CA2767434A1 - Electrodes bipolaires a haute efficacite energetique et usage de celles-ci pour la synthese du chlorate de sodium - Google Patents

Electrodes bipolaires a haute efficacite energetique et usage de celles-ci pour la synthese du chlorate de sodium Download PDF

Info

Publication number
CA2767434A1
CA2767434A1 CA2767434A CA2767434A CA2767434A1 CA 2767434 A1 CA2767434 A1 CA 2767434A1 CA 2767434 A CA2767434 A CA 2767434A CA 2767434 A CA2767434 A CA 2767434A CA 2767434 A1 CA2767434 A1 CA 2767434A1
Authority
CA
Canada
Prior art keywords
coating
sodium chlorate
bipolar
electrodes
bipolar electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2767434A
Other languages
English (en)
Inventor
Sylvio Savoie
Robert Schulz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydro Quebec
Meeir Technologie Inc
Original Assignee
Hydro Quebec
Meeir Technologie Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydro Quebec, Meeir Technologie Inc filed Critical Hydro Quebec
Priority to CA2767434A priority Critical patent/CA2767434A1/fr
Publication of CA2767434A1 publication Critical patent/CA2767434A1/fr
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • C25B1/265Chlorates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

L'invention a pour objet de nom elles électrodes bipolaires ayant un revêtement cathodique sur une partie de l'électrode et un revêtement anodique sur une autre partie de cette même électrode. Le revêtement anodique est de préférence de type DSA et le revêtement cathodique est un alliage de type Fe3-xAI1+xMyTz. Elle a également pour objet l'usage de ces nouvelles électrodes pour la synthèse du chlorate de sodium.

Description

ELECTRODES BIPOLAIRES A HAUTE EFFICACITÉ ÉNERGÉTIQUE ET USAGE
DE CELLES-CI POUR LA SYNTHESE DU CHLORATE DE SODIUM
DOMAINE DE L'INVENTION

La présente invention a pour objet de nouvelles électrodes bipolaires ayant un revêtement cathodique sur une partie de l'électrode et un revêtement anodique sur une autre partie de cette même électrode. Elle a également pour objet l'usage de ces nouvelles électrodes pour la synthèse du chlorate de sodium.
BREVE DESCRIPTION DES DESSINS
Dans les dessins annexés :

- les Figures la et 1 b sont des vues schématiques d'électrodes mono-polaires;
- les Figures 2a et 2b sont des vues schématiques d'électrodes bipolaires;
- la Figure 3 est une illustration d'un test d'adhésion d'un revêtement d'aluminure de fer sur de l'acier 1020;
- la Figure 4 est une illustration d'un test d'adhésion d'un revêtement d'aluminure de fer sur du titane;
- la Figure 5 est un schéma illustrant le montage des douilles, de traction utilisées pour les tests d'adhésion;
- la Figure 6 est une illustration d'un test de corrosion dans une solution chlorate d'une électrode DSA et d'un revêtement du type Fe3-xAll+xMyTZ sur un substrat de titane;
- la Figure 7 est une vue schématique d'une électrode bipolaire selon l'invention;
- les Figures 8a, 8b et 8c sont des vues schématiques de modules bipolaires selon l'invention; et
2 les Figures 9a, 9b et 9c, sont des photographies d'électrodes bipolaires fabriquées de façon à ce qu'une partie de ces électrodes soit recouverte d'un revêtement de type DSA et une autre, un revêtement de type Fe3-xAl 1 +xMyTZ.

ARRIERE PLAN TECHNOLOGIQUE

Le chlorate de sodium (NaCIO3) est couramment utilisé comme agent de blanchiment dans l'industrie des pâtes et papier. Il est produit par électrolyse du sel de sodium (NaCI) suivant la réaction chimique :

NaCI + 3 H2O --* NaCIO3 + 3H2 Le procédé est très énergivore et requiert entre 5000 et 5500 kWh d'électricité par tonne de chlorate de sodium. Les cellules d'électrolyse dans lesquelles circule un fort courant continu comprennent habituellement des anodes dimensionnellement stables (DSA) et des cathodes d'acier ou de titane non-revêtues. Les anodes DSA
sont bien connues dans l'art des cellules d'électrolyse, voir par exemples :
WO
4101852, WO 4094698, US 6071570, US 4528084, US 5989396, US 6572758, US
4233340, US 5419824, US 5593556 and US 5672394. Ces anodes OSA
comprennent typiquement un substrat de titane sur lequel on applique un revêtement d'oxyde de ruthénium avec possiblement, d'autres oxydes ou composés tel que l'oxyde d'iridium. Grâce à ce revêtement catalytique, les pertes d'énergie du coté anodique sont faibles. Cela se reflète par une basse surtension anodique de quelques dizaines de millivolts. Il n'en est cependant pas de même du coté
cathodique. La surtension cathodique à la surface d'une plaque d'acier est d'environ 900 mV alors qu'à la surface d'une plaque de titane, elle est d'environ 1200 mV. Les pertes d'énergie du coté cathodique représentent ainsi la principale source de pertes d'énergie dans le procédé. C'est pour cette raison qu'au cours des dernières
3 PCT/CA2010/000531 années, les inventeurs de la présente invention ont tenté de trouver des revêtements de cathode performants permettant d'abaisser la surtension à ces électrodes. WO/2008/138148 qui origine également des inventeurs de la présente invention, donne un exemple de tels revêtements de cathode. Elle décrit des alliages du type Fe3-xAll+xMyTZ qu'on applique sur la surface d'une électrode pour en faire une cathode revêtue très performante du point de vue énergétique.

Les cathodes et les anodes sont assemblées dans des cellules d'électrolyse suivant différentes configurations. On distingue deux types d'assemblage. Les cellules mono-polaires et les cellules bipolaires. La Figure 1 présente des vues schématiques d'électrodes mono-polaires. Dans de telles configurations, chaque électrode ne joue qu'un seul rôle, celui d'anode ou de cathode. Par conséquent, il n'existe aucune ambigüité sur le type de revêtement à appliquer si on souhaite améliorer l'efficacité énergétique de telles cellules. A l'anode on choisira un substrat de titane et on appliquera un revêtement d'oxyde de ruthénium pour en faire une DSA et à la cathode on pourra choisir une plaque d'acier et y appliquer un revêtement de type Fe3-xAll+xMyTZ pour en faire une cathode à haute performance énergétique.

La Figure 2 présente des vues schématiques d'électrodes bipolaires. Dans une configuration bipolaire, une électrode ou un module d'électrodes joue à la fois le rôle d'anode et celui de cathode. Dans le schéma du haut de la Figure 2a, la face négative de l'électrode bipolaire est cathodique alors que la face positive est anodique. Dans le schéma du bas de la Figure 2b, les électrodes dans la partie gauche du module bipolaire (signe négatif) sont cathodiques alors que les électrodes du coté droit (signe positif) sont anodiques. Ces électrodes sont assemblées et soudées ensemble pour en faire un module bipolaire d'électrodes.
Puisqu'une électrode bipolaire telle que celle montrée à la Figure 2a, joue à
la fois le rôle d'anode et de cathode, quel type d'électrode choisira-t-on pour améliorer
4 globalement l'efficacité du procédé ? Va-t-on opter pour une électrode DSA sur substrat de titane qui a été développée pour optimiser la réaction anodique ou une plaque d'acier avec revêtement catalytique pour favoriser la réaction cathodique. En plus de cette difficulté, un module bipolaire d'électrodes tel que celui montré au bas de la Figure 2 présente une problématique additionnelle. Les électrodes du coté
anodique (coté droit du module) sont habituellement des DSA sur des substrats de titane alors que les électrodes du coté cathodique (coté gauche du module) sont des plaques d'acier. Or il est très difficile de souder du titane à de l'acier. Un tel module présente donc une difficulté d'assemblage.
Enfin lorsqu'on a des métaux différents tels que l'acier et le titane en contact direct dans une solution hautement corrosive comme celle du chlorate de sodium, on a une problématique supplémentaire de corrosion galvanique. Lorsqu'il y a arrêt de production et coupure de courant à l'usine, un courant causé par la corrosion galvanique circule en sens inverse dans les modules bipolaires d'électrodes et cet effet engendre une détérioration sévère des électrodes les moins nobles.

La présente invention vise à résoudre ces problématiques associées aux électrodes bipolaires.
SOMMAIRE DE L'INVENTION

Alors qu'ils effectuaient leur recherche sur les revêtements cathodiques à
haute performance énergétique du type Fei-xAll+xMyTZ qui ont fait l'objet de l'invention WO/2008/138148, les inventeurs de la présente invention ont constaté à leur grande surprise que les revêtements de ce type adhéraient tout aussi bien sur des substrats d'acier que sur des substrats de titane.

L'invention a donc pour premier objet une électrode bipolaire à haute efficacité
énergétique, ladite électrode possédant une partie pourvue d'un revêtement cathodique et une autre partie qui est distincte de la première et est pourvue d'un revêtement anodique.

De préférence :

- le revêtement anodique est de type DSA;
- le revêtement cathodique est d'un alliage de formule :

Fe3-xAl1 +xMyTz dans laquelle :

M représente une ou plusieurs espèces catalytiques choisies parmi Ru, Ir, Pd, Pt, Rh, Os, Re, Ag et Ni;
T représente un ou plusieurs éléments parmi Mo, Co, Cr, V, Cu, Zn, Nb, W, Zr, Y;
Mn, Cb, Si, B, C, O, N, P, F, S, CI et Na;
x est un nombre supérieur à -1 et inférieur ou égal à +1;
y est un nombre supérieur à 0 et inférieur ou égal +1; et z est un nombre compris entre 0 et +1.

Le substrat sur lequel sont appliqués les revêtements peut être un substrat d'acier ou un substrat de titane.

L'invention a aussi pour objet un module bipolaire d'électrodes contenant plusieurs électrodes telles que celles ci-dessus décrites.

L'invention a également pour objet l'usage de l'électrode bipolaire ou du module bipolaire selon l'invention pour l'électrosynthèse du chlorate de sodium.

EXEMPLES
La Figure 3 montre un test d'adhésion d'un revêtement du type Fe3AI sur un substrat d'acier 1020 selon la norme ASTM C633. La rupture a eu lieu à une contrainte de 11922 psi qui est tout près de la limite à la rupture de la colle servant au montage des douilles de traction (voir le schéma de la Figure 5).
L'adhésion d'un revêtement d'aluminure de fer sur un substrat d'acier est donc excellente.

La Figure 4 montre un test d'adhésion similaire d'un revêtement du même type sur un substrat de titane. La rupture a eu lieu à une contrainte de 10604 psi soit une valeur presque aussi élevée que celle mesurée précédemment. Par conséquent, l'adhésion du revêtement est aussi bonne sur un substrat de titane que sur un substrat d'acier.

Puisque le titane sert habituellement de substrat aux revêtements de type DSA, cette découverte ouvre la possibilité d'appliquer sur un coté du substrat de titane un revêtement DSA pour la réaction anodique et sur l'autre, un revêtement de type Fei-XA11+xMYTZ pour la réaction cathodique. En d'autre mot, cette découverte conduit directement à l'optimisation énergétique des électrodes de type bipolaire.

On peut cependant utiliser également un substrat d'acier, de préférence un acier inoxydable de type ferritique et ne contenant pas de Ni. Dans ce cas, on appliquera préférentiellement une couche de Ti sur un coté par une méthode telle le cold spray avant d'appliquer sur ce même coté et sur la couche de Ti, le revêtement de type DSA. De l'autre coté, on appliquera comme précédemment mais cette fois-ci sur l'acier un revêtement de type Fe3_,,Ali+,,M,TZ.

Le seul problème potentiel restant de telles configurations d'électrode est celui de la corrosion galvanique causé par le fait qu'il y a d'un coté de l'électrode, un oxyde de ruthénium de type DSA et de l'autre, un alliage de type Fei-xA11+xMyTz. Or il a été
découvert qu'il était possible d'ajuster la composition chimique des alliages du type Fei-xAl1+xMyTz par un choix judicieux des éléments M et T et des compositions x, y et z de façon à équilibrer les potentiels avec la DSA et à canceller la corrosion galvanique du couple constituant l'électrode bipolaire.

La Figure 6 montre des courbes courant-tension dans une solution chlorate à
22 C mesurées par rapport à une électrode de référence Ag/AgCI en balayant le potentiel à 5 mV/sec pour une électrode DSA et un revêtement de type Fei-xA11+xMyTz sur un substrat de titane. On constate que le revêtement cathodique est tout aussi résistant à la corrosion que la DSA. Le seuil de corrosion est de 1.2V environ. Le couple galvanique entre ces matériaux dissimilaires est ainsi réduit par un choix approprié de la composition chimique du revêtement à base d'aluminure de fer.

Sans être restrictif, la Figure 7 montre des vues schématiques d'électrodes bipolaires selon l'invention. Pour la première électrode, une face possède un revêtement anodique alors que l'autre face possède un revêtement cathodique.
Dans la deuxième électrode bipolaire, un bout de l'électrode est revêtu des deux cotés par un revêtement cathodique alors que l'autre bout est revêtu par un revêtement anodique.

Sans être restrictif, la Figure 8 montre des vues schématiques de modules bipolaires constitués d'un assemblage d'électrodes bipolaires représentées à
la Figure 7.

Les Figures 9a et 9b montrent des photographies d'électrodes bipolaires telles que représentées schématiquement à la Figure 7 et la Figure 9c montre l'apparence d'une électrode bipolaire selon l'invention après une immersion de 69 heures dans une solution chlorate à 22 C. On observe un début de corrosion par piqûre de la partie cathodique mais l'intégrité structurale du revêtement est encore excellente.

Claims (7)

REVENDICATIONS
1. Une électrode bipolaire possédant une partie pourvue d'un revêtement cathodique et une autre partie, distincte de la première, qui est pourvue d'un revêtement anodique, ladite électrode étant caractérisée en ce que le revêtement anodique est de type DSA (anode dimensionnellement stable) et en ce que le revêtement cathodique est d'un alliage de formule :

Fe3-x Al1 +x M y T z dans laquelle :
M représente une ou plusieurs espèces catalytiques choisies parmi Ru, Ir, Pd, Pt, Rh, Os, Re, Ag et Ni;
T représente un ou plusieurs éléments parmi Mo, Co, Cr, V, Cu, Zn, Nb, W, Zr, Y, Mn, Cd, Si, B, C, O, N, P, F, S, CI et Na;
x est un nombre supérieur à -1 et inférieur ou égal à +1;
y est un nombre supérieur à 0 et inférieur ou égal à +1; et z est un nombre compris entre 0 et +1.
2. Une électrode bipolaire selon la revendication 1, caractérisée en ce que les revêtements sont appliqués sur un substrat d'acier ou de titane.
3. Un module bipolaire d'électrodes caractérisé en ce qu'il contient plusieurs électrodes selon la revendication 1 ou 2.
4. Usage d'une électrode bipolaire selon la revendication 1 ou 2, pour l'électrosynthèse du chlorate de sodium.
5. Usage d'un module bipolaire d'électrodes selon la revendication 3, pour l'électrosynthèse du chlorate de sodium.
6. Usage d'une électrode bipolaire selon l'une quelconque des revendications 1 à
4, pour l'électrosynthèse du chlorate de sodium.
7. Usage d'un module bipolaire d'électrodes selon la revendication 5, pour l'électrosynthèse du chlorate de sodium.
CA2767434A 2009-07-08 2010-04-08 Electrodes bipolaires a haute efficacite energetique et usage de celles-ci pour la synthese du chlorate de sodium Abandoned CA2767434A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2767434A CA2767434A1 (fr) 2009-07-08 2010-04-08 Electrodes bipolaires a haute efficacite energetique et usage de celles-ci pour la synthese du chlorate de sodium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CA2,671,211 2009-07-08
CA2671211A CA2671211A1 (fr) 2009-07-08 2009-07-08 Electrodes bipolaires a haute efficacite energetique et usage de celles-ci pour la synthese du chlorate de sodium
CA2767434A CA2767434A1 (fr) 2009-07-08 2010-04-08 Electrodes bipolaires a haute efficacite energetique et usage de celles-ci pour la synthese du chlorate de sodium
PCT/CA2010/000531 WO2011003173A1 (fr) 2009-07-08 2010-04-08 Electrodes bipolaires à haute efficacité énergétique et usage de celles-ci pour la synthèse du chlorate de sodium

Publications (1)

Publication Number Publication Date
CA2767434A1 true CA2767434A1 (fr) 2011-01-13

Family

ID=43426255

Family Applications (2)

Application Number Title Priority Date Filing Date
CA2671211A Abandoned CA2671211A1 (fr) 2009-07-08 2009-07-08 Electrodes bipolaires a haute efficacite energetique et usage de celles-ci pour la synthese du chlorate de sodium
CA2767434A Abandoned CA2767434A1 (fr) 2009-07-08 2010-04-08 Electrodes bipolaires a haute efficacite energetique et usage de celles-ci pour la synthese du chlorate de sodium

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CA2671211A Abandoned CA2671211A1 (fr) 2009-07-08 2009-07-08 Electrodes bipolaires a haute efficacite energetique et usage de celles-ci pour la synthese du chlorate de sodium

Country Status (6)

Country Link
US (1) US20120138477A1 (fr)
EP (1) EP2451995A4 (fr)
CN (1) CN102859041B (fr)
BR (1) BR112012000318A2 (fr)
CA (2) CA2671211A1 (fr)
WO (1) WO2011003173A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013159219A1 (fr) * 2012-04-23 2013-10-31 Chemetics Inc. Cathode en acier inoxydable modifiée en surface destinée à un électrolyseur
ITMI20120873A1 (it) * 2012-05-21 2013-11-22 Industrie De Nora Spa Elettrodo per evoluzione di prodotti gassosi e metodo per il suo ottenimento
US9050482B1 (en) * 2013-04-01 2015-06-09 Jeffry L. VanElverdinghe Trampoline with elongate spring mount and bed with integral spring cover
US9278241B2 (en) * 2013-04-01 2016-03-08 Jeffry L. VanElverdinghe Trampoline with elongate spring mount and bed with integral spring cover
CN107034483B (zh) * 2017-04-10 2019-02-12 广东卓信环境科技股份有限公司 一种次氯酸钠发生器电极的制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3826732A (en) * 1973-05-25 1974-07-30 Hooker Chemical Corp Bipolar electrode
US4075070A (en) * 1976-06-09 1978-02-21 Ppg Industries, Inc. Electrode material
US4422917A (en) * 1980-09-10 1983-12-27 Imi Marston Limited Electrode material, electrode and electrochemical cell
US4530742A (en) * 1983-01-26 1985-07-23 Ppg Industries, Inc. Electrode and method of preparing same
US5225061A (en) * 1991-05-24 1993-07-06 Westerlund Goethe O Bipolar electrode module
GB9316926D0 (en) * 1993-08-13 1993-09-29 Ici Plc Electrode
CA2154428C (fr) * 1995-07-21 2005-03-22 Robert Schulz Alliages a base de ti, ru, fe et o et usage de ceux-ci pour la fabrication de cathodes pour la synthese electrochimique du chlorate de sodium
US6235167B1 (en) * 1999-12-10 2001-05-22 John E. Stauffer Electrolyzer for the production of sodium chlorate
US7623924B2 (en) * 2004-08-31 2009-11-24 Leptos Biomedical, Inc. Devices and methods for gynecologic hormone modulation in mammals
BRPI0515969A (pt) * 2004-10-12 2008-08-12 Canexus Chemicals Canada Ltd células de clorato eletrolìticas não divididas com catodos revestidos
CA2612543C (fr) * 2005-06-30 2011-09-20 Akzo Nobel N.V. Procede chimique
CA2588906A1 (fr) * 2007-05-15 2008-11-15 Hydro Quebec Alliages nanocristallins du type fe3al(ru) et usage de ceux-ci sous forme nanocristalline ou non pour la fabrication d'electrodes pour la synthese du chlorate de sodium

Also Published As

Publication number Publication date
CN102859041B (zh) 2015-06-17
US20120138477A1 (en) 2012-06-07
EP2451995A4 (fr) 2016-11-16
CN102859041A (zh) 2013-01-02
WO2011003173A8 (fr) 2011-04-14
BR112012000318A2 (pt) 2019-06-04
EP2451995A1 (fr) 2012-05-16
WO2011003173A1 (fr) 2011-01-13
CA2671211A1 (fr) 2011-01-08

Similar Documents

Publication Publication Date Title
CA2767434A1 (fr) Electrodes bipolaires a haute efficacite energetique et usage de celles-ci pour la synthese du chlorate de sodium
US4502936A (en) Electrode and electrolytic cell
FR2656337A1 (fr) Electrode generatrice d'oxygene et procede pour sa preparation.
CA1247047A (fr) Procede pour la production electrolytique d'hydrogene sur une cathode
NO137324B (no) Fremgangsm}te for fremstilling av elektroder egnet til bruk i elektrolytiske prosesser.
FR2783973A1 (fr) Pile a combustible et separateur pour pile a combustible
FR2471424A1 (fr) Cathodes a faible surtension d'hydrogene, prodede pour leur production et cellules electrolytiques les comprenant
FR2560610A1 (fr) Electrode a longue duree de service pour electrolyse et son procede de fabrication
FR2599386A1 (fr) Electrodes durables pour l'electrolyse et procede pour leur fabrication
FR2564109A1 (fr) Procede de preparation de toles d'acier plaquees electrolytiquement d'alliage zn-ni et presentant une excellente adherence de la couche de placage.
FR2460346A1 (fr) Procede pour preparer des toles d'acier revetues par galvanoplastie, ayant une excellente adherence des peintures
FR2714077A1 (fr) Procédé et bain de dépôt électrolytique de polypyrrole sur une surface de métal oxydable par électropolymérisation.
CN107250440B (zh) 金电镀溶液和方法
LU83102A1 (fr) Procede de depot electrolytique de chrome au moyen d'un bain de chrome trivalent
CH418085A (fr) Electrolyte pour le dépôt galvanique d'alliages d'or
JP3860632B2 (ja) 耐食性に優れた表面処理鋼材
FR2617195A1 (fr) Revetement electrogalvanise ameliore pour acier
CN106413275A (zh) 一种有机金属保焊膜及其制备方法
CN1036413A (zh) 电化学工业用钛阳极
FR2492415A1 (fr)
Zhu et al. Electrochemical behavior of a Vacuum-Brazed 10Ni-WC/NiCrBSi composite coating
Accogli et al. In Situ-Raman spectroscopy and electrochemical characterization on electroless nickel immersion gold process
EP1227135B1 (fr) Procédé et bain électrolytique pour l' obtention par électropolymérisation d' un revêtement homogène et adhérent du polypyrrole sur des surfaces de métaux oxydables
FR2713244A1 (fr) Anode consommable de protection cathodique en alliage à base d'aluminium.
SU929744A1 (ru) Анод дл электрохимических процессов

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20150325

FZDE Discontinued

Effective date: 20180410

FZDE Discontinued

Effective date: 20180410

FZDE Discontinued

Effective date: 20180410