaft 130.
For example, in some embodiments, the nose cone shaft 130 can be moved within the inner retention shaft 124. In some embodiments, the inner retention shaft 124 can be moved over the nose cone shaft 130. Moreover, in some embodiments, the nose cone shaft 130 can be hollow such that the nose cone shaft 130 can receive a guidewire.
For example, in some embodiments, the nose cone shaft 130 can be moved within the inner retention shaft 124. In some embodiments, the inner retention shaft 124 can be moved over the nose cone shaft 130. Moreover, in some embodiments, the nose cone shaft 130 can be hollow such that the nose cone shaft 130 can receive a guidewire.
[0093] With continued reference to the embodiment of Figure 13, the delivery system 100 can include an inner retention member 132 such as an inner retention ring coupled to the distal end of the inner retention shaft 124. The inner retention member 132 can include a plurality of slots sized and shaped to receive portions of a first end of the prosthesis. In some embodiments, the slots can extend radially inward. The first end of the prosthesis can be placed in a compressed state such that the first end of the prosthesis is retained between the inner retention member 132 and the nose cone (not shown) when the inner retention member 132 is received within and covered by the nose cone. In some embodiments, when the inner retention member 132 is uncovered, the first end of the prosthesis can expand radially outward from the inner retention member 132 and thereby disengage from the inner retention member 132.
[0094] In some embodiments such as that of Figures 27 and 28, the inner retention member 232 can have a more elongated design. As shown in the illustrated embodiment, the inner retention member 232 can have a proximal end 234 and a distal end 236 with a plurality of slots 238 sized and shaped to receive portions of a first end of the prosthesis positioned proximate the proximal end 234. Slots 238 can extend along a longitudinal axis of the inner retention member 232. In some embodiments, the inner retention member 232 can include a cavity 239 positioned distal the slots 238.
The cavity 239 can be sized and shaped to receive portions of the first end of the prosthesis. As shown in the illustrated embodiment, the cavity 239 can have an annular shape. In some embodiments, the inner retention member 232 can include a taper towards the proximal end 234. This can facilitate removal of the inner retention member 232 from the heart by reducing the diameter at the proximalmost end of the inner retention member 232 and reducing the likelihood of snagging on tissue. This can be particularly advantageous in embodiments where the plug shaft 120 and/or plug 126 are not included in the delivery system 100.
The cavity 239 can be sized and shaped to receive portions of the first end of the prosthesis. As shown in the illustrated embodiment, the cavity 239 can have an annular shape. In some embodiments, the inner retention member 232 can include a taper towards the proximal end 234. This can facilitate removal of the inner retention member 232 from the heart by reducing the diameter at the proximalmost end of the inner retention member 232 and reducing the likelihood of snagging on tissue. This can be particularly advantageous in embodiments where the plug shaft 120 and/or plug 126 are not included in the delivery system 100.
[0095] As shown in the illustrated embodiment, the inner retention member 232 can include a cavity 240 proximate the distal end 236. The cavity 240 can be formed between one or more radial protrusions, such as ridges 244, 246. A
compressible member 242, such as an 0-ring, can be received at least partially within the cavity 240. As shown in the illustrated embodiment, the cavity 240 can have an annular shape.
compressible member 242, such as an 0-ring, can be received at least partially within the cavity 240. As shown in the illustrated embodiment, the cavity 240 can have an annular shape.
[0096] With continued reference to the embodiment of Figure 28, in some embodiments the inner retention member 232 can include a first portion 248 and a second portion 250. This can advantageously allow for the use of two types of material for the inner retention member 232. For example, as shown in the illustrated embodiment, at least a portion of the first portion 248 can be positioned radially outward from of the second portion 250 relative to a longitudinal axis of the inner retention member 232. The first portion 248 can be formed from materials such as urethane, PEBAX, polysilicone and any other biocompatible material as desired. The second portion 250 can be formed from higher durometer materials such as stainless steels, titanium, and any other biocompatible material as desired. In some embodiments, the second portion 250 can include threading for attachment to a shaft, such as inner retention shaft 124. This can advantageously provide additional structural support for the inner retention member 232. In some embodiments, the first portion 248 can be overmolded onto the second portion 250 and/or attached using mechanical fasteners such as screws, bolts, rivets, and threaded couplings, chemical fasteners, such as adhesives, or other types of fastening techniques such as welding. In some embodiments, the inner retention member 232 can be a single unit formed from a single material.
[0097] As shown in the embodiment of Figure 29, in some embodiments the compressible member 242 can be sized and shaped such that it can be compressed to a smaller outer diameter. This can allow the compressible member 242 to fit within the nose cone, such as nose cones 118, 218, when the inner retention member 232 is positioned within the nose cone 218. In such an embodiment, positioning within the nose cone 218 can maintain the compressible member 242 in this compressed state. Once the compressible member 242 is no longer fully positioned within the nose cone 218, as shown in the embodiment of Figure 30, the compressible member 242 can expand to a larger outer diameter. In some embodiments, the outer diameter in the relaxed or expanded state can be greater than the inner diameter of the nose cone 218. In some embodiments, the outer diameter in the relaxed or expanded state can be greater than the outer diameter of the nose cone 218. This can advantageously facilitate removal of the inner retention member 232 and nose cone 218 from the heart. For example, the compressible member can be positioned against a proximal edge of the nose cone 218 thereby serving as a smoother and less traumatic contact surface.
[0098] With reference back to the embodiment of Figure 13, the delivery system 100 can include a tether retention member 134. The tether retention member 134 can be attached to the inner retention shaft 124. As shown in the illustrated embodiment, the tether retention member 134 can be a C-lock having an opening through which a tether 136 can pass. In order to retain the tether 136 within the tether retention member 134, the end 138 of the tether 136 can be sized and shaped such that the end 138 is prevented from passing through the opening of the tether retention member 134. For example, the end 138 of the tether 136 can be knotted such that at least one dimension of the end 138 prevents the end 138 from passing through the opening. In the illustrated embodiment, the tether 136 can be released from the tether retention member 134 by passing the tether 136 radially away from and over the tether retention member 134. The tether 136 can be tensioned and angled such that the tether 136 would pass over the tether retention member 134 when tether retention member 134 is uncovered from the lock 129 (not shown). It should be understood that other mechanisms can be used for tether retention assembly 128 in lieu of the lock and tether retention member 134 including, but not limited to, clamps which engage the tether 136.
Although not shown, the tether 136 can engage at least a portion of the prosthesis, such as the second end of the prosthesis. For example, in some embodiments, the tether can wrap around at least some portion of the prosthesis and extend at least proximally through at least the outer elongate hollow member 116 and/or the outer elongate hollow member shaft 114. The end opposite end 138 can be attached to a component of the delivery system 100 such that the tether 136 can be retracted into the delivery system 100 upon release of the tether 136 from the tether retention assembly 128.
Although not shown, the tether 136 can engage at least a portion of the prosthesis, such as the second end of the prosthesis. For example, in some embodiments, the tether can wrap around at least some portion of the prosthesis and extend at least proximally through at least the outer elongate hollow member 116 and/or the outer elongate hollow member shaft 114. The end opposite end 138 can be attached to a component of the delivery system 100 such that the tether 136 can be retracted into the delivery system 100 upon release of the tether 136 from the tether retention assembly 128.
[0099] The embodiments of Figures 14A-23B illustrates steps of a method of operating the delivery system 100 and releasing an intralumenal frame assembly, such as implant 30, to intralumenal tissue at an in situ target location. The steps of this method can be carried out while the intralumenal frame assembly is in a radially compacted state within an outer member, such as outer elongate hollow member 116. In some embodiments, the longitudinal axis of the frame assembly, which runs between the first and second ends of the intralumenal frame assembly, can be parallel to and/or concentric with the longitudinal axis of one or more shafts of the delivery system 100. The steps of this method can be used to transapically deliver a replacement heart valve to a mitral valve location.
[0100] With reference first to the step of Figures 14A and 14B, the delivery system 100 is shown in a preliminary configuration with the outer elongate hollow member 116 covering the implant (not shown) and adjacent to the nose cone 118. In this configuration, the delivery system 100 has a relatively compact form factor which facilitates delivery of the implant to the in situ target location. As shown in the illustrated embodiment, the outer elongate hollow member 116 can remain wholly outside the introducer sheath 112 in this configuration.
[0101] With reference next to the step of Figures 15A and 15B, once the delivery system 100 has positioned the implant at the in situ target location, the outer elongate hollow member 116 can be moved relatively away from the nose cone 118, either by proximally retracting the outer elongate hollow member 116 and/or distally advancing the nose cone 118, to uncover at least a portion of the implant 30. As shown in the illustrated embodiment, the outer elongate hollow member 116 can also be moved relatively toward the introducer sheath 112, either by proximally retracting the outer elongate hollow member 116 and/or distally advancing the introducer sheath 112, such that the outer elongate hollow member 116 is partially received within the introducer sheath 112.
[0102] With reference next to the step of Figures 16A and 16B, the outer elongate hollow member 116 can be further moved relatively away from the nose cone 118 to further uncover the implant 30 and/or relatively toward the introducer sheath 112. As shown in the illustrated embodiment, the second end 31 of the implant 30 has been partially uncovered with both the outer elongate hollow member 116 and the tether 136 restraining the radial dimension of the frame of the implant 30. It should be noted that the first end 33 of the implant 30 can remain covered by the nose cone 118 during this step such that the first end 33 remains in a radially compacted state.
[0103] With reference next to the step of Figures 17A and 17B, the outer elongate hollow member 116 can be further moved relatively away from the nose cone 118 thereby further uncovering the implant 30 and/or relatively toward the introducer sheath 112. As shown in the illustrated embodiment, the second end 31 of the implant 30 has been fully uncovered. Moreover, as shown in the illustrated embodiment, the second end 31 of the implant 30 has at least partially expanded in the radial dimension with anchors 34 having been flipped to extend distally away from the second end 31 of the implant 30.
The tether 136 can continue to at least partially restrain the radial dimension of the second end 31 and can advantageously reduce the speed at which the second end 31 radially expands. In some embodiments, the tether 136 can be designed such that the second end 31 remains in the fully compacted state when the second end 31 is fully uncovered. It should be noted that the end (not shown) of the tether 136 remains attached to the tether retention assembly 128. During this step, tension in the tether 136 can be reduced such that the second end 31 of the implant 30 can be further radially expanded.
The tether 136 can continue to at least partially restrain the radial dimension of the second end 31 and can advantageously reduce the speed at which the second end 31 radially expands. In some embodiments, the tether 136 can be designed such that the second end 31 remains in the fully compacted state when the second end 31 is fully uncovered. It should be noted that the end (not shown) of the tether 136 remains attached to the tether retention assembly 128. During this step, tension in the tether 136 can be reduced such that the second end 31 of the implant 30 can be further radially expanded.
[0104] With reference next to the step of Figures 18A and 18B, the lock 129 has been moved relatively away from the tether retention member 134 to release the end 138 of the tether 136. In so doing, the second end 31 of the implant 30 is allowed to further radially expand. It should be noted that the first end 33 of the implant 30 can remain covered by the nose cone 118 during this step such that the first end 33 remains in a radially compacted state. With reference next to the step of Figures 19A and 19B, the tether 136 and end 138 can be retracted into the delivery system 100.
[0105] With reference next to the step of Figures 20A and 20B, the inner retention member 132 and/or the first end 33 of the implant 30 can be moved relatively away from the nose cone 118 such that the first end 33 of the implant 30 can radially expand. This can be achieved by either distally moving the nose cone 118 relative to the inner retention member 132 and/or moving the inner retention member 132 proximally relative to the nose cone 118.
With reference next to the step of Figures 21A and 21B, the plug 126, attached to the plug shaft 120, can be moved relatively toward the nose cone 118 to engage the nose cone 118.
The plug 126 and/or plug shaft 120 can cover multiple of the inner components to facilitate extraction of the delivery system 100 from the body after delivery of the implant 30 to the in situ location. As shown in the step of Figures 22A and 22B, the outer elongate hollow member 116 can be further moved relatively toward the introducer sheath 112.
As shown in the step of Figures 23A and 23B, various other components of the delivery system 100 can be moved relatively toward the introducer sheath 112 to reduce the form factor of the delivery system and further facilitate extraction of the delivery system 100 from the body. Figure 24 illustrates the implant 30 positioned within a native valve, such as a native mitral valve.
With reference next to the step of Figures 21A and 21B, the plug 126, attached to the plug shaft 120, can be moved relatively toward the nose cone 118 to engage the nose cone 118.
The plug 126 and/or plug shaft 120 can cover multiple of the inner components to facilitate extraction of the delivery system 100 from the body after delivery of the implant 30 to the in situ location. As shown in the step of Figures 22A and 22B, the outer elongate hollow member 116 can be further moved relatively toward the introducer sheath 112.
As shown in the step of Figures 23A and 23B, various other components of the delivery system 100 can be moved relatively toward the introducer sheath 112 to reduce the form factor of the delivery system and further facilitate extraction of the delivery system 100 from the body. Figure 24 illustrates the implant 30 positioned within a native valve, such as a native mitral valve.
[0106] With reference to Figure 31, an embodiment of a delivery device or system 1010 is shown. The delivery system can be used deploy a prosthesis, such as a replacement heart valve, within the body. The illustrated embodiment comprises an elongate, delivery system configured to be advanced through a patient's vasculature in a percutaneous delivery approach. The delivery system 1010 can be rigid and yet flexible to be able to pass through the vasculature while also navigating the curvosities of the same. While the delivery system 1010 is described in connection with a percutaneous delivery approach, and more specifically a transfemoral delivery approach, it should be understood that features of delivery system 1010 can be applied to any other delivery system described herein, including delivery systems 10, 100, 200 which are described in connection with a transapical delivery approach.
Moreover, features of delivery systems 10, 100, 200 can be applied to delivery system 1010.
Moreover, features of delivery systems 10, 100, 200 can be applied to delivery system 1010.
[0107] The delivery system 1010 can include an elongate shaft assembly comprising a proximal end and a distal end, wherein a handle 1014 is coupled to the proximal end of the assembly 1012. The elongate shaft assembly 1012 can be used to hold the prosthesis for advancement of the same through the vasculature to a treatment location. The elongate shaft assembly 1012 can include an implant retention area 1016 that can be used for this purpose. In some embodiments, the elongate shaft assembly 1012 can hold an expandable prosthesis in a compressed state at implant retention area 1016 for advancement of the prosthesis within the body. The elongate shaft assembly 1012 may then be used to allow controlled expansion of the prosthesis at the treatment location. The implant retention area 1016 is shown at the distal end of the delivery device, but may also be at other locations.
[0108] The elongate shaft assembly 1012 can include one or more subassemblies such as an inner assembly 1018, a mid shaft assembly 1020, and an outer sheath assembly 1022, as will be described in more detail below. The inner assembly 1018, mid shaft assembly 1020, and outer sheath assembly 1022 can be configured to deliver a prosthesis positioned within the implant retention area 1016 to a treatment location. One or more of the subassemblies can then be moved to allow the prosthesis to be released at the treatment location. For example, one or more of the subassemblies may be movable with respect to one or more of the other subassemblies. The handle 1014 can include various control mechanisms 1024, 1026 that be used to control the movement of the various subassemblies as will also be described in more detail below. In this way, the prosthesis can be controllably loaded onto the delivery device 1010 and then later deployed within the body.
[0109] With continued reference to the subassemblies of the elongate shaft assembly 1012, Figures 32 and 33 respectively illustrate an exploded and cross-sectional view of the same. The inner assembly 1018 may be an elongate member, and in some embodiments, may have a nose cone 1028 on its distal end. The nose cone can be made of polyurethane for atraumatic entry and to minimize injury to venous vasculature. The nose cone can also be radiopaque to provide for visibility under fluoroscopy. Nose cone 1028 can share features of other nose cones described herein, such as nose cones 28, 118, 1128.
[0110] The inner assembly 1018 may include a lumen 1030 sized and configured to slidably accommodate a guidewire so that the delivery device 1010 can be advanced over the guidewire through the vasculature. The inner assembly 1018 may also be a steerable catheter which may or may not need or use a guidewire.
[0111] The inner assembly 1018 can comprise a tube, such as a hypodermic tube or hypo tube 1032. The tube can be made from one of any number of different materials including nitinol, stainless steel, and medical grade plastics. The tube can be a single piece tube or multiple pieces connected together. Using a tube made of multiple pieces can allow the tube to provide different characteristics along different sections of the tube, such as rigidity and flexibility. For example, in some embodiments it can be desirable, and/or needful, for the delivery device 1010 to have greater flexibility at the distal end of the device, where flexibility is not as necessary for the proximal end.
[0112] In some embodiments a first segment made of a hypo tube 1032 can extend along a majority of the length of the inner assembly. For example, the illustrated metal hypo tube 1032 extends from a luer fitting 1062 within the handle 1016 (Figures 36A-C) at the proximal end towards the distal end up until a second segment 1034 of the inner assembly 1018 before the implant retention area 1016. The hypo tube 1032 can provide column strength (pushability) to the inner assembly. The second segment 1034 of the inner assembly 1018 can be made of a more flexible material. For example, the second segment can comprise a wire 1034 such as a multi-stranded wire, wire rope, or wire coil. The wire 1034 can surround a more flexible tube, such as a plastic tube, or it may be formed as a tube without any additional inner materials or core. Thus, in some embodiments, the wire 1034 can be a hollow core wire rope. The wire 1034 can provide the inner assembly 1018 with strength, similar to the hypo tube, but it can also provide more flexibility to allow for navigating the curvosities of the vasculature, such as within the heart.
[0113] In some embodiments, the wire 1034 extends distally from the hypo tube 1032 to the nose cone 1028. In some embodiments, the inner assembly 1018 can include a third segment 1036. The third segment can be positioned at the implant retention area 1016 and between the second segment 1034 and the nose cone 1028. For example, the third segment can comprise a second wire 1036 such as a multi- stranded wire, wire rope, or wire coil. The second wire 1036 can surround a more flexible tube, such as a plastic tube, or it may be formed as a tube without any additional inner materials or core. The second wire 1036 may also be a hollow core wire rope.
[0114] In some embodiments, the second wire 1036 can have an outer diameter smaller than the first wire 1034. As the second wire is positioned at the implant retention area 1016, it can be desirable that the second wire 1036 have as small an outer diameter as possible, to reduce the size of the delivery device loaded with a prosthesis.
The prosthesis may be able to provide some of the desired rigidity or strength characteristics of the delivery device at the implant retention area 1016 and this may allow the segment 1036 to have an even smaller outer diameter.
The prosthesis may be able to provide some of the desired rigidity or strength characteristics of the delivery device at the implant retention area 1016 and this may allow the segment 1036 to have an even smaller outer diameter.
[0115] In some embodiments, the third segment 1036 can comprise a plastic tube.
The plastic tube can extend from the nose cone 1028 to the first segment 1032.
The second segment 1034 can surround the third segment 1036 and be positioned between the first segment 1032 and the implant retention area 1016. For example, the second segment 1034 can be a hollow core wire rope that surrounds the third segment 1036.
The plastic tube can extend from the nose cone 1028 to the first segment 1032.
The second segment 1034 can surround the third segment 1036 and be positioned between the first segment 1032 and the implant retention area 1016. For example, the second segment 1034 can be a hollow core wire rope that surrounds the third segment 1036.
[0116] The inner assembly 1018 can also include a prosthesis retention mechanism such as an inner retention ring 1038 that can be used to engage with the prosthesis. The inner retention ring 1038 can share features with other retention members, such as inner retention members 132, 232. Examples of prostheses that may be engaged on the prosthesis retention mechanism when the delivery device 1010 is used to deliver a replacement heart valve are described in U.S. Patent Nos. 8,403,983, 8,414,644, 8,652,203 and U.S. Patent Publication Nos. 2011/0313515, 2012/0215303, 2014/0277390, 2014/0277422, 2014/0277427, the entirety of these patents and publications are hereby incorporated by reference and made a part of this specification. For example, the inner retention ring 1038 can include a plurality of slots configured to engage with struts on the prosthesis. The inner retention ring 1038 can be mounted on the tube of the inner assembly 1018, such as at the junction of the distal end of the second segment 1034 and the proximal end of the third segment 1036. The inner retention ring 1038 can also be part of the implant retention area 1016, and may be at the proximal end of the implant retention area 1016.
[0117] Struts or other parts of a prosthesis can be engaged with the inner retention ring 1038 and an outer retention member can cover both the prosthesis and the inner retention ring 1038 to secure the prosthesis on the delivery device 1010. This outer retention member can be part of one of the other one or more subassemblies of the elongate shaft assembly 1012.
[0118] In the illustrated embodiment, the outer retention member is a support tube or outer retention ring 1040 which is part of the mid shaft assembly 1020. The mid shaft assembly 1020 can slide over the inner assembly 1018 and the outer retention ring 1040 can slide over the inner assembly 1018 and the inner retention ring 1038 to encircle the inner retention ring 1038. In this way the outer retention ring 1040 can be used to help secure a prosthesis to or release it from the delivery device 1010. The inner and outer retention rings and the delivery device generally may be similar to those disclosed in U.S.
Patent No.
8,414,644 and 8,652,203, the entire contents of both of which are hereby incorporated by reference herein and made a part of this specification. This is inclusive of the entire disclosure, including other apparatuses and methods described therein, and is not in any way limited to the disclosure of the inner and outer retentions and/or the delivery device.
Patent No.
8,414,644 and 8,652,203, the entire contents of both of which are hereby incorporated by reference herein and made a part of this specification. This is inclusive of the entire disclosure, including other apparatuses and methods described therein, and is not in any way limited to the disclosure of the inner and outer retentions and/or the delivery device.
[0119] Like the inner assembly 1018, the mid shaft assembly 1020 can be a single piece tube or multiple pieces connected together to provide different characteristics along different sections of the tube. As has been mentioned, in some embodiments it can be desirable, and/or needful, for the delivery device 1010 to have greater flexibility at the distal end of the device, where flexibility is not as necessary for the proximal end.
The illustrated mid shaft assembly 1020 has a first segment 1042, a second segment 1044, and a third segment 1040 being the outer retention ring 1040. The first segment 1042 is preferably formed of plastic, but could also be a metal hypo tube or other material.
The illustrated mid shaft assembly 1020 has a first segment 1042, a second segment 1044, and a third segment 1040 being the outer retention ring 1040. The first segment 1042 is preferably formed of plastic, but could also be a metal hypo tube or other material.
[0120] The second segment 1044 is shown including a metal coil spring which is connected to the outer retention ring 1040 at one end and to the plastic tube 1042 at the other end. Figure 34 shows an exploded view of the mid shaft assembly 1020 including the components of the second segment 1044. As shown, the second segment 1044 can include an inner member 1048 and an outer member 1046. The mid shaft assembly 1020 also can include various coupling members 1050, 1052, 1054 that can be used to connect the different first and third segments to the second segment, as well as to connect the inner 1048 and outer 1046 members.
[0121] One of the inner 1048 and outer 1046 members can be a compression member and the other can be a tension member. The compression member and the tension member can be concentrically arranged. They are also both highly flexible. As shown, the outer member is a coil spring 1046 and the inner member is a braided wire 1048. A length of a coil spring or a braided wire can be highly flexible and can be moved in many directions.
For example, they can both be twisted around a full 180 degrees or more, depending on the length of the material. The compression member and the tension member can provide a balance of forces with flexibility without over stretching or too much shortening.
For example, they can both be twisted around a full 180 degrees or more, depending on the length of the material. The compression member and the tension member can provide a balance of forces with flexibility without over stretching or too much shortening.
[0122] It will be understood that a compression member by itself, such as a coil spring and/or HDPE tube, can provide certain benefits, but also has certain draw backs. A
compression member can apply a distally directed force on the inner retention member 1038 and can oppose proximally directed forces. But, compression members do not generally perform well under tension. For example, a spring can stretch when under tension. It will be understood, that when the mid shaft assembly 1020 is being slid away from the inner retention member 1038, for example, to release a prosthesis, it could experience resistance that could cause the spring to stretch such that the prosthesis is not released. Adding a tension member, such as a braided wire, can prevent this from occurring as the tension member can limit the amount of stretching of the compression member. The braided wire helps pull back the spring, but also has some give to expand and compress with the spring.
The tension member can provide the required flexibility but resist stretching.
Thus the compression and tension members can beneficially allow for increased flexibility while also providing more reliable implant release capabilities.
compression member can apply a distally directed force on the inner retention member 1038 and can oppose proximally directed forces. But, compression members do not generally perform well under tension. For example, a spring can stretch when under tension. It will be understood, that when the mid shaft assembly 1020 is being slid away from the inner retention member 1038, for example, to release a prosthesis, it could experience resistance that could cause the spring to stretch such that the prosthesis is not released. Adding a tension member, such as a braided wire, can prevent this from occurring as the tension member can limit the amount of stretching of the compression member. The braided wire helps pull back the spring, but also has some give to expand and compress with the spring.
The tension member can provide the required flexibility but resist stretching.
Thus the compression and tension members can beneficially allow for increased flexibility while also providing more reliable implant release capabilities.
[0123] As has been mentioned, the mid shaft assembly 1020 can include various coupling members 1050, 1052, 1054. A first coupling member 1050 can be used to connect the first 1042 and second 1044 segments. The first coupling member 1050 can be made of metal or plastic and is shown with a plug end to form a friction fit with the first member 1042. The second member can be fastened to the first coupling member 1050 such as by adhesive or ultrasonic welding. In some embodiments the inner member can attach to an inside surface of the first coupling member 1050 and the outer member 1046 can attach to an outside surface of the first coupling member 1050. The second coupling member 1052 can attach to the inner and outer members in a similar manner. The third segment 1040 can be attached to the second segment 1044 by the interaction of the second 1052 and third 1054 coupling members. The third coupling member 1054 can be received in the second coupling member 1052 via snap fit connection with the third segment securely positioned between the second and third coupling members. It will be understood that this is just one example of how the various segments could be connected.
[0124] In some embodiments the sheath assembly 1012 has only two subassemblies which can be the inner 1018 and mid shaft 1020 assemblies as have been described. In some such embodiments, though the outer retention ring 1040 is shown as a relatively short ring, it could also be elongate and could extend from the inner retention ring 1038 to the nose cone 1028 when in a fully advanced position. In addition, the outer member 1046 such as a coil spring could be covered with a sheath such as sheath made of polytetrafluoroethylene (PTFE) or expanded polytetrafluoroethylene (ePTFE).
[0125] Returning now to Figures 32 and 33, the outer sheath assembly 1022 will be described. The outer sheath assembly 1022 is disposed so as to be slidable over the inner assembly 1018 and the mid shaft assembly 1020. Like the inner assembly 1018 and the mid shaft assembly 1020, the outer sheath assembly 1022 can be a single piece tube or multiple pieces connected together to provide different characteristics along different sections of the tube. As has been mentioned, in some embodiments it can be desirable, and/or needful, for the delivery device 1010 to have greater flexibility at the distal end of the device, where flexibility is not as necessary for the proximal end. The illustrated outer sheath assembly 1022 has a first segment 1056, a second segment 1058, and a third segment 1060.
[0126] The first segment 1056 is a tube and is preferably formed plastic, but could also be a metal hypo tube or other material. In some embodiments, the tube 1056 is formed of a polyether block amide (PEBA) or other type of a thermoplastic elastomer (TPE). In particular the tube 1056 can be a wire braided reinforced PEBA which can enhance pushability and trackability.
[0127] The second segment 1058 can be a metal hypo tube which in some embodiments may be cut or have slots. The hypo tube can provide structural rigidity, while the cuts can provide for flexibility in the hypo tube. The second segment can be a laser cut nitinol tube designed to allow adequate flexibility but with sufficient column strength to provide finite control for stepwise retraction of the outer sheath during deployment. For example, the remaining material can form a series of interconnected "H"s that are offset by 90 degrees. As another example, the hypo tube can be cut into a series of rings with small connecting members extending between the rings. For example two equally spaced connecting members can be used to connect two rings and the subsequent connecting members can be offset 90 degrees. Other numbers of connecting members such as one, two, three, four, etc. can also be used.
[0128] The tube 1058 can be covered or encapsulated with a layer of ePTFE, PTFE, or other material so that the outer surface of the outer sheath assembly is generally smooth.
[0129] The third segment 1060 can be a tube formed of a plastic or metal material. In a preferred embodiment, the third segment is formed of ePTFE or PTFE. In some embodiments this sheathing material can be relatively thick to prevent tearing and to help maintain a self-expanding implant in a compacted configuration. In some embodiments the material of the third segment 1060 is the same material as the coating on the cut hypo tube 1058.
[0130] Looking now to Figures 35A-C, the relative movements of the one or more subassemblies of the elongate shaft assembly 1012 will be described. Figure 35A shows the outer sheath assembly 1022 in its distal most position. The third segment 1060 of the outer sheath is shown in contact with the proximal end of the nose cone 1028. In this position, a prosthesis can be held within the elongate shaft assembly 1012 for advancement of the same through the vasculature to a treatment location.
[0131] Once at the desired location, the outer sheath assembly 1022 can be retracted proximally to expose a portion of or all of a prosthesis in the implant retention area 1016. Figure 35B illustrates the elongate shaft assembly 1012 with the outer sheath assembly 1022 can be retracted proximally to expose the entire implant retention area 1016. The mid shaft assembly 1020 can then be retracted as shown in Figure 35C. This can allow any portion of the prosthesis engaged between the inner retention member 1038 and the outer retention member 1040 to be released. In some delivery methods this would be the last step to fully deploying the prosthesis such as replacement heart valve.
[0132] Figures 36A-C show the corresponding position of the control mechanisms and components at the handle from the configurations of Figures 35A-C. To move the outer sheath assembly 1022 between the advanced position (Figure 35A) and the retracted position (Figure 35B), the control mechanism 1024 is actuated. As shown, the control mechanism 1024 is a retraction knob that is rotated. This causes a lead screw 1064 connected to the first segment 1056 of the outer sheath assembly 1022 to move proximally (Figure 36B). Then, to move the mid shaft assembly 1020, the control mechanism 1026 is pulled backwards (Figure 36C). Springs 1066 can be used to give feedback to the user and to better control the movement of the mid shaft assembly 1020 to thereby provide a controlled release of the prosthesis. In addition, the springs 1066 can maintain a continuous extension force between the inner assembly 1018 and the mid shaft assembly 1020 to keep the inner retention member 1038 bottomed out inside the outer retention member 1040 so that the distal tip of the delivery device 1010 maintains maximum flexibility and freedom of motion and the prosthesis does not unlock and prematurely deploy.
[0133] Aspects of the handle 1014, can be used in conjunction with other delivery devices described herein, such as delivery devices 10, 100, 200, 1100. For example, in some embodiments, the control mechanism 1024 can be used with a lead screw 1064 as shown in Figures 36A and 36B connected to an outer elongate hollow member shaft 114, to control movement of the outer elongate hollow member shaft 114 and/or elongate hollow member 116 as shown in Figure 9. Moreover, springs 1066 as shown in Figure 36C can be operably coupled to the locking shaft 122 to control movement of the locking shaft 122 and/or lock 129 as shown in Figure 11. For example, the springs 1066 can be used to bias locking shaft 122 in a retracted position such that actuation of a switch can cause the locking shaft 122 to move towards the retracted position. This can, in some embodiments, facilitate release of the tether, wire or suture 32 from the tether retention assembly 128.
[0134] The handle can also include any number of luers that can allow all subassemblies to be perfused with saline. The perfusion of saline can eliminate or reduce air embolism risk due to catheter use and can also provide flushing capability for the delivery procedure.
[0135] Turning now to Figure 37, an embodiment of a delivery device 1010 is shown with a schematic representation of a prosthesis 1070, such as a replacement heart valve, within the implant retention area 1016. As has been discussed, the outer retention ring 1040 and the outer sheath 1022 can cooperate to hold the replacement heart valve 1070 in a compacted configuration. The inner retention ring 1038 is shown engaging the struts 1072 at the proximal end of the heart valve 1070. For example, teeth 1068 on the inner retention ring 1038 can engage the struts 1072 which may end in tabs on the proximal end of the heart valve 1070. The outer retention ring 1040 can be positioned over the inner retention ring 1038 so that the proximal end of the replacement heart valve 1070 is trapped therebetween, securely attaching it to the delivery device 1010. The prosthesis 1070 can include one or more sets of anchors, such as distal anchors 1080 and proximal anchors 1082.
The prosthesis 1070 may be similar to the replacement heart valves disclosed in U.S. Patent Nos. 8,403,983, 8,414,644 and 8,652,203, and U.S. Patent Publication Nos.
2011/0313515, 2012/0215303, 2014/0277390, 2014/0277422, 2014/0277427, the entirety of these patents and publications are hereby incorporated by reference and made a part of this specification.
The prosthesis 1070 may be similar to the replacement heart valves disclosed in U.S. Patent Nos. 8,403,983, 8,414,644 and 8,652,203, and U.S. Patent Publication Nos.
2011/0313515, 2012/0215303, 2014/0277390, 2014/0277422, 2014/0277427, the entirety of these patents and publications are hereby incorporated by reference and made a part of this specification.
[0136] The delivery device 1010 may be provided to users with a prosthesis 1070 preinstalled. In other embodiments, the prosthesis 1070 can be loaded onto the delivery device shortly before use, such as by a physician or nurse.
[0137] Methods of use of the delivery device in connection with a replacement mitral valve will now be described. In particular, the delivery device 1010 can be used in a method for percutaneous delivery of the replacement mitral valve to treat patients with moderate to severe mitral regurgitation. The below methods are just a few examples of the how the delivery device may be used. It will be understood that the delivery devices described herein can be used as part of other methods as well.
[0138] As shown in Figure 38, in one embodiment a guidewire 1076 can be placed in the ipsilateral femoral vein 1074 and advanced to the right atrium.
A transseptal puncture using known techniques can then be performed to obtain access to the left atrium.
The guidewire 1076 can then be advanced in to the left atrium and then to the left ventricle.
Figure 38 shows a guidewire 1076 extending from the ipsilateral femoral vein 1074 to the left atrium 1078. A guidewire snare can be placed in the descending aorta through the ipsilateral femoral artery. The guidewire can be advanced into the ascending aorta and then the snare can be used to snare the guidewire. The guidewire snare can then be withdrawn to externalize the guidewire from the ipsilateral femoral artery. The physician now has access to both ends of the guidewire. It will be understood that one or more introducer sheaths, catheters and/or guidewires may need to be used to get a guidewire externalized at both the ipsilateral femoral vein and the ipsilateral femoral artery. In addition, the initial guidewire discussed above may not be the same as the ultimate externalized guidewire. As will be explained in more detail below, having an externalized guidewire can be useful for positioning the delivery device, especially the distal end of the delivery device, and for helping the delivery device turn some corners. Some embodiments may not use an externalized guidewire. For example, a steerable catheter may be used instead of the externalized guidewire.
A transseptal puncture using known techniques can then be performed to obtain access to the left atrium.
The guidewire 1076 can then be advanced in to the left atrium and then to the left ventricle.
Figure 38 shows a guidewire 1076 extending from the ipsilateral femoral vein 1074 to the left atrium 1078. A guidewire snare can be placed in the descending aorta through the ipsilateral femoral artery. The guidewire can be advanced into the ascending aorta and then the snare can be used to snare the guidewire. The guidewire snare can then be withdrawn to externalize the guidewire from the ipsilateral femoral artery. The physician now has access to both ends of the guidewire. It will be understood that one or more introducer sheaths, catheters and/or guidewires may need to be used to get a guidewire externalized at both the ipsilateral femoral vein and the ipsilateral femoral artery. In addition, the initial guidewire discussed above may not be the same as the ultimate externalized guidewire. As will be explained in more detail below, having an externalized guidewire can be useful for positioning the delivery device, especially the distal end of the delivery device, and for helping the delivery device turn some corners. Some embodiments may not use an externalized guidewire. For example, a steerable catheter may be used instead of the externalized guidewire.
[0139] With the guidewire in place, the delivery device 1010 can be advanced over the guidewire through the lumen 1030. The delivery device can then be advanced to the right atrium, through the septal puncture and the left atrium and into the left ventricle. A
steering snare may be used to help advance and position the delivery device correctly. In addition, tension can be applied to one end of the externalized guidewire to help advance and position the delivery device. These additional helps can be particularly useful to get the delivery device to make the bend from extending up into the right atrium and then extending down into the left ventricle.
steering snare may be used to help advance and position the delivery device correctly. In addition, tension can be applied to one end of the externalized guidewire to help advance and position the delivery device. These additional helps can be particularly useful to get the delivery device to make the bend from extending up into the right atrium and then extending down into the left ventricle.
[0140] The construction and flexibility of the delivery device can allow it to make the relatively sharp turns described above, in particular the turns from entering the right atrium to the septum and then from the septum to the mitral valve. It should be understood that the bending experienced by the delivery device especially between the right atrium and the mitral valve are relatively complex and are generally not in a single plane. This part of the delivery device may experience bending between 110-180 degrees and typically between 130-160 degrees, of course this is dependent on the actual anatomy of the patient.
[0141] Though the entire elongate shaft assembly 1012 may be experiencing some bending or flex, typically it is predominately the second segments 1034, 1044, 1058 of the subassemblies (Figure 32) that will be experiencing most of the bending. This can be both when making the turns as the delivery device is being advanced, and also when the prosthesis is being positioned at the mitral valve. The nose cone 1028 can also be flexible and may be bent during turning and at various other times during the procedure.
[0142] The second segments 1034, 1044, 1058 can have a bendable length that is substantially aligned with one another. The second segments 1034, 1044, 1058 may each have a bendable length of at least between about 3.5 to 4 inches (8.9 to 10.2 cm). In some embodiments, the second segment 1058 of the outer sheath can have a bendable length of about 3 5/8 inches (9.2 cm), the second segment 1044 of the mid shaft can have a bendable length of about 4 3/4 inches (12.1 cm), and the second segment of the inner assembly can have a bendable length of about 5.5 to 6 inches (14 to 15.2 cm). In some embodiments, the relative bendable lengths of the second segments can increase going from the outermost subassembly to the innermost subassembly of the elongate shaft assembly 1012.
[0143] The delivery device can include a radially-compacted replacement mitral valve 1070 that has been preloaded within the implant retention area 1016.
With the distal end of the delivery device 1010 within the left ventricle, the operator can begin to deploy the replacement mitral valve. Using one or more of the delivery device, the guidewire, and a snare, the distal end of the delivery device can be positioned to be substantially perpendicular to the plane of the mitral annulus. It can also be positioned so that the tips of the distal most anchors 1080 on the replacement valve 1070 are midway between a plane formed by the top of the mitral annulus and a plane formed by the tops of the papillaries. The chordae tendineae extend between the native leaflets attached to the mitral annulus and the papillaries.
With the distal end of the delivery device 1010 within the left ventricle, the operator can begin to deploy the replacement mitral valve. Using one or more of the delivery device, the guidewire, and a snare, the distal end of the delivery device can be positioned to be substantially perpendicular to the plane of the mitral annulus. It can also be positioned so that the tips of the distal most anchors 1080 on the replacement valve 1070 are midway between a plane formed by the top of the mitral annulus and a plane formed by the tops of the papillaries. The chordae tendineae extend between the native leaflets attached to the mitral annulus and the papillaries.
[0144] The user can then begin rotating the retraction knob 1024 to retract the outer sheath assembly 1022 until the distal most anchors 1080 begin to extend out from the outer sheath assembly 1022. Retracting the outer sheath assembly 1022 can allow the valve to self-expand. In some embodiments, the outer sheath assembly 1022 can be at least partially retracted. The distal anchors 1080 can then be positioned between the chordae tendineae. The angle and depth of the distal anchors 1080 then be adjusted to engage one or more leaflet of the mitral valve. Thus, the distal anchors 1080 can be move back towards the annulus and in some embodiments may engage the leaflet and/or the ventricular side of the annulus. At the same time, the proximal end of the replacement heart valve 1070 can remain retained by the delivery device in an at least partially radially compacted state. This can allow the position of the replacement heart valve 1080 to still be readily adjusted.
[0145] In some embodiments, the distal anchors 1080 can be positioned first at one side of the left ventricle to engage the chordae tendineae and one valve leaflet before engaging the other side and the other leaflet. As the mitral valve is a bicuspid valve, the delivery device 1010 can be used to attach the distal anchors 1080 first to the posterior leaflet and then to anterior leaflet. This second part can be done after the replacement heart valve 1070 is expanded or further expanded by further retracting the outer sheath assembly 1022.
[0146] In some embodiments, the entrance route of the delivery device 1010 into the left atrium 1078 can bias the delivery device 1010 towards one side of the mitral valve.
For example, the delivery device 1010 may be biased towards the posterior leaflet of the mitral valve. This can facilitate securing the distal anchors 1080 to the posterior side or the posterior leaflet first, prior to expanding or further expanding the replacement heart valve 1070. The distal anchors 1080 can then be secured to the anterior side of the mitral valve or to the anterior leaflet.
For example, the delivery device 1010 may be biased towards the posterior leaflet of the mitral valve. This can facilitate securing the distal anchors 1080 to the posterior side or the posterior leaflet first, prior to expanding or further expanding the replacement heart valve 1070. The distal anchors 1080 can then be secured to the anterior side of the mitral valve or to the anterior leaflet.
[0147] After the distal anchors 1080 are released, the delivery device 1010 and replacement heart valve 1080 can be moved proximally, which in some embodiments, causes the distal anchors to engage the native leaflets and/or native valve annulus.
In addition to physically moving the delivery device, this may also be done by pushing the guidewire from the venous side towards the mitral annulus. Once the distal anchors 1080 are properly placed, the delivery device 1010 can then release the proximal anchors 1082 and the proximal end of the replacement heart valve 1070. This can allow further self-expansion of the replacement heart valve 1070 so that the proximal anchors 1082 engage the upstream or atrial side of the native annulus, and the replacement heart valve 1070 is deployed in operational condition. This can be by fully retracting the outer sheath assembly 1022, such as by rotating the control knob 1024, until the replacement valve 1070 has reached its fully expanded state.
In addition to physically moving the delivery device, this may also be done by pushing the guidewire from the venous side towards the mitral annulus. Once the distal anchors 1080 are properly placed, the delivery device 1010 can then release the proximal anchors 1082 and the proximal end of the replacement heart valve 1070. This can allow further self-expansion of the replacement heart valve 1070 so that the proximal anchors 1082 engage the upstream or atrial side of the native annulus, and the replacement heart valve 1070 is deployed in operational condition. This can be by fully retracting the outer sheath assembly 1022, such as by rotating the control knob 1024, until the replacement valve 1070 has reached its fully expanded state.
[0148] The outer retention ring 1040 can then be moved away from the inner retention ring 1038 to release the proximal end of the replacement valve 1070 from the delivery device 1010. This can be done by moving the control mechanism 1026 on the handle 1014 downward which is connected to the outer retention ring 1040. The proximal anchors 1082 can flare radially outward under the self-expansion force of the valve 1070 and engage with the upstream or atrial side of the native mitral valve annulus.
Foreshortening of the valve 1070 can cause the distal and proximal anchors to move towards one another to securely grasp the native mitral valve annulus and the leaflets between their opposingly directed anchor tips, and the replacement heart valve 1070 is fully and securely installed as can be seen in Figure 39. The delivery device 1010 can then be removed from the body.
Foreshortening of the valve 1070 can cause the distal and proximal anchors to move towards one another to securely grasp the native mitral valve annulus and the leaflets between their opposingly directed anchor tips, and the replacement heart valve 1070 is fully and securely installed as can be seen in Figure 39. The delivery device 1010 can then be removed from the body.
[0149] It will be understood that in some embodiments the replacement heart valve 1070 may not be self expanding, and the partial and full deployment may be accomplished by one or more inflatable balloons or the like. In addition, one of more inflatable balloons may be a part of the delivery device, such as part of the inner assembly 1018 and can positioned at the implant retention area 1016 as part of the third segment 1036.
[0150] Looking at Figure 39, a schematic representation of the replacement heart valve 1070 is depicted installed in a human heart 1084. The heart is shown in cross-section, and represents typical anatomy, including a left atrium 1078 and left ventricle 1086. The left atrium 1078 and left ventricle 1086 communicate with one another through a mitral annulus 1098. Also shown schematically in Figure 39 is a native anterior mitral leaflet 1090 having chordae tendineae 1092 that connect a downstream end of the anterior mitral leaflet 1090 and to the left ventricle 1086.
[0151] As shown, the replacement heart valve 1070 is disposed so that the mitral annulus 1098 is between the distal anchors 1080 and the proximal anchors 1082.
All or most of the replacement heart valve 1070 extends into the left atrium 1078. The portion of the replacement heart valve 1070 disposed upstream of the annulus 1098 (toward the left atrium) can be referred to as being positioned supra-annularly. The portion generally within the annulus 1098 is referred to as positioned intra-annularly. The portion downstream of the annulus is referred to as being positioned sub-annularly (toward the left ventricle). In the illustrated embodiment, only a part of the foreshortening portion is positioned intra-annularly or sub-annularly, and the rest of the replacement heart valve 1070 is supra-annular.
All or most of the replacement heart valve 1070 extends into the left atrium 1078. The portion of the replacement heart valve 1070 disposed upstream of the annulus 1098 (toward the left atrium) can be referred to as being positioned supra-annularly. The portion generally within the annulus 1098 is referred to as positioned intra-annularly. The portion downstream of the annulus is referred to as being positioned sub-annularly (toward the left ventricle). In the illustrated embodiment, only a part of the foreshortening portion is positioned intra-annularly or sub-annularly, and the rest of the replacement heart valve 1070 is supra-annular.
[0152] Replacement heart valves can be delivered to a patient's heart mitral valve annulus in various ways, such as by open surgery, minimally-invasive surgery, and percutaneous or transcatheter delivery through the patient's vasculature.
[0153] Looking now at Figures 40A-B, another embodiment of a delivery device 1110 is shown. The delivery device 1110 can function in a similar manner to that described above. The delivery device 1110 can include components which share similar structure to those of other delivery devices described herein, such as delivery devices 10, 100, 200, 1010.
For example, such components can include, but are not limited to, elongate shaft assemblies 1012, 1112, handles 1014, 1114, implant retention areas 1016, 1116, inner assemblies 1018, 1118, mid shaft assemblies 1020, 1120, outer sheath assemblies 1022, 1122 control mechanisms 1024, 1026, 1124, 1126, nose cones 28, 118, 1028, 1128, hypo tubes 1032, 1132, segments 1036, 1136, inner retention rings and mechanisms 132, 232, 1038, 1138, outer retention rings 1040, 1140, segments 1042, 1044, 1142, 1144, outer members 1046, 1146, segments 1058, 1060, 1158, 1160 and/or lead screws 1064, 1164.
For example, such components can include, but are not limited to, elongate shaft assemblies 1012, 1112, handles 1014, 1114, implant retention areas 1016, 1116, inner assemblies 1018, 1118, mid shaft assemblies 1020, 1120, outer sheath assemblies 1022, 1122 control mechanisms 1024, 1026, 1124, 1126, nose cones 28, 118, 1028, 1128, hypo tubes 1032, 1132, segments 1036, 1136, inner retention rings and mechanisms 132, 232, 1038, 1138, outer retention rings 1040, 1140, segments 1042, 1044, 1142, 1144, outer members 1046, 1146, segments 1058, 1060, 1158, 1160 and/or lead screws 1064, 1164.
[0154] As shown in the illustrated embodiment, a primary difference between the delivery device 1010 and the delivery device 1110 is the length of the elongate shaft assemblies 1012, 1112. It will be appreciated that a short elongate shaft assembly 1112 can be more easily used in an open heart procedure or other more direct procedures than the percutaneous procedure starting at the leg that has been described above with respect to delivery device 1010. For example, the delivery device 1110 can be used in procedures such as a transapical procedure as described above. At the same time, the delivery device 1110 can still be relatively flexible to allow, for example, advancement through the pulmonary veins or the wall of the left atrium and then bending of the delivery device for proper placement at the mitral valve. The delivery device 1110 can share features with delivery devices described herein, such as delivery devices or systems 10, 100, 200, 1010.
[0155] The construction and flexibility of the delivery device can allow it to make the relatively sharp turns described above. It should be understood that the bending experienced by the delivery device may be relatively complex and are generally not in a single plane. This part of the delivery device may experience bending between degrees; of course this is dependent at least partially on the actual anatomy of the patient.
[0156] Though the entire elongate shaft assembly 1112 may be experiencing some bending or flex, it is predominately the second segments 1134, 1144, 1158 of the subassemblies that will be experiencing most of the bending. This is both when making the turns as the delivery device is being advanced, and also when the prosthesis is being positioned at the mitral valve. The nose cone 1128 can also be flexible and may be bent during turning and at various other times during the procedure. In some embodiments of the delivery device 1110, the second segments can extend from the first segments to the handle.
Some subassemblies may or may include the first segments described above with respect to the delivery device 1110. The second segments 1134, 1144, 1158 can have a bendable length that is substantially aligned with one another. The second segments 1134, 1144, 1158 may each have bendable lengths similar to those described above for second segments 1034, 1044, 1058, though they may also be longer or shorter. For example the second segment 1158 of the outer sheath assembly may extend from the first segment 1160 to the screw 1164, while the other second segments 1134, 1144 may be shorter.
Some subassemblies may or may include the first segments described above with respect to the delivery device 1110. The second segments 1134, 1144, 1158 can have a bendable length that is substantially aligned with one another. The second segments 1134, 1144, 1158 may each have bendable lengths similar to those described above for second segments 1034, 1044, 1058, though they may also be longer or shorter. For example the second segment 1158 of the outer sheath assembly may extend from the first segment 1160 to the screw 1164, while the other second segments 1134, 1144 may be shorter.
[0157] It will be understood that the delivery devices, such as delivery devices 10, 100, 200, 1010, 1110 can include many additional features similar to those described in U.S.
Patent Nos. 8,414,644 and 8,652,203, the entirety of each of which are hereby incorporated by reference and made a part of this specification. For example, the nose cone can include a prosthesis retention mechanism such as an inner retention ring that can be used to engage with the prosthesis as may be described in these applications. Struts or other parts of a prosthesis can be engaged with the inner retention ring and the nose cone can cover both the prosthesis and the inner retention ring to secure the prosthesis on the delivery devices 10, 100, 200, 1010, 1110. In addition, the delivery device can be used in delivery methods similar to those described in the above referenced patents and application.
Patent Nos. 8,414,644 and 8,652,203, the entirety of each of which are hereby incorporated by reference and made a part of this specification. For example, the nose cone can include a prosthesis retention mechanism such as an inner retention ring that can be used to engage with the prosthesis as may be described in these applications. Struts or other parts of a prosthesis can be engaged with the inner retention ring and the nose cone can cover both the prosthesis and the inner retention ring to secure the prosthesis on the delivery devices 10, 100, 200, 1010, 1110. In addition, the delivery device can be used in delivery methods similar to those described in the above referenced patents and application.
[0158] Any value of a threshold, limit, duration, etc. provided herein is not intended to be absolute and, thereby, can be approximate. In addition, any threshold, limit, duration, etc. provided herein can be fixed or varied either automatically or by a user.
Furthermore, as is used herein relative terminology such as exceeds, greater than, less than, etc. in relation to a reference value is intended to also encompass being equal to the reference value. For example, exceeding a reference value that is positive can encompass being equal to or greater than the reference value. In addition, as is used herein relative terminology such as exceeds, greater than, less than, etc. in relation to a reference value is intended to also encompass an inverse of the disclosed relationship, such as below, less than, greater than, etc.
in relations to the reference value.
Furthermore, as is used herein relative terminology such as exceeds, greater than, less than, etc. in relation to a reference value is intended to also encompass being equal to the reference value. For example, exceeding a reference value that is positive can encompass being equal to or greater than the reference value. In addition, as is used herein relative terminology such as exceeds, greater than, less than, etc. in relation to a reference value is intended to also encompass an inverse of the disclosed relationship, such as below, less than, greater than, etc.
in relations to the reference value.
[0159] While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the disclosure. Indeed, the novel methods and systems described herein may be embodied in a variety of other forms. Furthermore, various omissions, substitutions and changes in the systems and methods described herein may be made without departing from the spirit of the disclosure. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the disclosure.
Accordingly, the scope of the present disclosure is defined only by reference to the claims presented herein or as presented in the future.
Accordingly, the scope of the present disclosure is defined only by reference to the claims presented herein or as presented in the future.
[0160] Features, materials, characteristics, or groups described in conjunction with a particular aspect, embodiment, or example are to be understood to be applicable to any other aspect, embodiment or example described in this section or elsewhere in this specification unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The protection is not restricted to the details of any foregoing embodiments. The protection extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.
[0161] Furthermore, certain features that are described in this disclosure in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can, in some cases, be excised from the combination, and the combination may be claimed as a subcombination or variation of a subcombination.
[0162] Moreover, while operations may be depicted in the drawings or described in the specification in a particular order, such operations need not be performed in the particular order shown or in sequential order, or that all operations be performed, to achieve desirable results. Other operations that are not depicted or described can be incorporated in the example methods and processes. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the described operations. Further, the operations may be rearranged or reordered in other implementations. Those skilled in the art will appreciate that in some embodiments, the actual steps taken in the processes illustrated and/or disclosed may differ from those shown in the figures.
Depending on the embodiment, certain of the steps described above may be removed, others may be added.
Furthermore, the features and attributes of the specific embodiments disclosed above may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure. Also, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described components and systems can generally be integrated together in a single product or packaged into multiple products.
Depending on the embodiment, certain of the steps described above may be removed, others may be added.
Furthermore, the features and attributes of the specific embodiments disclosed above may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure. Also, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described components and systems can generally be integrated together in a single product or packaged into multiple products.
[0163] For purposes of this disclosure, certain aspects, advantages, and novel features are described herein. Not necessarily all such advantages may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the disclosure may be embodied or carried out in a manner that achieves one advantage or a group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.
[0164] Conditional language, such as "can," "could," "might," or "may,"
unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements, and/or steps are included or are to be performed in any particular embodiment.
unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements, and/or steps are included or are to be performed in any particular embodiment.
[0165] Conjunctive language such as the phrase "at least one of X, Y, and Z,"
unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.
unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.
[0166] Language of degree used herein, such as the terms "approximately,"
"about," "generally," and "substantially" as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms "approximately", "about", "generally," and "substantially" may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount. As another example, in certain embodiments, the terms "generally parallel" and "substantially parallel" refer to a value, amount, or characteristic that departs from exactly parallel by less than or equal to 15 degrees, 10 degrees, 5 degrees, 3 degrees, 1 degree, or 0.1 degree.
"about," "generally," and "substantially" as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms "approximately", "about", "generally," and "substantially" may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount. As another example, in certain embodiments, the terms "generally parallel" and "substantially parallel" refer to a value, amount, or characteristic that departs from exactly parallel by less than or equal to 15 degrees, 10 degrees, 5 degrees, 3 degrees, 1 degree, or 0.1 degree.
[0167] The scope of the present disclosure is not intended to be limited by the specific disclosures of preferred embodiments in this section or elsewhere in this specification, and may be defined by claims as presented in this section or elsewhere in this specification or as presented in the future. The language of the claims is to be interpreted broadly based on the language employed in the claims and not limited to the examples described in the present specification or during the prosecution of the application, which examples are to be construed as non-exclusive.
Claims (84)
1. A delivery system for controlled deployment of a replacement valve, the delivery system comprising:
a first member configured to at least partially restrain a first end of the replacement valve;
a second member configured to at least partially restrain a second end of the replacement valve; and a tether configured to at least partially encircle the replacement valve and radially restrain at least a portion of the replacement valve after the second member has been removed from the second end of the replacement valve but with the first member still at least partially restraining the first end of the replacement valve.
a first member configured to at least partially restrain a first end of the replacement valve;
a second member configured to at least partially restrain a second end of the replacement valve; and a tether configured to at least partially encircle the replacement valve and radially restrain at least a portion of the replacement valve after the second member has been removed from the second end of the replacement valve but with the first member still at least partially restraining the first end of the replacement valve.
2. The delivery system of Claim 1, wherein the first member comprises a first shaft and the second member comprises a second shaft, the second shaft being positioned over the first shaft and slidable relative to the first shaft.
3. The delivery system of Claim 2, wherein the first member comprises a nose cone configured to receive and cover the first end of the replacement valve, the nose cone being connected to a distal end of the first shaft.
4. The delivery system of Claim 3, wherein the nose cone comprises a proximally-facing opening to receive at least a first end of the replacement valve.
5. The delivery system of Claim 3 or 4, wherein the nose cone comprises a taper towards the distal end of the nose cone.
6. The delivery system of any one of Claims 3-5, wherein an outer diameter of the nose cone is similar to an outer diameter of the second shaft.
7. The delivery system of any one of Claims 3-5, wherein an outer diameter of the nose cone is similar to an inner diameter of the second shaft.
8. The delivery system of any one of Claims 2-7, wherein the first member comprises an inner retention ring configured to engage the first end of the replacement valve, the inner retention ring connected to a distal portion of an inner retention shaft, the inner retention shaft being positioned between the first shaft and the second shaft and being slidable relative to the first shaft.
9. The delivery system of Claim 8, wherein the inner retention ring comprises a taper towards a proximal end of the inner retention ring.
10. The delivery system of Claim 8 or 9, wherein the inner retention ring comprises a cavity at or near a distal end of the inner retention ring and a compressible member received at least partially within the cavity, the compressible member having a compressed diameter and an expanded diameter.
11. The delivery system of any one of Claims 2-10, further comprising a tether retention assembly configured to restrain the tether such that the tether can be tensioned to restrain at least a portion of the replacement valve.
12. The delivery system of Claim 11, wherein the tether retention assembly comprises an inner component and an outer component, the outer component configured to cooperate with the inner component to restrain the tether.
13. The delivery system of Claim 12, wherein the inner component comprises a C-lock.
14. The delivery system of Claim 12 or 13, wherein the outer component comprises a sheath.
15. The delivery system of any one of Claims 12-14, wherein the outer component is moveable relative to the inner component to release the tether.
16. The delivery system of any one of Claims 12-15, wherein the tether retention assembly further comprises a locking shaft, the outer component positioned at or near a distal end of the locking shaft.
17. The delivery system of Claim 16, wherein the locking shaft comprises a radial protrusion configured to maintain radial alignment between the locking shaft and the second shaft.
18. The delivery system of Claim 16 or 17, wherein the locking shaft further comprises a guide member for the tether.
19. The delivery system of any one of Claims 2-18, wherein the second member comprises an outer elongate hollow member configured to cover at least the second end of the replacement valve, the outer elongate hollow member being connected to a distal end of the second shaft.
20. The delivery system of Claim 19, wherein the outer elongate hollow member has a substantially constant diameter throughout the entirety of its length.
21. The delivery system of Claim 19, wherein the diameter of the outer elongate hollow member is substantially similar to a diameter of the second shaft.
22. The delivery system of Claim 21, wherein the outer elongate hollow member is moveable relative to the first member to uncover the second end of the replacement valve while the first end of the replacement valve remains engaged to the first member.
23. The delivery system of Claim 22, further comprising an introducer sheath positioned over the second shaft.
24. The delivery system of any one of Claims 2-23, further comprising a plug, the plug being moveable to engage the first member when the first member is retrieved from a patient.
25. The delivery system of Claim 24, further comprising a plug shaft positioned between the first shaft and the second shaft and slidable relative to the first shaft.
26. The delivery system of any one of Claims 2-25, wherein the first shaft is hollow to receive a guidewire.
27. The delivery system of any one of Claims 2-26, further comprising a replacement valve, wherein:
a first end of the replacement valve engages the first member; and a second end of the replacement valve engages the second member.
a first end of the replacement valve engages the first member; and a second end of the replacement valve engages the second member.
28. A delivery system for controlled deployment of a replacement valve, the delivery system comprising:
a nose cone shaft having a proximal end and a distal end;
a nose cone connected to the distal end of the nose cone shaft, wherein the nose cone comprises a proximally-facing opening to receive at least a first end of the replacement valve;
an inner retention shaft having a proximal end and a distal end, the inner retention shaft being slidable over the nose cone shaft;
an inner retention ring connected to the distal end of the inner retention shaft, the inner retention ring configured to engage the first end of the replacement valve;
a tether retention member on the inner retention shaft;
a locking shaft having a proximal end and a distal end, the locking shaft being slidable over the inner retention shaft, wherein the locking shaft is configured to cooperate with the tether retention member to releasably engage a tether attached to the replacement valve;
an outer elongate hollow member shaft having a proximal end and a distal end, the outer elongate hollow member shaft being slidable over the locking shaft;
and an outer elongate hollow member connected to the distal end of the outer elongate hollow member shaft, the outer elongate hollow member having a proximal end and a distal end, wherein the outer elongate hollow member is configured to cover at least the second end of the replacement valve when the first end of the replacement valve is engaged with the inner retention ring and is covered by the nose cone;
wherein the outer elongate hollow member is moveable relative to the nose cone to uncover the second end of the replacement valve while the first end of the replacement valve remains engaged to the inner retention ring and is covered by the nose cone.
a nose cone shaft having a proximal end and a distal end;
a nose cone connected to the distal end of the nose cone shaft, wherein the nose cone comprises a proximally-facing opening to receive at least a first end of the replacement valve;
an inner retention shaft having a proximal end and a distal end, the inner retention shaft being slidable over the nose cone shaft;
an inner retention ring connected to the distal end of the inner retention shaft, the inner retention ring configured to engage the first end of the replacement valve;
a tether retention member on the inner retention shaft;
a locking shaft having a proximal end and a distal end, the locking shaft being slidable over the inner retention shaft, wherein the locking shaft is configured to cooperate with the tether retention member to releasably engage a tether attached to the replacement valve;
an outer elongate hollow member shaft having a proximal end and a distal end, the outer elongate hollow member shaft being slidable over the locking shaft;
and an outer elongate hollow member connected to the distal end of the outer elongate hollow member shaft, the outer elongate hollow member having a proximal end and a distal end, wherein the outer elongate hollow member is configured to cover at least the second end of the replacement valve when the first end of the replacement valve is engaged with the inner retention ring and is covered by the nose cone;
wherein the outer elongate hollow member is moveable relative to the nose cone to uncover the second end of the replacement valve while the first end of the replacement valve remains engaged to the inner retention ring and is covered by the nose cone.
29. The delivery system of Claim 28, wherein the nose cone comprises a taper towards the distal end of the nose cone.
30. The delivery system of Claim 28 or 29, wherein an outer diameter of the nose cone is similar to an outer diameter of at least one of the outer elongate hollow member shaft and the outer elongate hollow member.
31. The delivery system of Claims 28 or 29, wherein an outer diameter of the nose cone is similar to an inner diameter of at least one of the outer elongate hollow member shaft and the outer elongate hollow member.
32. The delivery system according to any one of Claims 28-31, wherein the inner retention ring comprises a taper towards a proximal end of the inner retention ring.
33. The delivery system according to any one of Claims 28-32, wherein the inner retention ring comprises a cavity at or near a distal end of the inner retention ring and a compressible member received at least partially within the cavity, the compressible member having a compressed diameter and an expanded diameter.
34. The delivery system of Claim 33, wherein the compressed diameter is approximately equal to an inner diameter of the nose cone and the expanded diameter is greater than the inner diameter of the nose cone.
35. The delivery system according to any one of Claims 28-34, wherein the locking shaft comprises a radial protrusion configured to maintain radial alignment between the locking shaft and the outer elongate hollow member shaft.
36. The delivery system according to any one of Claims 28-35, wherein the locking shaft comprises a guide member for the tether.
37. The delivery system according to any one of Claims 28-36, wherein the outer elongate hollow member has a substantially constant diameter throughout the entirety of its length.
38. The delivery system according to any one of Claims 28-37, wherein the diameter of the outer elongate hollow member is substantially similar to a diameter of the outer elongate hollow member shaft.
39. The delivery system according to any one of Claims 28-38, further comprising an introducer sheath having a proximal end and a distal end slidable over the outer elongate hollow member shaft.
40. The delivery system according to any one of Claims 28-39, wherein the tether retention member comprises a C-lock.
41. The delivery system of Claim 40, further comprising a lock at the distal end of the locking shaft to cover the C-lock to releasably retain a tether therein.
42. The delivery system of any one of Claims 28-41, further comprising a plug shaft having a proximal end and a distal end, the plug shaft being slidable over the locking shaft and the outer elongate hollow member shaft being slidable over the plug shaft, and further comprising a plug at the distal end of the plug shaft to engage the nose cone when the nose cone is retrieved from a patient.
43. The delivery system of any one of the Claims 28-42, wherein the nose cone shaft is hollow to receive a guidewire.
44. The delivery system of any one of Claims 28-43, further comprising a replacement valve, wherein:
a first end of the replacement valve engages the inner retention ring and is covered by the nose cone;
a second end of the replacement valve is covered by the outer elongate hollow member shaft; and a tether is connected to the tether retention member, the tether retention member being covered by a lock at the distal end of the locking shaft, the tether wrapping at least partially around the replacement valve and then extending proximally through at least the outer elongate hollow member shaft.
a first end of the replacement valve engages the inner retention ring and is covered by the nose cone;
a second end of the replacement valve is covered by the outer elongate hollow member shaft; and a tether is connected to the tether retention member, the tether retention member being covered by a lock at the distal end of the locking shaft, the tether wrapping at least partially around the replacement valve and then extending proximally through at least the outer elongate hollow member shaft.
45. A method of delivering an intralumenal frame assembly to intralumenal tissue at an in situ target location, the method comprising:
delivering an intralumenal frame assembly to the in situ target location while the frame assembly is in a radially compacted state within an outer member, the frame assembly comprising a frame having a first end, a second end and a longitudinal axis extending between the first and second ends, the frame further comprising a tether encircling at least a portion of the frame, the tether configured to restrain the radial dimension of the frame;
at least partially removing the outer member from the frame assembly, wherein the tether restrains the radial dimension of the frame after the outer member is at least partially removed; and releasing the tether from the frame to allow at least a portion of the frame assembly to radially expand.
delivering an intralumenal frame assembly to the in situ target location while the frame assembly is in a radially compacted state within an outer member, the frame assembly comprising a frame having a first end, a second end and a longitudinal axis extending between the first and second ends, the frame further comprising a tether encircling at least a portion of the frame, the tether configured to restrain the radial dimension of the frame;
at least partially removing the outer member from the frame assembly, wherein the tether restrains the radial dimension of the frame after the outer member is at least partially removed; and releasing the tether from the frame to allow at least a portion of the frame assembly to radially expand.
46. The method of Claim 45, wherein releasing the tether from the frame allows the second end of the frame to radially expand while the first end of the frame remains radially restrained.
47. The method of Claim 46, further comprising radially expanding the first end of the frame after releasing the tether to allow the second end of the frame to radially expand.
48. The method of Claim 47, wherein the first end of the frame, prior to radial expansion, is restrained by a nose cone covering at least the first end of the frame.
49. The method of Claim 48, wherein the outer member is at least partially removed from the frame assembly by moving the outer member relatively away from the nose cone.
50. The method of Claim 49, wherein the outer member is at least partially removed in a proximal direction from the frame assembly by moving the outer member relatively away from the nose cone.
51. The method of Claim 50, wherein the intralumenal frame assembly comprises a plurality of anchors at its second end, wherein the plurality of anchors extend proximally away from the second end of the frame assembly as the outer member is moved proximally, and the plurality of anchors flip to extend distally away from the second end of the frame assembly after the outer member uncovers the plurality of anchors, and wherein the tether radially restrains the frame assembly during flipping of the anchors.
52. The method of any one of Claims 45-51, wherein the intralumenal frame assembly comprises a replacement heart valve.
53. The method of any one of Claims 45-52, wherein the intralumenal frame assembly is delivered transapically to a mitral valve location.
54. A delivery system for controlled deployment of a replacement valve, the delivery system comprising:
a delivery catheter;
a radially compacted replacement valve having a longitudinal axis positioned within the delivery catheter and comprising a plurality of first anchors wherein the first anchors each have an end pointing in a first longitudinal direction in the radially compacted state and the end is configured to change direction to point in a second longitudinal direction, the ends pointing in the second longitudinal direction after the replacement valve is deployed from the delivery catheter;
a cover positioned over the plurality of first anchors while the first anchors move from pointing in the first longitudinal direction to the second longitudinal direction, thereby preventing or limiting contact between the first anchors and tissue.
a delivery catheter;
a radially compacted replacement valve having a longitudinal axis positioned within the delivery catheter and comprising a plurality of first anchors wherein the first anchors each have an end pointing in a first longitudinal direction in the radially compacted state and the end is configured to change direction to point in a second longitudinal direction, the ends pointing in the second longitudinal direction after the replacement valve is deployed from the delivery catheter;
a cover positioned over the plurality of first anchors while the first anchors move from pointing in the first longitudinal direction to the second longitudinal direction, thereby preventing or limiting contact between the first anchors and tissue.
55. A delivery system for controlled deployment of a replacement valve, the delivery system comprising:
a sheath configured to surround a radially compacted replacement valve, wherein retraction of the sheath from off of the radially compacted replacement valve allows the radially compacted replacement valve to at least partially expand;
an expandable cover advanceable over the sheath prior to retraction to allow for expansion of the replacement valve within the expandable cover as the sheath is retracted to prevent or limit contact between the expanding replacement valve and tissue.
a sheath configured to surround a radially compacted replacement valve, wherein retraction of the sheath from off of the radially compacted replacement valve allows the radially compacted replacement valve to at least partially expand;
an expandable cover advanceable over the sheath prior to retraction to allow for expansion of the replacement valve within the expandable cover as the sheath is retracted to prevent or limit contact between the expanding replacement valve and tissue.
56. The delivery system of Claim 55, further comprising the replacement valve, the replacement valve comprising a plurality of anchors that are configured to change direction during expansion.
57. The delivery system of Claim 56, wherein each of the anchors having an end, the end pointing in a first direction prior to expansion and in a second direction after at least partial expansion.
58. The delivery system of Claim 57, wherein each anchor rotates at least degrees during the partial expansion.
59. A method of delivery of a replacement valve, the method comprising:
advancing a delivery system holding a radially compacted replacement valve to a native valve, the delivery system comprising:
a sheath surrounding the radially compacted replacement valve; and an expandable cover;
withdrawing the sheath to allow the replacement valve to at least partially expand within the expandable cover to prevent or limit contact between the expanding replacement valve and tissue.
advancing a delivery system holding a radially compacted replacement valve to a native valve, the delivery system comprising:
a sheath surrounding the radially compacted replacement valve; and an expandable cover;
withdrawing the sheath to allow the replacement valve to at least partially expand within the expandable cover to prevent or limit contact between the expanding replacement valve and tissue.
60. The method of Claim 59, wherein advancing further comprises advancing the delivery system to the native valve transapically.
61. The method of Claim 59 or 60, further comprising advancing the expandable cover over the sheath.
62. A method of delivery of a replacement valve, the method comprising:
advancing a delivery system holding a radially compacted replacement valve to a native valve, the delivery system having a longitudinal axis;
at least partially expanding the replacement valve radially outward from the longitudinal axis and within an expandable cover to prevent or limit contact between the expanding replacement valve and tissue.
advancing a delivery system holding a radially compacted replacement valve to a native valve, the delivery system having a longitudinal axis;
at least partially expanding the replacement valve radially outward from the longitudinal axis and within an expandable cover to prevent or limit contact between the expanding replacement valve and tissue.
63. The method of Claim 62, wherein at least partially expanding the replacement valve comprises allowing a plurality of anchors to self-expand within the expandable cover.
64. The method of Claim 63, wherein allowing the plurality of anchors to self-expand comprises flipping an end of each of the anchors of the plurality of anchors to change a longitudinal orientation of the end from a first longitudinal direction to a second opposite longitudinal direction.
65. A flexible delivery system for controlled deployment with stretch and compression resistance for replacement mitral valve implantation, the delivery system comprising:
an elongate inner member comprising a proximal end and a distal end;
an inner retention mechanism on the elongate inner member, the inner retention mechanism configured to engage a radially compacted proximal end of a replacement mitral valve;
a mid shaft assembly configured to be slidable over the elongate inner member and the inner retention mechanism, the mid shaft assembly comprising:
an outer retention member configured to cover at least the radially compacted proximal end of the replacement mitral valve when the proximal end of the replacement mitral valve is engaged with the inner retention mechanism;
a first member having a distal end connected to the outer retention member; and a second member having a distal end connected to the outer retention member and extending along the length of the first member;
an outer sheath configured to be slidable over the mid shaft assembly and configured to cover the distal end of the replacement mitral valve; and a handle, the first member and second member positioned between the handle and the outer retention member;
wherein the delivery system is configured to retain at least the radially compacted proximal end of the replacement mitral valve between the inner retention mechanism and the outer retention member during advancement of the delivery system within the body and the first and second members facilitate advancement with stretch and compression resistance through long and tortuous pathways.
an elongate inner member comprising a proximal end and a distal end;
an inner retention mechanism on the elongate inner member, the inner retention mechanism configured to engage a radially compacted proximal end of a replacement mitral valve;
a mid shaft assembly configured to be slidable over the elongate inner member and the inner retention mechanism, the mid shaft assembly comprising:
an outer retention member configured to cover at least the radially compacted proximal end of the replacement mitral valve when the proximal end of the replacement mitral valve is engaged with the inner retention mechanism;
a first member having a distal end connected to the outer retention member; and a second member having a distal end connected to the outer retention member and extending along the length of the first member;
an outer sheath configured to be slidable over the mid shaft assembly and configured to cover the distal end of the replacement mitral valve; and a handle, the first member and second member positioned between the handle and the outer retention member;
wherein the delivery system is configured to retain at least the radially compacted proximal end of the replacement mitral valve between the inner retention mechanism and the outer retention member during advancement of the delivery system within the body and the first and second members facilitate advancement with stretch and compression resistance through long and tortuous pathways.
66. The delivery system of Claim 65, wherein the first member comprises a compression member.
67. The delivery system of Claim 65, wherein the first member comprises a coiled spring.
68. The delivery system of any one of Claims 65-68, wherein the second member comprises a tension member.
69. The delivery system of any one of Claims 65-68, wherein the second member comprises a braided wire.
70. The delivery system of any one of Claims 65-69, wherein the elongate inner member comprises a tube having a lumen sized and configured to slidably accommodate a guidewire.
71. The delivery system of any one of Claims 65-70, further comprising a nose cone connected to the distal end of the elongate inner member.
72. The delivery system of any one of Claims 65-71, wherein the inner retention mechanism comprises a ring comprising a plurality of teeth configured to engage tabs on the proximal end of the replacement mitral valve.
73. The delivery system of any one of Claims 65-72, wherein the outer retention member is a ring.
74. The delivery system of any one of Claims 65-73, further comprising a replacement mitral valve having a proximal end and a distal end.
75. The delivery system of Claim 74, wherein the proximal end of the replacement mitral valve is engaged with the inner retention mechanism on the elongate inner member and is covered by the outer retention member; and the distal end of the replacement mitral valve is covered by the outer sheath.
76. The delivery system of any one of Claims 65-75, wherein the outer sheath comprises a slotted hypo tube.
77. The delivery system of any one of Claims 65-76, wherein at least a segment of the outer sheath is formed of ePTFE.
78. The delivery system of any one of Claims 65-77, wherein mid shaft assembly further comprises a plastic tube, wherein both the compression member and the tension member are connected to the plastic tube and the plastic tube is positioned between the handle and the compression and tension members.
79. A delivery system for an expandable prosthesis, the delivery system comprising:
an elongate inner member comprising a proximal end and a distal end; and a shaft assembly configured to be slidable over the elongate inner member and at least partially radially constrain an expandable prosthesis when the expandable prosthesis is provided over the elongate inner member, the shaft assembly comprising a compression member and a tension member concentrically arranged.
an elongate inner member comprising a proximal end and a distal end; and a shaft assembly configured to be slidable over the elongate inner member and at least partially radially constrain an expandable prosthesis when the expandable prosthesis is provided over the elongate inner member, the shaft assembly comprising a compression member and a tension member concentrically arranged.
80. The delivery system of Claim 79, wherein the compression member surrounds the tension member.
81. The delivery system of Claim 79 or 80, further comprising an outer sheath configured to be slidable over the shaft assembly and configured to cover a distal end of the expandable prosthesis when the expandable prosthesis is provided over the elongate inner member.
82. The delivery system of Claim 81, wherein the outer sheath comprises a slotted hypo tube.
83. The delivery system of Claim 82, wherein the slotted hypo tube is configured to surround the compression member and the tension member when the outer sheath covers the distal end of the expandable prosthesis.
84. A method of delivering an expandable prosthesis comprising using the delivery system of any Claims 65-83.
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201461943270P | 2014-02-21 | 2014-02-21 | |
US61/943,270 | 2014-02-21 | ||
US201461950748P | 2014-03-10 | 2014-03-10 | |
US61/950,748 | 2014-03-10 | ||
US201462004637P | 2014-05-29 | 2014-05-29 | |
US62/004,637 | 2014-05-29 | ||
PCT/US2015/016927 WO2015127283A1 (en) | 2014-02-21 | 2015-02-20 | Delivery device for controlled deployement of a replacement valve |
Publications (2)
Publication Number | Publication Date |
---|---|
CA2938614A1 true CA2938614A1 (en) | 2015-08-27 |
CA2938614C CA2938614C (en) | 2024-01-23 |
Family
ID=52629702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA2938614A Active CA2938614C (en) | 2014-02-21 | 2015-02-20 | Delivery device for controlled deployement of a replacement valve |
Country Status (5)
Country | Link |
---|---|
US (4) | US10004599B2 (en) |
EP (1) | EP3107497B1 (en) |
CN (1) | CN106170269B (en) |
CA (1) | CA2938614C (en) |
WO (1) | WO2015127283A1 (en) |
Families Citing this family (147)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005003632A1 (en) | 2005-01-20 | 2006-08-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Catheter for the transvascular implantation of heart valve prostheses |
CA2629534C (en) | 2005-11-10 | 2015-02-24 | Arshad Quadri | Balloon-expandable, self-expanding, vascular prosthesis connecting stent |
US7896915B2 (en) | 2007-04-13 | 2011-03-01 | Jenavalve Technology, Inc. | Medical device for treating a heart valve insufficiency |
US9044318B2 (en) | 2008-02-26 | 2015-06-02 | Jenavalve Technology Gmbh | Stent for the positioning and anchoring of a valvular prosthesis |
ES2903231T3 (en) | 2008-02-26 | 2022-03-31 | Jenavalve Tech Inc | Stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart |
EP2367505B1 (en) | 2008-09-29 | 2020-08-12 | Edwards Lifesciences CardiAQ LLC | Heart valve |
EP2341871B1 (en) | 2008-10-01 | 2017-03-22 | Edwards Lifesciences CardiAQ LLC | Delivery system for vascular implant |
CN101919751A (en) | 2009-03-30 | 2010-12-22 | 卡迪万蒂奇医药公司 | Transmit the method and apparatus that does not have the stitching artificial valve through the apex of the heart |
AU2010236288A1 (en) | 2009-04-15 | 2011-10-20 | Cardiaq Valve Technologies, Inc. | Vascular implant and delivery system |
US9730790B2 (en) | 2009-09-29 | 2017-08-15 | Edwards Lifesciences Cardiaq Llc | Replacement valve and method |
US8870950B2 (en) | 2009-12-08 | 2014-10-28 | Mitral Tech Ltd. | Rotation-based anchoring of an implant |
US8579964B2 (en) | 2010-05-05 | 2013-11-12 | Neovasc Inc. | Transcatheter mitral valve prosthesis |
AU2011257298B2 (en) | 2010-05-25 | 2014-07-31 | Jenavalve Technology Inc. | Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent |
US11653910B2 (en) | 2010-07-21 | 2023-05-23 | Cardiovalve Ltd. | Helical anchor implantation |
WO2012087842A1 (en) | 2010-12-23 | 2012-06-28 | The Foundry, Llc | System for mitral valve repair and replacement |
US9554897B2 (en) | 2011-04-28 | 2017-01-31 | Neovasc Tiara Inc. | Methods and apparatus for engaging a valve prosthesis with tissue |
US9308087B2 (en) | 2011-04-28 | 2016-04-12 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
EP3964176A1 (en) | 2011-06-21 | 2022-03-09 | Twelve, Inc. | Prosthetic heart valve devices |
US11202704B2 (en) | 2011-10-19 | 2021-12-21 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US10016271B2 (en) | 2011-10-19 | 2018-07-10 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US9039757B2 (en) | 2011-10-19 | 2015-05-26 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US9763780B2 (en) | 2011-10-19 | 2017-09-19 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
US9655722B2 (en) | 2011-10-19 | 2017-05-23 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
AU2012325809B2 (en) | 2011-10-19 | 2016-01-21 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
US9579198B2 (en) | 2012-03-01 | 2017-02-28 | Twelve, Inc. | Hydraulic delivery systems for prosthetic heart valve devices and associated methods |
US9345573B2 (en) | 2012-05-30 | 2016-05-24 | Neovasc Tiara Inc. | Methods and apparatus for loading a prosthesis onto a delivery system |
US10583002B2 (en) | 2013-03-11 | 2020-03-10 | Neovasc Tiara Inc. | Prosthetic valve with anti-pivoting mechanism |
US9681951B2 (en) | 2013-03-14 | 2017-06-20 | Edwards Lifesciences Cardiaq Llc | Prosthesis with outer skirt and anchors |
US11259923B2 (en) | 2013-03-14 | 2022-03-01 | Jc Medical, Inc. | Methods and devices for delivery of a prosthetic valve |
CA2905422A1 (en) | 2013-03-14 | 2014-10-02 | Cardiovantage Medical, Inc. | Embolic protection devices and methods of use |
US11406497B2 (en) | 2013-03-14 | 2022-08-09 | Jc Medical, Inc. | Heart valve prosthesis |
US9572665B2 (en) | 2013-04-04 | 2017-02-21 | Neovasc Tiara Inc. | Methods and apparatus for delivering a prosthetic valve to a beating heart |
WO2014189974A1 (en) | 2013-05-20 | 2014-11-27 | Twelve, Inc. | Implantable heart valve devices, mitral valve repair devices and associated systems and methods |
US9867694B2 (en) | 2013-08-30 | 2018-01-16 | Jenavalve Technology Inc. | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
US10149758B2 (en) | 2014-04-01 | 2018-12-11 | Medtronic, Inc. | System and method of stepped deployment of prosthetic heart valve |
EP4066786A1 (en) | 2014-07-30 | 2022-10-05 | Cardiovalve Ltd. | Articulatable prosthetic valve |
US10058424B2 (en) * | 2014-08-21 | 2018-08-28 | Edwards Lifesciences Corporation | Dual-flange prosthetic valve frame |
EP3229736B1 (en) | 2014-12-09 | 2024-01-10 | Cephea Valve Technologies, Inc. | Replacement cardiac valves and method of manufacture |
CN107735048B (en) | 2015-02-12 | 2019-11-12 | 赫莫迪纳克斯科技有限公司 | Aorta implantation material |
EP4353203A3 (en) | 2015-03-20 | 2024-07-03 | JenaValve Technology, Inc. | Heart valve prosthesis delivery system |
EP3273911A1 (en) * | 2015-03-24 | 2018-01-31 | St. Jude Medical, Cardiology Division, Inc. | Prosthetic mitral valve |
EP3288495B1 (en) | 2015-05-01 | 2019-09-25 | JenaValve Technology, Inc. | Device with reduced pacemaker rate in heart valve replacement |
GB2538072B (en) * | 2015-05-05 | 2017-11-15 | Strait Access Tech Holdings (Pty) Ltd | A non-occlusive dilation and deployment catheter device |
EP3294221B1 (en) | 2015-05-14 | 2024-03-06 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
WO2016183523A1 (en) | 2015-05-14 | 2016-11-17 | Cephea Valve Technologies, Inc. | Cardiac valve delivery devices and systems |
EP3316820B1 (en) | 2015-07-02 | 2020-01-08 | Boston Scientific Scimed Inc. | Adjustable nosecone |
US10335277B2 (en) | 2015-07-02 | 2019-07-02 | Boston Scientific Scimed Inc. | Adjustable nosecone |
WO2017035002A1 (en) | 2015-08-21 | 2017-03-02 | Twelve Inc. | Implantable heart valve devices, mitral valve repair devices and associated systems and methods |
US10117744B2 (en) | 2015-08-26 | 2018-11-06 | Edwards Lifesciences Cardiaq Llc | Replacement heart valves and methods of delivery |
US10575951B2 (en) | 2015-08-26 | 2020-03-03 | Edwards Lifesciences Cardiaq Llc | Delivery device and methods of use for transapical delivery of replacement mitral valve |
US10350066B2 (en) * | 2015-08-28 | 2019-07-16 | Edwards Lifesciences Cardiaq Llc | Steerable delivery system for replacement mitral valve and methods of use |
US10350047B2 (en) * | 2015-09-02 | 2019-07-16 | Edwards Lifesciences Corporation | Method and system for packaging and preparing a prosthetic heart valve and associated delivery system |
US10350067B2 (en) * | 2015-10-26 | 2019-07-16 | Edwards Lifesciences Corporation | Implant delivery capsule |
MA43173A (en) | 2015-11-06 | 2018-09-12 | Micor Ltd | MITRAL VALVE PROSTHESIS |
US10583007B2 (en) | 2015-12-02 | 2020-03-10 | Edwards Lifesciences Corporation | Suture deployment of prosthetic heart valve |
US10357351B2 (en) | 2015-12-04 | 2019-07-23 | Edwards Lifesciences Corporation | Storage assembly for prosthetic valve |
WO2017106156A1 (en) | 2015-12-14 | 2017-06-22 | Medtronic Vascular Inc. | Devices and methods for transcatheter valve loading and implantation |
EP4112006A1 (en) | 2015-12-15 | 2023-01-04 | Neovasc Tiara Inc. | Transseptal delivery system |
US11833034B2 (en) | 2016-01-13 | 2023-12-05 | Shifamed Holdings, Llc | Prosthetic cardiac valve devices, systems, and methods |
DE202017007326U1 (en) | 2016-01-29 | 2020-10-20 | Neovasc Tiara Inc. | Valve prosthesis to prevent flow obstruction |
US10531866B2 (en) | 2016-02-16 | 2020-01-14 | Cardiovalve Ltd. | Techniques for providing a replacement valve and transseptal communication |
WO2017152097A1 (en) | 2016-03-03 | 2017-09-08 | Medtronic Vascular Inc. | Stented prosthesis delivery system having a bumper |
US10779941B2 (en) | 2016-03-08 | 2020-09-22 | Edwards Lifesciences Corporation | Delivery cylinder for prosthetic implant |
WO2017160823A1 (en) | 2016-03-14 | 2017-09-21 | Medtronic Vascular Inc. | Stented prosthetic heart valve having a wrap and delivery devices |
US10420642B2 (en) | 2016-03-14 | 2019-09-24 | Medtronic Vascular, Inc. | Transcatheter stented prosthetic heart valve delivery devices |
CN109069272A (en) | 2016-04-29 | 2018-12-21 | 美敦力瓦斯科尔勒公司 | Prosthetic heart valve equipment and associated system and method with the anchor log with tether |
US10624740B2 (en) * | 2016-05-13 | 2020-04-21 | St. Jude Medical, Cardiology Division, Inc. | Mitral valve delivery device |
EP4183371A1 (en) * | 2016-05-13 | 2023-05-24 | JenaValve Technology, Inc. | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system |
US11331187B2 (en) | 2016-06-17 | 2022-05-17 | Cephea Valve Technologies, Inc. | Cardiac valve delivery devices and systems |
US10350062B2 (en) | 2016-07-21 | 2019-07-16 | Edwards Lifesciences Corporation | Replacement heart valve prosthesis |
WO2018023026A1 (en) * | 2016-07-28 | 2018-02-01 | University Of Utah Research Foundation | A medical device implant carrier for fragile medical implants |
EP3496660B1 (en) | 2016-08-12 | 2024-07-17 | Hemodynamx-Technologies Ltd | Aortic implant |
CN109789017B (en) | 2016-08-19 | 2022-05-31 | 爱德华兹生命科学公司 | Steerable delivery system for replacing a mitral valve and methods of use |
EP4454613A2 (en) | 2016-08-26 | 2024-10-30 | Edwards Lifesciences Corporation | Multi-portion replacement heart valve prosthesis |
CN107913123B (en) * | 2016-10-11 | 2021-06-29 | 沃卡尔有限公司 | Device and method for delivering implants through a catheter |
EP3531977B1 (en) * | 2016-10-28 | 2024-06-26 | St. Jude Medical, Cardiology Division, Inc. | Prosthetic mitral valve |
US10758348B2 (en) * | 2016-11-02 | 2020-09-01 | Edwards Lifesciences Corporation | Supra and sub-annular mitral valve delivery system |
US10368988B2 (en) | 2016-11-09 | 2019-08-06 | Medtronic Vascular, Inc. | Valve delivery system having an integral displacement component for managing chordae tendineae in situ and methods of use thereof |
US10493248B2 (en) | 2016-11-09 | 2019-12-03 | Medtronic Vascular, Inc. | Chordae tendineae management devices for use with a valve prosthesis delivery system and methods of use thereof |
EP3541462A4 (en) | 2016-11-21 | 2020-06-17 | Neovasc Tiara Inc. | Methods and systems for rapid retraction of a transcatheter heart valve delivery system |
WO2018129691A1 (en) * | 2017-01-12 | 2018-07-19 | 上海心瑞医疗科技有限公司 | Recovery system for use with isolation device, and preloaded and postloaded intervention system |
US10433993B2 (en) * | 2017-01-20 | 2019-10-08 | Medtronic Vascular, Inc. | Valve prosthesis having a radially-expandable sleeve integrated thereon for delivery and prevention of paravalvular leakage |
EP3570779B1 (en) | 2017-01-23 | 2023-02-15 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
EP4209196A1 (en) | 2017-01-23 | 2023-07-12 | Cephea Valve Technologies, Inc. | Replacement mitral valves |
CN110392557A (en) | 2017-01-27 | 2019-10-29 | 耶拿阀门科技股份有限公司 | Heart valve simulation |
US10561497B2 (en) * | 2017-03-07 | 2020-02-18 | Medtronic Vascular, Inc. | Delivery system having a short capsule segment and a cinch mechanism and methods of use thereof |
AU2018230487B2 (en) * | 2017-03-09 | 2020-02-27 | Medtronic Vascular Inc. | Tension management devices for stented prosthesis delivery device |
US10716668B2 (en) | 2017-04-05 | 2020-07-21 | Medtronic, Inc. | Delivery system with anchoring nosecone and method of delivery |
US10575950B2 (en) | 2017-04-18 | 2020-03-03 | Twelve, Inc. | Hydraulic systems for delivering prosthetic heart valve devices and associated methods |
DK3682854T3 (en) * | 2017-04-18 | 2022-02-14 | Edwards Lifesciences Corp | Heart valve sealing devices and supply devices therefor |
US10702378B2 (en) | 2017-04-18 | 2020-07-07 | Twelve, Inc. | Prosthetic heart valve device and associated systems and methods |
US10433961B2 (en) | 2017-04-18 | 2019-10-08 | Twelve, Inc. | Delivery systems with tethers for prosthetic heart valve devices and associated methods |
EP3612103B1 (en) | 2017-04-20 | 2022-02-09 | Medtronic, Inc. | Stabilization of a transseptal delivery device |
US10856980B2 (en) | 2017-05-08 | 2020-12-08 | Medtronic Vascular, Inc. | Prosthetic valve delivery system and method |
US10849747B2 (en) | 2017-05-10 | 2020-12-01 | St. Jude Medical, Cardiology Division, Inc. | Integrated sheath interface feature |
US10792151B2 (en) | 2017-05-11 | 2020-10-06 | Twelve, Inc. | Delivery systems for delivering prosthetic heart valve devices and associated methods |
US10195406B2 (en) | 2017-06-02 | 2019-02-05 | HemoDynamx Technologies, Ltd. | Flow modification in body lumens |
US10646338B2 (en) | 2017-06-02 | 2020-05-12 | Twelve, Inc. | Delivery systems with telescoping capsules for deploying prosthetic heart valve devices and associated methods |
US10709591B2 (en) | 2017-06-06 | 2020-07-14 | Twelve, Inc. | Crimping device and method for loading stents and prosthetic heart valves |
US10729541B2 (en) | 2017-07-06 | 2020-08-04 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
US10786352B2 (en) | 2017-07-06 | 2020-09-29 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
ES2923913T3 (en) | 2017-07-06 | 2022-10-03 | Edwards Lifesciences Corp | Steerable rail supply system |
CN109248012B (en) * | 2017-07-14 | 2020-12-25 | 先健科技(深圳)有限公司 | Implant delivery system |
CN110913802B (en) * | 2017-07-18 | 2022-03-25 | 美敦力瓦斯科尔勒公司 | Transcatheter prosthetic heart valve delivery system with distal cutting assembly |
US11793633B2 (en) | 2017-08-03 | 2023-10-24 | Cardiovalve Ltd. | Prosthetic heart valve |
US11304805B2 (en) * | 2017-09-19 | 2022-04-19 | Cardiovalve Ltd. | Prosthetic valve with inflatable cuff configured to fill a volume between atrial and ventricular tissue anchors |
US11135060B2 (en) | 2017-08-24 | 2021-10-05 | Medtronic Vascular, Inc. | Transseptal delivery systems having a deflecting segment and methods of use |
US10856984B2 (en) | 2017-08-25 | 2020-12-08 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
US11071846B2 (en) | 2017-09-14 | 2021-07-27 | Medtronic Vascular, Inc. | Deflection catheter for aiding in bending of a catheter |
BR112020008158A2 (en) * | 2017-10-24 | 2020-11-03 | Venus Medtech (Hangzhou) Inc. | easy-to-control interventionist instrument delivery device |
EP3703803A4 (en) * | 2017-10-30 | 2021-09-01 | Cephea Valve Technologies, Inc. | Insert for distal end cap |
EP3709932A4 (en) * | 2017-11-15 | 2021-08-11 | Hemodynamx-Technologies Ltd | Aortic pressure loss reduction apparatus and methods |
US10806574B2 (en) | 2017-11-20 | 2020-10-20 | Medtronic Vascular, Inc. | Delivery systems having a temporary valve and methods of use |
AU2019205319B2 (en) | 2018-01-07 | 2021-10-21 | Jc Medical, Inc. | Heart valve prosthesis and delivery |
CN209864176U (en) | 2018-01-07 | 2019-12-31 | 苏州杰成医疗科技有限公司 | Prosthetic heart valve delivery system |
EP3720390B1 (en) | 2018-01-25 | 2024-05-01 | Edwards Lifesciences Corporation | Delivery system for aided replacement valve recapture and repositioning post- deployment |
US10898326B2 (en) * | 2018-02-20 | 2021-01-26 | St. Jude Medical, Cardiology Division, Inc. | Crimping heart valve with nitinol braid |
WO2019165213A1 (en) | 2018-02-22 | 2019-08-29 | Medtronic Vascular, Inc. | Prosthetic heart valve delivery systems and methods |
US11051934B2 (en) | 2018-02-28 | 2021-07-06 | Edwards Lifesciences Corporation | Prosthetic mitral valve with improved anchors and seal |
CN108670501B (en) * | 2018-05-07 | 2023-12-26 | 杭州启明医疗器械股份有限公司 | Sheath tube convenient for recovering interventional instrument and conveying system |
US10441449B1 (en) | 2018-05-30 | 2019-10-15 | Vesper Medical, Inc. | Rotary handle stent delivery system and method |
US20210259836A1 (en) * | 2018-07-06 | 2021-08-26 | Cook Medical Technologies Llc | Storage devices, loading devices, delivery systems, kits, and associated methods |
US10449073B1 (en) | 2018-09-18 | 2019-10-22 | Vesper Medical, Inc. | Rotary handle stent delivery system and method |
WO2020073050A1 (en) | 2018-10-05 | 2020-04-09 | Shifamed Holdings, Llc | Prosthetic cardiac valve devices, systems, and methods |
WO2020093172A1 (en) * | 2018-11-08 | 2020-05-14 | Neovasc Tiara Inc. | Ventricular deployment of a transcatheter mitral valve prosthesis |
US11612482B2 (en) | 2019-03-06 | 2023-03-28 | Medtronic, Inc. | Trans-septal delivery system and methods of use |
WO2020185597A1 (en) * | 2019-03-08 | 2020-09-17 | Neovasc Tiara Inc. | Retrievable prosthesis delivery system |
WO2020191216A1 (en) | 2019-03-19 | 2020-09-24 | Shifamed Holdings, Llc | Prosthetic cardiac valve devices, systems, and methods |
WO2020206012A1 (en) | 2019-04-01 | 2020-10-08 | Neovasc Tiara Inc. | Controllably deployable prosthetic valve |
CN113924065A (en) | 2019-04-10 | 2022-01-11 | 内奥瓦斯克迪亚拉公司 | Prosthetic valve with natural blood flow |
WO2020236931A1 (en) | 2019-05-20 | 2020-11-26 | Neovasc Tiara Inc. | Introducer with hemostasis mechanism |
CA3143344A1 (en) | 2019-06-20 | 2020-12-24 | Neovasc Tiara Inc. | Low profile prosthetic mitral valve |
CN114585329A (en) | 2019-10-23 | 2022-06-03 | 爱德华兹生命科学公司 | System and method for tricuspid valve treatment |
CN115515534A (en) | 2020-03-24 | 2022-12-23 | 爱德华兹生命科学公司 | Delivery system configuration |
US11219541B2 (en) | 2020-05-21 | 2022-01-11 | Vesper Medical, Inc. | Wheel lock for thumbwheel actuated device |
CN115942919A (en) | 2020-05-28 | 2023-04-07 | 内弗罗尼公司 | Acute and chronic devices for modifying flow in a body lumen and methods of use thereof |
CN115697251A (en) * | 2020-06-15 | 2023-02-03 | 爱德华兹生命科学公司 | Nose cone for delivery systems |
EP4175590A1 (en) * | 2020-08-17 | 2023-05-10 | Edwards Lifesciences Corporation | Implantable frame and frame retaining mechanism |
CN116456937A (en) | 2020-08-31 | 2023-07-18 | 施菲姆德控股有限责任公司 | Prosthetic valve delivery system |
US20220079755A1 (en) * | 2020-09-17 | 2022-03-17 | Half Moon Medical, Inc. | Delivery systems for cardiac valve devices, and associated methods of operation |
CN116634951A (en) * | 2020-10-01 | 2023-08-22 | 欧普斯医疗疗法有限公司 | Transcatheter anchor support and method of implantation |
CA3210787A1 (en) | 2021-02-11 | 2022-08-18 | Edwards Lifesciences Corporation | Dual-frame replacement heart valves |
CN118201567A (en) | 2021-11-04 | 2024-06-14 | 爱德华兹生命科学公司 | Adaptive heart valve delivery system |
CN118541114A (en) | 2021-11-22 | 2024-08-23 | 爱德华兹生命科学公司 | Systems and methods for implant deployment |
WO2023154250A1 (en) | 2022-02-09 | 2023-08-17 | Edwards Lifesciences Corporation | Systems and methods for force reduction in delivery systems |
WO2023244767A1 (en) | 2022-06-16 | 2023-12-21 | Edwards Lifesciences Corporation | Prosthetic heart valve that reduces native annulus |
WO2024145164A1 (en) | 2022-12-29 | 2024-07-04 | Edwards Lifesciences Corporation | Delivery systems and tether assemblies for prosthetic valves |
Family Cites Families (412)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1264471A (en) | 1968-01-12 | 1972-02-23 | ||
US3671979A (en) | 1969-09-23 | 1972-06-27 | Univ Utah | Catheter mounted artificial heart valve for implanting in close proximity to a defective natural heart valve |
US3657744A (en) | 1970-05-08 | 1972-04-25 | Univ Minnesota | Method for fixing prosthetic implants in a living body |
GB1315844A (en) | 1970-05-12 | 1973-05-02 | Nat Res Dev | Prosthetic cardiac valve |
US3739402A (en) | 1970-10-15 | 1973-06-19 | Cutter Lab | Bicuspid fascia lata valve |
AR206762A1 (en) | 1976-01-01 | 1976-08-13 | Pisanu A | LOW PROFILE BIOPROTHESIS DERIVED FROM PORCINE HETEROLOGICAL AORTIC VALVE |
US4056854A (en) | 1976-09-28 | 1977-11-08 | The United States Of America As Represented By The Department Of Health, Education And Welfare | Aortic heart valve catheter |
GB1603634A (en) | 1977-05-05 | 1981-11-25 | Nat Res Dev | Prosthetic valves |
US4222126A (en) | 1978-12-14 | 1980-09-16 | The United States Of America As Represented By The Secretary Of The Department Of Health, Education & Welfare | Unitized three leaflet heart valve |
US4265694A (en) | 1978-12-14 | 1981-05-05 | The United States Of America As Represented By The Department Of Health, Education And Welfare | Method of making unitized three leaflet heart valve |
US4340977A (en) | 1980-09-19 | 1982-07-27 | Brownlee Richard T | Catenary mitral valve replacement |
US4339831A (en) | 1981-03-27 | 1982-07-20 | Medtronic, Inc. | Dynamic annulus heart valve and reconstruction ring |
US4470157A (en) | 1981-04-27 | 1984-09-11 | Love Jack W | Tricuspid prosthetic tissue heart valve |
US4865600A (en) | 1981-08-25 | 1989-09-12 | Baxter International Inc. | Mitral valve holder |
AT392733B (en) | 1981-09-16 | 1991-05-27 | Medinvent Sa | DEVICE FOR TREATING BLOOD VESSELS OR THE LIKE. |
EP0084395B1 (en) | 1982-01-20 | 1986-08-13 | Martin Morris Black | Artificial heart valves |
US4477930A (en) | 1982-09-28 | 1984-10-23 | Mitral Medical International, Inc. | Natural tissue heat valve and method of making same |
US4777951A (en) | 1986-09-19 | 1988-10-18 | Mansfield Scientific, Inc. | Procedure and catheter instrument for treating patients for aortic stenosis |
US4994077A (en) | 1989-04-21 | 1991-02-19 | Dobben Richard L | Artificial heart valve for implantation in a blood vessel |
DK124690D0 (en) | 1990-05-18 | 1990-05-18 | Henning Rud Andersen | FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION |
US5411552A (en) | 1990-05-18 | 1995-05-02 | Andersen; Henning R. | Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis |
GB9012716D0 (en) | 1990-06-07 | 1990-08-01 | Frater Robert W M | Mitral heart valve replacements |
US5163955A (en) | 1991-01-24 | 1992-11-17 | Autogenics | Rapid assembly, concentric mating stent, tissue heart valve with enhanced clamping and tissue alignment |
US5370685A (en) | 1991-07-16 | 1994-12-06 | Stanford Surgical Technologies, Inc. | Endovascular aortic valve replacement |
US5795325A (en) | 1991-07-16 | 1998-08-18 | Heartport, Inc. | Methods and apparatus for anchoring an occluding member |
US5332402A (en) | 1992-05-12 | 1994-07-26 | Teitelbaum George P | Percutaneously-inserted cardiac valve |
WO1994015549A1 (en) * | 1992-12-30 | 1994-07-21 | Schneider (Usa) Inc. | Apparatus for deploying body implantable stents |
US5522885A (en) | 1994-05-05 | 1996-06-04 | Autogenics | Assembly tooling for an autologous tissue heart valve |
US5554185A (en) | 1994-07-18 | 1996-09-10 | Block; Peter C. | Inflatable prosthetic cardiovascular valve for percutaneous transluminal implantation of same |
US6428489B1 (en) | 1995-12-07 | 2002-08-06 | Precision Vascular Systems, Inc. | Guidewire system |
WO1997032544A1 (en) | 1996-03-05 | 1997-09-12 | Divysio Solutions Ulc. | Expandable stent and method for delivery of same |
US5855601A (en) | 1996-06-21 | 1999-01-05 | The Trustees Of Columbia University In The City Of New York | Artificial heart valve and method and device for implanting the same |
DE19625202A1 (en) | 1996-06-24 | 1998-01-02 | Adiam Medizintechnik Gmbh & Co | Prosthetic mitral heart valve |
DE19624948A1 (en) | 1996-06-24 | 1998-01-02 | Adiam Medizintechnik Gmbh & Co | Prosthetic heart valve |
EP0850607A1 (en) | 1996-12-31 | 1998-07-01 | Cordis Corporation | Valve prosthesis for implantation in body channels |
US5957949A (en) | 1997-05-01 | 1999-09-28 | World Medical Manufacturing Corp. | Percutaneous placement valve stent |
US6746422B1 (en) | 2000-08-23 | 2004-06-08 | Norborn Medical, Inc. | Steerable support system with external ribs/slots that taper |
US20040254635A1 (en) | 1998-03-30 | 2004-12-16 | Shanley John F. | Expandable medical device for delivery of beneficial agent |
US6322585B1 (en) | 1998-11-16 | 2001-11-27 | Endotex Interventional Systems, Inc. | Coiled-sheet stent-graft with slidable exo-skeleton |
US6733523B2 (en) | 1998-12-11 | 2004-05-11 | Endologix, Inc. | Implantable vascular graft |
US6896690B1 (en) | 2000-01-27 | 2005-05-24 | Viacor, Inc. | Cardiac valve procedure methods and devices |
US6325825B1 (en) | 1999-04-08 | 2001-12-04 | Cordis Corporation | Stent with variable wall thickness |
DE60045429D1 (en) | 1999-04-09 | 2011-02-03 | Evalve Inc | Device for heart valve surgery |
EP1171059B1 (en) | 1999-04-23 | 2005-11-02 | St. Jude Medical ATG, Inc. | Artificial heart valve attachment apparatus |
US6712836B1 (en) | 1999-05-13 | 2004-03-30 | St. Jude Medical Atg, Inc. | Apparatus and methods for closing septal defects and occluding blood flow |
US6790229B1 (en) | 1999-05-25 | 2004-09-14 | Eric Berreklouw | Fixing device, in particular for fixing to vascular wall tissue |
WO2001006952A1 (en) * | 1999-07-16 | 2001-02-01 | Med Institute, Inc. | Stent adapted for tangle-free deployment |
US6312465B1 (en) | 1999-07-23 | 2001-11-06 | Sulzer Carbomedics Inc. | Heart valve prosthesis with a resiliently deformable retaining member |
US6440164B1 (en) | 1999-10-21 | 2002-08-27 | Scimed Life Systems, Inc. | Implantable prosthetic valve |
US6749560B1 (en) | 1999-10-26 | 2004-06-15 | Circon Corporation | Endoscope shaft with slotted tube |
US6458153B1 (en) | 1999-12-31 | 2002-10-01 | Abps Venture One, Ltd. | Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof |
PL211860B1 (en) | 2000-01-31 | 2012-07-31 | Cook Biotech Inc | Valve stent system |
DE10010074B4 (en) | 2000-02-28 | 2005-04-14 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Device for fastening and anchoring heart valve prostheses |
JP4383707B2 (en) | 2000-03-03 | 2009-12-16 | パトリシア・イー・ソープ | Spherical valve and stent for treating vascular reflux |
US6454799B1 (en) | 2000-04-06 | 2002-09-24 | Edwards Lifesciences Corporation | Minimally-invasive heart valves and methods of use |
US6729356B1 (en) | 2000-04-27 | 2004-05-04 | Endovascular Technologies, Inc. | Endovascular graft for providing a seal with vasculature |
US6610088B1 (en) | 2000-05-03 | 2003-08-26 | Shlomo Gabbay | Biologically covered heart valve prosthesis |
US6358277B1 (en) | 2000-06-21 | 2002-03-19 | The International Heart Institute Of Montana Foundation | Atrio-ventricular valvular device |
US6527800B1 (en) | 2000-06-26 | 2003-03-04 | Rex Medical, L.P. | Vascular device and method for valve leaflet apposition |
US6695878B2 (en) | 2000-06-26 | 2004-02-24 | Rex Medical, L.P. | Vascular device for valve leaflet apposition |
US6676698B2 (en) | 2000-06-26 | 2004-01-13 | Rex Medicol, L.P. | Vascular device with valve for approximating vessel wall |
US7510572B2 (en) | 2000-09-12 | 2009-03-31 | Shlomo Gabbay | Implantation system for delivery of a heart valve prosthesis |
DE10046550A1 (en) | 2000-09-19 | 2002-03-28 | Adiam Life Science Ag | Prosthetic mitral heart valve consists of support housing with base ring and two stanchions |
US6893459B1 (en) | 2000-09-20 | 2005-05-17 | Ample Medical, Inc. | Heart valve annulus device and method of using same |
US20060106456A9 (en) | 2002-10-01 | 2006-05-18 | Ample Medical, Inc. | Devices, systems, and methods for reshaping a heart valve annulus |
EP1208816B1 (en) | 2000-10-13 | 2005-12-14 | Medtronic AVE Inc. | Hydraulic stent delivery system |
US6482228B1 (en) | 2000-11-14 | 2002-11-19 | Troy R. Norred | Percutaneous aortic valve replacement |
US6699274B2 (en) * | 2001-01-22 | 2004-03-02 | Scimed Life Systems, Inc. | Stent delivery system and method of manufacturing same |
US6733525B2 (en) | 2001-03-23 | 2004-05-11 | Edwards Lifesciences Corporation | Rolled minimally-invasive heart valves and methods of use |
DE10121210B4 (en) | 2001-04-30 | 2005-11-17 | Universitätsklinikum Freiburg | Anchoring element for the intraluminal anchoring of a heart valve replacement and method for its production |
US6716207B2 (en) | 2001-05-22 | 2004-04-06 | Scimed Life Systems, Inc. | Torqueable and deflectable medical device shaft |
US7377938B2 (en) | 2001-07-19 | 2008-05-27 | The Cleveland Clinic Foundation | Prosthetic cardiac value and method for making same |
FR2828091B1 (en) | 2001-07-31 | 2003-11-21 | Seguin Jacques | ASSEMBLY ALLOWING THE PLACEMENT OF A PROTHETIC VALVE IN A BODY DUCT |
FR2828263B1 (en) | 2001-08-03 | 2007-05-11 | Philipp Bonhoeffer | DEVICE FOR IMPLANTATION OF AN IMPLANT AND METHOD FOR IMPLANTATION OF THE DEVICE |
US6893460B2 (en) | 2001-10-11 | 2005-05-17 | Percutaneous Valve Technologies Inc. | Implantable prosthetic valve |
GB0125925D0 (en) | 2001-10-29 | 2001-12-19 | Univ Glasgow | Mitral valve prosthesis |
US20030176914A1 (en) | 2003-01-21 | 2003-09-18 | Rabkin Dmitry J. | Multi-segment modular stent and methods for manufacturing stents |
US20030105517A1 (en) | 2001-12-05 | 2003-06-05 | White Geoffrey Hamilton | Non-foreshortening stent |
US7014653B2 (en) | 2001-12-20 | 2006-03-21 | Cleveland Clinic Foundation | Furcated endovascular prosthesis |
US7201771B2 (en) | 2001-12-27 | 2007-04-10 | Arbor Surgical Technologies, Inc. | Bioprosthetic heart valve |
US20030130729A1 (en) | 2002-01-04 | 2003-07-10 | David Paniagua | Percutaneously implantable replacement heart valve device and method of making same |
US20030199971A1 (en) | 2002-04-23 | 2003-10-23 | Numed, Inc. | Biological replacement valve assembly |
WO2003092554A1 (en) | 2002-05-03 | 2003-11-13 | The General Hospital Corporation | Involuted endovascular valve and method of construction |
US20030220683A1 (en) | 2002-05-22 | 2003-11-27 | Zarouhi Minasian | Endoluminal device having barb assembly and method of using same |
US7264632B2 (en) * | 2002-06-07 | 2007-09-04 | Medtronic Vascular, Inc. | Controlled deployment delivery system |
US8518096B2 (en) | 2002-09-03 | 2013-08-27 | Lifeshield Sciences Llc | Elephant trunk thoracic endograft and delivery system |
US6875231B2 (en) | 2002-09-11 | 2005-04-05 | 3F Therapeutics, Inc. | Percutaneously deliverable heart valve |
CO5500017A1 (en) | 2002-09-23 | 2005-03-31 | 3F Therapeutics Inc | MITRAL PROTESTIC VALVE |
US7485143B2 (en) | 2002-11-15 | 2009-02-03 | Abbott Cardiovascular Systems Inc. | Apparatuses and methods for heart valve repair |
GB2398245B (en) | 2003-02-06 | 2007-03-28 | Great Ormond Street Hospital F | Valve prosthesis |
JP4624984B2 (en) | 2003-03-12 | 2011-02-02 | クック インコーポレイテッド | Artificial valve that allows backflow |
US7524332B2 (en) | 2003-03-17 | 2009-04-28 | Cook Incorporated | Vascular valve with removable support component |
US7175656B2 (en) | 2003-04-18 | 2007-02-13 | Alexander Khairkhahan | Percutaneous transcatheter heart valve replacement |
EP1472996B1 (en) | 2003-04-30 | 2009-09-30 | Medtronic Vascular, Inc. | Percutaneously delivered temporary valve |
US7201772B2 (en) | 2003-07-08 | 2007-04-10 | Ventor Technologies, Ltd. | Fluid flow prosthetic device |
CA2531528C (en) | 2003-07-08 | 2013-09-03 | Ventor Technologies Ltd. | Implantable prosthetic devices particularly for transarterial delivery in the treatment of aortic stenosis, and methods of implanting such devices |
JP4447011B2 (en) | 2003-07-21 | 2010-04-07 | ザ・トラスティーズ・オブ・ザ・ユニバーシティ・オブ・ペンシルバニア | Percutaneous heart valve |
US7153324B2 (en) | 2003-07-31 | 2006-12-26 | Cook Incorporated | Prosthetic valve devices and methods of making such devices |
US7763063B2 (en) * | 2003-09-03 | 2010-07-27 | Bolton Medical, Inc. | Self-aligning stent graft delivery system, kit, and method |
US20050075725A1 (en) | 2003-10-02 | 2005-04-07 | Rowe Stanton J. | Implantable prosthetic valve with non-laminar flow |
US20050075719A1 (en) | 2003-10-06 | 2005-04-07 | Bjarne Bergheim | Minimally invasive valve replacement system |
US7553324B2 (en) | 2003-10-14 | 2009-06-30 | Xtent, Inc. | Fixed stent delivery devices and methods |
US7192440B2 (en) | 2003-10-15 | 2007-03-20 | Xtent, Inc. | Implantable stent delivery devices and methods |
US7635382B2 (en) | 2003-10-22 | 2009-12-22 | Medtronic Vascular, Inc. | Delivery system for long self-expanding stents |
US7740656B2 (en) | 2003-11-17 | 2010-06-22 | Medtronic, Inc. | Implantable heart valve prosthetic devices having intrinsically conductive polymers |
US7186265B2 (en) | 2003-12-10 | 2007-03-06 | Medtronic, Inc. | Prosthetic cardiac valves and systems and methods for implanting thereof |
US7261732B2 (en) | 2003-12-22 | 2007-08-28 | Henri Justino | Stent mounted valve |
US8343213B2 (en) | 2003-12-23 | 2013-01-01 | Sadra Medical, Inc. | Leaflet engagement elements and methods for use thereof |
US7959666B2 (en) | 2003-12-23 | 2011-06-14 | Sadra Medical, Inc. | Methods and apparatus for endovascularly replacing a heart valve |
US7381219B2 (en) * | 2003-12-23 | 2008-06-03 | Sadra Medical, Inc. | Low profile heart valve and delivery system |
US8246675B2 (en) | 2003-12-23 | 2012-08-21 | Laboratoires Perouse | Kit for implanting in a duct |
US7871435B2 (en) | 2004-01-23 | 2011-01-18 | Edwards Lifesciences Corporation | Anatomically approximate prosthetic mitral heart valve |
CA2556077C (en) | 2004-02-05 | 2012-05-01 | Children's Medical Center Corporation | Transcatheter delivery of a replacement heart valve |
US7311730B2 (en) | 2004-02-13 | 2007-12-25 | Shlomo Gabbay | Support apparatus and heart valve prosthesis for sutureless implantation |
ITTO20040135A1 (en) | 2004-03-03 | 2004-06-03 | Sorin Biomedica Cardio Spa | CARDIAC VALVE PROSTHESIS |
WO2005087140A1 (en) | 2004-03-11 | 2005-09-22 | Percutaneous Cardiovascular Solutions Pty Limited | Percutaneous heart valve prosthesis |
US7435257B2 (en) | 2004-05-05 | 2008-10-14 | Direct Flow Medical, Inc. | Methods of cardiac valve replacement using nonstented prosthetic valve |
US20060095115A1 (en) | 2004-05-10 | 2006-05-04 | Youssef Bladillah | Stent and method of manufacturing same |
US20050288766A1 (en) * | 2004-06-28 | 2005-12-29 | Xtent, Inc. | Devices and methods for controlling expandable prostheses during deployment |
US7462191B2 (en) | 2004-06-30 | 2008-12-09 | Edwards Lifesciences Pvt, Inc. | Device and method for assisting in the implantation of a prosthetic valve |
US7276078B2 (en) | 2004-06-30 | 2007-10-02 | Edwards Lifesciences Pvt | Paravalvular leak detection, sealing, and prevention |
DE602005005567T2 (en) * | 2004-07-28 | 2009-04-30 | Cordis Corp., Miami Lakes | Insertion device with a low deployment force |
US20060052867A1 (en) | 2004-09-07 | 2006-03-09 | Medtronic, Inc | Replacement prosthetic heart valve, system and method of implant |
US8182530B2 (en) | 2004-10-02 | 2012-05-22 | Christoph Hans Huber | Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support |
US7402151B2 (en) | 2004-12-17 | 2008-07-22 | Biocardia, Inc. | Steerable guide catheters and methods for their use |
DE102005003632A1 (en) | 2005-01-20 | 2006-08-17 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Catheter for the transvascular implantation of heart valve prostheses |
ITTO20050074A1 (en) | 2005-02-10 | 2006-08-11 | Sorin Biomedica Cardio Srl | CARDIAC VALVE PROSTHESIS |
US7918880B2 (en) * | 2005-02-16 | 2011-04-05 | Boston Scientific Scimed, Inc. | Self-expanding stent and delivery system |
US8685086B2 (en) | 2006-02-18 | 2014-04-01 | The Cleveland Clinic Foundation | Apparatus and method for replacing a diseased cardiac valve |
EP1850796B1 (en) | 2005-02-18 | 2015-12-09 | The Cleveland Clinic Foundation | Apparatus for replacing a cardiac valve |
US7632296B2 (en) * | 2005-03-03 | 2009-12-15 | Boston Scientific Scimed, Inc. | Rolling membrane with hydraulic recapture means for self expanding stent |
US7722666B2 (en) | 2005-04-15 | 2010-05-25 | Boston Scientific Scimed, Inc. | Valve apparatus, system and method |
EP1893131A1 (en) | 2005-04-20 | 2008-03-05 | The Cleveland Clinic Foundation | Apparatus and method for replacing a cardiac valve |
SE531468C2 (en) | 2005-04-21 | 2009-04-14 | Edwards Lifesciences Ag | An apparatus for controlling blood flow |
US7914569B2 (en) | 2005-05-13 | 2011-03-29 | Medtronics Corevalve Llc | Heart valve prosthesis and methods of manufacture and use |
EP1883375B1 (en) | 2005-05-24 | 2016-12-07 | Edwards Lifesciences Corporation | Rapid deployment prosthetic heart valve |
US7780723B2 (en) | 2005-06-13 | 2010-08-24 | Edwards Lifesciences Corporation | Heart valve delivery system |
US8790396B2 (en) | 2005-07-27 | 2014-07-29 | Medtronic 3F Therapeutics, Inc. | Methods and systems for cardiac valve delivery |
US7455689B2 (en) | 2005-08-25 | 2008-11-25 | Edwards Lifesciences Corporation | Four-leaflet stented mitral heart valve |
WO2007025028A1 (en) | 2005-08-25 | 2007-03-01 | The Cleveland Clinic Foundation | Percutaneous atrioventricular valve and method of use |
US20080188928A1 (en) * | 2005-09-16 | 2008-08-07 | Amr Salahieh | Medical device delivery sheath |
US20070129794A1 (en) | 2005-10-05 | 2007-06-07 | Fidel Realyvasquez | Method and apparatus for prosthesis attachment using discrete elements |
US7563277B2 (en) | 2005-10-24 | 2009-07-21 | Cook Incorporated | Removable covering for implantable frame projections |
DE102005052628B4 (en) | 2005-11-04 | 2014-06-05 | Jenavalve Technology Inc. | Self-expanding, flexible wire mesh with integrated valvular prosthesis for the transvascular heart valve replacement and a system with such a device and a delivery catheter |
WO2007054014A1 (en) * | 2005-11-09 | 2007-05-18 | Ning Wen | Delivery device for delivering a self-expanding stent |
CA2629534C (en) | 2005-11-10 | 2015-02-24 | Arshad Quadri | Balloon-expandable, self-expanding, vascular prosthesis connecting stent |
US20070213813A1 (en) | 2005-12-22 | 2007-09-13 | Symetis Sa | Stent-valves for valve replacement and associated methods and systems for surgery |
EP1991162A2 (en) | 2005-12-30 | 2008-11-19 | C.R.Bard, Inc. | Embolus blood clot filter with bio-resorbable coated filter members |
WO2008029296A2 (en) | 2006-02-16 | 2008-03-13 | Endocor Pte Ltd. | Minimally invasive heart valve replacement |
US8518098B2 (en) * | 2006-02-21 | 2013-08-27 | Cook Medical Technologies Llc | Split sheath deployment system |
US7749266B2 (en) * | 2006-02-27 | 2010-07-06 | Aortx, Inc. | Methods and devices for delivery of prosthetic heart valves and other prosthetics |
US8591516B2 (en) | 2006-02-27 | 2013-11-26 | Biomet Manufacturing, Llc | Patient-specific orthopedic instruments |
US8219229B2 (en) | 2006-03-02 | 2012-07-10 | Edwards Lifesciences Corporation | Virtual heart valve |
US8075615B2 (en) | 2006-03-28 | 2011-12-13 | Medtronic, Inc. | Prosthetic cardiac valve formed from pericardium material and methods of making same |
US8652201B2 (en) | 2006-04-26 | 2014-02-18 | The Cleveland Clinic Foundation | Apparatus and method for treating cardiovascular diseases |
WO2007127433A2 (en) | 2006-04-28 | 2007-11-08 | Medtronic, Inc. | Method and apparatus for cardiac valve replacement |
EP2012712B1 (en) | 2006-04-29 | 2016-02-10 | Medtronic, Inc. | Guide shields for multiple component prosthetic heart valve assemblies |
JP2009536074A (en) | 2006-05-05 | 2009-10-08 | チルドレンズ・メディカル・センター・コーポレイション | Transcatheter heart valve |
EP2019654A1 (en) | 2006-05-23 | 2009-02-04 | Allvascular Pty Ltd | Endovenous valve transfer stent |
US20090188964A1 (en) | 2006-06-01 | 2009-07-30 | Boris Orlov | Membrane augmentation, such as of for treatment of cardiac valves, and fastening devices for membrane augmentation |
US20080021546A1 (en) | 2006-07-18 | 2008-01-24 | Tim Patz | System for deploying balloon-expandable heart valves |
US20090306768A1 (en) | 2006-07-28 | 2009-12-10 | Cardiaq Valve Technologies, Inc. | Percutaneous valve prosthesis and system and method for implanting same |
US8348995B2 (en) * | 2006-09-19 | 2013-01-08 | Medtronic Ventor Technologies, Ltd. | Axial-force fixation member for valve |
EP2068764A4 (en) | 2006-09-28 | 2016-07-27 | Heart Leaflet Technologies Inc | Delivery tool for percutaneous delivery of a prosthesis |
FR2906454B1 (en) | 2006-09-28 | 2009-04-10 | Perouse Soc Par Actions Simpli | IMPLANT INTENDED TO BE PLACED IN A BLOOD CIRCULATION CONDUIT. |
US7534261B2 (en) | 2006-10-02 | 2009-05-19 | Edwards Lifesciences Corporation | Sutureless heart valve attachment |
EP2083901B1 (en) | 2006-10-16 | 2017-12-27 | Medtronic Ventor Technologies Ltd. | Transapical delivery system with ventriculo-arterial overflow bypass |
DE102006052564B3 (en) | 2006-11-06 | 2007-12-13 | Georg Lutter | Mitral valve stent for surgical implantation and fixation of heart valve prosthesis to heart, has stent clips arranged distally, where one of stent clips forms section that is externally rolled in unfolded condition of stent |
US10624621B2 (en) | 2006-11-07 | 2020-04-21 | Corvia Medical, Inc. | Devices and methods for the treatment of heart failure |
JP5109195B2 (en) * | 2006-11-30 | 2012-12-26 | クック・メディカル・テクノロジーズ・リミテッド・ライアビリティ・カンパニー | Implant release mechanism |
US9084621B2 (en) | 2006-12-01 | 2015-07-21 | Boston Scientific Scimed, Inc. | Guide tube systems and methods |
US8747459B2 (en) | 2006-12-06 | 2014-06-10 | Medtronic Corevalve Llc | System and method for transapical delivery of an annulus anchored self-expanding valve |
FR2909857B1 (en) | 2006-12-14 | 2009-03-06 | Perouse Soc Par Actions Simpli | Endovalve. |
US8070799B2 (en) | 2006-12-19 | 2011-12-06 | Sorin Biomedica Cardio S.R.L. | Instrument and method for in situ deployment of cardiac valve prostheses |
EP2094194B1 (en) | 2006-12-19 | 2015-09-02 | St. Jude Medical, Inc. | Prosthetic heart valve including stent structure and tissue leaflets, and related methods |
EP2238947B2 (en) | 2006-12-19 | 2016-04-13 | Sorin Group Italia S.r.l. | Instrument for in situ deployment of cardiac valve prostheses |
US8236045B2 (en) | 2006-12-22 | 2012-08-07 | Edwards Lifesciences Corporation | Implantable prosthetic valve assembly and method of making the same |
EP2111190B1 (en) | 2007-01-19 | 2013-10-09 | Medtronic, Inc. | Stented heart valve devices for atrioventricular valve replacement |
WO2008089365A2 (en) | 2007-01-19 | 2008-07-24 | The Cleveland Clinic Foundation | Method for implanting a cardiovascular valve |
EP2109417B1 (en) | 2007-02-05 | 2013-11-06 | Boston Scientific Limited | Percutaneous valve and delivery system |
AU2008216670B2 (en) | 2007-02-15 | 2013-10-17 | Medtronic, Inc. | Multi-layered stents and methods of implanting |
CA2677648C (en) | 2007-02-16 | 2015-10-27 | Medtronic, Inc. | Replacement prosthetic heart valves and methods of implantation |
US8070802B2 (en) | 2007-02-23 | 2011-12-06 | The Trustees Of The University Of Pennsylvania | Mitral valve system |
US20080208328A1 (en) | 2007-02-23 | 2008-08-28 | Endovalve, Inc. | Systems and Methods For Placement of Valve Prosthesis System |
EP1980220A1 (en) | 2007-04-13 | 2008-10-15 | JenaValve Technology GmbH | Medical device for treating a heart valve insufficiency or stenosis |
CA2682564C (en) | 2007-04-13 | 2013-10-08 | Jenavalve Technology Inc. | Medical device for treating a heart valve insufficiency or stenosis |
US20080262590A1 (en) * | 2007-04-19 | 2008-10-23 | Medtronic Vascular, Inc. | Delivery System for Stent-Graft |
CA2683193A1 (en) | 2007-05-15 | 2008-11-20 | Jenavalve Technology Inc. | Handle for manipulating a catheter tip, catheter system and medical insertion system for inserting a self-expandable heart valve stent |
EP2698129B1 (en) | 2007-06-04 | 2022-11-09 | St. Jude Medical, LLC | Prosthetic heart valve |
ES2475144T3 (en) | 2007-06-26 | 2014-07-10 | St. Jude Medical, Inc. | Apparatus for implanting prosthetic heart valves folding / expandable |
US8006535B2 (en) | 2007-07-12 | 2011-08-30 | Sorin Biomedica Cardio S.R.L. | Expandable prosthetic valve crimping device |
US8828079B2 (en) | 2007-07-26 | 2014-09-09 | Boston Scientific Scimed, Inc. | Circulatory valve, system and method |
US8747458B2 (en) * | 2007-08-20 | 2014-06-10 | Medtronic Ventor Technologies Ltd. | Stent loading tool and method for use thereof |
CA2697364C (en) | 2007-08-23 | 2017-10-17 | Direct Flow Medical, Inc. | Translumenally implantable heart valve with formed in place support |
EP2192875B1 (en) | 2007-08-24 | 2012-05-02 | St. Jude Medical, Inc. | Prosthetic aortic heart valves |
US8114154B2 (en) * | 2007-09-07 | 2012-02-14 | Sorin Biomedica Cardio S.R.L. | Fluid-filled delivery system for in situ deployment of cardiac valve prostheses |
US8220121B2 (en) | 2007-09-14 | 2012-07-17 | Cook Medical Technologies Llc | Device for loading a self-expandable prosthesis into a sheath |
WO2009045331A1 (en) | 2007-09-28 | 2009-04-09 | St. Jude Medical, Inc. | Two-stage collapsible/expandable prosthetic heart valves and anchoring systems |
US8784481B2 (en) | 2007-09-28 | 2014-07-22 | St. Jude Medical, Inc. | Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features |
US20090138079A1 (en) * | 2007-10-10 | 2009-05-28 | Vector Technologies Ltd. | Prosthetic heart valve for transfemoral delivery |
WO2009052188A1 (en) | 2007-10-15 | 2009-04-23 | Edwards Lifesciences Corporation | Transcatheter heart valve with micro-anchors |
JP5603776B2 (en) | 2007-10-25 | 2014-10-08 | サイメティス エスアー | Stent, valved stent and method, and delivery system thereof |
US8597349B2 (en) | 2007-11-05 | 2013-12-03 | St. Jude Medical, Inc. | Collapsible/expandable prosthetic heart valves with non-expanding stent posts and retrieval features |
US20090171456A1 (en) | 2007-12-28 | 2009-07-02 | Kveen Graig L | Percutaneous heart valve, system, and method |
US8926688B2 (en) | 2008-01-11 | 2015-01-06 | W. L. Gore & Assoc. Inc. | Stent having adjacent elements connected by flexible webs |
EP2240121B1 (en) | 2008-01-16 | 2019-05-22 | St. Jude Medical, Inc. | Delivery and retrieval systems for collapsible/expandable prosthetic heart valves |
CA2714062A1 (en) | 2008-01-24 | 2009-07-30 | Medtronic, Inc. | Stents for prosthetic heart valves |
US8628566B2 (en) | 2008-01-24 | 2014-01-14 | Medtronic, Inc. | Stents for prosthetic heart valves |
US8157852B2 (en) * | 2008-01-24 | 2012-04-17 | Medtronic, Inc. | Delivery systems and methods of implantation for prosthetic heart valves |
US9149358B2 (en) * | 2008-01-24 | 2015-10-06 | Medtronic, Inc. | Delivery systems for prosthetic heart valves |
WO2009094500A1 (en) | 2008-01-24 | 2009-07-30 | Medtronic Vascular Inc. | Infundibular reducer device delivery system and related methods |
US8163007B2 (en) * | 2008-02-08 | 2012-04-24 | Cook Medical Technologies Llc | Stent designs for use with one or more trigger wires |
US8465540B2 (en) | 2008-02-26 | 2013-06-18 | Jenavalve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis |
WO2009108355A1 (en) | 2008-02-28 | 2009-09-03 | Medtronic, Inc. | Prosthetic heart valve systems |
EP2594230B1 (en) | 2008-02-29 | 2021-04-28 | Edwards Lifesciences Corporation | Expandable member for deploying a prosthetic device |
DE102008012113A1 (en) | 2008-03-02 | 2009-09-03 | Transcatheter Technologies Gmbh | Implant e.g. heart-valve-carrying stent, for e.g. arresting blood vessel, has fiber by which section of implant is reducible according to increasing of implant at extended diameter by unfolding or expansion of diameter with expansion unit |
US8313525B2 (en) | 2008-03-18 | 2012-11-20 | Medtronic Ventor Technologies, Ltd. | Valve suturing and implantation procedures |
US7806919B2 (en) | 2008-04-01 | 2010-10-05 | Medtronic Vascular, Inc. | Double-walled stent system |
US8312825B2 (en) | 2008-04-23 | 2012-11-20 | Medtronic, Inc. | Methods and apparatuses for assembly of a pericardial prosthetic heart valve |
CA2722366C (en) | 2008-04-23 | 2016-08-30 | Medtronic, Inc. | Stented heart valve devices |
US8323336B2 (en) | 2008-04-23 | 2012-12-04 | Medtronic, Inc. | Prosthetic heart valve devices and methods of valve replacement |
US8136218B2 (en) | 2008-04-29 | 2012-03-20 | Medtronic, Inc. | Prosthetic heart valve, prosthetic heart valve assembly and method for making same |
US20090276040A1 (en) | 2008-05-01 | 2009-11-05 | Edwards Lifesciences Corporation | Device and method for replacing mitral valve |
US20090276027A1 (en) | 2008-05-01 | 2009-11-05 | Medtronic Vasscular, Inc. | Stent Graft Delivery System and Method of Use |
ATE554731T1 (en) | 2008-05-16 | 2012-05-15 | Sorin Biomedica Cardio Srl | ATRAAUMATIC PROSTHETIC HEART VALVE PROSTHESIS |
ES2645920T3 (en) | 2008-06-06 | 2017-12-11 | Edwards Lifesciences Corporation | Low profile transcatheter heart valve |
US20110160836A1 (en) | 2008-06-20 | 2011-06-30 | Vysera Biomedical Limited | Valve device |
US8323335B2 (en) | 2008-06-20 | 2012-12-04 | Edwards Lifesciences Corporation | Retaining mechanisms for prosthetic valves and methods for using |
CN104688385B (en) | 2008-06-30 | 2018-01-26 | 波顿医疗公司 | System and method for abdominal aneurvsm |
EP2299938B1 (en) | 2008-07-15 | 2021-03-03 | St. Jude Medical, LLC | Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications |
WO2010008549A1 (en) | 2008-07-15 | 2010-01-21 | St. Jude Medical, Inc. | Axially anchoring collapsible and re-expandable prosthetic heart valves for various disease states |
US8652202B2 (en) * | 2008-08-22 | 2014-02-18 | Edwards Lifesciences Corporation | Prosthetic heart valve and delivery apparatus |
US8721714B2 (en) | 2008-09-17 | 2014-05-13 | Medtronic Corevalve Llc | Delivery system for deployment of medical devices |
EP2367505B1 (en) | 2008-09-29 | 2020-08-12 | Edwards Lifesciences CardiAQ LLC | Heart valve |
EP2341871B1 (en) | 2008-10-01 | 2017-03-22 | Edwards Lifesciences CardiAQ LLC | Delivery system for vascular implant |
US8690936B2 (en) | 2008-10-10 | 2014-04-08 | Edwards Lifesciences Corporation | Expandable sheath for introducing an endovascular delivery device into a body |
US8790387B2 (en) | 2008-10-10 | 2014-07-29 | Edwards Lifesciences Corporation | Expandable sheath for introducing an endovascular delivery device into a body |
ES2409693T3 (en) * | 2008-10-10 | 2013-06-27 | Sadra Medical, Inc. | Medical devices and supply systems to supply medical devices |
US8137398B2 (en) | 2008-10-13 | 2012-03-20 | Medtronic Ventor Technologies Ltd | Prosthetic valve having tapered tip when compressed for delivery |
US8986361B2 (en) * | 2008-10-17 | 2015-03-24 | Medtronic Corevalve, Inc. | Delivery system for deployment of medical devices |
US20100114305A1 (en) | 2008-10-30 | 2010-05-06 | Wei-Chang Kang | Implantable Valvular Prosthesis |
EP4321134A3 (en) | 2008-11-21 | 2024-05-01 | Percutaneous Cardiovascular Solutions Pty Limited | Heart valve prosthesis and method |
US8834563B2 (en) | 2008-12-23 | 2014-09-16 | Sorin Group Italia S.R.L. | Expandable prosthetic valve having anchoring appendages |
US8500733B2 (en) | 2009-02-20 | 2013-08-06 | Boston Scientific Scimed, Inc. | Asymmetric dual directional steerable catheter sheath |
US20100217382A1 (en) | 2009-02-25 | 2010-08-26 | Edwards Lifesciences | Mitral valve replacement with atrial anchoring |
EP2408399B1 (en) | 2009-03-17 | 2023-11-01 | Mitrassist Medical Ltd. | Heart valve prosthesis with collapsible valve |
CN101919751A (en) | 2009-03-30 | 2010-12-22 | 卡迪万蒂奇医药公司 | Transmit the method and apparatus that does not have the stitching artificial valve through the apex of the heart |
US9980818B2 (en) | 2009-03-31 | 2018-05-29 | Edwards Lifesciences Corporation | Prosthetic heart valve system with positioning markers |
US20100256723A1 (en) | 2009-04-03 | 2010-10-07 | Medtronic Vascular, Inc. | Prosthetic Valve With Device for Restricting Expansion |
AU2010236288A1 (en) * | 2009-04-15 | 2011-10-20 | Cardiaq Valve Technologies, Inc. | Vascular implant and delivery system |
US9011524B2 (en) | 2009-04-24 | 2015-04-21 | Medtronic, Inc. | Prosthetic heart valves and methods of attaching same |
US8353953B2 (en) | 2009-05-13 | 2013-01-15 | Sorin Biomedica Cardio, S.R.L. | Device for the in situ delivery of heart valves |
US8075611B2 (en) | 2009-06-02 | 2011-12-13 | Medtronic, Inc. | Stented prosthetic heart valves |
CN102573703B (en) | 2009-08-27 | 2014-12-10 | 麦德托尼克公司 | Transcatheter valve delivery systems and methods |
CN102762170B (en) | 2009-08-28 | 2016-02-10 | 美敦力3F医疗有限公司 | Shrinkage device |
US9757107B2 (en) | 2009-09-04 | 2017-09-12 | Corvia Medical, Inc. | Methods and devices for intra-atrial shunts having adjustable sizes |
EP2480167B1 (en) | 2009-09-21 | 2017-08-16 | Medtronic Inc. | Stented transcatheter prosthetic heart valve delivery system |
US9730790B2 (en) | 2009-09-29 | 2017-08-15 | Edwards Lifesciences Cardiaq Llc | Replacement valve and method |
EP2496181B1 (en) | 2009-11-02 | 2017-08-30 | Symetis SA | Aortic bioprosthesis and systems for delivery thereof |
JP2013509961A (en) | 2009-11-05 | 2013-03-21 | ザ・トラスティーズ・オブ・ザ・ユニバーシティ・オブ・ペンシルバニア | Artificial valve |
US8449599B2 (en) * | 2009-12-04 | 2013-05-28 | Edwards Lifesciences Corporation | Prosthetic valve for replacing mitral valve |
US8870950B2 (en) | 2009-12-08 | 2014-10-28 | Mitral Tech Ltd. | Rotation-based anchoring of an implant |
CA2784499C (en) | 2009-12-15 | 2017-04-18 | Edwards Lifesciences Corporation | Expansion device for treatment of vascular passageways |
US8475523B2 (en) | 2010-02-17 | 2013-07-02 | Medtronic, Inc. | Distal tip assembly for a heart valve delivery catheter |
US8926693B2 (en) | 2010-02-17 | 2015-01-06 | Medtronic, Inc. | Heart valve delivery catheter with safety button |
US8518106B2 (en) | 2010-02-17 | 2013-08-27 | Medtronic, Inc. | Catheter assembly with valve crimping accessories |
US10433956B2 (en) | 2010-02-24 | 2019-10-08 | Medtronic Ventor Technologies Ltd. | Mitral prosthesis and methods for implantation |
US8795354B2 (en) | 2010-03-05 | 2014-08-05 | Edwards Lifesciences Corporation | Low-profile heart valve and delivery system |
US8679404B2 (en) | 2010-03-05 | 2014-03-25 | Edwards Lifesciences Corporation | Dry prosthetic heart valve packaging system |
US20110224785A1 (en) | 2010-03-10 | 2011-09-15 | Hacohen Gil | Prosthetic mitral valve with tissue anchors |
JP2013523282A (en) | 2010-03-31 | 2013-06-17 | ボストン サイエンティフィック サイムド,インコーポレイテッド | Guide wire with bending stiffness profile |
US8491650B2 (en) | 2010-04-08 | 2013-07-23 | Medtronic, Inc. | Transcatheter prosthetic heart valve delivery system and method with stretchable stability tube |
US8998980B2 (en) | 2010-04-09 | 2015-04-07 | Medtronic, Inc. | Transcatheter prosthetic heart valve delivery system with recapturing feature and method |
US8512400B2 (en) | 2010-04-09 | 2013-08-20 | Medtronic, Inc. | Transcatheter heart valve delivery system with reduced area moment of inertia |
US8512401B2 (en) | 2010-04-12 | 2013-08-20 | Medtronic, Inc. | Transcatheter prosthetic heart valve delivery system with funnel recapturing feature and method |
US8579963B2 (en) | 2010-04-13 | 2013-11-12 | Medtronic, Inc. | Transcatheter prosthetic heart valve delivery device with stability tube and method |
US8623075B2 (en) * | 2010-04-21 | 2014-01-07 | Medtronic, Inc. | Transcatheter prosthetic heart valve delivery system and method with controlled expansion of prosthetic heart valve |
US8740976B2 (en) | 2010-04-21 | 2014-06-03 | Medtronic, Inc. | Transcatheter prosthetic heart valve delivery system with flush report |
US8623079B2 (en) | 2010-04-23 | 2014-01-07 | Medtronic, Inc. | Stents for prosthetic heart valves |
AU2011248657B2 (en) | 2010-04-27 | 2014-12-04 | Medtronic Inc. | Transcatheter prosthetic heart valve delivery device with passive trigger release |
JP5803010B2 (en) | 2010-04-27 | 2015-11-04 | メドトロニック,インコーポレイテッド | Transcatheter prosthetic heart valve delivery device with deflection release characteristics |
US8579964B2 (en) | 2010-05-05 | 2013-11-12 | Neovasc Inc. | Transcatheter mitral valve prosthesis |
US9387077B2 (en) | 2010-05-27 | 2016-07-12 | Medtronic Vascular Galway | Catheter assembly with prosthesis crimping and prosthesis retaining accessories |
US9301864B2 (en) * | 2010-06-08 | 2016-04-05 | Veniti, Inc. | Bi-directional stent delivery system |
EP4018966A1 (en) | 2010-06-21 | 2022-06-29 | Edwards Lifesciences CardiAQ LLC | Replacement heart valve |
US9132009B2 (en) | 2010-07-21 | 2015-09-15 | Mitraltech Ltd. | Guide wires with commissural anchors to advance a prosthetic valve |
WO2012023978A2 (en) | 2010-08-17 | 2012-02-23 | St. Jude Medical, Inc. | Delivery system for collapsible heart valve |
US10321998B2 (en) | 2010-09-23 | 2019-06-18 | Transmural Systems Llc | Methods and systems for delivering prostheses using rail techniques |
US20120078360A1 (en) | 2010-09-23 | 2012-03-29 | Nasser Rafiee | Prosthetic devices, systems and methods for replacing heart valves |
EP3001978B2 (en) | 2010-09-23 | 2023-03-01 | Edwards Lifesciences CardiAQ LLC | Replacement heart valve delivery device |
US8845720B2 (en) | 2010-09-27 | 2014-09-30 | Edwards Lifesciences Corporation | Prosthetic heart valve frame with flexible commissures |
CN111249037B (en) | 2010-10-05 | 2021-08-27 | 爱德华兹生命科学公司 | Artificial heart valve |
WO2012054776A1 (en) | 2010-10-21 | 2012-04-26 | Medtronic Inc | Mitral bioprosthesis with low ventricular profile |
US8562663B2 (en) | 2010-10-26 | 2013-10-22 | Medtronic Ventor Technologies Ltd. | Devices and methods for loading a prosthesis onto a delivery system |
US9072872B2 (en) | 2010-10-29 | 2015-07-07 | Medtronic, Inc. | Telescoping catheter delivery system for left heart endocardial device placement |
GB2485338B (en) | 2010-11-02 | 2012-12-05 | Cook Medical Technologies Llc | Introducer assembly and dilator tip therefor |
CA2827556A1 (en) | 2011-01-11 | 2012-07-19 | Hans Reiner Figulla | Prosthetic valve for replacing an atrioventricular heart valve |
WO2013037505A1 (en) | 2011-01-11 | 2013-03-21 | Symetis Sa | Method and apparatus useful for transcatheter aortic valve implantation |
EP2667822A4 (en) | 2011-01-25 | 2018-03-28 | Emory University | Systems, devices and methods for surgical and percutaneous replacement of a valve |
EP2688516B1 (en) | 2011-03-21 | 2022-08-17 | Cephea Valve Technologies, Inc. | Disk-based valve apparatus |
US9055937B2 (en) | 2011-04-01 | 2015-06-16 | Edwards Lifesciences Corporation | Apical puncture access and closure system |
US9308087B2 (en) | 2011-04-28 | 2016-04-12 | Neovasc Tiara Inc. | Sequentially deployed transcatheter mitral valve prosthesis |
US9554897B2 (en) | 2011-04-28 | 2017-01-31 | Neovasc Tiara Inc. | Methods and apparatus for engaging a valve prosthesis with tissue |
US8945209B2 (en) | 2011-05-20 | 2015-02-03 | Edwards Lifesciences Corporation | Encapsulated heart valve |
US9289282B2 (en) | 2011-05-31 | 2016-03-22 | Edwards Lifesciences Corporation | System and method for treating valve insufficiency or vessel dilatation |
EP2724690B1 (en) * | 2011-06-01 | 2016-07-27 | Nvt Ag | Cardiac valve prosthesis deployment system |
WO2012175483A1 (en) | 2011-06-20 | 2012-12-27 | Jacques Seguin | Prosthetic leaflet assembly for repairing a defective cardiac valve and methods of using the same |
EP3964176A1 (en) | 2011-06-21 | 2022-03-09 | Twelve, Inc. | Prosthetic heart valve devices |
WO2012178115A2 (en) | 2011-06-24 | 2012-12-27 | Rosenbluth, Robert | Percutaneously implantable artificial heart valve system and associated methods and devices |
US8795357B2 (en) | 2011-07-15 | 2014-08-05 | Edwards Lifesciences Corporation | Perivalvular sealing for transcatheter heart valve |
EP2734153A2 (en) | 2011-07-20 | 2014-05-28 | Boston Scientific Scimed, Inc. | Heart valve replacement |
US20140324164A1 (en) | 2011-08-05 | 2014-10-30 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
US8852272B2 (en) | 2011-08-05 | 2014-10-07 | Mitraltech Ltd. | Techniques for percutaneous mitral valve replacement and sealing |
CA2957442C (en) | 2011-08-11 | 2019-06-04 | Tendyne Holdings, Inc. | Improvements for prosthetic valves and related inventions |
US20130331929A1 (en) | 2011-09-09 | 2013-12-12 | Endoluminal Sciences Pty Ltd. | Means for Controlled Sealing of Endovascular Devices |
US9549817B2 (en) | 2011-09-22 | 2017-01-24 | Transmural Systems Llc | Devices, systems and methods for repairing lumenal systems |
WO2013131069A1 (en) | 2012-03-02 | 2013-09-06 | Mehr Medical Llc | Prostheses |
US9763780B2 (en) | 2011-10-19 | 2017-09-19 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
US9039757B2 (en) | 2011-10-19 | 2015-05-26 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
AU2012325809B2 (en) | 2011-10-19 | 2016-01-21 | Twelve, Inc. | Devices, systems and methods for heart valve replacement |
US9655722B2 (en) | 2011-10-19 | 2017-05-23 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
US10016271B2 (en) | 2011-10-19 | 2018-07-10 | Twelve, Inc. | Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods |
WO2013070896A1 (en) | 2011-11-08 | 2013-05-16 | Boston Scientific Scimed Inc. | Replacement heart valve leaflet stitching method and device |
US8652145B2 (en) | 2011-12-14 | 2014-02-18 | Edwards Lifesciences Corporation | System and method for crimping a prosthetic valve |
US9277993B2 (en) | 2011-12-20 | 2016-03-08 | Boston Scientific Scimed, Inc. | Medical device delivery systems |
US20140100651A1 (en) | 2012-02-21 | 2014-04-10 | California Institute Of Technology | Medical Device Fastener Mechanisms |
GB2500432A (en) | 2012-03-22 | 2013-09-25 | Stephen Brecker | Replacement heart valve with resiliently deformable securing means |
US20130274873A1 (en) | 2012-03-22 | 2013-10-17 | Symetis Sa | Transcatheter Stent-Valves and Methods, Systems and Devices for Addressing Para-Valve Leakage |
ES2675936T3 (en) | 2012-03-23 | 2018-07-13 | Sorin Group Italia S.R.L. | Folding valve prosthesis |
US8926694B2 (en) | 2012-03-28 | 2015-01-06 | Medtronic Vascular Galway Limited | Dual valve prosthesis for transcatheter valve implantation |
US9445897B2 (en) * | 2012-05-01 | 2016-09-20 | Direct Flow Medical, Inc. | Prosthetic implant delivery device with introducer catheter |
US9277990B2 (en) | 2012-05-04 | 2016-03-08 | St. Jude Medical, Cardiology Division, Inc. | Hypotube shaft with articulation mechanism |
ES2807506T3 (en) | 2012-05-20 | 2021-02-23 | Tel Hashomer Medical Res Infrastructure & Services Ltd | Prosthetic mitral valve |
US9883941B2 (en) | 2012-06-19 | 2018-02-06 | Boston Scientific Scimed, Inc. | Replacement heart valve |
US10376360B2 (en) | 2012-07-27 | 2019-08-13 | W. L. Gore & Associates, Inc. | Multi-frame prosthetic valve apparatus and methods |
WO2014022124A1 (en) | 2012-07-28 | 2014-02-06 | Tendyne Holdings, Inc. | Improved multi-component designs for heart valve retrieval device, sealing structures and stent assembly |
ES2735536T3 (en) | 2012-08-10 | 2019-12-19 | Sorin Group Italia Srl | A valve prosthesis and a kit |
US10206775B2 (en) | 2012-08-13 | 2019-02-19 | Medtronic, Inc. | Heart valve prosthesis |
US9232995B2 (en) | 2013-01-08 | 2016-01-12 | Medtronic, Inc. | Valve prosthesis and method for delivery |
CN105078615B (en) | 2012-09-21 | 2018-10-09 | 上海微创心通医疗科技有限公司 | Interior tube assembly for implant delivery system |
US8628571B1 (en) | 2012-11-13 | 2014-01-14 | Mitraltech Ltd. | Percutaneously-deliverable mechanical valve |
US10321986B2 (en) | 2012-12-19 | 2019-06-18 | W. L. Gore & Associates, Inc. | Multi-frame prosthetic heart valve |
US10039638B2 (en) | 2012-12-19 | 2018-08-07 | W. L. Gore & Associates, Inc. | Geometric prosthetic heart valves |
EP2938291B2 (en) | 2012-12-27 | 2023-01-11 | Venus MedTech (HangZhou), Inc. | Apparatus and set for folding or unfolding a medical implant comprising a clamping mechanism |
US9066801B2 (en) | 2013-01-08 | 2015-06-30 | Medtronic, Inc. | Valve prosthesis and method for delivery |
US9132007B2 (en) | 2013-01-10 | 2015-09-15 | Medtronic CV Luxembourg S.a.r.l. | Anti-paravalvular leakage components for a transcatheter valve prosthesis |
WO2014115149A2 (en) | 2013-01-24 | 2014-07-31 | Mitraltech Ltd. | Ventricularly-anchored prosthetic valves |
US10413401B2 (en) | 2013-02-01 | 2019-09-17 | Medtronic CV Luxembourg S.a.r.l. | Anti-paravalvular leakage component for a transcatheter valve prosthesis |
US9439763B2 (en) | 2013-02-04 | 2016-09-13 | Edwards Lifesciences Corporation | Prosthetic valve for replacing mitral valve |
US9844435B2 (en) | 2013-03-01 | 2017-12-19 | St. Jude Medical, Cardiology Division, Inc. | Transapical mitral valve replacement |
US10583002B2 (en) | 2013-03-11 | 2020-03-10 | Neovasc Tiara Inc. | Prosthetic valve with anti-pivoting mechanism |
US9119713B2 (en) | 2013-03-11 | 2015-09-01 | St. Jude Medical, Cardiology Division, Inc. | Transcatheter valve replacement |
US8986375B2 (en) | 2013-03-12 | 2015-03-24 | Medtronic, Inc. | Anti-paravalvular leakage component for a transcatheter valve prosthesis |
US9636222B2 (en) | 2013-03-12 | 2017-05-02 | St. Jude Medical, Cardiology Division, Inc. | Paravalvular leak protection |
US9867697B2 (en) | 2013-03-12 | 2018-01-16 | St. Jude Medical, Cardiology Division, Inc. | Self-actuating sealing portions for a paravalvular leak protection |
EP2967870A4 (en) | 2013-03-13 | 2016-11-16 | Aortic Innovations Llc | Dual frame stent and valve devices and implantation |
US20140350668A1 (en) | 2013-03-13 | 2014-11-27 | Symetis Sa | Prosthesis Seals and Methods for Sealing an Expandable Prosthesis |
US20140277427A1 (en) | 2013-03-14 | 2014-09-18 | Cardiaq Valve Technologies, Inc. | Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery |
US9681951B2 (en) | 2013-03-14 | 2017-06-20 | Edwards Lifesciences Cardiaq Llc | Prosthesis with outer skirt and anchors |
US9730791B2 (en) | 2013-03-14 | 2017-08-15 | Edwards Lifesciences Cardiaq Llc | Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery |
US9232994B2 (en) | 2013-03-15 | 2016-01-12 | Medtronic Vascular Galway Limited | Stented prosthetic heart valve and methods for making |
EP2777617B1 (en) | 2013-03-15 | 2022-09-14 | Edwards Lifesciences CardiAQ LLC | Prosthesis with outer skirt |
CN105101911B (en) | 2013-03-15 | 2018-10-26 | 托尔福公司 | Artificial heart valves device, artificial mitral valves and related system and method |
JP6637409B2 (en) | 2013-03-15 | 2020-01-29 | ナヴィゲート カーディアック ストラクチャーズ インコーポレイテッドNavigate Cardiac Structures, Inc. | Catheter guide replacement valve device and method |
CN103190968B (en) | 2013-03-18 | 2015-06-17 | 杭州启明医疗器械有限公司 | Bracket and stably-mounted artificial valve displacement device with same |
US9486306B2 (en) | 2013-04-02 | 2016-11-08 | Tendyne Holdings, Inc. | Inflatable annular sealing device for prosthetic mitral valve |
US9572665B2 (en) | 2013-04-04 | 2017-02-21 | Neovasc Tiara Inc. | Methods and apparatus for delivering a prosthetic valve to a beating heart |
EP2991585B1 (en) | 2013-05-03 | 2023-08-16 | Medtronic Inc. | Medical devices for implanting in a valve |
JP6561044B2 (en) | 2013-05-03 | 2019-08-14 | メドトロニック,インコーポレイテッド | Valve transfer tool |
US9375311B2 (en) | 2013-05-03 | 2016-06-28 | Medtronic, Inc. | Prosthetic valves and associated appartuses, systems and methods |
JP6189457B2 (en) | 2013-05-09 | 2017-08-30 | ジャイラス・エイシーエムアイ・インコーポレイテッド | Multimode vibratory lithotripter |
JP6515088B2 (en) | 2013-05-20 | 2019-05-15 | エドワーズ ライフサイエンシーズ コーポレイションEdwards Lifesciences Corporation | Prosthetic heart valve delivery device |
US20140358224A1 (en) | 2013-05-30 | 2014-12-04 | Tendyne Holdlings, Inc. | Six cell inner stent device for prosthetic mitral valves |
US9610159B2 (en) | 2013-05-30 | 2017-04-04 | Tendyne Holdings, Inc. | Structural members for prosthetic mitral valves |
US9788943B2 (en) | 2013-06-11 | 2017-10-17 | Medtronic, Inc. | Delivery system with inline sheath |
US9468527B2 (en) | 2013-06-12 | 2016-10-18 | Edwards Lifesciences Corporation | Cardiac implant with integrated suture fasteners |
US20140371844A1 (en) | 2013-06-18 | 2014-12-18 | St. Jude Medical, Cardiology Division, Inc. | Transcatheter mitral valve and delivery system |
EP3010446B2 (en) | 2013-06-19 | 2024-03-20 | AGA Medical Corporation | Collapsible valve having paravalvular leak protection |
EP3415120B1 (en) | 2013-06-25 | 2022-12-14 | Tendyne Holdings, Inc. | Thrombus management and structural compliance features for prosthetic heart valves |
US9668856B2 (en) | 2013-06-26 | 2017-06-06 | St. Jude Medical, Cardiology Division, Inc. | Puckering seal for reduced paravalvular leakage |
US10524904B2 (en) | 2013-07-11 | 2020-01-07 | Medtronic, Inc. | Valve positioning device |
EP2826443B1 (en) | 2013-07-16 | 2017-06-28 | Venus MedTech (HangZhou), Inc. | Set comprising an apparatus and a medical implant |
US8870948B1 (en) | 2013-07-17 | 2014-10-28 | Cephea Valve Technologies, Inc. | System and method for cardiac valve repair and replacement |
EP2832315B1 (en) | 2013-07-31 | 2017-11-22 | Venus MedTech (HangZhou), Inc. | Handle assembly for implant delivery apparatus comprising a brake frame assembly, a force limiter and/or a displacement limiter |
EP2832318B1 (en) | 2013-07-31 | 2017-04-05 | Venus MedTech (HangZhou), Inc. | Handle assembly for implant delivery apparatus comprising a force limiter, a displacement limiter and/or a brake frame assembly |
EP2832316B1 (en) | 2013-07-31 | 2017-03-29 | Venus MedTech (HangZhou), Inc. | Handle assembly for implant delivery apparatus comprising a displacement limiter, a force limiter and/or a brake frame assembly |
EP2918246B1 (en) | 2014-03-14 | 2018-08-08 | Venus MedTech (HangZhou), Inc. | Heart valve assembly comprising twofold sealing |
CN105722476B (en) | 2013-09-16 | 2018-07-20 | 西美蒂斯股份公司 | Method and apparatus for compressing/loading holder-valve |
US9839511B2 (en) | 2013-10-05 | 2017-12-12 | Sino Medical Sciences Technology Inc. | Device and method for mitral valve regurgitation treatment |
US9393111B2 (en) | 2014-01-15 | 2016-07-19 | Sino Medical Sciences Technology Inc. | Device and method for mitral valve regurgitation treatment |
EP3057541B1 (en) | 2013-10-15 | 2018-01-10 | Boston Scientific Scimed, Inc. | Methods and systems for loading and delivering a stent |
US9925045B2 (en) | 2013-10-21 | 2018-03-27 | Medtronic Vascular Galway | Systems, devices and methods for transcatheter valve delivery |
US9839765B2 (en) | 2013-11-12 | 2017-12-12 | St. Jude Medical, Cardiology Division, Inc. | Transfemoral mitral valve repair delivery device |
WO2015077274A1 (en) | 2013-11-19 | 2015-05-28 | St. Jude Medical, Cardiology Division, Inc. | Sealing structures for paravalvular leak protection |
US20150209141A1 (en) | 2014-01-24 | 2015-07-30 | St. Jude Medical, Cardiology Division, Inc. | Stationary intra-annular halo designs for paravalvular leak (pvl) reduction-passive channel filling cuff designs |
EP3122289A1 (en) | 2014-03-26 | 2017-02-01 | St. Jude Medical, Cardiology Division, Inc. | Transcatheter mitral valve stent frames |
US10368989B2 (en) | 2014-04-17 | 2019-08-06 | Medtronic Vascular Galway | Hinged transcatheter prosthetic heart valve delivery system |
US10245141B2 (en) | 2014-05-14 | 2019-04-02 | Sorin Group Italia S.R.L. | Implant device and implantation kit |
US9974647B2 (en) | 2014-06-12 | 2018-05-22 | Caisson Interventional, LLC | Two stage anchor and mitral valve assembly |
EP4066786A1 (en) | 2014-07-30 | 2022-10-05 | Cardiovalve Ltd. | Articulatable prosthetic valve |
US9750605B2 (en) | 2014-10-23 | 2017-09-05 | Caisson Interventional, LLC | Systems and methods for heart valve therapy |
US9750607B2 (en) | 2014-10-23 | 2017-09-05 | Caisson Interventional, LLC | Systems and methods for heart valve therapy |
EP3037064B1 (en) | 2014-12-23 | 2018-03-14 | Venus MedTech (HangZhou), Inc. | Minimally invasive mitral valve replacement with brim |
US9861477B2 (en) | 2015-01-26 | 2018-01-09 | Boston Scientific Scimed Inc. | Prosthetic heart valve square leaflet-leaflet stitch |
CN107205818B (en) | 2015-02-05 | 2019-05-10 | 卡迪尔维尔福股份有限公司 | Artificial valve with the frame that slides axially |
WO2016183523A1 (en) | 2015-05-14 | 2016-11-17 | Cephea Valve Technologies, Inc. | Cardiac valve delivery devices and systems |
US10575951B2 (en) * | 2015-08-26 | 2020-03-03 | Edwards Lifesciences Cardiaq Llc | Delivery device and methods of use for transapical delivery of replacement mitral valve |
DE202017007326U1 (en) | 2016-01-29 | 2020-10-20 | Neovasc Tiara Inc. | Valve prosthesis to prevent flow obstruction |
US10278852B2 (en) | 2016-03-10 | 2019-05-07 | Medtronic Vascular, Inc. | Steerable catheter with multiple bending radii via a steering mechanism with telescoping tubular components |
US10624740B2 (en) | 2016-05-13 | 2020-04-21 | St. Jude Medical, Cardiology Division, Inc. | Mitral valve delivery device |
JP6987790B2 (en) | 2016-06-02 | 2022-01-05 | メドトロニック ヴァスキュラー インコーポレイテッド | Transcatheter valve delivery system with septal penetration hole closure tip assembly |
US11045315B2 (en) | 2016-08-29 | 2021-06-29 | Cephea Valve Technologies, Inc. | Methods of steering and delivery of intravascular devices |
-
2015
- 2015-02-20 CN CN201580018888.4A patent/CN106170269B/en active Active
- 2015-02-20 WO PCT/US2015/016927 patent/WO2015127283A1/en active Application Filing
- 2015-02-20 CA CA2938614A patent/CA2938614C/en active Active
- 2015-02-20 EP EP15708404.7A patent/EP3107497B1/en active Active
- 2015-02-20 US US14/628,034 patent/US10004599B2/en active Active
-
2018
- 2018-06-21 US US16/015,065 patent/US10952849B2/en active Active
-
2021
- 2021-03-19 US US17/207,327 patent/US11633279B2/en active Active
-
2023
- 2023-04-07 US US18/132,260 patent/US20230240845A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2015127283A8 (en) | 2016-09-29 |
US20230240845A1 (en) | 2023-08-03 |
US20150238315A1 (en) | 2015-08-27 |
US11633279B2 (en) | 2023-04-25 |
WO2015127283A1 (en) | 2015-08-27 |
US10004599B2 (en) | 2018-06-26 |
US20210205083A1 (en) | 2021-07-08 |
EP3107497B1 (en) | 2020-07-22 |
CN106170269B (en) | 2019-01-11 |
CA2938614C (en) | 2024-01-23 |
EP3107497A1 (en) | 2016-12-28 |
US20180296338A1 (en) | 2018-10-18 |
US10952849B2 (en) | 2021-03-23 |
CN106170269A (en) | 2016-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11633279B2 (en) | Prosthesis, delivery device and methods of use | |
US20230120337A1 (en) | Supra and sub-annular mitral valve delivery system | |
US11819407B2 (en) | Heart valve prosthesis delivery system | |
US11389292B2 (en) | Replacement mitral valve, delivery system for replacement mitral valve and methods of use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EEER | Examination request |
Effective date: 20200128 |
|
EEER | Examination request |
Effective date: 20200128 |
|
EEER | Examination request |
Effective date: 20200128 |
|
EEER | Examination request |
Effective date: 20200128 |
|
EEER | Examination request |
Effective date: 20200128 |
|
EEER | Examination request |
Effective date: 20200128 |
|
EEER | Examination request |
Effective date: 20200128 |
|
EEER | Examination request |
Effective date: 20200128 |
|
EEER | Examination request |
Effective date: 20200128 |