CA2215732C - Quinazoline derivatives - Google Patents

Quinazoline derivatives Download PDF

Info

Publication number
CA2215732C
CA2215732C CA002215732A CA2215732A CA2215732C CA 2215732 C CA2215732 C CA 2215732C CA 002215732 A CA002215732 A CA 002215732A CA 2215732 A CA2215732 A CA 2215732A CA 2215732 C CA2215732 C CA 2215732C
Authority
CA
Canada
Prior art keywords
alkoxy
formula
chloro
pharmaceutically
quinazoline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CA002215732A
Other languages
French (fr)
Other versions
CA2215732A1 (en
Inventor
Keith Hospkinson Gibson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AstraZeneca UK Ltd
Original Assignee
Zeneca Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=10773597&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CA2215732(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Zeneca Ltd filed Critical Zeneca Ltd
Publication of CA2215732A1 publication Critical patent/CA2215732A1/en
Application granted granted Critical
Publication of CA2215732C publication Critical patent/CA2215732C/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • C07D239/72Quinazolines; Hydrogenated quinazolines
    • C07D239/86Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in position 4
    • C07D239/94Nitrogen atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

The invention concerns quinazoline derivatives of the formula (I) wherein n is 1, 2 or 3 and each R2 is independently halogeno, trifluoromethyl or (1-4C)alkyl; R3 is (1-4C)alkoxy; and R1 is di-[(1-4C)alkyl]amino-(2-4C)alkoxy, pyrrolidin-1-yl-(2-4C)alkoxy, piperidino-(2-4C)alkoxy, morpholino-(2-4C)alkoxy, piperazin-1-yl-(2-4C)alkoxy, 4-(1-4C)alkylpiperazin-1-yl-(2-4C)alkoxy, imidazol-1-yl-(2-4C)alkoxy, di-[(1-4C)alkoxy-(2-4C)alkoxyl]amino-(2-4C)alkoxy, thiamorpholino-(2-4C)alkoxy, 1-oxothiamorpholino-(2-4C)alkoxy or 1,1-dioxothiamorpholino-(2-4C)alkoxy, and wherein any of the above-mentioned R1 substituents comprising a CH2 (methylene) group which is not attached to a N or O atom optionally bears on said CH2 group a hydroxy substituent; or pharmaceutically-acceptable salts thereof; processes for their preparation, pharmaceutical compositions containing them, and the use of the receptor tyrosine kinase inhibitory properties of the compounds in the treatment of proliferative disease such as cancer.

Description

WO 96/33980 _ 1 _ PCT/GB96/00961 QUINAZOLINE DE)EZTVATIVES
The invention relates to quinazoline derivatives, or pharmaceutically-acceptable salts thereof, which possess anti-proliferative activity such as anti-cancer activity and are accordingly useful in methods of treatment of the human or animal body. The invention also relates to processes for the manufacture of said quinazoline derivatives, to pharmaceutical compositions containing them and to their use in the manufacture of medicaments of use in the production of an anti-proliferative effect in a warm-blooded animal such as man.
Many of the current treatment regimes for cell proliferation diseases such as psoriasis and cancer utilise compounds which inhibit DNA synthesis. Such compounds are toxic to cells generally but their toxic effect on rapidly dividing cells such as tumour cells can be benefr.cial. Alternative approaches to anti-proliferative agents which act by mechanisms other than the inhibition of DNA synthesis have the potential to display enhanced selectivity of action.
In recent years it has been discovered that a cell may become cancerous by virtue of the transformation of a portion of its DNA into an oncogene i.e. a gene which, on activation, leads to the formation of malignant tumour cells (Bradshaw, Mutagenesis, 1986,1, 91 ). Several such oncogenes give rise to the production of peptides which are receptors for growth factors. The grovvh factor receptor complex subsequently leads to an increase in cell proliferation. It is known, for example, that several oncogenes encode tyrosine kinase enzymes and that certain growth factor receptors are also tyrosine kinase enzymes (Yarden ~., Ann. Rev. Biochem., 1988, ~7, ~~3: Larsen et ~1. inn Reports in Med Chem 1989, Chpt. 13).
Receptor tyrosine kinases are important in the transmission of biochemical signals which initiate cell replication. T hey are large enzymes which span the cell membrane and possess an extracellular binding domain for growth factors such as epidermal growrth factor (EGF) and an intracellular portion which functions as a kinase to phosphorylate tyrosine amino acids in proteins and hence to influence cell proliferation.
Various classes of receptor yrosinc l:inases are known ( V'ilks, Advances in Cancer Research, 199;, ~, -l;_7 ;1 based on families of ~~r~w-th factors which hind to different receptor tyrosine kinases. The classification includes Class t receptor tyrosine hinases compn5ing the EGF
family of receptor tyrosine kinases such as the I:CJF. TCrFu. '.vEt'. crhli. lmrh. 1 iER
and let'_' WO 96/33980 _ 2 _ PCT/GB96/00961 receptors, Class II receptor tyrosine kinases comprising the insulin family of receptor tyrosine kinases such as the insulin, IGFI and insulin-related receptor (IRR) receptors and Class III
receptor tyrosine kinases comprising the platelet-derived growth factor (PDGF) family of receptor tyrosine kinases such as the PDGFcc, PDGF(3 and colony-stimulating factor 1 (CSF1) receptors. It is known that Class I kinases such as the EGF family of receptor tyrosine kinases are frequently present in common human cancers such as breast cancer (Sainsbtuy etet al., J. Cancer, 1988, 5,$, 458; Guerin ~ ~, Oncogene Res., 1988, ~, 21 and Klijn ., Breast Cancer Res. Treat., 1994, ~, 73), non-small cell lung cancers (NSCLCs) including adenocarcinomas (Cerny ., Brit. J. Cancer, 1986, ~, 265; Reubi g~., Int. J. Cancer, 1990, ~, 269; and Rusch g~., Cancer Research, 1993, 5~, 2379) and squamous cell cancer of the lung (Hendler g~., Cancer Cells, 1989, Z, 347), bladder cancer (Neat ., Lancet, 1985, 366), oesophageal cancer (Mukaida etet al., Cancer, 1991, 4$, 142), gastrointestinal cancer such as colon, rectal or stomach cancer (Bolen etet al., OncQgene Res., 1987, ~, 149), cancer of the prostate (Visakorpi ~ja ., Histochem. J., 1992, ~4_, 481), leukaemia (Konaka etet al., ~, 1984, ~, 1035) and ovarian, bronchial or pancreatic cancer (European Patent Specification No. 0400586). As further human tumour tissues are tested for the EGF family of receptor tyrosine kinases it is expected that their widespread prevalance will be established in further cancers such as thyroid and uterine cancer. It is also known that EGF type tyrosine kinase activity is rarely detected in normal cells whereas it is more frequently detectable in malignant cells (Hunter, ~1_, 1987, .~Q, 823). It has been shown more recently (W J Gullick, Brit. Med. Bull., 1991, ~7, 87) that EGF receptors which possess tyrosine kinase activity are overexpressed in many human cancers such as brain, lung squamous cell. bladder, gastric, breast. head and neck. oesophageal.
gynaecological and thyroid tumours.
Accordingly it has been recognised that an inhibitor of receptor tyrosine kinases should be of value as a selective inhibitor of the growth of mammalian cancer cells (Yaish ~t ~],, Science, 1988, ~~, 933). Support for this view is provided by the demonstration that erbstatin. an EGF receptor tyrosine kinase inhibitor, specifically attenuates the growth in athymic nude mice of a transplanted human mamman~ carcinoma which expresses EGF
receptor tyrosine kinase but is without effect on the growth of another carcinoma which does not express EGF receptor tyrosine kinase (Toi ~ ~1,., Eur. J. Cancer C1111.
Oncol., 1990, ;~, 722.) Various derivatives of smrene are also stated to possess mrosine kinase inhibitory properties (European Patent Application Nos. 0211363, 0304493 and 0322738) and to be of use as anti-tumour agents. The i11 vivo inhibitory effect of two such styrene derivatives which are EGF receptor tyrosine kinase inhibitors has been demonstrated against the growth of human squamous cell carcinoma inoculated into nude mice (Yoneda ~ ~,1., Cancer Research, 1991, ,~, 4430). Various known tyrosine kinase inhibitors are disclosed in a more recent review by T R Burke .Jr. (Drugs of the Future, 1992, ~, 119).
It is known from European Patent Applications Nos. 0520722, 0566226 and 0635498 that certain quinazoline derivatives which bear an anilino substituem at the 4-position possess receptor tyrosine kinase inhibitory activity. It is further known from European Patent Application No. 0602851 that certain quinazoline derivatives which bear a heteroarylamino subs'tituent at the 4-position also possess receptor tyrosine kinase inhibitory activity.
It is further known from International Patent Application WO 92/20642 that certain aryl and heteroaryl compounds inhibit EGF andlor PDGF receptor tyrosine kinase.
There is the disclosure of certain quinazoline derivatives therein but no mention is made of 4-anilinoquinazoline derivatives.
The jg vitro anti-proliferative effect of a 4-anilinoquinazoline derivative has been disclosed by Fry ~t ~1_., Science, 1994, '~ 5, 1093. It was stated that the compound 4-(3'-bromoanilino)-6.7-dimethoxyquinazoline was a highly potent inhibitor of EGF receptor tyrosine kinase.
The i~ ~ inhibitory effect of a 4.5-dianilinophthalimide derivative which is an inhibitor of the EGF family of receptor tyrosine kinases has been demonstrated against the growth in BALB/c nude mice of a human epidermoid carcinoma A-431 or of a human ovarian carcinoma SKOV-3 (Buchdunger ~ ~., Proc. Nat. Acad. Sci.. 1994, 91, 2334).
It is further known from European Patent Application No. 0635507 that certain tricyclic compounds which comprise a 5- or 6-membered ring fused to the benzo-ring of a quinazoline possess receptor tyrosine kinase inhibitory activim. It is also known from European Patent Application No. 0635498 that certain quinazoline derivatives which carry an amino group at the b-position and a halogeno group at the 7-position possess receptor tyrosine kinase inhibitory activity.
:~ccordinglv it has been indicated that Class I receptor mrosine kinase inhibitors will prove to hr useful in the treatment of a vanetv of human cancers EGF type receptor tyrosine kinases have also been implicated in non-:malignant proliferative disorders such as psoriasis (Elder et al., Science, 1989, 243, 811 ). It is therefore expected that inhibitors of EGF type receptor tyrosine kinases will be useful in the treatment of non-malignant diseases of excessive cellular proliferation such as psoriasis (where TGFa is believed to be the most important growth factor), benign prostatic hypertrophy (BPH), atherosclerosis and restenosis.
There is no disclosure in these documents of quinazoline derivatives which bear at the 4-position an anilino substituent and which also bear an alkoxy substituent at the 7-position and a dialkylaminoalkoxy substituent at the 6-position. We have now found that such compounds possess potent in vivo anti-proliferative properties which are believed to arise from their Class I receptor tyrosine kinase inhibitory activity.
According to the present invention there is provided a quinazoline derivative of the formula I
~R2O
HN
R' N' ~~'~. i R3 N
wherein n is l, 2 or 3 and each R' is independently halogeno or trifluoromethyl;
R' is (1-4C)alkoxy; and R~ is di-[(1-4C)alkyl]amino-(2-4C)alkoxy, pyrrolidin-1-yl-(2-4C)alkoxy, piperidino-(2-4C)alkoxy, morpholino-(2-4C)alkoxy, piperazin-1-yl-(2-4C)alkoxy, 4-(1-4C)alkylpiperazin-1-yl-(2-4C)alkoxy, imidazol-1-yl-(2-4C)alkoxy, di-[(1-4C)alkoxy-(2-4C)alkyl]amino-(2-4C)alkoxy, thiamorpholino-(2-4C)alkoxy, 1-oxothiamorpholino-(~-4C)alkoxy or 1,1-dioxothiamorpholino-(2-4C)alkoxy, and wherein any of the above-mentioned R' substituents comprising a CHZ
(methylene) group which is not attached to a N or (J atom optionally bears on said CHI group a hydroxy substituent;
or a pharmaceutically-acceptable salt thereof.
According to a further aspect of the present invention there is provided a quinazoline derivative of the formula I

7588?-223 wherein n is l, 2 or 3 and each R' is independently halogeno or trifluoromethyl;
R3 is (1-~C)alkoxy; and R~ is di-[(1-4C)alkyl]amino-(2-~1C )alkoxy, pyrrolidin-1-vl-(2-:1C)alkoxy, piperidino-(?-4C)alkoxy, morpholino-(?-4C)alkoxy, piperazin-1-yl-('?-4C)alkoxy, 4-(1-4C)alkylpiperazin-1-yl-(2-4C)alkoxy, imidazol-1-yl-(2-4C)alkoxy or di-[( 1-4C)alkoxy-(2-4C)alkyl]amino-(2-4C)alkoxy, and wherein any of the above-mentioned R~ substituents comprising a CHZ
(methylene) group which is not attached to a N or O atom optionally bears on said CHZ group a hydroxy substituent;
or a pharmaceutically-acceptable salt thereof.
In this specification the term "alkyl" includes both straight and branched chain alkyl groups but references to individual alkyl groups such as "propyl" are specific for the straight chain version only. For example when R~ is a di-[( 1-~C)alkyl]amino-(?-~C)alkoxy group, suitable values for this generic radical include ''-dimethylaminoethoxy, 3-dimethylaminopropoxy, ~-dimethylaminopropoxv and 1-dimethylaminoprop-2-yloxy. An analogous convention applies to other generic terms.
Within the present invention it is to be understood that, insofar as certain of the compounds of the formula I may exist in optically active or racemic forms by virtue of one or more substituents containing an asymmetric carbon atom, the invention encompasses any such optically active or racemic form which possesses anti-proliferative activity. The synthesis of optically active forms may be carried out by standard techniques of organic chemistry well known in the art, for example by synthesis from optically active starting materials or by resolution of a racemic form.
The quinazolines of the formula I are unsubstituted at the 2-, 5- and 8-positions.
It is also to be understood that certain quinazoline derivatives of the formula I can exist in solvated as well as unsolvated forms such as, for example, hydrated forms. It is to be understood that the invention encompasses all such solvated forms which possess anti-proliferative activity.
Suitable values for the generic radicals referred to above include those set out below.

A suitable value for R' when it is halogeno is, for example fluoro, chloro.
bromo or iodo.
A suitable value for R3 when it is (1-4C)alkoxy is, for example, methoxy, ethoxy, propoxy, isopropoxy or butoxy.
Suitable values for each R' substituent which may be present on the quinazoline ring include, for example:-for di-[(1-4C)alkyl]amino-(2-4C)alkoxy: 2-dimethylaminoethoxy, 2-,~1-ethyl-N-methylamino)ethoxy, ?-diethvlaminoethoxy, 2-dipropylaminoethoxy, 3-dimethylaminopropoxy, 3-diethylaminopropoxy, ?-dimethylaminopropoxy, ?-diethylaminopropoxy.
1-dimethylaminoprop-2-yloxy, 1-diethvlaminoprop-'_'-yloxy, L -dimethylamino-?-methylprop-2-yloxy, ?-dimethylamino-?-methylpropoxy.
4-dimethylaminobutoxy, =~-diethylaminobutoxy, 3-dimethylaminobutoxy, 3-diethylaminobutoxy, ?-dimethylaminobutoxy, ?-diethylaminobutoxy.
1-dimethylaminobut-2-yloxy and 1-diethylaminobut-2-yloxy;
for pyrrolidin-1-yl-(2-4C)-alkoxy: 2-(pyrrolidin-1-yl)ethoxy, 3-(pyrrolidin-1-yl)propoxy and 4-(pyrrolidin-1-yl)butoxy;

for piperidino-(2-4C)alkoxy:2-piperidinoethoxy, 3-piperidinopropoxy and 4-piperidinobutoxy;

for morpholino-(2-4C)alkoxy:?-morpholinoethoxy, 3-morpholinopropoxy and 4-morpholinobutoxy;

for piperazin-1-yl-(2-4C)alkoxy:2-(piperazin-1-yl)ethoxy, 3-(piperazin-1-yl)propoxy and 4-(piperazin-1-yl)butoxy;

WO 96/33980 - ~ - PCTlGB96/00961 for 4-(1-4~C)alkylpiperazin-1-yl-(2-4C)alkoxy: 2-(4-methylpiperazin-1-yl)ethoxy, 3-(4-methylpiperazin-1-yl)propoxy and 4-(4-methylpiperazin-1-yl)butoxy;
for imidazol-1-yl-(2-~1C)alkoxy: 2-(imidazol-1-yl)ethoxy, 3-(imidazol-1-yl)propoxy ' and 4-(imidazol-1-yl)butoxy;
for di-[(1-4C)alkoxy-(2-4C)-alkyl]amino-(2-4C)alkoxy: 2-[di-(2-methoxyethyl)amino]ethoxy, 3-[di-(2-methoxyethyl)amino]propoxy, 2-[di-(3-methoxypropyl)amino]ethoxy and 3-[di-(3-methoxypropyl)amino]propoxy;
for thiamorpholino-(?-4C)alkoxy: 2-thiamotpholinoethoxy.
3-thiamorpholinopropoxy and 4-thiamorpholinobutoxy;
for 1-oxothiamorpholino-(2-4C)alkoxy: 2-(I-oxothiamorpholino)ethoxy, 3-( 1-oxothiamorpholino)propoxy and 4-( 1-oxothiamorpholino)butoxy;
for l, l-dioxothiamorpholino-(2-4C)alkoxy: 2-( 1. I -dioxothiamorpholino )ethoxy.
3-( 1. I -dioxothiamorpholino )propoxv and -1-~ 1.1-dioxothiamorpholinolbutosy.
Suitable substituents formed when any of the R~ substituents comprising a CH, group which is not attached to a N or O atom bears on said CHI group a hydroxv substituent include. for example. substituted di-[(1--1C)alkvl]amino-(?-4C)alkoxy groups.
for example hydroxy-di-[(I-~C)alkyl]amino-(2-4C)alkoxv groups such as 3-dimethylamino-?-hydroxypropoxy.
' A suitable pharmaceutically-acceptable salt of a quinazoline derivative of the invention is. for example. an acid-addition salt of a quinazoline derivative of the invention which is sufficiently hasic. fer example. a mono- ~r d~-acid-addition salt with. for example. an inorganic or organic acid. for example hydrochloric. by drobromic. sulphuric.
phosphoric.
trifluoroacetic, citric. malefic. tartaric. fumaric. methane,ulphomr or .~-toluenesulphon~c aca _g_ Particular novel compounds of the invention include, for example, quinazoline derivatives of the formula I, or pharmaceutically-acceptable salts thereof, wherein:-(a) n is 1 or 2 and each R" is independently tluoro, chloro, bromo or trifluoromethyl;
and R' and Rl have any of the meanings defined hereinbefore or in this section relating to particular novel compounds of the invention;
(b) n is l, 2 or 3 and each R' is independently tluoro, chloro or bromo; and R3 and R' have any of the meanings defined hereinbefore or in this section relating to particular novel compounds of the invention;
(c) R' is methoxy or ethoxy; and n, R' and R' have any of the meanings defined hereinbefore or in this section relatin~,~ to particular novel compounds of the invention;
(d) R~ is ?-dimethylaminoethoxy, ~'-diethylaminoethoxy, 3-dimethylaminopropoxy, 3-diethylaminopropoxy, ?-(pyrrolidin-1-yl)ethoxy. 3-(pyrrolidin-1-yl)propoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, ?-morpholinoethoxy, ~-morpholinopropoxy, 2-(piperazin-1-yl)ethoxy, 3-(piperazin-l-yl)propoxy, ?-(4-methylpiperazin-1-yl)ethoxy, 3-(4-methylpiperazin-1-yl)propoxy, 2-(imidazol-1-yl)ethoxy, 3-(imidazol-1-yl)propoxy, 2-[di-(2-methoxyethyl)amino]ethoxy, s-[di-(?-methoxvethyl)amino]propoxy, 3-dimethylamino-?-hydroxypropoxy, 3-diethylamino-2-hydroxypropoxy, 3-(pyrrolidin-1-yl)-?-hydroxypropoxy, 3-piperidino-2-hydroxypropoxy, 3-morpholino-2-hydroxypropoxy, 3-(piperazin-1-yl)-?-hydroxypropoxy or 3-(4-methylpiperazin-1-yl)-2-hvdroxypropoxy;
and n, R'' and R3 have any of the meanings defined hereinbefore or in this section relating to particular novel compounds of the invention;
(e) R~ is 3-dimethylaminopropoxy, 3-diethylaminopropoxy, 3-(pyrrolidin-1-yl)propoxy, 3-piperidinopropoxy, ~-morpholinopropoxy, 3-(piperazin-1-yl)propoxy, 3-(4-methylpiperazin-1-yl)propoxy, 3-(imidazol-1-yl)propoxy, 3-[di-(2-methoxyethyl)amino]propoxy, 3-dimethylamino-2-hydroxypropoxy, 3-diethylamino-2-hydroxypropoxy, 3-(pyrrolidin-1-yl)-2-hydroxypropoxy, 3-piperidino-2-hydroxypropoxy, ~-morpholino-2-hydroxypropoxy, 3-(piperazin-1-yl)-2-hydroxypropoxy or 3-(~-methylpiperazin-1-yl)-2-hydroxypropoxy;
and n, R~ and R3 have any of the meanings defined hereinbefore or in this section relating to particular novel compounds of the invention;

Rl is 3-dimethylaminopropoxy, 3-diethvlaminopropoxy, 3- .{pyrrolidin-1-yl)propoxy, 3-momholinopropoxy or 3-morpholino-?-hydroxypropoxy; and n, R~ and R3 have any of the meanings defined hereinbefore or in this section relating to particular novel compounds of the invention;
(g) Rl is 3-morpholinopropoxy; and n, RZ and R' have any of the meanings defined hereinbefore or in this section relating to particular novel compounds of the invention.
A preferred compound of the invention is a quinazoline derivative of the formula I wherein {R')" is 3'-fluoro-4'-chloro or 3'-chloro-4'-lluoro;
R3 is methoxy; and Rl is ?-dimethylaminoethoxy, ?-diethylaminoethoxy, p-dimethylaminopropoxy, 3-diethylaminopropoxy, 2-{pyrrolidin-1-yl)ethoxy. 3-(pyrrolidin-1-yl)propoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, 2-morpholinoethoxy, ~-morpholinopropoxy, 2-(4-methylpiperazin-1-vl)ethoxy, ~'-(irnidazol-1-yl)ethoxy, 3-{imidazol-1-yl)propoxy, 2-[di-{2-methoxyethyl)amino]ethoxv or p-morpholino-?-hydroxypropoxy;
or a pharmaceutically-acceptable mono- or di-acid-addition salt thereof.
A further preferred compound of the invention is a quinazoline derivative of the formula I
wherein (RZ)" is 3'-chloro, 3'-bromo, 2',4'-difluoro, 2',4'-dichloro, 3',4'-difluoro, 3',4'-dichloro, 3'-fluoro-4'-chloro or 3'-chloro-=1'-t7uoro:
R3 is methoxy; and R~ is 2-dimethylaminoethoxy, 2-diethylaminoethoxy, 3-dimethylaminopropoxy, 3-diethylaminopropoxy, 2-(pyrrolidin-1-yl)ethoxy, 3-Ipyrrolidin-1-yl)propoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 2-(4-methylpiperazin-1-yl)ethoxy, 2-(imidazol-1-yl)ethoxy, 2-[di-{?-methoxyethyl)a~nino]ethoxy or 3-morpholino-2-hydroxypropoxy;
or a pharmaceutically-acceptable acid-addition salt thereof.
A further preferred compound of the invention is a quinazoline derivative of the formula I
wherein (RZ)~ is 3'-chloro, 3'-bromo, 2',4'-difluoro, 2',4'-dichloro, 3',4'-difluoro, 3',4'-dichloro, 3'-fluoro-4'-chloro or 3'-chloro-4'-fluoro;
R3 is methoxy; and WO 96/33980 - I p _ PCTlGB96/00961 R' is 3-dimethylaminopropoxy, 3-diethylaminopropoxy, 3-(pyrrolidin-1-yl)propoxy, 3-morpholinopropoxy or 3-morpholino-2-hydroxypropoxy;
or a pharmaceutically-acceptable acid-addition salt thereof.
A further preferred compound of the invention is a quinazoline derivative of the formula I
wherein (R2)n is 3',4'-difluoro, 3',4'-dichloro, 3'-fluoro-4'-chloro or 3'-chloro-4'-fluoro;
R3 is methoxy; and Rl is 3-morpholinopropoxy;
or a pharmaceutically-acceptable acid-addition salt thereof.
A specific preferred compound of the invention is the following quinazoline derivative of the formula I:-4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6-(2-pyrrolidin-1-ylethoxy)quinazoline;
or a pharmaceutically-acceptable acid-addition salt thereof.
A further specific preferred compound of the invention is the following quinazoline derivative of the formula I:-4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6-(2-morpholinoethoxy)quinazoline;
or a pharmaceutically-acceptable acid-addition salt thereof.
A further specific preferred compound of the invention is the following quinazoline derivative of the formula I:-4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6-[2-(4-methylpiperazin-1-y 1)ethoxy]quinazoline:
or a pharmaceutically-acceptable acid-addition salt thereof.
A further specific preferred compound of the invention is the following quinazoline derivative of the formula I:-4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6- { 2-[di-(2-methoxvethyl )amino]ethoxy } -quinazoline;
or a pharmaceutically-acceptable acid-addition salt thereof.
A further specific preferred compound of the im~ention is the following quinazoline derivative of the formula I:-4-(3'-chloro-4'-fluoroanilino)-6-(2-dimethylaminoethoxy)-7-methoxvquinazoline:
or a pharmaceutically-acceptable acid-addition salt thereof.
A further specific preferred compound of the iw ention is the following quinazoline derivative of the formula I:-WO 96/33980 - 11 _ PCT/GB96100961 4-(3'-chloro-4'-fluoroanilino)-6-(2-diethylaminoethoxy)-7-methoxyquinazoline;
or a pharmaceutically-acceptable acid-addition salt thereof.
A further specific preferred compound of the invention is the following quinazoline derivative of the formula I:-4-(2',4'-difluoroanilino)-6-(3-dimethylaminopropoxy)-7-methoxyquinazoline;
or a pharmaceutically-acceptable acid-addition salt thereof.
A further specific preferred compound of the invention is the following quinazoline derivative of the formula I:-4-(3'-chloro-4'-fluoroanilino)-6-(2-hydroxy-3-morpholinopropoxy)-7-methoxyquinazoline;
or a pharmaceutically-acceptable acid-addition salt thereof.
A further specific preferred compound of the invention is the following quinazoline derivative of the formula I:-4-(2',4'-difluoroanilino)-7-methoxy-6-(3-morpholinopropoxy)quinazoline;
or a pharmaceutically-acceptable acid-addition salt thereof.
A further specific preferred compound of the invention is the following quinazoline derivative of the formula I:-4-(3'-chloro-4'-fluoroanilino)-6-(2-imidazol-1-ylethoxy)-7-methoxyquinazoline;
or a pharmaceutically-acceptable acid-addition salt thereof.
A further specific preferred compound of the invention is the following quinazoline derivative of the formula I:-4-(3'-chloro-4'-fluoroanilino)-6-(3-diethylaminopropoxy)-7-methoxyquinazoline:
or a pharmaceutically-acceptable acid-addition salt thereof.
A further specific preferred compound of the invention is the following quinazoline derivative of the formula I:-4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6-(3-pyrrolidin-1-vlpropoxy)quinazoline;
or a pharmaceutically-acceptable acid-addition salt thereof.
A further specific preferred compound of the invention is the following quinazoline derivative: of the formula I:-.l-(3'-chloro--1'-f7uoroanilino?-~-( ~-dimethylaminopropoxv 1-7-methowquinazoline;
or a pharmaceutically-acceptable acid-addition salt thereof.
A further specific preferred comFound of the invention is the following quinazoline derivative of the formula I:-4-(3',4'-difluoroanilino)-6-(3-dimethylaminopropoxy)-7-methoxyquinazoline;
or a pharmaceutically-acceptable acid-addition salt thereof.
A further specific preferred compound of the invention is the following quinazoline derivative of the formula I:-4-(3',4'-difluoroanilino)-7-methoxy-6-(3-morpholinopropoxy)quinazoline;
or a pharmaceutically-acceptable acid-addition salt thereof.
A further specific preferred compound of the invention is the following quinazoline derivative of the formula I:-6-(3-diethylaminopropoxy)-4-(3',4'-difluoroanilino)-7-methoxyquinazoline;
or a pharmaceutically-acceptable acid-addition salt thereof.
A further specific preferred compound of the invention is the following quinazoline derivative of the formula I:-4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6-(3-piperidinopropoxy)quinazoline;
or a pharmaceutically-acceptable acid-addition salt thereof.
A further specific preferred compound of the invention is the following quinazoline derivative of the formula I:-4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6-(2-piperidinoethoxy)quinazoline;
or a pharmaceutically-acceptable acid-addition salt thereof.
A further specific preferred compound of the invention is the following quinazoline derivative of the formula I:-4-(3'-chloro-4'-fluoroanilino )-6-(3-imidazol-1-ylpropoxy)-7-methoxyquinazoline;
or a pharmaceutically-acceptable acid-addition salt thereof.
In a further aspect of the invention it has been found that certain of the compounds of the invention possess not only the property of potent 'fit vivo anti-proliferative activity wherebs~ the rate of growth of tumour tissue is slowed but also the property of being able to arrest the growth of tumour tissue and. at higher doses, of being able to cause shrinkage of the original tumour volume.
According to this aspect of the invention there is provided the quinazoline derivative of the formula I:-4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6-(3-morpholinopropow )quinazoline;
or a pharmaceutically-acceptable acid-addition salt thereof.

WO 96/33980 - 13 _ PCTIGB96/00961 There is also provided the hydrochloride salt of the quinazoline derivative of the formula I:-4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6-(3-morpholinopropoxy)quinazoline.
There is also provided the dihydrochloride salt of the quinazoline derivative of the formula I:-4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6-(3-morpholinopropoxy)quinazoline.
A quinazoline derivative of the formula I, or a pharmaceutically-acceptable salt thereof, may be prepared by any process known to be applicable to the preparation of chemically-related compounds. Suitable processes include, for example, those illustrated in European Patent Applications Nos. 0520722, 0566226, 0602851, 0635498 and 0635507.
Such processes, when used to prepare a quinazoline derivative of the formula I, or a pharmaceutically-acceptable salt thereof, are provided as a further feature of the invention and are illustrated by the following representative examples in which, unless otherwise stated, n, R2, R3 and R1 have any of the meanings defined hereinbefore for a quinazoline derivative of the formula I. Necessary starting materials may be obtained by standard procedures of organic chemistry. The preparation of such starting materials is described within the accompanying non-limiting Examples. Alternatively necessary starting materials are obtainable by analogous procedures to those illustrated which are within the ordinary skill of an organic chemist.
(a) The reaction, conveniently in the presence of a suitable base. of a quinazoline of the formula II
Z
N / \ R, ~N ~ R3 II
wherein Z is a displaceable group. with an aniline of the formula III
~R2~n i H.,N III

WO 96/33980 _ 14 - PCT/GB96/00961 A suitable displaceable group Z is, for example, a halogeno, alkoxy, aryloxy or sulphonyloxy group, for example a chloro, bromo, methoxy, phenoxy, methanesulphonyloxy or toluene-4-sulphonyloxy group.
A suitable base is, for example, an organic amine base such as, for example, pyridine, 2,6-lutidine, collidine, 4-dimethylaminopyridine, triethylamine, morpholine, I~-methylmorpholine or diazabicyclo[5.4.0]undec-7-ene, or, for example, an alkali or alkaline earth metal carbonate or hydroxide, for example sodium carbonate, potassium carbonate, calcium carbonate, sodium hydroxide or potassium hydroxide. Alternatively a suitable base is, for example, an alkali metal or alkaline earth metal amide, for example sodium amide or sodium bis(trimethylsilyl)amide. .
The reaction is preferably carried out in the presence of a suitable inert solvent or diluent, for example an alkanol or ester such as methanol. ethanol, isopropanol or ethyl acetate, a halogenated solvent such as methylene chloride, chloroform or carbon tetrachloride, an ether such as tetrahydrofuran or 1,4-dioxan, an aromatic solvent such as toluene, or a dipolar aprotic solvent such as ~LI,L~1-dimethylformamide, ~1,Z,I-dimethylacetamide, ~[-methylpyrrolidin-2-one or dimethylsulphoxide. The reaction is conveniently carried out at a temperature in the range, for example, 10 to 150°C. preferably in the range 20 to 80°C.
The quinazoline derivative of the formula I may be obtained from this process in the form of the free base or alternatively it may be obtained in the form of a salt with the acid of the formula H-Z wherein Z has the meaning defined hereinbefore. When it is desired to obtain the free base from the salt. the salt may be treated with a suitable base as defined hereinbefore using a conventional procedure.
(b) For the production of those compounds of the formula I wherein R~ is an amino-substituted (2-4C)alkoxy group, the alkylation. conveniently in the presence of a suitable base as defined hereinbefore, of a quinazoline derivative of the formula I wherein R~
is a hydroxy group.
A suitable alkylating agent is, for example. any anent knowm in the art for the alkylation of hydroxy to amino-substituted alkoxy, for example an amino-substituted alkyl halide, for example an amino-substituted (2-4C)alkvl chloride. bromide or iodide. in the presence of a suitable base as defined hereinbefore. in a suitable inert solvent or diluent as defined hereinbefore and at a temperature in the ranee. for example. I U to I
40°C.
conveniently at or near 80°C.

(c) For the production of those compounds of the formula I wherein R' is an amino-substituted (2-4C)alkoxy group, the reaction, conveniently in the presence of a suitable base as defined hereinbefore, of a compound of the formula I wherein R' is a hydroxy-(2-4C)alkoxy group, or a reactive derivative thereof. with an appropriate amine.
A suitable reactive derivative of a compound of the formula I wherein R' is a hydroxy-(2-4C)alkoxy group is, for example, a halogeno- or sulphonyloxy-(2-4C)alkoxy group such as a bromo- or methanesulphonyloxy-(2-4C)alkoxy group.
The reaction is preferably carried out in the presence of a suitable inert solvent or diluent as defined hereinbefore and at a temperature in the range, for example, 10 to 150°C, conveniently at or near 50°C.
(d) For the production of those compounds of the formula I wherein R' is a hydroxy-amino-(2-4C)alkoxy group, the reaction of a compound of the formula I
wherein R' is a 2,3-epoxypropoxy or 3,4-epoxybutoxy group with an appropriate amine.
The reaction is preferably carried out in the presence of a suitable inert solvent or diluent a.s defined hereinbefore and at a temperature in the range, for example, I O to 150°C, conveniently at or near 70°C.
When a pharmaceutically-acceptable salt of a quinazoline derivative of the formula I is required. for example a mono- or di-acid-addition salt of a quinazoline derivative of the formula I, it may be obtained. for example. by reaction of said compound with, for example. a suitable acid using a con~~entional procedure.
As stated hereinbefore the quinazoline derivatives defined in the present invention possess anti-proliferative activity which is believed to arise from the Class I
receptor tyrosine kinase inhibitory activity of the compounds. These properties may be assessed, for example. using one or more of the procedures set out below:-(a) An inyitro assay which determines the ability of a test compound to inhibit the enzyme EGF receptor tyrosine kinase. Receptor tyrosine kinase was obtained in partially purified form from A-431 cells (derived from human vulva) carcinoma) by the procedures described below which are related to those described by Carpenter et ,~j_. J.
F3iol. Chem., 1979, ~~-I. ~8$~l. Cohen ~t ~. J. l3iol. Chem.. 198'_'. ''~7. 1 ~'_'3 and by Braun ~t ~t~., ,t. Biol. Cltem., 1984, a;9, '_'O51.
A-431 cells were grown to confluence using LW lbecco's modified Eagle's medium ! D~'IE\'I ) containrn!~ ~° ° fetal calm scrum ( FCS 1. The ohtarned cells were homogenised in a hypotonic borate/EDTA buffer at pH 10.1. The homogenate was centrifuged at 400 g for 10 minutes at 0-4°C. The supernatant was centrifuged at 25,000 g for :30 minutes at 0-4°C. The pelleted material was suspended in 30 mM Hepes buffer at pH 7.4 containing 5% glycerol, 4 mM benzamidine and 1 % Triton* X-100, :stirred for ~~. hour at 0-4°C, and recentrifuged at 100,000 g for 1 hour at 0-4°C. The supernatant, containing solubilised receptor tyrosine kinase, was stored in liquid nitrogen.
For test purposes 40 ~l of the enzyme solution so obtained was added to a mixture of 400 ~l of a mixture of 150 mM Hepes buffer at pH 7.4, 500 ~.M sodium orthovanadate, 0.1% Triton X-100, 10% glycerol, 200 ~l water, 80 ~1 of 25 mM DTT and 80 ~l of a mixture of 12.5 mM manganese chloride, 125 mM magnesium chloride and disti:Lled water. There was thus obtained the test enzyme solution.
Each test compound was dissolved in dimethyl-sulphoxide (DMSO) to give a 50 mM solution which was diluted with 40 mM Hepes buffer containing 0.1% Triton X-100, 10%
glycerol and 10% DMSO to give a 500 ~M solution. Equal volumes of this solution and a solution of epidermal growth factor (EGF; 20 ~g/ml) were mixed.
[,~-3zP]ATP (3000 Ci/mM, 250 ~,Ci) was diluted to a volume of 2 ml by the addition of a solution of ATP (100 ~,M) in distilled water. An equal volume of a 4 mg/ml solution of the peptide Arg-Arg-Leu-:Lle-Glu-Asp-Ala-Glu-Tyr-Ala-A.la-Arg-Gly in a mixture of 40 mM Hepes buffer at pH 7.4, 0.1%
Triton X-100 and 10% glycerol was added.
*Trademark 16a The test compound/EGF mixture solution (5 ~l) was added to the test enzyme solution (10 ~l) and the mixture was incubated at 0-4°C for 30 minutes. The ATP/peptide mixture (10 ~l) was added and the m_ix.ture was incubated at 25°C for 10 minutes. The phosphorylation reaction was terminated by the addition of 5°s tr:ichloroacetic acid (40 ~1) and bovine serum albumin (BSA; 1 mg/ml, 5 ~l). 'The mixture was allowed to stand at 4°C for 30 minutes and then centrifuged. An aliquot (40 ~l) of the supernatant was placed onto a strip of Whatman* p 81 phosphocellulose paper.
The strip was washed in 75 mM phosphoric acid (4x10 ml) and blotted dry. Radioactivity present in the filter paper was measured using a liquid scintillation counter (Sequence A).
The reaction sequence was repeated in the absence of the EGF
(Sequence B) and again in the absence of the test compound (Sequence C) .
Receptor tyrosine kinase inhibition was calculated as follows:
*Trademark WO 96/33980 - 1 ~ - PCT/GB96/00961 100-(A-B) Inhibition = x 100 C-B
- The extent of inhibition was then determined at a range of concentrations of test compound to give an ICSo value.
(b) An in vitro assay which determines the ability of a test compound to inhibit the EGF-stimulated growth of the human naso-pharyngeal cancer cell line KB.
KB cells were seeded into wells at a density of 1 x 10't - 1.~ x 10~ cells per well and grown for 24 hours in DMEM supplemented with 5% FCS (charcoal-stripped).
Cell growth was determined after incubation for 3 days by the extent of metabolism of MTT
tetrazoli.um dye to furnish a bluish colour. Cell growth was then determined in the presence of EGF ( 10 ng/ml) or in the presence of EGF ( 10 ng/ml) and a test compound at a range of concentrations. An ICso value could then be calculated.
(c) An in-vivo assay in a group of athymic nude mice (strain ONL~:AIpk) which determines the abilivty of a test compound (usually administered orally as a ball-milled suspension in 0.5% polysorbate) to inhibit the growth of xenografts of the human vulval epidermoid carcinoma cell line A-431.
A-431 cells were maintained in culture in DMEM supplemented with 5% FCS
and 2mM glutamine. Freshly cultured cells were harvested by trypsinization and injected subcutaneously ( 10 million cells/0.1 ml/mouse) into both flanks of a number of donor nude mice. When sufficient tumour material was available taller approximately 9 to 1-1 days), fragments of tumour tissue were transplanted in the flanks of recipient nude mice (test day 0).
Generally, on the seventh day after transplantation (test day 7) groups of 7 to 10 mice with similar-sized tumours were selected and dosing of the test compound was commenced. Once daily dosing of test compound was continued for a total of 13 days (test days 7 to 19 inclusive). In some studies the dosing of the test compound was continued beyond test day 19. for example to test day '?6. In each case. on the following test day the animals were killed and the final tumour volume was calculated from measurements of the length and width of th.:
tumours. Results were calculated as a percenta<: a inhibition of tumour wlume relative to untreated controls.
Although the pharmacological properties of the compounds of the formula I vary with structural chan_=a as rxpected. in general actives pe~sscssed by compounds e~t~ the formula WO 96/33980 - 1 g - PCT/GB96/00961 I may be demonstrated at the following concentrations or doses in one or more of the above tests (a), (b) and (c):-Test (a):- ICso in the range, for example, 0.01-1 ~M; .
Test (b):- ICso in the range, for example, 0.05-1 ~.M;
Test (c):- 20 to 90% inhibition of tumour volume from a daily dose in the range, for example, 12.5 to 200 mg/kg.
Thus, by way of example, the compounds described in the accompanying Examples possess activity at approximately the following concentrations or doses in tests (a) and (b).
Example Test (al Test (bl ICso (wM) ICso (!~M) 1 0.02 0.1 2 0.09 0.7 3 0.01 0.4 4 0.01 0.1 0.06 0.2 6 0.01 0.1 7 0.09 0.3 8 0.48 0.9 9 0.01 0.1 12 0.06 0.16 13 0.07 0.12 14 0.67 0.3 0.07 0.6~

17 0.0~ 0. I
18 0.''7 0.39 19 0.5'_' O..ls ''U 0.67 0.~

E7Cam~ Test fal Test fbl ICso (N~M) ICso (wM) ' 21 0.08 0.12 22 0.1 0.19 23 0.08 0.16 In addition all of the compounds described in the accompanying Examples possess activity in test (c) with EDso values of less than or equal to 200 mg/kg/day. In particular, the compound described in Example 1 hereinafter possesses activity in test (c) with an EDso value of approximately 12.~ mg/kg.
According to a further aspect of the invention there is provided a pharmaceutical composition which comprises a quinazoline derivative of the formula I. or a pharmaceutically-acceptable salt thereof, as defined hereinbefore in association with a pharmaceutically-acceptable diluent or carrier.
The composition may be in a form suitable for oral administration, for example as a tablet or capsule, for parenteral injection (including intraveous.
subcutaneous, intramuscular, intravascular or infusion) as a sterile solution, suspension or emulsion. for topical administration as an ointment or cream or for rectal administration as a suppository.
In general the above compositions may be prepared in a conventional manner using conventional excipients.
The quinazoline derivative will normally be administered to a warm-blooded animal at a unit dose within the range ~-10000 mg per square meter body area of the animal, i.e. approximately 0.1-200 mg/kg, and this normally provides a therapeutically-effective dose.
A unit dose form such as a tablet or capsule will usually contain. for example 1-250 mg of active ingredient. Preferably a daily dose in the range of 1-100 mgikg is employed. For the quinazoline derivative of Example 1. or a pharmaceutically-acceptable salt thereof. a daily dose of approximately 1 to 20 mg/kg. preferably of 1 to ~ mgrl:g is employed.
However the daily dose will necessarily he varied depending upon the host treated. the particular route of administration. and the severity of the illness being treated. .accordin~_ly the optimum dosage may be determined by the practitioner who is treating am particular patient.

According to a iiirther aspect of the present invention there is provided a quinazoline derivative of the formula I as defined hereinbefore for use in a method of treatment of the human or animal body by therapy.
We have found that the compounds of the present invention possess anti-proliferative properties such as anti-cancer properties which are believed to arise from their Class I receptor tyrosine kinase inhibitory activity. Accordingly the compounds of the present invention are expected to be useful in the treatment of diseases or medical conditions mediated alone or in part by Class I receptor tyrosine kinases, i.e. the compounds may be used to produce a Class I receptor tyrosine kinase inhibitory effect in a warm-blooded animal in need of such treatment. Thus the compounds of the present invention provide a method for treating the proliferation of malignant cells characterised by inhibition of Class I receptor tyrosine kinases, i.e. the compounds may be used to produce an anti-proliferative effect mediated alone or in part by the inhibition of Class I receptor tyrosine kinase. Accordingly the compounds of the present invention are expected to be useful in the treatment of psoriasis and/or cancer by providing an anti-proIiferative effect, particularly in the treatment of Class I
receptor tyrosine kinase sensitive cancers such as cancers of the breast, lung, colon, rectum, stomach, prostate, bladder, pancreas and ovary.
Thus according to this aspect of the invention there is provided the use of a quinazoline derivative of the formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore in the manufacture of a medicament for use in the production of an anti-proliferative effect in a warm-blooded animal such as man.
According to a further aspect of the invention there is provided the use of a quinazoline derivative of the formula I, or a pharmaceutically-acceptable salt thereof, as defined hereinbefore in the production of an anti-proliferative effect in a warm-blooded animal such as man.
As stated above the size of the dose required for the therapeutic or prophylactic treatment of a particular proliferative disease will necessarily be varied depending on the host treated, the route of administrat,on and the severity of the illness being treated. A unit dose in the range, for example, I-200 mg/kg, preferably 1-100 mg/kg, more preferably 1-10 mg/kg is envisaged.
The anti-proliferative treatment defined hereinbefore may be applied as a sole therapy or may involve, in addition to the quinazoline derivative of the invention, one or more other anti-tumour substances, for example cytotoxic or cytostatic anti-tumour :>ubstances, for example those selected from, for example, mitotic inhibitors, for example vinblastine, vindesine and vinorelbine; tubulin disassembly inhibitors such as Taxol.*; alkylating agents, for example cis-platin, carboplatin and cyclophosphamide;
antimetabolites, for example 5-fluorouracil, tegafur, methotrexate, cytosine ax-abinoside and hydroxyurea, or, for example, one of the preferred antimetabolites disclosed in European Patent Applicat.i_on No. 239362 such as N-{5-[N-(3,4-dihydro-2-methyl-4-oxoquinazolin-6-ylmethyl)-N-methylamino]-2-thenoyl~-L-glutamic acid; intercalating antibiotics, for example adriamiycin, mitomycin and bleomycin; enzymes, for example asparaginase; topoisomerase inhibitors, for example etoposide and camptothecin; biological response modifiers, for example interferon; anti-hormones, for example antioestrogens such as tamoxifen, for example antiandrogins such as 4'-cyano-3-(4-fluorophenylsulphonyl)-2-hydroxy-2-methyl-3'-(trifluorometr~yl)-propionanilide or, for example LHRH antagonists or LHR~:: agonists such as goserelin, leuprorelin or buserelin and hormone synthesis inhibitors, for example aromatase inhibitors such as those disclosed in European Patent Application No. 0296749, for example 2,2'-[5-(1H-1,2,4-triazol-1-yl.methyl)-1,3-phenylene]bis(2-methylpropionitrile), and, for example, inhibitors of 5a-reductase such as 17~i- (I~'-tert-butylcarbamoyl) -4-aza-5a-androst-1-en-3-one. Such conjoint treatment may be achieved by way of the simultaneous, sequential or separate dosing of the individual components of the treatment. According to this aspect of the invention there is provided a pharmaceutical product comprising a quinazoline derivative of the formula I as defined hereinbefore and an additional *Trademark anti-tumour substance a:~ defined hereinbefore for the conjoint treatment of cancer.
As stated above the quinazoline derivative defined in the present invention is an effective anti-cancer agent, which property is believed to arise from its Class I
receptor tyrosine kinase inhibitory properties. Such a quinazoline derivative c>f= the invention is expected to possess a wide range of anti-cancer properties as Class I
receptor tyrosine kinases have been implicated in many common human cancers such as leukaemia and breast, lung, colon, rectal, stomach, prostate, bladder, pancreas and ovarian cancer. Thus it is expected that a quinazoline derivative of the invention will possess anti-cancer activity against these cancers. It is in addition expected that a quinazoline deri~~ative of the present invention will possess activity against. a range of leukaemias, lymphoid malignancies and solid tumours such as carcinomas and sarcomas in tissues such as the liver, kidney, prostate and pancreas.
It is further expected that a quinazoline derivative of the invention will possess activity against other diseases involving excessive cellular proliferation such as psoriasis and bE~nign prostatic hypertrophy (BPH).
It is also to be expected that a quinazoline derivative of the invention will be useful in the treatment of additional disorders of cellular growth in which aberrant cell signalling by way of receptor tyrosine kinase enzymes or non-receptor tyrosine kinase enzymes, including as yet unidentified tyrosine ki.nase enzymes, are involved. Such disorders include, for example, inflammation, angiogenesis, 22a vascular restenosis, immunological disorders, pancreatitis, kidney disease and blast:ocyte maturation and implantation.
The invention will now be illustrated in the following non-limiting Examples in which, unless otherwise stated:
(i) evaporations were carried out by rotary evaporation in vacuo and work-up procedures were carried out after removal of residual solids such as drying agents by filtration, unless otherwise stated magnesium sulphate was used as a drying agent for organic solutions;
(ii) operations were carried out at ambient temperature, that is in t:he range 18-25°C and under an atmosphere of an inert c~as such as argon;
(iii) column chromatography (by the flash procedure) and medium pressure liquid chromatography (MPLC) were performed on Merck Kieselgel silica (Art. 9385) or Merck Lichroprep* RP-18 (Art. 9303) reversed-phase silica obtained from E. Merck, Darmstadt, Germany;
(iv) yields are given for illustration only and are not necessarily the maximum attainable;
(v) melting points were determined using a Mettler SP62 automatic melting point apparatus, an oil-bath apparatus or a Koffler riot plate apparatus.
(vi) the struc:t:ures of the end-products of the formula I were confirmed by nuclear (generally proton) magnetic resonance (NMR) and mass spectral techniques;
proton magnetic resonance chemical shift values were measured on the delta scale and peak multiplicities are shown as follows: s, si.nglet; d, doublet; t, triplet; m, *Trademark 22b multiplet, unless otherwise stated end-products of the formula I were dissolved. in CD3SOCD3 for the determination of NMR values:

(vii) intermediates were not generally fully characterised and purity was assessed by thin layer chromatography (TLC), infra-red (IR) or NMR analysis;
(viii) the following abbreviations have been used:-DMF N,,~1-dimethylformamide;
DIVISO dimethylsulphoxide;
THF tetrahydrofuran;
DMA N,N-dimethylacetamide.

Exam~e 1 A mixture of 4-(3'-chloro-4'-fluoroanilino)-6-hydroxy-7-methoxyquinazoline (1 g), 3-morpholinopropyl chloride (J. A_m__er. Chem.Soc., 1945, ~~, 736; 0.62 g), potassium carbonate (2.5 g) and DMF (50 ml) was stirred and heated to 80°C for 2 hours. A further portion (0.1 g) of 3-morpholinopropyl chloride was added and the mixture was heated to 80°C
for 1 hour. The mixture was filtered and the filtrate was evaporated. The residue was purified by column chromatography using a 4:1 mixture of ethyl acetate and methanol as eluent. The material so obtained was recrystallised from toluene. There was thus obtained 4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6-(3-morpholinopropoxy)quinazoline (0.69 g, 50%), m.p. 119-120°C;
NMR Spectrum: 2.0 (m, 2H), 2.4~ (m. 6H), 3.6 (m, 4H), 3.95 (s, 3H), 4.2 (t.
2H), 7.2 (s, 1H), 7.4 (t. 1 H), 7.8 (m. 2H). 8.1 (m. 1 H). 8.5 (s, 1 Hl, 9.5 (s. 1 H);
Elemental Analysis: Found C, 58.7; H. ~.3; N. 1?.2;
C2~H,4C1FN.~03 requires C. X9.1: H, 5.4; N, 12.5%.
The 4-(3'-chloro-4'-fluoroanilino)-6-hydroxy-7-methoxyquinazoline used as a starting material was obtained as follows:-6.7-Dimethoxy- 3.4-dihydroquinazolin-4-one (European Patent Application No.
0 566 ??6. Example 1 thereof: ?6.~ g) was added portionwise to stirred methanesulphonic acid ( 17~ ml ). L-Methionine ('_''_' ~~ ) was added and the resultant mixture was stirred and heated to reflux for ~ hours. The mixture was cooled to ambient temperature and poured onto a mixture ( 7s0 ml ) of ice and water. The mixture was neutralised by the addition of a concentrated (40%) aqueous sodium hydroxide solution. The precipitate was isolated, washed with water and dried. There was thus obtained 6-hydroxy-7-methoxy-3.4-dihydroquinazolin-4-one ( 1 1.~ g).
After repetition of the previous reaction. a mixture of 6-hydroxy-7-methoxy-3.4-dihydroquinazolin--1-one ( 1-1.18 g). acetic anhydride ( 1 10 ml) and pyridine ( 1-I ml) ~~as stirred and heated to 100°C for '_' hours. The mixture was poured onto a mixture ('_'00 ml) of ice and ' water. The precipitate was isolated. washed with water and dried. There was thus obtained b-acetoxv-7-methsw-:.-1-dihvdroquinazolin--1-one t I 3 ~~. 7~°0):

WO 96/33980 - 25 _ PCT/GB96/00961 NMR Spectrum: 2.3 (s, 3H), 3.8 (s, 3H), 7.3 (s, 1H), 7.8 (s, 1H), 8.1 (s, 1H), 12.2 (broad s, 1 H).
After repetition of the previous steps, a mixture of 6-acetoxy-7-methoxy-3,4-dihydroquinazolin-4-one ( 15 g), thionyl chloride (215 ml) and DMF (4.3 ml) was stirred and heated to 90°C for 4 hours. The mixture was cooled to ambient temperature and the thionyl chloride was evaporated. There was thus obtained 6-acetoxy-4-chloro-7-methoxyquinazoline, hydrochloride salt, which was used without further purification.
A mixture of the material so obtained, 3-chloro-4-fluoroaniline (9.33 g) and isopropanol (420 ml) was stirred and heated to 90°C for 5 hours. The mixture was cooled to ambient temperature and the precipitate was isolated, washed in turn with isopropanol and methanol and then dried. There was thus obtained 6-acetoxy-4-(3'-chloro-4'-fluoroanilino)-7-methoxyquinazoline hydrochloride salt ( 14 g, 56%);
NMR Spectrum: 2.4 (s, 3H). 4.0 (s. 3H), 7.5 (t. 1 H), 7.6 (s. I H ). 7.75 (m.
1 H). 8.05 (m. 1 H), 8.8 (s, 1 H), 8.95 (s, 1 H), 11.5 (broad s, 1 H).
A concentrated aqueous ammonium hydroxide solution (30% weightJvolume, 7.25 ml) was added to a stirred mixture of the material so obtained and methanol (520 ml).
The mixture was stirred at ambient temperature for 17 hours and then heated to 100°C for 1.5 hours. The mixture was cooled and the precipitate was isolated and dried.
There was thus obtained 4-(3'-chloro-4'-fluoroanilino)-6-hydroxy-7-methoxyquinazoline ( 10.6?
~~, 95%).
m.p. >270°C (decomposes);
NMR Spectrum: 4.0 (s. 3H). 7.? (s. I H), 7.4 ( t. 1 H). 7.8 ( s. 1 H ). 7.85 ( m. 1 H). 8.? (m. 1 H ), 8.5 (s, 1 H), 9.45 (s. 1 H), 9.65 (s. 1 H).
Exarr~nle 2 A mixture of 4-(3'-chloro-4'-fluoroanilino)-6-hydroxy-7-methoxyquinazoline (1.14 g),''-(pyrrolidin-I-yl)ethyl chloride hydrochloride (0.607 ~~1.
potassium carbonate (3 g) and DMF (?8.5 ml) w-as stirred and heated to 90°C for 5 hour. The mixture was cooled to ambient temperature and poured into water. The precipitate was isolated. dried and purified by column chromato'_raphv using a 9:1 mixture ot~ methylene chloride and methanol as eluent.
The material so obtained was recrystallised from cthanc~l. Them was thus obtained 4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6-(2-pyrrolidin-1-ylethoxy)quinazoline (0.813 g, 55%), m.p. 187-188°C;
NMR Spectrum: 1.7 (m, 4H), 2.6 (m, 4H), 2.9 (t, 2H), 3.9 (s, 3H), 4.2 (t, 2H), 7.2 (s, 1H), 7.4 (t, 1 H), 7.8 (m, 2H), 8.1 (m, 1 H), 8.5 (s, 1 H), 9.5 (s, 1H);
Elemental Analysis: Found C, 60.1; H, 5.4; N, 13.4;
CZ,H22C1FN402 requires C, 60.5; H, 5.3; N, 13.4%.
A mixture of 4-(3'-chloro-4'-fluoro~:nilino)-6-hydroxy-7-methoxyquinazoline ( 1.62 g), 2-morpholinoethyl chloride hydrochloride (0.95 g), potassium carbonate (3.6 g) and DMF (40 ml) was stirred and heated to 90°C for 1.5 hours. The mixture was cooled to ambient temperature and poured into water. The precipitate was isolated. dried and purified by column chromatography using a 9:1 mixture of methylene chloride and methanol as eluent.
The material so obtained was recrystallised from isopropanol. There w-as thus obtained 4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6-(2-morpholinoethoxy)quinazoline ( I
.2 g, 55%), m.p. 229-230°C;
NMR Spectrum: 2.6 (m, 4H), 2.85 (t, 2H), 3.6 (m, 4H), 3.9 (s, 3H), 4.3 (t, 2H), 7.2 (s, 1H), 7.4 (t, 1H), 7.8 (m, 2H), 8.1 (m. 1H), 8.5 (s. 1H). 9.5 (s, IH):
Elemental Analysis: Found C. 57.5; H, 4.9; N. 12.7;
C,,HZ,C1FN40; 0.25H,0 requires C. 57.6; H, 5.1: N, 12.8%.
ExarnPle ~i A mixture of I-methylpiperazine (43 ml), 6-(2-bromoethoay)-4-(3'-chloro-4'-fluoroanilino)-7-methoxyquinazoline (1.6 g) and ethanol (48 ml) was stirred and heated to reflux for 20 hours. The mixture was evaporated and the residue was purified by column chromatography using a 4: I mixture of methylene chloride and methanol as eluent. The material so obtained was dissolved in a mixture of methylene chloride and methanol and a saturated aqueous sodium bicarbonate solution was added. The miwure was stirred and heated to reflux. The mixture was cooled to ambient temperature and the precipitate was isolated and dried. There was thus obtained -1-( s'-chlor~--l'-tluoroanilino )-methoxy-6-[2-(4-methUpiperazin-1-vl)ethoxy]quinazoline l0 9~c~ ~.
~8°°). m.p. 88-92°C.

NMR Spectrum: 2.15 (s, 3H), 2:3 (broad m, 4H), 2.5 (broad m, 4H), 2.8 (t, 2H), 3.9 (s, 3H), 4.2 (t, 2H), 7.2 (s, 1 H), 7.4 (t, 1 H), 7.8 (m, 2H), 8.1 (m, 1 H), 8.5 (s, 1 H), 9.5 (s, 1 H);
Elemental Analysis: Found C, 57.3; H, 5.6; N, 15.1;
C22HZSC1FN502 0.75H20 requires C, 57.5; H, 5.8; N, 15.2%.
The 6-(2-bromoethoxy)-4-(3'-chloro-4'-fluoroanilino)-7-methoxyquinazoline used as a starting material was obtained as follows:-A mixture of 4-(3'-chloro-4'-fluoroanilino)-6-hydroxy-7-methoxyquinazoline (10 g), 1,2-dibromoethane (27 ml), potassium carbonate (20 g) and DMF (1 litre) was stirred and heated to 85°C for 2.5 hours. The mixture was filtered and the filtrate was evaporated.
The residue was purified by column chromatography using ethyl acetate as eluent. There was thus obtained 6-(2-bromoethoxy)-4-(3'-chloro- 4'-fluoroanilino)-7-methoxyquinazoline (10.26 g, 77%), m.p. 232°C (decomposes);
NMR Spectrum: 3.9 {m, 2H), 3.95 (s, 3H), 4.5 (m, 2H), 7.2 (s. 1 H), 7.4 (t, 1 H). 7.75 (m, 1 H), 7.85 (s, 1. H), 8.1 (m, 1 H), 8.5 (s, 1 H), 9.5 (s, 1 H);
Elemental Analysis: Found C, 48.0; H, 3.3; N, 9.8;
C,~H,4BrC1FN30z requires C, 47.9; H, 3.3; N, 9.8%.
A mixture of di-(2-methoxyethyl)amine ( 1.66 ml), 6-(2-bromoethoxy)-4-(3'-chloro-4'-fluoroanilino)-7-methoxyquinazoline ( 1.6 g) and ethanol (48 ml ) was stirred and heated to reflux for 18 hours. A second portion (0.53 ml) of di-(2-methoxyethvl)amine was added and the mixture was heated to reflux for a further 18 hours. The mixture was evaporated and the residue was partitioned between ethyl acetate and a saturated aqueous sodium bicarbonate solution. The organic phase was dried (Na,SO.,) and evaporated. The residue was purified by column chromatography using a 97:3 mixture of methvlene chloride and methanol as eluent. The material so obtained was dissolved in isopropanol.
water was added and the mixture was stirred for 1 hour. The precipitate mas isolzted and dried. There was thus obtained .1-( :'-chloro--1'-fluoroanilino)-7-methoxv-6-; 3-[di-i ~-methc~xv-ethvl)amino)ethoxv;quinazoline (0.95 ~=, 53°.0). m.p. 7~-7.1°C:

WO 96/33980 - 28 - PCT/GB96l00961 NMR Spectrum: 2.6 (t, 4H), 3.05 (t, 2H), 3.25 (s, 6H), 3.45 (t, 4H), 3.95 (s, 3H), 4.2 (t, 2H), 7.2 (s, 1 H), 7.4 (t, 1 H), 7.8 (m, 2H), 8.1 (m, 1 H), 8.5 (s, 1 H), 9.5 (s, 1 H);
Elemental Analysis: Found C, 56.2; H, 6.2; N, 11.3;
C23HZ8C1FN404 0.7H~0 requires C, 56.2; H, 6.0; N, 11.4%. -A mixture of 4-(3'-chloro-4'-fluoroanilino)-6-hydroxy-7-methoxyquinazoline (3 g), 2-dimethylaminoethyl chloride hydrochloride ( 1.5 g), potassium carbonate (7.5 g) and DMF (60 ml) was stirred and heated to 80°C for 5 hours. The mixture was cooled to ambient temperature and poured into water. The precipitate was isolated and dried. ~
The material so obtained was purified by column chromatography using a 9:1 mixture of methylene chloride and methanol as eluent. The material so obtained was triturated under diethyl ether and recrystallised from aqueous ethanol. There was thus obtained 4-(3'-chloro-4'-fluoroanilino)-6-(2-dimethylaminoethoxy)-7-methoxyquinazoline ( 1.7 g, 46%), m.p. 133-135°C;
NMR Spectrum: 2.3 (s, 6H), 2.75 (t, 2H), 4.0 (s, 3H), 4.25 (t. 2H), 7.2 (s. 1 H), 7.3 (m, 2H), 7.4 (t, 1 H), 8.1 (m, 2H), 8.5 (s. 1 H), 9.5 (broad s, 1 H);
Elemental Analysis: Found C. 58.''; H. 5.2; Iv. 14.3:
Ct9H,oCIFN.~O, requires C. 58.4: H. 5.1: N, 14.3%.
xant A mixture of 4-(3'-chloro-4'-fluoroanilino)-6-hydroxy-7-methoxyquinazoline ( 1.5 g), 2-diethylaminoethyl chloride hydrochloride (0.82 g), potassium carbonate (3.5 g) and DMF (38 ml) was stirred and heated to 90°C for 2 hours. The mixture was cooled to ambient temperature and poured onto ice (75 ml). The precipitate was isolated. rect-ystallised from a 2:1 mixture of isopropanol and water and dried. There was thus obtained 4-(3'-chloro-4'-lluoroanilino)-6- (?-diethylaminoethoxv >-7-methoxyquinazoline (0.98 <~.
50%). m.p. 154-156°C:
NMR Spectrum: 1.U tt. 6,1i), '_'.6 tm. 4H). '?.9 (t. '?H). 3.9 ts. 3H1. -1.'_' tt. ~'ll). 7.? ts, I l1). 7.-1 tt. 11-i), 7.8 (m.'_'1-1). 8.1 tm. 111). S.5 (s. 111). ~.s ts. 1H1:

WO 96/3a980 - 29 - PCT/GB96/00961 Elemental Analysis: Found C, 60.0; H, 5.7; N, 13.2;
CzlHz4C1FN40z requires C, 60.2; H, 5.8; N, 13.4%.
' xaxnDl<e ~3_ A mixture of 4-(2',4'-difluoroanilino)-6-hydroxy-7-methoxyquinazoline ( 1.36 g), 3-dimethylaminopropyl chloride hydrochloride (0.82 g), potassium carbonate (3 g) and DMF
(50 ml) was stirred and heated to 80°C for 4 hours. The mixture was cooled to ambient temperature and partitioned between ethyl acetate and water. The organic phase was washed with water, dried (MgS04) and evaporated. The residue was triturated under a mixture of hexane and ethyl acetate. There was thus obtained 4-(2',4'-difluoroanilino)-6-(3-dimethylaminopropoxy)-7-methoxyquinazoline (0.56 g, 32%), m.p. 131-134°C:
NMR Spectrum: 1.85-2.05 (m, 2H), 2.35 (s, 6H), 2.42 (t, 2H), 3.95 (s, 3H).
4.16 (t. 2H), 7.13 (m, 1 H), 7.16 (s. 1 H). 7.35 (m, 1 H), 7.5~ (m. 1 H), 7.75 (s. 1 H). 8.3 (s.
1 H), 9.5 (broad s, 1 H);
Elemental Analysis: Found C, 60.9; H, 5.7; N. 14.1;
C20H22F2N40? 0.3H~0 requires C, 61.0; H, 5.7; N, 14.2%.
The 4-(2',4'-difluoroanilino)-6-hydroxy-7-methoxyquinazoline used as a starting material was obtained as follows:-A mixture of 6-acetoxv-4-chloro-7-methowquinazoline hydrochloride (~.4 g), 2.4-difluoroaniline (''.~ ml) and isopropanol ( 100 ml ) was stirred and heated to reflux for '?
hours. The precipitate was isolated. washed ~.~ith acetone and with diethyl ether and dried.
There was thus obtained 6-acetoxy-4-(2',4'-difluoroanilino)-7-methoxvquinazoline hydrochloride (3.9 g, 53%), m.p. 207-210°C;
NMR Spectrum: 2.4 (s, 3H), 4.0~ (s. 3H), 7.25 (m, 1H). 7..18 (m. IH), 7.~~ (s.
1H). 7.63 (m, 1 H), 8.7 (s, 1 H). 8.8~ (s. 1 H), 1 1.6 (broad s. 1 H).
A mixture of a portion (3.7 g) of the material so obtained. a concentrated aqueous ammonium hydroxide solution (30°ro weight/volume. ~' ml) and methanol ( 1-10 tlll) was stirred at ambient temperature for'_' hours. The precipitate was isolated and washed with diethyl ether. There was thus obtained -1-('_''.-1'-difluoroanilino 1-(,-hvdrow-7-methoyquinazoline ( 1. 3 t,. 40°io):

NMR Spectrum: 3.97 (s, 3H), 7.1 (m, 1 H), 7.2 (s, 1 H), 7.54 (m, 1 H), 7.67 (s, 1 H), 8.3 (s, 1 H), 9.3 (s, 1H), 9.65 (broad s, 1H).
Exams A mixture of 4-(3'-chloro-4'-fluoroanilino)-6-(2,3-epoxypropoxy)-7-methoxyquinazoline (2 g), morpholine (0.5 ml) and isopropanol (20 ml) was stirred and heated to reflux for 1 hour. The mixture was cooled to ambient temperature and evaporated.
The residue was purified by column chromatography using a 9:1 mixture of methylene chloride and methanol as eluent. The material so obtained was recrystallised from ethyl acetate. There was thus obtained 4-(3'-chloro-4'-fluoroanilino)-6-(2-hydroxy-3-morpholinopropoxy)-7-methoxyquinazoline ( 1.4 g, 57%), m.p. 206-207°C;
NMR Spectrum: 2.5 (broad m. 6H). 3.6 (t. 4H), 3.9 (s. 3H). 4.1 (broad m. 3H), 5.0 (broad m, 1 H), 7.2 (s, 1 H), 7.4 (t, 1 H). 7.8 (m, 2H), 8.1 (m. 1 H). 8.5 (s, 1 H). 9.~
(s. 1 H);
Elemental Analysis: Found C. 57.0: H. 5.'?; N. 11.9;
CzaHzaC1FN404 requires C, 57.1: H, 5.2; N, 12.1%.
The 4-(3'-chloro-4'-tluoroanilino)-6-(2,3-epoxypropoxy)-7-methoxyquinazoline used as a starting material was obtained as follows:-A mixture of 4-( :'-chloro-4'-fluoroanilino)-6-hydroxy-7-methoxyquinazoline (5 g), '_'.3-epoxypropyl bromide ( I .6 ml). potassium carbonate (~ ~) and DMSO (~0 ml) was stirred at ambient temperature for 16 hours. The mixture was poured onto a mixture of ice and water. The precipitate was isolated. washed with water and dried. There was thus obtained the required starting material which was used without further purification and gave the following characterising data:-m.p. 125-126°C (decomposes);
NMR Spectrum: 2.8 (m. 1H), ?.9 (m. 11-1), 3.5 (m. 1H). 4.0 (s. 3H). 4.1 (m.
1H), 4.5 (m, 1H), 7.2 (s. 1H). 7.4 (t. 1H). 7.8 (m. IH). 7.85 (s. IH), 8.1 (m. I1-i). 8.~ (s.
1H). 9.5 (s. IH).

WO 96/33980 _ 31 _ PCT/GB96/00961 Examr~le .~Q
A mixture of morpholine (13.75 ml), 6-(3-bromopropoxy)-4-(3'-chloro-~4'-fluoroanilino)-7-methoxyquinazoline (2.94 g) and DMF (67 mlj was stirred at ambient temperature for 30 minutes. The mixture was partitioned between ethyl acetate and water. The organic phase was washed with a saturated aqueous sodium bicarbonate solution and with brine, dried (Na,S04j and evaporated. The residue was purified by column chromatography using a 9:1 mixture of methylene chloride and methanol as eluent. The material so obtained was recrvstallised from toluene. There was thus obtained 4-(3'-chloro-4'-fluoroa.nilino)-7-methoxy-6-(3-morpholinopropoxy)quinazoline (0.78 g, 27%);
NMR Spectrum: 2.0 (m. 2H), 2.45 (m. 6H), 3.6 (m, 4H), 3.95 (s, 3H). 4.2 (t.
2H). 7.2 (s, 1H), 7.4 (t, 1 H), 7.8 (m, 21-1), 8.1 (m, 1 H), 8.5 (s, 1 H), 9.5 (s, 1 H).
The 6-(3-bromopropoxy)-4-(3'-chloro-4'-fluoroanilino)-7-methoxyquinazoline used as a starting material was obtained as follows:-A mixture of 4-(3'-chloro-4'-fluoroanilinol-6-hydroxv-7-methoxyquinazoline (2 g), 1,3-dibromopropane (6.36 ml), potassium carbonate (4 g) and DMF (200 ml) was stirred at ambient temperature for 1 hour. The mixture was filtered and the filtrate was evaporated. The residue was purified by column chromatography using ethyl acetate as eluent. There was thus obtained 6-(3-bromopropoxy)-4-(3'-chloro-4'-fluoroanilino)-7-methoxyquinazoline in quantitati~~e yield which was used without further purification:
NMR Spectrum: 2.4 im.'_'ll). 3.7 (t. 2H). 3.9~ (s, 3H). 4.3 (t. 2H), 7.2 (s.
IH). 7.4 (t. 1H). 7.8 (m. 2H). 8.1 (m, 1H). 8.s (s. 1H). 9.~ (s. 1H).
Exam lp a l l11 A mixture of morpholine (0.17 ml), 6-(2-bromoethoxy)-4-( 3'-chloro-4'-fluoroanilino)-7-methoxvquinazoline (0.4 g) and ethanol (12 mll was stirred and heated to reflux for 27 hours. The mixture was evaporated and the residue was partitioned between ethyl acetate and water. The organic phase was washed with water and with brine. dried (Na~SO~) and evaporated. The residue was purified by column chromato~~raphy usin<~ a ~):1 mixture of methvlen~ chloride and methanol as eluent. There was thus ubtaim.3 -1-( :'-chloro--1'-tluoroanilinu~-i-methow-f,-(2-morpholinoethoxviyuinaroline ((1.1-t ;~. ~~°,r>:

NMR Spectrum: 2.6 (m, 4H), 2.85 (t, 2H), 3.6 (m, 4H), 3.9 (s, 3H), 4.3 (t, 2H), 7.2 (s, 1H), 7.4 (t, 1 H), 7.8 (m, 2H), 8.1 (m, 1 H), 8.5 (s, 1 H), 9.5 (s, 1 H).
Exam 1 A mixture of 4-(3'-chloro-4'-fluoroanilino)-6-hydroxy-7-methoxyquinazoline ( 1.1 g), 3-diethylaminopropyl chloride hydrochloride (0.7 g), potassium carbonate (3 g) and ' DMF (30 ml) was stirred and heated to 80°C for 3 hours. The mixture was cooled to ambient temperature and filtered. The filtrate was evaporated and the residue was purified by column chromatography using a 4:1 mixture of methylene chloride and methanol as eluent. The material so obtained was triturated under a 5:1 mixture of methanol and water.
The solid so obtained was dried. There was thus obtained 4-(3'-chloro--1'- fluoroanilino)-6-(3-diethylaminopropoxy)-7-methoxyquinazoline ( I .03 g, 70%);
NMR Spectrum: 0.9~ (t, 6H), 1.9 (m, 2H), 2.~ (m, 6H). 3.9~ (s. 3H). 4.2 (t.
2H). 7.2 (s, 1H).
7.4 (t, 1 H), 7.8 (m, ''H), 8.1 (m, 1 H). 8.5 (s, 1 H). 9.5 ( s. 1 H).
Elemental Analysis: Found C, 59.4; H, 6.2; N, 12.5;
CzzH26C1FN402 0.7H20 requires C. 59.4; H, 6.2; N, 12.6%.
Exarr~le 13 A mixture of4-(3'-chloro-4'-fluoroanilino)-6-hydroxy-7-methoxyquinazoline ( 1.28 g). 3-(pyrrolidin-I-yl)propyl chloride hydrochloride CChem. Abs., $s.
X7736: I.~ g), potassium carbonate (?.8 g) and DMF (?0 ml) was stirred and heated to 80°C for ~ hours.
The mixture was cooled to ambient temperature and partitioned between ethyl acetate and water. The organic phase was washed with water. dried (MgSO,~) and e~~aporated. The residue was purified by column chromatography using a 20:3 mixture of methylene chloride and methanol as eluent. The material so obtained (I .I g) was triturated under ethyl acetate to give 4-(3'-chloro--1'-fluoroanilino)-7-tnethoxy-6-(3-pyrrolidin-1-~~lpropow )quinazoline (0.09-1 g). The organic solution was evaporated and the residual solid was recrystallised from acetonitrile. There was thus obtained a second crop 10.8 ~~) of the same product. The ' material ~~ave the ti~llowin~= characterising data:-m.p. 1 ~~-111 °C:

NMR Spectrum: 1.95 .(m, 4H), 3.3 (m, 6H), 3.95 (s, 3H), 4.3 (t, 2H), 7.2 (s, 1H), 7.4 (t, 1H), 7.9 (m, 1 H), 8.1 (s, 1 H), 8.2 (m, 1 H), 8.5 (s, 1 H), 9.8 (broad s, 1 H);
Elemental Analysis: Found C, 61.0; H, 5.7; N, 13.1;
C22H24C1FN4O~ requires C, 61.3; H, 5.6; N, 13.0%.
Exam lp ~ 14_ A mixture of 4-(2',4'-difluoroanilino)-6-hydroxy-7-methoxyquinazoline (2.5 g), 3-morpholinopropyl chloride hydrochloride (1.6 g), potassium carbonate (6 g) and DMF (100 ml) was stirred and heated to 60°C for 1 hour. The mixture was cooled to ambient temperature and partitioned between ethyl acetate and water. The organic phase was washed with water and with brine, dried (MgS04) and evaporated. The residue was purified by column chromatography using a 9:1 mixture of methylene chloride and methanol as eluent.
There was thus obtained 4-(2',4'-difluoroanilino)-7-methoxy-6-(3-morpholinopropoxy)-quinazoline (1.05 g, 30%), m.p. 151-153°C; ' NMR Spectrum: 2.0 (m, 2H), 2.35-2.67 (m, 6H), 3.58 (t, 2Hj. 3.94 (s. 3H).
.x.16 (t. ?H), 7.13 (m, 1 H), 7.16 (s, 1 H), 7.33 (m, 1 H), 7.54 (m, 1 H), 7.78 (s, 1 H), 8.1 (s, 1 H). 9.4 (broad s, 1 H);
Elemental Analysis: Found C. 61.4; H, 5.5; N. 12.8;
C22HzaFzNaC3 requires C. 61.4: H. 5.6; N. 13.0%.
Example 15 A mixture of 4-(3'-chloro-4'-fluoroanilino )-6-hvdroxv-7-metho~yquinazoline (1.24 g), 2-(imidazol-1-yl)ethyl chloride (European Patent Application \o.
04'_'1'10: ~'.61 g).
potassium carbonate ( 1.~ g) and DMF (31 ml) was stirred and heated to 90°C for 4 hours and then stored at ambient temperature for 16 hours. The mixture was poured into a mixture of ice and water. The precipitate was isolated, dried and purified by column chromatography using a 9:1 mixture of methvlene chloride and methanol as eluent. The solid so obtained was triturated under methanol. There was thus obtained 4-( 3'-chloro--~'-flu~roanilinm-6-(2-imidazol-1-vlethoxy)-7-methoxyquinazoline (0.33 ~~. 34°~0~. m.p. '_' ~~-~-11'C:
NMR Spectrum: 4.U ( s. 31i ). -1..1 1 t. '_' H ). ~1.~ l t. '_' 1'i ). 6.y U
a. I I-I i. ; .'_' v s. 1 HI ). a. : n s. 1 I-i ~. 7.-I t t.
1H). 7.7 (s. 1H). ;'.7~ (m. 11-i). 7.81s. IFII. 8.1 cm. 11_l~. S.~ ta. 111.
~~.~ i,. Ifl~.

Elemental Analysis: Found C, 57.5; H, 4.3; N, 16.7;
C2oHt7C1FN502 requires C, 58.0; H, 4.1; N, 16.9%.
Exam I~ , A mixture of imidazole (0.128 g), 6-(2-bromoethoxy)-4-(3'-chloro-4'-fluoroanilino)-7-methoxyquinazoline (0.4 g) and ethanol (12 ml) was stirred and heated to ' reflux for 66 hours. The mixture was evaporated and the residue was partitioned between ethyl acetate and water. The organic phase «~as washed with water, dried (Na.,S04) and evaporated. The residue was purified by column chromatography using a 9:1 mixture of methylene chloride and methanol as eluent. There was thus obtained 4-(3'-chloro-4'-fluoroanilino)-6-(2-imidazol-1-ylethoxy)-7-methoxyquinazoline (0.13 g, 33%);
NMR Spectrum: 4.0 (s. 3H), 4.4 (t, 2H), 4.5 (t. 2H). 6.9 (s. 1H), 7.2 (s, 1H), 7.3 (s, 1H), 7.4 (t, 1H), 7.7 (s, 1H). 7.75 (m. 1H), 7.8 (s. 1H), 8.1 (m. 1H). 8.5 (s, 1H), 9.5 (s, 1H).
Exams li a 17 A mixture of 4-(3'-chloro-4'-fluoroanilino)-6-hydroxy-7-methoxyquinazoline (2 g), 3-dimethylaminopropyl chloride hydrochloride (0.99 g), potassium carbonate (5 g) and DMF ( 100 ml) was stirred and heated to 90°C for '? hours. The mixture was cooled to ambient temperature and poured into water. The precipitate was isolated and recrystallised from toluene. The resultant solid was purified by column chromatography using increasingly polar mixtures of methylene chloride and methanol as eluent. There ~~as thus obtained .1-(3'-chloro-4'-fluoroanilinol-6-(3-dimeth~~laminoproposy)-7-methoxyquinazoline (0.97 g);
NMR Spectrum: 1.95 (m. 2H). '_'.'_' (s. 6H), ~'.~5 (t. 21--1), 3.95 (s. 3H), 4.18 (t. ?H), 7.2 (s. 1H), 7.42 (t, 1H), 7.8 (m, 2H), 8.12 (m. 1H). 8.5 (s. 1H), 9.5 (s. 1H);
Elemental Analvsis: Found C. 59.1: H. 5.3: I~. 13.6:
C~oH"C1FN.~0, requires C. 59.3: H. ~.5: N. 13.8%.
A mixture of-1-(3'.-1'-ditlueroanilino)-t>-hvdroxv-7-methoxyquinazoline ( 1.8 g).
3-dimethvlamin~propy chloride hvdrochloria~ (0.x-1 ~=1. potassium carbonate 1-1.5 g) and D3~1F I i)U ml ) w as stirred and hcate~3 ti, 90°C ii~r 1 hour The mixture was cc,oled to ambient WO 96/33980 - 3$ - PCT/GS96/00961 temperature and poured into water. The resultant precipitate was isolated and purified by column chromatography using a 4:1 mixture of methylene chloride and methanol as eluent.
The material so obtained was recrystallised from toluene. There was thus obtained 4-(3',4'-difluoroanilino)-6-(3-d.imethylaminopropoxy)-7-methoxyquinazoline (0.93 g);
NMR Spectrum: 2.0 (rn, 2H), 2.2 (s, 6H), 2.45 (m, 2H), 3.9 (s, 3H), 4.2 (t, 2H), 7.2 (s, 1 H), 7.4 (m, 1 I-I), 7.55 (m, 1 H), 7.8 (s, 1 H), 8.05 (m, 1 H), 8.5 (s, 1 H), 9.5 5 (broad s, 1 H);
Elemental Analysis: Found C, 61.6; H, 5.7; N, 14.1;
C~oHZZF2N40z requires C, 61.8; H, 5.7; N, 14.4%.
The 4-(3',4'-difluoroanilino)-6-hydroxy-7-methoxyquinazoline used as a starting material was obtained as follows:-A mixture of 6-acetoxy-4-chloro-7-methoxyquinazoline hydrochloride [obtained from 6-acetoxy-7-methoxy-3,4-dihydroquinazolin-4-one (6 g) and thionyl chloride (87 ml)], 3,4-difluoroaniline (2.9 ml) and isopropanol ( 170 ml) was stirred and heated to reflux for 4 hours. The precipitate was isolated, washed with isopropanol and dried. There was thus obtained 6-acetoxy-4-(3',4'-difluoroanilino)-7-methoxyquinazoline hydrochloride (7.5 g);
NMR Spectrum: 2.4 (s, 3H), 4.0 (s, 3H), 7.45-7.6 (m, 3H), 7.95 (m, 1 H), 8.8 (s, 1 H), 8.95 (s, 1 H), 11.5 (broad s, 1 H).
A mixture of the material so obtained, a concentrated aqueous ammonium hydroxide solution (30% weight/volume. 3.9 ml) and methanol (?80 ml) was stirred at ambient temperature for 20 hours. The precipitate was isolated and washed with methanol. There was thus obtained 4-(3',4'-difluoroanilino)-6-hydroxy-7-methoxyquinazoline ( ~.~
~):
NMR Spectrum: 4.0 (s. 3H). 7.2 (s, 1 H). 7.4 (q, 1 H), 7.6~ ( m. 1 H). 7.8 1 s. I H). 8.1 (m. 1 H).
8.45 (s, 1 H), 9.4~ (s, 1 H), 9.6 (s, I H).
A mixture of 4-(3',4'-difluoroanilino)-6-hydroxy-7-methoayquinazoline ( I .'?
1;).
3-morpholinopropyl chloride (0.7~' g). potassium carbonate ('_' ~=) and D~II ( ,0 ml) was stirred and heated to 80°C for ~' hours. .A further portion (0. ~ ~~) of :-morpholinopropyl chloride was added and the mixture was heated to 80°C for a further ~
hours. ~I-he mixture was cooled to ambient temperature. filtered and the filtrate was evaporated.
The residue was purified by column chromatography using a -1: I miwurc ~f ethv I aretat~ and methanol as eluent. There was thus obtained 4-(3',4'-difluoroanilino)-7-methoxy-6-(3-morpholinopropoxy)quinazoline (0.84 g);
NMR Spectrum: 2.0 (m, 2H), 3.6 (t, 4H), 3.95 (s, 3H), 4.2 (t, 2H), 7.2 (s, 1 H), 7.4 (m, 1 H), 7.57 (m; 1H), 7.82 (s, 1H), 8.05 (m, 1H), 8.48 (s, 1H), 9.55 (s, 1H);
Elemental Analysis: Found C, 61.1; H, 5.4: N, 12.8;
CZ~H24F2N403 requires C, 61.4, H, 5.6; N, 13.0%.
A mixture of 4-(3',4'-difluoroanilino)-6-hydroxy-7-methoxyquinazoline ( 1.2 g), 3-diethylaminopropyl chloride hydrochloride (0.81 g), potassium carbonate (3.5 g) and DMF
(30 ml) was stirred and heated to 80°C for ? hours. The mixture was cooled to ambient temperature, filtered and evaporated. The residue was purified by column chromatography using a 4:1 mixture of methylene chloride and methanol as eluent. There was thus obtained 6-(3-diethylaminopropoxy)-4-(3'.4'-difluoroanilino)-7-methoxyquinazoline ( I
.14 g);
NMR Spectrum: 0.8 (t, 6H), 1.8 (m, 2H), 3.78 (s, 3H), 4.0 (t, 2H), 7.1 (s, 1H), 7.3 (m, 1H), 7.45 (m, 1 H), 7.65 (s, 1 H), 7.9 (m, 1 H), 8.34 (s, 1 H), 9.4 (broad s, 1 H);
Elemental Analysis: Found C, 63.4; H, 6.3; N, 13.6;
C22H,6F,N40~ requires C, 63.4: H, 6.3; N, 13.5%.
~xam~le 21 A mixture of 4-(3'-chloro-4'-fluoroanilino)-6-hydroxy-7-methoayquinazoline ( I
.? g).
3-piperidinopropyl chloride hydrochloride (0.8'_' ~:.), potassium carbonate (3 g) and DMF ( 30 ml) was stirred and heated to 80°C for ? hours. The mixture was cooled to ambient temperature, filtered and evaporated. The residue was purified by column chromatography using a 9:1 mixture of methylene chloride and methanol as eluent. The solid so obtained was triturated under diethyl ether. There was thus obtained 4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6-(3-piperidinopropoxy)quinazoline (0.94 g):
NMR Spectrum: l.-1-1.7 (m, 6H1.'_'.0 (m.'?H). p.9~ (s. 3H). -1.3 tt.'_'H~.
7.'_' ts. 1H). 7.-1 (t, 1H), 7.8-8.O tm. ?1-i). 8.1 (m. IH), 8.~ (s. 111). ~).~~ (s. 1H1:
Elemental :'~nalvsis: Found C. 61.8: 11. ~.8: ~. 1?.6:
C"H,hCIFN,O, requires C. 6'_'. I : 11. ~.u: '.s. I '_'.6° o.

WO 96/x; 980 - 37 - PCT/GB96/00961 A mixture of 4-(3'-chloro-4'-fluoroanilino)-6-hydroxy-7-methoxyquinazoline ( 1.5 g), 2-piperidinoethyl chloride hydrochloride (0.86 g), potassium carbonate (3 g) and DMF (40 ~ ml) was stirred and heated to 90°C for 1 hour. The mixture was cooled to ambient temperature and filtered. The filtrate was evaporated and the residue was purified by column chromatography using a 9:1 mixture of methylene chloride and methanol as ~eluent. The material so obtained was recrystallised from toluene. There was thus obtained 4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6-(2-piperidinoethoxy)quinazoline (0.77 g);
NMR Spectrum: 1.3-1.6 (m, 6H), 2.8 (t, 2H), 3.95 (s, 3H), 4.25 (t, 2H), 7.2 (s, 1H), 7.45 (t, 1 H), 7.8 (m, 2H), 8.12 (m, 1 H), 8.48 (s, 1 H), 9.5 (s, 1 H);
Elemental Analysis: Found C, 61.0; H. 5.7; N, 13.0;
C,2H2~C1FN40, requires C, 61.3; H, 5.6; N, 13.0%.
A mixture of 4-(3'-chloro-4'-fluoroanilino)-6-hydroxy-7-methoxyquinazoline ( 1.5 g), 3-(imidazol-1-yl)propyl chloride (0.67 g), potassium carbonate (3 g) and DMF
(40 ml) was stirred and heated to 90°C for 1 hour. A second portion (0.12 g) of the propyl chloride was added and the mixture was heated to 90°C for a further hour. The mixture was cooled to ambient temperature, filtered and evaporated. The residue was purified by column chromatography using a 9:1 mixture of methylene chloride and methanol as eluent. There was thus obtained 4-(3'-chloro-4'-fluoroanilino)-6-(3-imidazol-1-ylpropoxv)-7-methoxyquinazoline (0.66 g);
NMR Spectrum: '_'.5 (m, 2H), 4.12 (s, 3H), 4.25 (t. 2H). 1.35 (t. 2H), 7.08 (s. 1 HI. 7.4 (d. 2H).
7.6 (t, 1 H), 7.8 (s. 1 I-I), 7.95 (m, 2H), 8.25 (m, 1 H), 8.65 (s, 1 H). 9.7 (broad s. 1 H ):
Elemental Analysis: Found C, 58.2: H, 4.6; N, 16.6:
C,~H~9C1FNs0, 0.?H,O requires C. 58.5; H. 4.5; N. 16.'_'°,'°.
' The 3-(imidazol-1-~~1)propyl chloride used as a starting= material was obtained as follo~~~s:-A solution ol~imidazole (5.-1 t,) in DMF ('_'0 mll was added dropwise to a stirred miature~ of sodium hydride (60°.o dispersion in mineral oil. :. ~ <~:
which was washed unh WO 96/33980 _ 38 _ PCT/GB96/0096t petroleum ether (b.p. 40-60°C)] in DMF ( 10 ml). The resultant solution was added to a solution of 3-bromochloropropane ( 13 g) in DMF (70 ml) which had been cooled in an ice bath. The mixture was stirred at 0°C for 1 hour. The mixture was poured into a saturated aqueous sodium bicarbonate solution. The resultant mixture was filtered and the filtrate was extracted with ethyl acetate. The organic extract was dried (Na2S04) and evaporated. The residue was purified by column chromatography using a 9:1 mixture of methylene chloride ' and methanol as eluent. There was thus obtained 3-(imidazol-I-yl)propyl chloride (8.3 g);
NMR Spectrum: 2.2 (m. 2H), 3.55 (t. 2H), 4.1 fit. 2H), 6.9 (s, 1H). 7.18 (s, ll~i), 7.6 (s, 1H).
E~ In a 24 A 1 M solution of hydrogen chloride in diethyl ether (6~ ml) was added to a solution of 4-(3'-ehloro-4'-fluoroanilino)-7-methoxy-6-(3-morpholinopropoxv)quinazoline (30.1 g) in diethyl ether (545 ml) and DMF (250 ml). The mixture was stirred at ambient temperature for 1 hour. The precipitate was isolated, washed with diethyl ether and dried.
There was thus obtained 4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6-(3-morpholinopropoxy)quinazoline hydrochloride salt (32.1 g), m.p. 251-25~°C:
NMR Spectrum: 2.3 (m, 2H), 3.2-3.4 (m. 6H). 3.9 (broad s, 4H), 3.95 (s. 3H), 4.35 (t, 2H), 7.22 (s, I H). 7.4 (t, 1 H), 7.9 (m. I H). 8.1'? (s. 1 H). 8.'? (m. I H). 8.~~
(s. 1 H). 10.0 (s, 1 H);
Elemental Analysis: Found C. J-l.J: H. ~.3: ;s. 11.7:
C"H24C1FN,~0~ 1 HCI 0.08H,0 requires C. ~-1.3: H. ~.'_': :vT. I I
.6°r.
Exam l A I M solution of hydrogen chloride in diethyl ether ( I 3 ml ) was added to a solution of 4-(3'-chloro-4'-fluoroanilino)-7-methoxv-6-( :-morpholinopropoy)quinazoline (2.2 g) in DMF (20 ml) and the mixture was stirred at ambient temperature for '_' hours.
The precipitate was isolated. washed with diethyl ether and dried under vacuum at 80°C.
There was thus obtained 4-(3'-chloro--1'-fluoroanilino)-7-methow-E>-( ~-morpholinopropomOquinazoline dihydrochloride salt (~'.3 g):
NMR Spectrum: '_'.: (m.'_'ll). _ .'_'-:.e~ lm. 61i~. -~.l) Im. 71i). -I.=~ tt.
'_'li~. 7.-I ts. 1H). 7.>s (t.
1H1.7.81t11. Ilil. S.1~ im. Ili). S.t~ va. lli~. S ~~ (~. Ilii:

Elemental.Analysis: Found C, 50.7; H, 5.0; N, 10.5; Cl, 13.1;
C22H24C1~4~3 2HCl requires C, 50.8; H, 5.0; N, 10.8; Cl, 13.6%.
A solution of L-(2R,3R)-(+)-tartaric acid ( 1.03 g) in THF (50 ml) was added to a solution of 4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6-(3-morpholinopropoxy)quinazoline ( 1.53 g) in THF ( 100 ml) and the mixture was stirred at ambient temperature for 2 hours. The mixture vvas filtered, washed with THF and dried. There was thus obtained 4-(3'-chloro-4'-fluoroani:lino)-7-methoxy-6-(3-morpholinopropoxy)quinazoline di-L-tartaric acid salt (2 g), m.p. 136-140°C (phase change at 111°C);
NMR Spectrum: 2.2 (m, 2H), 2.5-2.6 (m, 6H). 3.6 (t. 4H), 3.9~ (s, 3H), 4.2 (t, ?H), 4.3 (s, 4H), 7.2 (s, 1H). 7.45 (t, 1H). 7.8 (m, 2H), 8.1~ (m. IH). 8.5 (s, 1H), 9.5 (s. 1H);
Elemental Analysis: Found C, 48.8; H. 5.?; N, 7.6;
Cz2HzaCIFN403 2 tartaric acid requires C, 48.4; H, 4.6: N, 7.5%.
Exam Ip c 27 A solution of fumaric acid (0.8 g) in a mixture of methylene chloride and DMF
was added to a solution of 4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6-(3-morpholinopropoxy)-quinazoline ( 1.~ g) in a mixture of methylene chloride (~0 ml) and sufficient DMF to complete the dissolution. The mixture was stirred at ambient temperature for ?
hours. The precipitate was isolated. washed with methylene chloride and dried. There was thus obtained 4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6-(3-morpholinopropox~~)quinazoline difumaric acid salt (2.12 g), m.p. 199-201 °C;
NMR Spectrum: 2.0 (m, 2H), 2.5-2.7 (m. 6H). 3.6 (t, 4H). 3.95 (s. 3H). 4.2 (t, 2H), 6.6 (s, 2H), 7.2 (s, 1 H). 7.42 (t, 1 H), 7.8 (m, 2H), 8.2 (m. I H). 8.48 (s. 1 H). 9.~ (s. I H);
Elemental Analysis: Found C. 51.8: H. 4.7; Iv. 8.3:
C"H,,~CIFNaO, 1 H,O 2 fumaric acid requires C. ~ I .~: H. ~.'?: N_ 8.0°,~0.
Example 2R
. .
.A solution of ~-1-( s'-chloro-.~'-tluoroanilino ~-7-methom-6-( 3-morpholinopropow 1-quinazoline ( 1 ..~ g1 in the m~nitnum wlume of TI-iF mas added to a solution of citric acid (1.5 g) in THF (30 ml). The resultant mixture was stirred at ambient temperature for 16 hours. The precipitate was isolated and triturated under acetone. There was thus obtained 4-(3'-chloro-4'-tluoroanilino)-7-methoxy-6-(3-morpholinopropoxy)quinazoline containing 1.8 equivalents of citric acid (1.3 g), m.p. 160-163°C; -NMR Spectrum: 2.1 (m, 2H), 2.6-2.8 (m, 8H), 3.65 (t, 4H), 3.95 (s, 3H), 4.2 (t, 2H), 7.2 (s, 1 H), 7.4 (t, 1 H), 7.8 (m, 2H), 8.2 (m, 1 H), 8.48 (s, 1 H), 9.6 (s, 1 H);
Elemental Analysis: Found C, 50.0: H, 5.2; N, 7.2:
CzzHzaC1FN403 1.8 citric acid requires C, 49.7; H, 4.9; N, 7.1%.
F~~t A solution of 4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6-(3-morpholinopropoxy)-quinazoline (~ g) in THF (?50 ml) was added to a stirred solution of methanesulphonic acid (2.4 g) in THF (100 ml). The resultant mixture was stirred at ambient temperature for 1 hour.
The precipitate was isolated. slurred in acetone and re-isolated. There was thus obtained 4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6-(3-morpholinopropoxy)quinazoline di-methanesulphonic acid salt (6.5 g), m.p. 242-245°C;
NMR Spectrum: 2.3 (m, 2H), 2.45 (s, 6H), 3.0-3.8 (m, lOH), 4.1 (s, 3H), 4.35 (t, 2H), 7.4 (s, 1 H). 7.55 (t, 1 H), 7.75 (m. 1 H), 8.0 (m. 1 H), 8.15 (s. 1 H), 8.9 (s. 1 H). 9.6 (s, 1 H), 11.0 (s. IH):
Elemental Analysis: Found C. ~~.1: H. ~.'_': I~'. 8.6:
CzzH,.~C1FN.~03 1.13H,0 '_'CH~SOzH requires C. X3.7: H. ~.'?: N. 8.~%.
Fxarxl l A solution of 4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6-(3-morpholinopropoxy)-quinazoline ( 1.5 g) in a mixture of DMA ( 10 1111) and methylene chloride (50 ml) was added to a mixture of concentrated sulphuric acid ( 1.~ ml ) and methylene chloride (20 ml ). The resultant mixture was stirred at ambient temperature for 16 hours. The precipitate was isolated. washed with acetone and dried. There was thus obtained 4-( 3'-chloro--1'-tluoroanilino)-7-methow-V-(3-morpholinopropow)quinazoline di-sulphuric acid salt ('_'.7 g).
m.p. ~'_'~0°C:

NMR Spectrum: 2.3 (m, 2H), 3.0-3.8 (m, lOH), 4.02 (s, 3H), 4.35 (t, 2H), 7.38 (s, 1H), 7.53 (t, 1 H), 7.77 (m, 1 H), 8.05 (m, 1 H), 8.15 (s, 1 H), 8.92 (s, 1 H);
Elemental Analysis: Found C, 39.0; H, 4.2; N, 8.2;
' Cz2H2aC1FN4O3 2H~0 2H~S04 requires C, 38.9: H, 4.75; N, 8.3%.
Exam lp a 3_1 A solution of 4-toluenesulphonic acid monohydrate ( 1.12 g) in THF (20 ml) was added to a solution of 4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6-(3-morpholinopropoxy)-quinazoline ( 1.3 g) in THF (60 ml). The resultant mixture was stirred at ambient temperature for 4 hours. The precipitate was isolated, washed in turn with THF and acetone and dried.
There wa.s thus obtained 4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6-(3-morpholinopropoxy)-quinazoline di-4-toluenesulphonic acid salt (1.54 g), m.p. 169-173°C:
NMR Spectrum: 2.3 (m, 8H), 3.0-3.8 (m, lOH), 4.0 (s, 3H), 4.3 (t, 2H), 7.1 (d, 4H), 7.34 (s, 1 H), 7.5 (d, 4H), 7.54 (t, 1 H), 7.7 (m, 1 H), 7.95 (m, 1 H), 8.1 (s, 1 H), 8.9 (s, 1 H), 11.0 (broad s, 1 H);
Elemental Analysis: Found C, 52.8; H, 4.9; N, 6.8;
C22H2aCIFN403 1.SH20 2CH3C6H4S03H requires C, 52.8; H, 5.3; N, 6.85%.
Example 32 The following illustrate representative pharmaceutical dosage forms containing the compound of formula I, or a pharmaceutically-acceptable salt thereof (hereafter compound X). for therapeutic or prophylactic use in humans:
(a) Tablet I /ta t Compound X.............................................. 100 Lactose Ph.Eur........................................... 182.7 Croscarmellose sodium.............................. 1?.0 Maize starch paste (5% wW paste) ............
Magnesium stearate ................................... 3.0 WO 96/33980 _ 42 _ PCT/GB96/00961 (b) Tablet II mg/tablet Compound X.............................................. 50 Lactose Ph.Eur........................................... 223.75 Croscarmellose sodium.............................. 6.0 Maize starch............................................... 15.0 Polyvinylpyrrolidone ................................. 2.25 Magnesium stearate ................................... 3.0 (c) Tablet III /mg tablet Compound X.............................................. I .0 Lactose Ph.Eur........................................... 93.25 Croscarmellose sodium.............................. 4.0 Maize starch paste (5% w/v paste) ............ 0.75 Magnesium stearate 1.0 (d) Cansu(g ~1g/capsule Compound X.............................................. 10 Lactose Ph. Eur.......................................... 488.5 Maenesium stearate ................................... I .5 (e) ~ecti I (50 mg/ml) Compound X.............................................. 5.0% w/v I M Sodium hydroxide solution ................. I 5.0% w/v 0.1 M Hydrochloric acid (to adjust pH to 7.6) Polyethylene glycol 400 ............................ 4.5% w/v Water for injection to 100%

(fj j~iection II (10 m~/mll Compound X.............................................. 1.0 /o w/v Sodium phosphate BP................................ 3.6 /o w/v 0.1 M Sodium hydroxide solution .............. 15.0°/a v/v Water for injection to 100%
(g) Infection III (lmg/ml.buffered to pH6) Compound X.............................................. 0.1 /o w/v Sodium phosphate BP................................ 2.26% w/v Citric acid................................................... 0.38% w/v Polyethylene glycol 400 ............................ 3.5 /o w/v Water for injection to 100%
Note The above formulations may be obtained by conventional procedures well known in the pharmaceutical art. The tablets (a)-(c) may be enteric coated by conventional means, for example to provide a coating of cellulose acetate phthalate.

Claims (19)

1. A quinazoline derivative of the formula I
wherein n is 1, 2 or 3 and each R2 is independently halogeno or trifluoromethyl;
R3 is (1-4C)alkoxy; and R1 is di-[(1-4C)alkyl]amino-(2-4C)alkoxy, pyrrolidin-1-yl-(2-4C)alkoxy, piperidino-(2-4C)alkoxy, morpholino-(2-4C)alkoxy, piperazin-1-yl-(2-4C)alkoxy, 4-(1-4C)alkylpiperazin-1-yl-(2-4C)alkoxy, imidazol-1-yl-(2-4C)alkoxy, di-[(1-4C)alkoxy-(2-4C)alkyl]amino-(2-4C)alkoxy, thiamorpholino-(2-4C)alkoxy, 1-oxothiamorpholino-(2-4C)alkoxy or 1,1-dioxothiamorpholino-(2-4C)alkoxy, and wherein any of the above-mentioned R1 substituents comprising a CH2 (methylene) group which is not attached to a N or O atom optionally bears on said CH2 group a hydroxy substituent;
or a pharmaceutically-acceptable salt thereof.
2. A quinazoline derivative of the formula I as claimed in claim 1 wherein n is 1, 2 or 3 and each R2 is independently halogeno or trifluoromethyl;
R3 is (1-4C)alkoxy; and R1 is di-[(1-4C)alkyl]amino-(2-4C)alkoxy, pyrrolidin-1-yl-(2-4C)alkoxy, piperidino-(2-4C)alkoxy, morpholino-(2-4C)alkoxy, piperazin-1-yl-(2-4C)alkoxy, 4-(1-4C)alkylpiperazin-1-yl-(2-4C)alkoxy, imidazol-1-yl-(2-4C)alkoxy or di-[(1-4C)alkoxy-(2-4C)alkyl]amino-(2-4C)alkoxy, and wherein any of the above-mentioned R1 substituents comprising a CH2 (methylene) group which is not attached to a N or O atom optionally bears on said CH2 group a hydroxy substituent;

or a pharmaceutically-acceptable salt thereof.
3. A quinazoline derivative of the formula I as claimed in claim 1 wherein (R2)n is 3'-fluoro-4'-chloro or 3'-chloro-4'-fluoro;
R3 is methoxy; and R1 is 2-dimethytaminoethoxy, 2-diethylaminoethoxy, 3-dimethylaminopropoxy, 3-diethylaminopropoxy, 2-(pyrrolidin-1-yl)ethoxy, 3-(pyrrolidin-1-yl)propoxy, 2-piperidinoethoxy, 3-piperidinopropoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 2-(4-methylpiperazin-1-yl)ethoxy, 2-(imidazol-1-yl)ethoxy, 3-(imidazol-1-yl)propoxy, 2-[di-(2-methoxyethyl)amino]ethoxy or 3-morpholino-2-hydroxypropoxy;
or a pharmaceutically-acceptable mono- or di-acid-addition salt thereof.
4. A quinazoline derivative of the formula I as claimed in claim 1 wherein (R2)n is 3'-chloro, 3'-bromo, 2',4'-difluoro, 3',4'-dichloro, 3',4'-difluoro, 3',4'-dichloro, 3'-fluoro-4'-chloro or 3'-chloro-4'-fluoro:
R3 is methoxy; and R1 is 2-dimethylaminoethoxy, 2-diethylaminoethoxy, 3-dimethylaminopropoxy, 3-diethylaminopropoxy, 2-(pyrrolidin-1-yl)ethoxy, 3-(pyrrolidin-1-yl)propoxy, 2-morpholinoethoxy, 3-morpholinopropoxy, 2-(4-methylpiperazin-1-yl)ethoxy, 2-(imidazol-1-yl)ethoxy, 2-[di-(2-methoxyethyl)amino]ethoxy or 3-morpholino-2-hydroxypropoxy:
or a pharmaceutically-acceptable acid-addition salt thereof.
5, A quinazoline derivative of the formula I as claimed in claim 1 wherein (R2)n is 3'-chloro, 3'-bromo, 2',4'-difluoro, 2',4'-dichloro, 3',4'-difluoro, 3',4'-dichloro, 3'-fluoro-4'-chloro or 3'-chloro-4'-fluoro;
R3 is methoxy; and R1 is 3-dimethylaminopropoxy, 3-diethylaminopropoxy, 3-(pyrrolidin-1-yl)propoxy, 3-morpholinopropoxy or 3-morpholino-2-hydroxypropoxy;
or a pharmaceutically-acceptable acid-addition salt thereof.
6. A quinazoline derivative of the formula I as claimed in claim 1 wherein (R2)n is 3',4'-difluoro, 3',4'-dichloro, 3'-fluoro-4'-chloro or 3'-chloro-4'-fluoro;
R3 is methoxy; and R1 is 3-morpholinopropoxy;

or a pharmaceutically-acceptable acid-addition salt thereof.
7. The quinazoline derivative of the formula I as claimed in claim 1 being:-4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6-(2-pyrrolidin-1-ylethoxy)quinazoline;
or a pharmaceutically-acceptable acid-addition salt thereof.
8. The quinazoline derivative of the formula I as claimed in claim 1 being:-4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6-(2-morpholinoethoxy)quinazoline;
or a pharmaceutically-acceptable acid-addition salt thereof.
9, The quinazoline derivative of the formula I as claimed in claim 1 being:-4-(3'-chloro-4'-fluoroanilino)-6-(3-diethylaminopropoxy)-7-methoxyquinazoline;
or a pharmaceutically-acceptable acid-addition salt thereof.
10. The quinazoline derivative of the formula I as claimed in claim 1 being:-4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6-(3-pyrrolidin-1-ylpropoxy)quinazoline;
or a pharmaceutically-acceptable acid-addition salt thereof.
11. The quinazoline derivative of the formula I as claimed in claim 1 being:-4-(3'-chloro-4'-fluoroanilino)-6-(3-dimethylaminopropoxy)-7-methoxyquinazoline;
or a pharmaceutically-acceptable acid-addition salt thereof.
12. The quinazoline derivative of the formula I as claimed in claim 1 being:-4-(3',4'-difluoroanilino)-7-methoxy-6-(3-morpholinopropoxy)quinazoline;
or a pharmaceutically-acceptable acid-addition salt thereof.
13. The quinazoline derivative of the formula I as claimed in claim 1 being:-4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6-(3-piperidinopropoxy)quinazoline;
or a pharmaceutically-acceptable acid-addition salt thereof.
14. The quinazoline derivative of the formula I as claimed in claim 1 being:-4-(3'-chloro-4'-fluoroanilino)-7-methoxy-6-(3-morpholinopropoxy)quinazoline;
or a pharmaceutically-acceptable acid-addition salt thereof.
15. The hydrochloride salt of the quinazoline derivative of the formula I as claimed in claim 14.
16. A process for the preparation of a quinazoline derivative of the formula I, or a pharmaceutically-acceptable salt thereof, as claimed in claim 1 which comprises:-(a) the reaction of a quinazoline of the formula II

wherein Z is a displaceable group, with an aniline of the formula III
(b) for the production of those compounds of the formula I wherein R1 is an amino-substituted (2-4C)alkoxy group, the alkylation of a quinazoline derivative of the formula I wherein R1 is a hydroxy group;
(c) for the production of those compounds of the formula I wherein R1 is an amino-substituted (2-4C)alkoxy group, the reaction of a compound of the formula I wherein R1 is a hydroxy-(2-4C)alkoxy group, or a reactive derivative thereof, with an appropriate amine; or (d) for the production of those compounds of the formula I wherein R1 is a hydroxy-amino-(2-4C)alkoxy group, the reaction of a compound of the formula I
wherein R1 is a 2,3-epoxypropoxy or 3.4-epoxybutoxy group with an appropriate amine.
and when a pharmaceutically-acceptable salt of a quinazoline derivative of the formula I is required it may be obtained by reaction of said compound with a suitable acid using a conventional procedure.
17. A pharmaceutical composition which comprises a quinazoline derivative of the formula I, or a pharmaceutically-acceptable salt thereof, as claimed in any one of claims 1 to 15 in association with a pharmaceutically-acceptable diluent or carrier.
18. The use of a quinazoline derivative of the formula I, or a pharmaceutically-acceptable salt thereof, as claimed in any one of claims 1 to 15 in the manufacture of a medicament for use in the production of an anti-proliferative effect in a warm-blooded animal.
19. The use of a quinazoline derivative of the formula I, or a pharmaceutically-acceptable salt thereof, as claimed in any one of claims 1 to 15 for the production of an anti-proliferative effect in a warm-blooded animal.
CA002215732A 1995-04-27 1996-04-23 Quinazoline derivatives Expired - Lifetime CA2215732C (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB9508538.7A GB9508538D0 (en) 1995-04-27 1995-04-27 Quinazoline derivatives
GB9508538.7 1995-04-27
PCT/GB1996/000961 WO1996033980A1 (en) 1995-04-27 1996-04-23 Quinazoline derivatives

Publications (2)

Publication Number Publication Date
CA2215732A1 CA2215732A1 (en) 1996-10-31
CA2215732C true CA2215732C (en) 2002-04-09

Family

ID=10773597

Family Applications (1)

Application Number Title Priority Date Filing Date
CA002215732A Expired - Lifetime CA2215732C (en) 1995-04-27 1996-04-23 Quinazoline derivatives

Country Status (38)

Country Link
US (1) US5770599A (en)
EP (1) EP0823900B1 (en)
JP (1) JP3040486B2 (en)
KR (1) KR100296656B1 (en)
CN (1) CN1100046C (en)
AR (1) AR003944A1 (en)
AT (1) ATE198329T1 (en)
AU (1) AU699163B2 (en)
BG (1) BG62730B1 (en)
BR (1) BRPI9608082B8 (en)
CA (1) CA2215732C (en)
CZ (1) CZ288489B6 (en)
DE (2) DE69611361T2 (en)
DK (1) DK0823900T3 (en)
EE (1) EE03482B1 (en)
EG (1) EG24134A (en)
ES (1) ES2153098T3 (en)
FR (1) FR09C0065I2 (en)
GB (1) GB9508538D0 (en)
GR (1) GR3035211T3 (en)
HR (1) HRP960204B1 (en)
HU (1) HU223313B1 (en)
IL (1) IL118045A (en)
LU (1) LU91631I2 (en)
MY (1) MY114425A (en)
NL (1) NL300429I1 (en)
NO (2) NO309472B1 (en)
NZ (1) NZ305444A (en)
PL (1) PL189182B1 (en)
PT (1) PT823900E (en)
RO (1) RO117849B1 (en)
RU (1) RU2153495C2 (en)
SI (1) SI0823900T1 (en)
SK (1) SK282236B6 (en)
TW (1) TW436486B (en)
UA (1) UA52602C2 (en)
WO (1) WO1996033980A1 (en)
ZA (1) ZA963358B (en)

Families Citing this family (735)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6811779B2 (en) 1994-02-10 2004-11-02 Imclone Systems Incorporated Methods for reducing tumor growth with VEGF receptor antibody combined with radiation and chemotherapy
TW321649B (en) * 1994-11-12 1997-12-01 Zeneca Ltd
GB9424233D0 (en) * 1994-11-30 1995-01-18 Zeneca Ltd Quinazoline derivatives
GB9508565D0 (en) * 1995-04-27 1995-06-14 Zeneca Ltd Quiazoline derivative
GB9508537D0 (en) * 1995-04-27 1995-06-14 Zeneca Ltd Quinazoline derivatives
US5932574A (en) * 1995-04-27 1999-08-03 Zeneca Limited Quinazoline derivatives
GB9508535D0 (en) * 1995-04-27 1995-06-14 Zeneca Ltd Quinazoline derivative
US7060808B1 (en) * 1995-06-07 2006-06-13 Imclone Systems Incorporated Humanized anti-EGF receptor monoclonal antibody
GB9624482D0 (en) 1995-12-18 1997-01-15 Zeneca Phaema S A Chemical compounds
SK285141B6 (en) 1996-02-13 2006-07-07 Astrazeneca Uk Limited Use of quinazoline derivative, quinazoline derivative, process for preparation thereof and pharmaceutical composition containing thereof
GB9603097D0 (en) * 1996-02-14 1996-04-10 Zeneca Ltd Quinazoline compounds
GB9603095D0 (en) * 1996-02-14 1996-04-10 Zeneca Ltd Quinazoline derivatives
ATE211134T1 (en) 1996-03-05 2002-01-15 4-ANILINOQUINAZOLINE DERIVATIVES
CA2249446C (en) 1996-04-12 2008-06-17 Warner-Lambert Company Irreversible inhibitors of tyrosine kinases
GB9607729D0 (en) * 1996-04-13 1996-06-19 Zeneca Ltd Quinazoline derivatives
GB9718972D0 (en) 1996-09-25 1997-11-12 Zeneca Ltd Chemical compounds
DE69802422T3 (en) * 1997-08-15 2005-12-29 Cephalon, Inc. COMBINATION OF TYROSINE CHINASE INHIBITORS AND CHEMICAL CASTRATION FOR THE TREATMENT OF PROSTATE CANCER
US6294532B1 (en) 1997-08-22 2001-09-25 Zeneca Limited Oxindolylquinazoline derivatives as angiogenesis inhibitors
US20030224001A1 (en) * 1998-03-19 2003-12-04 Goldstein Neil I. Antibody and antibody fragments for inhibiting the growth of tumors
US6887674B1 (en) * 1998-04-13 2005-05-03 California Institute Of Technology Artery- and vein-specific proteins and uses therefor
US6864227B1 (en) 1998-04-13 2005-03-08 California Institute Of Technology Artery-and vein-specific proteins and uses therefor
ZA200007412B (en) * 1998-05-15 2002-03-12 Imclone Systems Inc Treatment of human tumors with radiation and inhibitors of growth factor receptor tyrosine kinases.
US7354894B2 (en) * 1998-08-18 2008-04-08 The Regents Of The University Of California Preventing airway mucus production by administration of EGF-R antagonists
UA73722C2 (en) 1998-08-18 2005-09-15 Treatment of mucus hypersecretion in lungs by administration of epidermal growth factor receptor (egf-r) antagonist and pharmaceutical formulation
EP1105378B1 (en) 1998-08-21 2005-03-30 Parker Hughes Institute Quinazoline derivatives
US6297258B1 (en) 1998-09-29 2001-10-02 American Cyanamid Company Substituted 3-cyanoquinolines
CN1144786C (en) 1998-09-29 2004-04-07 美国氰胺公司 Substituted 3-cyanoquinolines as protein tyrosine kinases inhibitors
US6288082B1 (en) 1998-09-29 2001-09-11 American Cyanamid Company Substituted 3-cyanoquinolines
IL142921A0 (en) * 1998-11-20 2002-04-21 Genentech Inc USES FOR Eph RECEPTOR ANTAGONISTS AND AGONISTS TO TREAT VASCULAR DISORDERS
KR20020068261A (en) 1999-02-27 2002-08-27 베링거 잉겔하임 파르마 카게 4-Amino-quinazoline and quinoline derivatives having an inhibitory effect on signal transduction mediated by tyrosine kinases
DE19911509A1 (en) * 1999-03-15 2000-09-21 Boehringer Ingelheim Pharma Bicyclic heterocycles, medicaments containing these compounds, their use and processes for their preparation
MXPA01011632A (en) * 1999-05-14 2002-11-07 Imclone Systems Inc Treatment of refractory human tumors with epidermal growth factor receptor antagonists.
EP1194418A1 (en) 1999-06-21 2002-04-10 Boehringer Ingelheim Pharma KG Bicyclic heterocycles, medicaments containing these compounds, their use and methods for the production thereof
US6432979B1 (en) 1999-08-12 2002-08-13 American Cyanamid Company Method of treating or inhibiting colonic polyps and colorectal cancer
GB9925958D0 (en) * 1999-11-02 1999-12-29 Bundred Nigel J Therapeutic use
KR100881104B1 (en) 1999-11-05 2009-01-30 아스트라제네카 아베 Quinazolin Derivatives as VEGF Inhibitors
US20020002169A1 (en) 1999-12-08 2002-01-03 Griffin John H. Protein kinase inhibitors
GB0002952D0 (en) * 2000-02-09 2000-03-29 Pharma Mar Sa Process for producing kahalalide F compounds
GB0007371D0 (en) 2000-03-28 2000-05-17 Astrazeneca Uk Ltd Chemical compounds
GB0008368D0 (en) * 2000-04-06 2000-05-24 Astrazeneca Ab Combination product
NZ521421A (en) 2000-04-07 2004-09-24 Astrazeneca Ab Quinazoline compounds
EP1170011A1 (en) * 2000-07-06 2002-01-09 Boehringer Ingelheim International GmbH Novel use of inhibitors of the epidermal growth factor receptor
JP2004527456A (en) * 2000-08-09 2004-09-09 イムクローン システムズ インコーポレイティド Treatment of hyperproliferative diseases with EGF receptor antagonists
US6403580B1 (en) 2000-08-26 2002-06-11 Boehringer Ingelheim Pharma Kg Quinazolines, pharmaceutical compositions containing these compounds, their use and processes for preparing them
DE10042058A1 (en) * 2000-08-26 2002-03-07 Boehringer Ingelheim Pharma Bicyclic heterocycles, medicaments containing these compounds, their use and processes for their preparation
US6740651B2 (en) 2000-08-26 2004-05-25 Boehringer Ingelheim Pharma Kg Aminoquinazolines which inhibit signal transduction mediated by tyrosine kinases
US6617329B2 (en) 2000-08-26 2003-09-09 Boehringer Ingelheim Pharma Kg Aminoquinazolines and their use as medicaments
US6656946B2 (en) 2000-08-26 2003-12-02 Boehringer Ingelheim Pharma Kg Aminoquinazolines which inhibit signal transduction mediated by tyrosine kinases
DE10042059A1 (en) * 2000-08-26 2002-03-07 Boehringer Ingelheim Pharma Bicyclic heterocycles, medicaments containing these compounds, their use and processes for their preparation
EP1326860A1 (en) * 2000-10-13 2003-07-16 AstraZeneca AB Quinazoline derivatives
RU2264389C3 (en) 2000-10-20 2018-06-01 Эйсай Ар Энд Ди Менеджмент Ко., Лтд. NITROGEN-CONTAINING AROMATIC DERIVATIVES, THEIR APPLICATION, MEDICINE ON THEIR BASIS AND METHOD OF TREATMENT
US7776315B2 (en) 2000-10-31 2010-08-17 Boehringer Ingelheim Pharma Gmbh & Co. Kg Pharmaceutical compositions based on anticholinergics and additional active ingredients
DE10206505A1 (en) * 2002-02-16 2003-08-28 Boehringer Ingelheim Pharma New drug compositions based on anticholinergics and EGFR kinase inhibitors
EP1330444B1 (en) 2000-11-01 2011-03-23 Millennium Pharmaceuticals, Inc. Nitrogenous heterocyclic compounds and process for making them
US7019012B2 (en) 2000-12-20 2006-03-28 Boehringer Ingelheim International Pharma Gmbh & Co. Kg Quinazoline derivatives and pharmaceutical compositions containing them
CA2860306C (en) 2001-02-19 2018-04-17 Novartis Ag Treatment of solid tumors with rapamycin derivatives
US20080008704A1 (en) * 2001-03-16 2008-01-10 Mark Rubin Methods of treating colorectal cancer with anti-epidermal growth factor antibodies
DK1392313T3 (en) 2001-05-16 2007-06-25 Novartis Ag Combination comprising N- {5- [4- (4-methyl-piperazino-methyl) -benzoylamido] -2-methylphenyl} -4- (3-pyridyl) -2-pyrimidine-amine and a biphosphonate
US7132427B2 (en) 2001-06-21 2006-11-07 Ariad Pharmaceuticals, Inc. Quinazolines and uses thereof
ES2333702T3 (en) * 2001-12-24 2010-02-26 Astrazeneca Ab SUBSTITUTED QUINAZOLINE DERIVATIVES ACTING AS AURORA CINASE UNHIBITORS.
DE10204462A1 (en) * 2002-02-05 2003-08-07 Boehringer Ingelheim Pharma Use of tyrosine kinase inhibitors for the treatment of inflammatory processes
WO2003066602A1 (en) 2002-02-06 2003-08-14 Ube Industries, Ltd. Process for producing 4-aminoquinazoline compound
BRPI0308023B1 (en) * 2002-02-26 2021-07-27 Astrazeneca Ab CRYSTALLINE FORM OF COMPOUND, COMPOUND AND PHARMACEUTICAL COMPOSITION
CA2476587C (en) * 2002-02-26 2010-05-04 Astrazeneca Ab Pharmaceutical formulation of iressa comprising a water-soluble cellulose derivative
GB0204392D0 (en) * 2002-02-26 2002-04-10 Astrazeneca Ab Pharmaceutical compound
US20040132101A1 (en) 2002-09-27 2004-07-08 Xencor Optimized Fc variants and methods for their generation
GB0206215D0 (en) * 2002-03-15 2002-05-01 Novartis Ag Organic compounds
RU2345989C2 (en) * 2002-03-28 2009-02-10 Астразенека Аб Derivatives of 4-anilino-benzodiazine, method of obtaining them (versions) pharmaceutical composition, method of inhibiting their proliferative action and method of treating cancer in warm-blooded animal
TW200813014A (en) * 2002-03-28 2008-03-16 Astrazeneca Ab Quinazoline derivatives
US6924285B2 (en) 2002-03-30 2005-08-02 Boehringer Ingelheim Pharma Gmbh & Co. Bicyclic heterocyclic compounds, pharmaceutical compositions containing these compounds, their use and process for preparing them
NZ535739A (en) * 2002-04-16 2008-01-31 Astrazeneca Ab Combination of VTA and tyrosine kinase inhibitor receptor for the treatment of cancer
DE10221018A1 (en) * 2002-05-11 2003-11-27 Boehringer Ingelheim Pharma Use of inhibitors of EGFR-mediated signal transduction for the treatment of benign prostatic hyperplasia (BPH) / prostatic hypertrophy
JP5227492B2 (en) 2002-05-16 2013-07-03 ノバルティス アーゲー Use of EDG receptor binding agents in cancer
US20040048887A1 (en) * 2002-07-09 2004-03-11 Boehringer Ingelheim Pharma Gmbh & Co. Kg Pharmaceutical compositions based on anticholinergics and EGFR kinase inhibitors
HUP0600340A3 (en) 2002-07-15 2011-06-28 Genentech Inc Methods for identifying tumors that are responsive to treatment with anti-erbb2 antibodies
AU2003249212C1 (en) 2002-07-15 2011-10-27 Symphony Evolution, Inc. Receptor-type kinase modulators and methods of use
GB0221245D0 (en) * 2002-09-13 2002-10-23 Astrazeneca Ab Chemical process
EP3502133A1 (en) 2002-09-27 2019-06-26 Xencor, Inc. Optimized fc variants and methods for their generation
GB0223854D0 (en) * 2002-10-12 2002-11-20 Astrazeneca Ab Therapeutic treatment
GB0304367D0 (en) * 2003-02-26 2003-04-02 Pharma Mar Sau Methods for treating psoriasis
PL215161B1 (en) * 2002-11-04 2013-10-31 Astrazeneca Ab Quinazoline derivatives, the method of their preparation, pharmaceutical compositions containing them and their use
AU2003291394B2 (en) 2002-11-20 2009-06-25 Array Biopharma, Inc Cyanoguanidines and cyanoamidines as ErbB2 and EGFR inhibitors
US20060167026A1 (en) * 2003-01-06 2006-07-27 Hiroyuki Nawa Antipsychotic molecular-targeting epithelial growth factor receptor
PL377847A1 (en) 2003-01-14 2006-02-20 Arena Pharmaceuticals Inc. 1,2,3-trisubstituted aryl and heteroaryl derivatives as modulators of metabolism and the prpphylaxis and treatment of disorders related thereto such as diabetes and hyperglycemia
GB0302882D0 (en) * 2003-02-07 2003-03-12 Univ Cardiff Improvements in or relating to agents for the treatment of cardiovascular dysfunction and weight loss
US7223749B2 (en) 2003-02-20 2007-05-29 Boehringer Ingelheim International Gmbh Bicyclic heterocycles, pharmaceutical compositions containing these compounds, their use and processes for preparing them
ATE508747T1 (en) 2003-03-10 2011-05-15 Eisai R&D Man Co Ltd C-KIT KINASE INHIBITORS
AU2004220459B2 (en) * 2003-03-12 2010-08-05 Vasgene Therapeutics, Inc. Polypeptide compounds for inhibiting angiogenesis and tumor growth
US7381410B2 (en) * 2003-03-12 2008-06-03 Vasgene Therapeutics, Inc. Polypeptide compounds for inhibiting angiogenesis and tumor growth
EP1622941A2 (en) * 2003-03-20 2006-02-08 ImClone Systems Incorporated Method of producing an antibody to epidermal growth factor receptor
GB0309850D0 (en) 2003-04-30 2003-06-04 Astrazeneca Ab Quinazoline derivatives
GB0310401D0 (en) * 2003-05-07 2003-06-11 Astrazeneca Ab Therapeutic agent
CA2524048C (en) 2003-05-19 2013-06-25 Irm Llc Immunosuppressant compounds and compositions
MY150088A (en) 2003-05-19 2013-11-29 Irm Llc Immunosuppressant compounds and compositions
PA8603801A1 (en) * 2003-05-27 2004-12-16 Janssen Pharmaceutica Nv DERIVATIVES OF QUINAZOLINE
MXPA05012939A (en) 2003-05-30 2006-05-17 Astrazeneca Uk Ltd Process.
DE10326186A1 (en) * 2003-06-06 2004-12-23 Boehringer Ingelheim Pharma Gmbh & Co. Kg Bicyclic heterocycles, medicaments containing these compounds, their use and processes for their preparation
EP2389953A1 (en) 2003-06-09 2011-11-30 Samuel Waksal Method of inhibiting receptor tyrosine kinases with an extracellular antagonist and an intracellular antagonist
AR045047A1 (en) 2003-07-11 2005-10-12 Arena Pharm Inc ARILO AND HETEROARILO DERIVATIVES TRISUSTITUIDOS AS MODULATORS OF METABOLISM AND PROFILAXIS AND TREATMENT OF DISORDERS RELATED TO THEMSELVES
CN103755807A (en) 2003-07-18 2014-04-30 安姆根有限公司 Specific binding agents to hepatocyte growth factor
GB0317665D0 (en) 2003-07-29 2003-09-03 Astrazeneca Ab Qinazoline derivatives
KR20060054388A (en) * 2003-07-29 2006-05-22 아스트라제네카 아베 Piperidyl-quinazolin Derivatives as Tyrosine Kinase Inhibitors
GB0317663D0 (en) * 2003-07-29 2003-09-03 Astrazeneca Ab Pharmaceutical composition
RU2350605C2 (en) * 2003-08-14 2009-03-27 Эррей Байофарма Инк. Analogues of quinazoline as inhibitors of receptor tyrosine kinases
GB0320793D0 (en) * 2003-09-05 2003-10-08 Astrazeneca Ab Chemical process
GB0321066D0 (en) * 2003-09-09 2003-10-08 Pharma Mar Sau New antitumoral compounds
CA2538884C (en) 2003-09-16 2010-09-21 Astrazeneca Ab Quinazoline derivatives as tyrosine kinase inhibitors
MXPA06003161A (en) * 2003-09-16 2006-06-05 Astrazeneca Ab Quinazoline derivatives.
JP2007505878A (en) * 2003-09-19 2007-03-15 アストラゼネカ アクチボラグ Quinazoline derivatives
PL1667992T3 (en) * 2003-09-19 2007-05-31 Astrazeneca Ab Quinazoline derivatives
GB0322409D0 (en) 2003-09-25 2003-10-29 Astrazeneca Ab Quinazoline derivatives
BRPI0414735A (en) * 2003-09-25 2006-11-21 Astrazeneca Ab quinazoline derivative, compound, pharmaceutical composition, use of quinazoline derivative, method for producing an antiproliferative effect on a warm-blooded animal, and process for the preparation of a quinazoline derivative
ATE520403T1 (en) 2003-09-26 2011-09-15 Exelixis Inc N-Ä3-FLUORO-4-(Ä6-(METHYLOXY)-7-Ä(3-MORPHOLINE-4 YLPROPYL)OXYÜQUINOLIN-4-YLÜOXY)PHENYLÜ-N'-(4-FLUOROPHENYL)CYCLOPROPANE-1,1-DICARBOXAMIDE FOR TREATMENT OF CANCER
US7456189B2 (en) 2003-09-30 2008-11-25 Boehringer Ingelheim International Gmbh Bicyclic heterocycles, medicaments containing these compounds, their use and processes for their preparation
DE10349113A1 (en) 2003-10-17 2005-05-12 Boehringer Ingelheim Pharma Process for the preparation of aminocrotonyl compounds
CA3062320C (en) 2003-11-06 2022-11-15 Seattle Genetics, Inc. Monomethylvaline compounds capable of conjugation to ligands
CN100450998C (en) 2003-11-11 2009-01-14 卫材R&D管理有限公司 Process for the preparation of urea derivatives
GB0326459D0 (en) 2003-11-13 2003-12-17 Astrazeneca Ab Quinazoline derivatives
DE602004012891T2 (en) 2003-12-18 2009-04-09 Janssen Pharmaceutica N.V. PYRIDO AND PYRIMIDOPYRIMIDIN DERIVATIVES AS ANTI-PROLIFERATIVE AGENTS
AU2003290345A1 (en) * 2003-12-24 2005-07-14 Astrazeneca Ab Pharmaceutical dissolution testing using a non-ionic surfactant
WO2005070909A1 (en) * 2004-01-22 2005-08-04 Natco Pharma Limited An improved process for the preparation of gefitinib
CN1914182B (en) 2004-02-03 2011-09-07 阿斯利康(瑞典)有限公司 Quinazoline derivatives
DE602005025459D1 (en) 2004-03-12 2011-02-03 Vasgene Therapeutics Inc EPHB4-Binding Antibodies for the Inhibition of Angiogenesis and Tumor Growth
JP4960859B2 (en) * 2004-03-12 2012-06-27 バスジーン セラピューティクス,インコーポレイテッド Polypeptide compounds for inhibiting angiogenesis and tumor growth
PL1735348T3 (en) * 2004-03-19 2012-11-30 Imclone Llc Human anti-epidermal growth factor receptor antibody
WO2005097137A2 (en) * 2004-03-31 2005-10-20 The Scripps Research Institute Advanced quinazoline based protein kinase inhibitors
DK1733056T3 (en) 2004-03-31 2013-08-26 Gen Hospital Corp A method for determining the responsiveness of a tumor to target epidermal growth factor receptor treatments
CA2560162C (en) 2004-04-07 2013-05-21 Novartis Ag Inhibitors of iap
BRPI0510717B8 (en) 2004-05-06 2021-05-25 Bioresponse Llc use of 3,3'-diindolylmethane (dim) or 2-(indol-3-ylmethyl)-3,3'-diindolylmethane (ltr)
PT1746999E (en) 2004-05-06 2012-01-11 Warner Lambert Co 4-phenylamino-quinazolin-6-yl-amides
EP2286844A3 (en) 2004-06-01 2012-08-22 Genentech, Inc. Antibody-drug conjugates and methods
CA2571421A1 (en) 2004-06-24 2006-01-05 Nicholas Valiante Compounds for immunopotentiation
GB0512324D0 (en) 2005-06-16 2005-07-27 Novartis Ag Organic compounds
BRPI0510674A (en) 2004-07-15 2007-12-26 Xencor Inc optimized fc variants
US8969379B2 (en) 2004-09-17 2015-03-03 Eisai R&D Management Co., Ltd. Pharmaceutical compositions of 4-(3-chloro-4-(cyclopropylaminocarbonyl)aminophenoxy)-7=methoxy-6-quinolinecarboxide
CA2581423A1 (en) 2004-09-23 2006-03-30 Vasgene Therapeutics, Inc. Polipeptide compounds for inhibiting angiogenesis and tumor growth
DK1791565T3 (en) 2004-09-23 2016-08-01 Genentech Inc Cysteingensplejsede antibodies and conjugates
JO3000B1 (en) 2004-10-20 2016-09-05 Genentech Inc Antibody Formulations.
US7652009B2 (en) 2004-11-30 2010-01-26 Amgem Inc. Substituted heterocycles and methods of use
JO3088B1 (en) * 2004-12-08 2017-03-15 Janssen Pharmaceutica Nv Macrocyclic Quinazoline derivatives and their use as MTKI
NI200700147A (en) * 2004-12-08 2019-05-10 Janssen Pharmaceutica Nv QUINAZOLINE DERIVATIVES KINE INHIBITORS TARGETING MULTIP
DE602005026865D1 (en) 2004-12-14 2011-04-21 Astrazeneca Ab PYRAZOLOPYRIMIDINE COMPOUNDS AS ANTITUM-MEANS
EP1838303B1 (en) 2004-12-30 2011-02-09 Bioresponse LLC Use of diindolylmethane-related indoles for the treatment and prevention of respiratory syncytial virus associates conditions
DOP2006000010A (en) 2005-01-10 2006-07-31 Arena Pharm Inc PROCEDURE TO PREPARE AROMATIC ETERES
EP1845974A1 (en) 2005-01-21 2007-10-24 Astex Therapeutics Limited Pharmaceutical compounds
US7449184B2 (en) 2005-01-21 2008-11-11 Genentech, Inc. Fixed dosing of HER antibodies
GB0501999D0 (en) * 2005-02-01 2005-03-09 Sentinel Oncology Ltd Pharmaceutical compounds
BRPI0606839B8 (en) 2005-02-03 2021-12-14 Massachusetts Gen Hospital Use of a pharmaceutical composition comprising an irreversible epidermal growth factor receptor (egfr) inhibitor
US20090155247A1 (en) * 2005-02-18 2009-06-18 Ashkenazi Avi J Methods of Using Death Receptor Agonists and EGFR Inhibitors
US20060188498A1 (en) * 2005-02-18 2006-08-24 Genentech, Inc. Methods of using death receptor agonists and EGFR inhibitors
WO2006090413A1 (en) * 2005-02-23 2006-08-31 Natco Pharma Limited Novel crystalline form of gefitinib and a process for its preparation
EP1850874B1 (en) 2005-02-23 2013-10-16 Genentech, Inc. Extending time to disease progression or survival in ovarian cancer patients using pertuzumab
WO2006090163A1 (en) 2005-02-26 2006-08-31 Astrazeneca Ab Quinazoline derivatives as tyrosine kinase inhibitors
CA2599115A1 (en) * 2005-02-28 2006-08-31 Eisai R & D Management Co., Ltd. Novel combinational use of sulfonamide compound
US20060216288A1 (en) * 2005-03-22 2006-09-28 Amgen Inc Combinations for the treatment of cancer
BRPI0607537A2 (en) * 2005-04-12 2009-09-15 Elan Pharma Int Ltd nanoparticulate quinazoline derivative formulations
ES2601503T3 (en) 2005-04-19 2017-02-15 Novartis Ag Pharmaceutical composition
WO2006119676A1 (en) * 2005-05-12 2006-11-16 Wenlin Huang The preparation process of quinazoline derivatives and application for the manufacture for the treatment of tumor disease
WO2006119674A1 (en) * 2005-05-12 2006-11-16 Wenlin Huang The preparation process of quinazoline derivatives and application for the manufacture for the treatment of tumor disease
WO2006119673A1 (en) * 2005-05-12 2006-11-16 Wenlin Huang The preparation process of quinazoline derivatives and application for the manufacture for the treatment of tumor disease
EP1885187B1 (en) 2005-05-13 2013-09-25 Novartis AG Methods for treating drug resistant cancer
GB0510390D0 (en) 2005-05-20 2005-06-29 Novartis Ag Organic compounds
ES2452115T3 (en) 2005-06-17 2014-03-31 Imclone Llc An anti-PDGFRalpha antibody for use in the treatment of metastatic bone cancer
CA2652434A1 (en) 2005-07-08 2007-01-18 Xencor, Inc. Optimized proteins that target ep-cam
WO2007011962A2 (en) * 2005-07-18 2007-01-25 Bipar Sciences, Inc. Treatment of cancer
EP1925941B1 (en) * 2005-08-01 2012-11-28 Eisai R&D Management Co., Ltd. Method for prediction of the efficacy of vascularization inhibitor
JP4989476B2 (en) 2005-08-02 2012-08-01 エーザイ・アール・アンド・ディー・マネジメント株式会社 Methods for assaying the effects of angiogenesis inhibitors
JP2009505658A (en) 2005-08-24 2009-02-12 ブリストル−マイヤーズ スクイブ カンパニー Biomarkers and methods for determining susceptibility to epidermal growth factor receptor modulators
CN1300118C (en) * 2005-08-25 2007-02-14 江苏吴中苏药医药开发有限责任公司 Preparation method of 4-(3-chlor-4-fluorobenzeneamidocyanogen)-7-methoxy-6-(3-morpholine oxypropyl)quinazoline
CA2620594C (en) * 2005-09-01 2012-08-21 Eisai R&D Management Co., Ltd. Pharmaceutical composition having improved disintegratability
ES2354457T3 (en) 2005-09-20 2011-03-15 Astrazeneca Ab COMPOUNDS OF 4- (1H-INDAZOL-5-IL-AMINO) -CHINAZOLINE AS INHIBITORS OF THE ERBB RECEIVER OF THYROSINE KINASE FOR THE TREATMENT OF CANCER.
CA2623387A1 (en) * 2005-09-23 2007-04-05 Vasgene Therapeutics, Inc. Use of ephrinb2 directed agents for the treatment or prevention of viral infections
JP2009514870A (en) 2005-11-04 2009-04-09 ワイス Anti-neoplastic combinations of mTOR inhibitors, Herceptin, and / or HKI-272
CA2627598C (en) 2005-11-07 2013-06-25 Eisai R & D Management Co., Ltd. Use of combination of anti-angiogenic substance and c-kit kinase inhibitor
CA2833706C (en) 2005-11-11 2014-10-21 Boehringer Ingelheim International Gmbh Quinazoline derivatives for the treatment of cancer diseases
SI2275103T1 (en) 2005-11-21 2014-07-31 Novartis Ag mTOR inhibitors in the treatment of endocrine tumors
WO2007061130A1 (en) * 2005-11-22 2007-05-31 Eisai R & D Management Co., Ltd. Anti-tumor agent for multiple myeloma
US7977346B2 (en) * 2006-01-17 2011-07-12 Guoqing Paul Chen Spiro compounds and methods of use
CN101003514A (en) * 2006-01-20 2007-07-25 上海艾力斯医药科技有限公司 Derivative of quinazoline, preparation method and usage
JO2660B1 (en) 2006-01-20 2012-06-17 نوفارتيس ايه جي PI-3 Kinase inhibitors and methods of their use
AR059066A1 (en) 2006-01-27 2008-03-12 Amgen Inc COMBINATIONS OF THE ANGIOPOYETINE INHIBITOR -2 (ANG2) AND THE VASCULAR ENDOTELIAL GROWTH FACTOR INHIBITOR (VEGF)
PE20070978A1 (en) * 2006-02-14 2007-11-15 Novartis Ag HETEROCICLIC COMPOUNDS AS INHIBITORS OF PHOSPHATIDYLINOSITOL 3-KINASES (PI3Ks)
GB0605120D0 (en) 2006-03-14 2006-04-26 Novartis Ag Organic Compounds
US20070231298A1 (en) * 2006-03-31 2007-10-04 Cell Genesys, Inc. Cytokine-expressing cancer immunotherapy combinations
MX2008012728A (en) 2006-04-05 2008-10-14 Novartis Ag Combinations comprising bcr-abl/c-kit/pdgf-r tk inhibitors for treating cancer.
AU2007240548A1 (en) 2006-04-05 2007-11-01 Novartis Ag Combinations of therapeutic agents for treating cancer
TW200808739A (en) * 2006-04-06 2008-02-16 Novartis Vaccines & Diagnostic Quinazolines for PDK1 inhibition
KR20080110912A (en) 2006-04-19 2008-12-19 노파르티스 아게 Inhibition method of indazole compound and CD7
PE20080695A1 (en) 2006-04-27 2008-06-28 Banyu Pharma Co Ltd DIHYDROPIRAZOLOPYRIMIDINONE DERIVATIVES AS KINASE WEEL INHIBITORS
EP2026800A1 (en) 2006-05-09 2009-02-25 Novartis AG Combination comprising an iron chelator and an anti-neoplastic agent and use thereof
CN101443009A (en) 2006-05-18 2009-05-27 卫材R&D管理有限公司 Antitumor agent for thyroid cancer
US20100279327A1 (en) * 2006-06-12 2010-11-04 Bipar Sciences, Inc. Method of treating diseases with parp inhibitors
EP2038654A4 (en) * 2006-06-12 2010-08-11 Bipar Sciences Inc Method of treating diseases with parp inhibitors
WO2008001956A1 (en) * 2006-06-29 2008-01-03 Eisai R & D Management Co., Ltd. Therapeutic agent for liver fibrosis
US8492377B2 (en) * 2006-07-13 2013-07-23 Janssen Pharmaceutica Nv MTKI quinazoline derivatives
PE20121506A1 (en) 2006-07-14 2012-11-26 Amgen Inc TRIAZOLOPYRIDINE COMPOUNDS AS C-MET INHIBITORS
US8217177B2 (en) 2006-07-14 2012-07-10 Amgen Inc. Fused heterocyclic derivatives and methods of use
US8524867B2 (en) 2006-08-14 2013-09-03 Xencor, Inc. Optimized antibodies that target CD19
JP5368096B2 (en) 2006-08-28 2013-12-18 エーザイ・アール・アンド・ディー・マネジメント株式会社 Anti-tumor agent for undifferentiated gastric cancer
JP2008081492A (en) 2006-08-31 2008-04-10 Banyu Pharmaceut Co Ltd Novel aminopyridine derivatives having selective inhibition of Aurora A
EP2061479A4 (en) * 2006-09-05 2010-08-04 Bipar Sciences Inc Inhibition of fatty acid synthesis by parp inhibitors and methods of treatment thereof
US8143447B2 (en) * 2006-09-05 2012-03-27 Bipar Sciences, Inc. Treatment of cancer
AU2007296745B2 (en) * 2006-09-11 2011-12-01 Curis, Inc. Quinazoline based EGFR inhibitors
WO2008033782A2 (en) 2006-09-12 2008-03-20 Genentech, Inc. Methods and compositions for the diagnosis and treatment of lung cancer using pdgfra, kit or kdr gene as genetic marker
AU2007299080B2 (en) 2006-09-18 2013-04-18 Boehringer Ingelheim International Gmbh Method for treating cancer harboring EGFR mutations
RU2009115954A (en) 2006-09-29 2010-11-10 Новартис АГ (CH) Pyrazolopyrimidines as P13K Lipid Kinase Inhibitors
WO2008044045A1 (en) 2006-10-12 2008-04-17 Astex Therapeutics Limited Pharmaceutical combinations
EP2073803B1 (en) 2006-10-12 2018-09-19 Astex Therapeutics Limited Pharmaceutical combinations
WO2008046242A1 (en) * 2006-10-16 2008-04-24 Institute Of Mataria Medica, Chinese Academy Of Medical Sciences The novel quinazoline derivatives,preparation methods and uses thereof
WO2008057253A2 (en) 2006-10-27 2008-05-15 Bioresponse, L.L.C. Anti-parasitic methods and compositions utilizing diindolylmethane-related indoles
WO2008049901A1 (en) * 2006-10-27 2008-05-02 Janssen Pharmaceutica Nv Use of a mt kinase inhibitor for treating or preventing brain cancer
CL2007003158A1 (en) 2006-11-02 2008-05-16 Astrazeneca Ab PROCEDURE FOR PREPARATION OF COMPOUNDS DERIVED FROM QUINAZOLINA OR ITS PHARMACEUTICALLY ACCEPTABLE SALTS; INTERMEDIARY COMPOUNDS; PREPARATION PROCEDURE
EP1921070A1 (en) 2006-11-10 2008-05-14 Boehringer Ingelheim Pharma GmbH & Co. KG Bicyclic heterocycles, medicaments comprising them, their use and process for their preparation
EP2125841A1 (en) * 2006-12-13 2009-12-02 Gilead Sciences, Inc. Monophosphates as mutual prodrugs of anti-inflammatory signal transduction modulators (aistm's) and beta-agonists for the treatment of pulmonary inflammation and bronchoconstriction
EP2125781A2 (en) 2006-12-20 2009-12-02 Amgen Inc. Substituted heterocycles and methods of use
US7977336B2 (en) 2006-12-28 2011-07-12 Banyu Pharmaceutical Co. Ltd Aminopyrimidine derivatives as PLK1 inhibitors
CA2673652A1 (en) 2007-01-09 2008-07-17 Amgen Inc. Bis-aryl amide derivatives and methods of use
EP2119707B1 (en) 2007-01-29 2015-01-14 Eisai R&D Management Co., Ltd. Composition for treatment of undifferentiated-type of gastric cancer
WO2008095847A1 (en) 2007-02-06 2008-08-14 Boehringer Ingelheim International Gmbh Bicyclic heterocycles, drugs containing said compounds, use thereof, and method for production thereof
EP2491923A3 (en) 2007-02-15 2012-12-26 Novartis AG Combinations of therapeutic agents for treating cancer
WO2008103277A2 (en) 2007-02-16 2008-08-28 Amgen Inc. Nitrogen-containing heterocyclyl ketones and their use as c-met inhibitors
CA2677108A1 (en) 2007-03-02 2008-09-12 Genentech, Inc. Predicting response to a her inhibitor
WO2008121346A1 (en) * 2007-03-30 2008-10-09 Massachusetts Institute Of Technology Methods for identifying compounds that modulate neurotrophic factor signaling
WO2008125867A2 (en) 2007-04-16 2008-10-23 Cipla Limited Process for the preparation of gefitinib
WO2008150494A1 (en) 2007-05-30 2008-12-11 Xencor, Inc. Methods and compositions for inhibiting cd32b expressing cells
ES2417148T3 (en) 2007-06-08 2013-08-06 Genentech, Inc. Gene expression markers of tumor resistance to HER2 inhibitor treatment
ES2435454T3 (en) * 2007-06-21 2013-12-19 Janssen Pharmaceutica, N.V. Indolin-2-one and aza-indolin-2-one
JP5536647B2 (en) 2007-07-27 2014-07-02 ジヤンセン・フアーマシユーチカ・ナームローゼ・フエンノートシヤツプ Pyrrolopyrimidine
EP2185594B1 (en) * 2007-08-13 2016-04-06 VasGene Therapeutics, Inc. Cancer treatment using humanized antibodies that bind to ephb4
CN101802008B (en) 2007-08-21 2015-04-01 安美基公司 Human C-FMS antigen binding proteins
JP5474792B2 (en) 2007-09-10 2014-04-16 キュリス,インコーポレイテッド Tartrate salt of a quinazoline-based EGFR inhibitor containing a zinc binding moiety or a complex thereof
US8022216B2 (en) 2007-10-17 2011-09-20 Wyeth Llc Maleate salts of (E)-N-{4-[3-chloro-4-(2-pyridinylmethoxy)anilino]-3-cyano-7-ethoxy-6-quinolinyl}-4-(dimethylamino)-2-butenamide and crystalline forms thereof
JP2011500684A (en) * 2007-10-19 2011-01-06 バイパー サイエンシズ,インコーポレイティド Method and composition for treating cancer using benzopyrone PARP inhibitors
MX2010004259A (en) * 2007-10-19 2010-08-31 Pharma Mar Sa Improved antitumoral treatments.
EP2213673B1 (en) 2007-10-23 2013-06-05 Msd K.K. Pyridone-substituted-dihydropyrazolopyrimidinone derivative
WO2009057139A2 (en) * 2007-10-29 2009-05-07 Natco Pharma Limited Novel 4-(tetrazol-5-yl)-quinazoline derivatives as anti cancer agents
US8952035B2 (en) 2007-11-09 2015-02-10 Eisai R&D Management Co., Ltd. Combination of anti-angiogenic substance and anti-tumor platinum complex
EP2217227B1 (en) * 2007-11-12 2013-08-21 BiPar Sciences, Inc. Treatment of breast cancer with 4-iodo-3-nitrobenzamide in combination with anti-tumor agents
US20090123419A1 (en) * 2007-11-12 2009-05-14 Bipar Sciences Treatment of uterine cancer and ovarian cancer with a parp inhibitor alone or in combination with anti-tumor agents
US20110053991A1 (en) * 2007-11-19 2011-03-03 Gore Lia Treatment of Histone Deacetylase Mediated Disorders
CL2008003449A1 (en) 2007-11-21 2010-02-19 Imclone Llc Antibody or fragments thereof against the macrophage / rum stimulating protein receptor; pharmaceutical composition comprising it; use to inhibit angiogenesis, tumor growth, proliferation, migration and invasion of tumor cells, activation of rum or phosphorylation of mapk and / or akt; and use to treat cancer.
MX2010006154A (en) * 2007-12-07 2010-09-24 Bipar Sciences Inc Treatment of cancer with combinations of topoisomerase inhibitors and parp inhibitors.
EP2240475B1 (en) 2007-12-20 2013-09-25 Novartis AG Thiazole derivatives used as pi 3 kinase inhibitors
HRP20161522T1 (en) * 2008-01-18 2017-02-10 Natco Pharma Limited 6,7-dialkoxy-quinazoline derivatives useful for treatment of cancer-related disorders
WO2009094216A1 (en) 2008-01-22 2009-07-30 Concert Pharmaceuticals Inc. Derivatives of gefitinib
WO2009096377A1 (en) * 2008-01-29 2009-08-06 Eisai R & D Management Co., Ltd. Combined use of angiogenesis inhibitor and taxane
TWI472339B (en) 2008-01-30 2015-02-11 Genentech Inc Composition comprising antibody that binds to domain ii of her2 and acidic variants thereof
AU2009209541A1 (en) * 2008-01-30 2009-08-06 Pharma Mar, S.A. Improved antitumoral treatments
NZ586582A (en) 2008-02-07 2012-07-27 Boehringer Ingelheim Int Spirocyclic heterocycles, medicaments containing said compounds, use thereof and method for their production
PT2259800E (en) * 2008-03-05 2014-08-06 Novartis Ag Use of 5-(2,6-di-morpholin-4-yl-pyrimidin-4-yl)-4-trifluoromethyl-pyridin-2-ylamine for the treatment of non small cell lung carcinoma with acquired resistance to epidermal growth factor receptor (egfr) modulators.
EP2262522A1 (en) * 2008-03-07 2010-12-22 Pharma Mar, S.A. Improved antitumoral treatments
EP2268612B1 (en) 2008-03-24 2014-08-20 Novartis AG Arylsulfonamide-based matrix metalloprotease inhibitors
CN101544609A (en) 2008-03-25 2009-09-30 上海艾力斯医药科技有限公司 Crystallization form of 4-anilinoquinazoline derivatives
JP5330498B2 (en) 2008-03-26 2013-10-30 ノバルティス アーゲー Hydroxamate-based inhibitors of deacetylase B
US8088782B2 (en) 2008-05-13 2012-01-03 Astrazeneca Ab Crystalline 4-(3-chloro-2-fluoroanilino)-7 methoxy-6-{[1-(N-methylcarbamoylmethyl)piperidin-4-yl]oxy}quinazoline difumarate form A
EP2288727B1 (en) 2008-05-14 2013-07-10 Genomic Health, Inc. Predictors of patient response to treatment with egf receptor inhibitors
CN101584696A (en) 2008-05-21 2009-11-25 上海艾力斯医药科技有限公司 Composition containing quinazoline derivatives, preparation method and use
EP2915532B1 (en) 2008-06-17 2016-10-19 Wyeth LLC Antineoplastic combinations containing hki-272 and vinorelbine
DE102008031040A1 (en) 2008-06-30 2009-12-31 Alexander Priv.-Doz. Dr. Dömling Use of 2-aminopyrimidine derivatives for the treatment of organ transplantation
EP3175853B1 (en) 2008-08-04 2023-11-01 Wyeth LLC Antineoplastic combinations of neratinib and capecitabine
US8648191B2 (en) 2008-08-08 2014-02-11 Boehringer Ingelheim International Gmbh Cyclohexyloxy substituted heterocycles, pharmaceutical compositions containing these compounds and processes for preparing them
CN101367793B (en) * 2008-09-26 2013-09-11 中国科学院广州生物医药与健康研究院 Amino-quinazoline derivative with antineoplastic activity and salts thereof
WO2010043050A1 (en) 2008-10-16 2010-04-22 Celator Pharmaceuticals Corporation Combinations of a liposomal water-soluble camptothecin with cetuximab or bevacizumab
EP2349235A1 (en) 2008-11-07 2011-08-03 Triact Therapeutics, Inc. Use of catecholic butane derivatives in cancer therapy
AU2009322625A1 (en) * 2008-12-01 2011-07-21 University Of Central Florida Research Foundation, Inc. Drug composition cytotoxic for pancreatic cancer cells
US8486930B2 (en) 2008-12-18 2013-07-16 Novartis Ag Salts
CN102256942B (en) 2008-12-18 2013-07-24 诺瓦提斯公司 New polymorphic form of 1- (4- { l- [ (e) -4-cyclohexyl--3-trifluoromethyl-benzyloxyimino] -ethyl) -2-ethyl-benzyl) -azetidine-3-formic acid
DK2379497T3 (en) 2008-12-18 2013-11-25 Novartis Ag Hemifumarate salt of 1- [4-cyclohexyl-3-trifluoromethyl-benzyloxyimino) -ethyl] -2-ethyl-benzyl] -azetidine-3-carboxylic acid
KR20250123237A (en) 2009-01-16 2025-08-14 엑셀리시스, 인코포레이티드 Malate salt of n-(4-{[6,7-bis(methyloxy)quinolin-4-yl]oxy}phenyl)-n'-(4-fluorophenyl)cyclopropane-1,1-dicarboxamide, and crystalline forms thereof for the treatment of cancer
WO2010083617A1 (en) 2009-01-21 2010-07-29 Oncalis Ag Pyrazolopyrimidines as protein kinase inhibitors
JP2012516345A (en) 2009-01-29 2012-07-19 ノバルティス アーゲー Substituted benzimidazoles for astrocytoma treatment
WO2010098367A1 (en) 2009-02-25 2010-09-02 Banyu Pharmaceutical Co.,Ltd. Pyrimidopyrimidoindazole derivative
JP2012518657A (en) 2009-02-25 2012-08-16 オーエスアイ・ファーマシューティカルズ,エルエルシー Combined anticancer treatment
WO2010099137A2 (en) 2009-02-26 2010-09-02 Osi Pharmaceuticals, Inc. In situ methods for monitoring the emt status of tumor cells in vivo
WO2010099138A2 (en) 2009-02-27 2010-09-02 Osi Pharmaceuticals, Inc. Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation
US8465912B2 (en) 2009-02-27 2013-06-18 OSI Pharmaceuticals, LLC Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation
US8642834B2 (en) 2009-02-27 2014-02-04 OSI Pharmaceuticals, LLC Methods for the identification of agents that inhibit mesenchymal-like tumor cells or their formation
EP2403339B1 (en) 2009-03-06 2017-01-18 Merck Sharp & Dohme Corp. Combination cancer therapy with an akt inhibitor and other anticancer agents
JP2012520893A (en) 2009-03-18 2012-09-10 オーエスアイ・ファーマシューティカルズ,エルエルシー Combination cancer treatment comprising administration of an EGFR inhibitor and an IGF-1R inhibitor
CN102356092B (en) 2009-03-20 2014-11-05 霍夫曼-拉罗奇有限公司 Bispecific anti-HER antibodies
HRP20230315T1 (en) 2009-04-06 2023-05-12 Wyeth Llc Treatment regimen utilizing neratinib for breast cancer
WO2010120386A1 (en) 2009-04-17 2010-10-21 Nektar Therapeutics Oligomer-protein tyrosine kinase inhibitor conjugates
ES2475945T3 (en) 2009-06-26 2014-07-11 Novartis Ag Imidazolidin-2-1,3-disubstituted derivatives as CYP inhibitors 17
US8293753B2 (en) 2009-07-02 2012-10-23 Novartis Ag Substituted 2-carboxamide cycloamino ureas
SI2451445T1 (en) 2009-07-06 2019-07-31 Boehringer Ingelheim International Gmbh Process for drying of bibw2992, of its salts and of solid pharmaceutical formulations comprising this active ingredient
US9050341B2 (en) * 2009-07-14 2015-06-09 Natco Pharma Limited Methods of treating drug resistant and other tumors by administering 6,7-dialkoxy quinazoline derivatives
US9345661B2 (en) 2009-07-31 2016-05-24 Genentech, Inc. Subcutaneous anti-HER2 antibody formulations and uses thereof
UA108618C2 (en) 2009-08-07 2015-05-25 APPLICATION OF C-MET-MODULATORS IN COMBINATION WITH THEMOSOLOMID AND / OR RADIATION THERAPY FOR CANCER TREATMENT
US8389526B2 (en) 2009-08-07 2013-03-05 Novartis Ag 3-heteroarylmethyl-imidazo[1,2-b]pyridazin-6-yl derivatives
US8497368B2 (en) 2009-08-12 2013-07-30 Novartis Ag Heterocyclic hydrazone compounds
EA026693B1 (en) 2009-08-17 2017-05-31 Интелликайн ЭлЭлСи Benzoxazole and benzothiazole derivatives as pi3 kinase inhibitors
JP5775871B2 (en) 2009-08-20 2015-09-09 ノバルティス アーゲー Heterocyclic oxime compounds
CN102574785A (en) 2009-08-26 2012-07-11 诺瓦提斯公司 Tetra-substituted heteroaryl compounds and their use as MDM2 and/or MDM4 modulators
WO2011029915A1 (en) 2009-09-10 2011-03-17 Novartis Ag Ether derivatives of bicyclic heteroaryls
US20120220594A1 (en) 2009-10-30 2012-08-30 Bristol-Meyers Squibb Company Methods for treating cancer in patients having igf-1r inhibitor resistance
PE20121471A1 (en) 2009-11-04 2012-11-01 Novartis Ag HELPFUL HETEROCYCLIC SULFONAMIDE DERIVATIVES AS MEK INHIBITORS
EP2498817A2 (en) 2009-11-12 2012-09-19 F. Hoffmann-La Roche AG A method of promoting dendritic spine density
CA2780875A1 (en) 2009-11-13 2011-05-19 Pangaea Biotech, S.L. Molecular biomarkers for predicting response to tyrosine kinase inhibitors in lung cancer
EA201200617A1 (en) 2009-11-23 2012-11-30 Серулин Фарма Инк. POLYMERS ON THE BASIS OF CYCLODEXTRINE FOR DELIVERY OF MEDICINES
JP2013512215A (en) 2009-11-25 2013-04-11 ノバルティス アーゲー Benzene condensed 6-membered oxygen-containing heterocyclic derivatives of bicyclic heteroaryl
US10584181B2 (en) 2009-12-04 2020-03-10 Genentech, Inc. Methods of making and using multispecific antibody panels and antibody analog panels
EA201200823A1 (en) 2009-12-08 2013-02-28 Новартис Аг HETEROCYCLIC DERIVATIVES OF SULPHONAMIDES
CU24130B1 (en) 2009-12-22 2015-09-29 Novartis Ag ISOQUINOLINONES AND REPLACED QUINAZOLINONES
US8440693B2 (en) 2009-12-22 2013-05-14 Novartis Ag Substituted isoquinolinones and quinazolinones
MX2012008049A (en) 2010-01-12 2012-08-01 Hoffmann La Roche Tricyclic heterocyclic compounds, compositions and methods of use thereof.
US20110178287A1 (en) 2010-01-19 2011-07-21 Cerulean Pharma Inc. Cyclodextrin-based polymers for therapeutic delivery
CN102146060B (en) * 2010-02-09 2013-07-03 陕西师范大学 Method for preparing gefitinib and intermediate thereof
MY160556A (en) 2010-02-18 2017-03-15 Genentech Inc Neuregulin antagonists and use thereof in treating cancer
WO2011107664A1 (en) 2010-03-04 2011-09-09 Hospital District Of Southwest Finland Method for selecting patients for treatment with an egfr inhibitor
JP2013522267A (en) 2010-03-17 2013-06-13 エフ.ホフマン−ラ ロシュ アーゲー Imidazopyridine compounds, compositions, and methods of use
WO2011119995A2 (en) 2010-03-26 2011-09-29 Cerulean Pharma Inc. Formulations and methods of use
WO2011120135A1 (en) 2010-03-29 2011-10-06 Zymeworks, Inc. Antibodies with enhanced or suppressed effector function
TWI406853B (en) * 2010-04-07 2013-09-01 Dev Center Biotechnology Dual inhibitors of egfr and vegfr-2 and uses and production processes thereof
WO2011130654A1 (en) 2010-04-16 2011-10-20 Genentech, Inc. Fox03a as predictive biomarker for pi3k/akt kinase pathway inhibitor efficacy
WO2011146568A1 (en) 2010-05-19 2011-11-24 Genentech, Inc. Predicting response to a her inhibitor
JP2013528635A (en) 2010-06-17 2013-07-11 ノバルティス アーゲー Biphenyl-substituted 1,3-dihydro-benzimidazol-2-ylideneamine derivatives
WO2011157793A1 (en) 2010-06-17 2011-12-22 Novartis Ag Piperidinyl substituted 1,3-dihydro-benzoimidazol-2-ylideneamine derivatives
WO2011161217A2 (en) 2010-06-23 2011-12-29 Palacký University in Olomouc Targeting of vegfr2
EP2586443B1 (en) 2010-06-25 2016-03-16 Eisai R&D Management Co., Ltd. Antitumor agent using compounds having kinase inhibitory effect in combination
UA112517C2 (en) 2010-07-06 2016-09-26 Новартіс Аг TETRAHYDROPYRIDOPYRIMIDINE DERIVATIVES
AR082418A1 (en) 2010-08-02 2012-12-05 Novartis Ag CRYSTAL FORMS OF 1- (4-METHYL-5- [2- (2,2,2-TRIFLUORO-1,1-DIMETHYL-Ethyl) -PIRIDIN-4-IL] -TIAZOL-2-IL) -AMIDE OF 2 -AMIDA OF THE ACID (S) -PIRROLIDIN-1,2-DICARBOXILICO
EP2612151B1 (en) 2010-08-31 2017-08-09 Genentech, Inc. Biomarkers and methods of treatment
US8697708B2 (en) 2010-09-15 2014-04-15 F. Hoffmann-La Roche Ag Azabenzothiazole compounds, compositions and methods of use
JP2013537210A (en) 2010-09-16 2013-09-30 ノバルティス アーゲー 17α-hydroxylase / C17,20-lyase inhibitor
PE20131371A1 (en) 2010-09-22 2013-11-25 Arena Pharm Inc GPR119 RECEPTOR MODULATORS AND THE TREATMENT OF RELATED DISORDERS
WO2012065161A2 (en) 2010-11-12 2012-05-18 Scott & White Healthcare Antibodies to tumor endothelial marker 8
MX2013005445A (en) 2010-11-19 2013-07-29 Hoffmann La Roche Pyrazolopyridines and pyrazolopyridines and their use as tyk2 inhibitors.
KR20130121886A (en) 2010-11-24 2013-11-06 글락소 그룹 리미티드 Multispecific antigen binding proteins targeting hgf
EA201390917A1 (en) 2010-12-21 2013-12-30 Новартис Аг DIGETEROARYLIC CONNECTIONS AS VPS34 INHIBITORS
EP2468883A1 (en) 2010-12-22 2012-06-27 Pangaea Biotech S.L. Molecular biomarkers for predicting response to tyrosine kinase inhibitors in lung cancer
WO2012085176A1 (en) 2010-12-23 2012-06-28 F. Hoffmann-La Roche Ag Tricyclic pyrazinone compounds, compositions and methods of use thereof as janus kinase inhibitors
US9134297B2 (en) 2011-01-11 2015-09-15 Icahn School Of Medicine At Mount Sinai Method and compositions for treating cancer and related methods
KR101928116B1 (en) 2011-01-31 2018-12-11 노파르티스 아게 Novel heterocyclic derivatives
JP2014505088A (en) 2011-02-10 2014-02-27 ノバルティス アーゲー [1,2,4] Triazolo [4,3-b] pyridazine compounds as C-MET tyrosine kinase inhibitors
WO2012116237A2 (en) 2011-02-23 2012-08-30 Intellikine, Llc Heterocyclic compounds and uses thereof
EP2492688A1 (en) 2011-02-23 2012-08-29 Pangaea Biotech, S.A. Molecular biomarkers for predicting response to antitumor treatment in lung cancer
JP6006242B2 (en) 2011-03-04 2016-10-12 ニューゲン セラピューティクス, インコーポレイテッド Alkyne-substituted quinazoline compounds and methods of use
US20130338152A1 (en) 2011-03-08 2013-12-19 Irm Llc Fluorophenyl bicyclic heteroaryl compounds
EP2683740B1 (en) 2011-03-10 2018-07-04 Omeros Corporation Generation of anti-fn14 monoclonal antibodies by ex-vivo accelerated antibody evolution
US9295676B2 (en) 2011-03-17 2016-03-29 The Trustees Of The University Of Pennsylvania Mutation mimicking compounds that bind to the kinase domain of EGFR
WO2012125913A1 (en) 2011-03-17 2012-09-20 The Trustees Of The University Of Pennsylvania Methods and use of bifunctional enzyme-building clamp-shaped molecules
WO2012129145A1 (en) 2011-03-18 2012-09-27 OSI Pharmaceuticals, LLC Nscle combination therapy
PT2937349T (en) 2011-03-23 2017-03-24 Amgen Inc TRICYCLIC DUAL INHIBITORS OF CDK 4/6 AND FLT3
KR101762999B1 (en) 2011-04-18 2017-07-28 에자이 알앤드디 매니지먼트 가부시키가이샤 Therapeutic agent for tumor
JP2014519813A (en) 2011-04-25 2014-08-21 オーエスアイ・ファーマシューティカルズ,エルエルシー Use of EMT gene signatures in cancer drug discovery, diagnosis, and treatment
GB201106870D0 (en) 2011-04-26 2011-06-01 Univ Belfast Marker
BR112013027395A2 (en) 2011-04-28 2017-01-17 Novartis Ag 17alphahydroxylase / c17,20-lyase inhibitors
CN102918029B (en) 2011-05-17 2015-06-17 江苏康缘药业股份有限公司 4-phenylamino-6-butenamide-7-alkyloxy quinazoline derivatives, preparative method and use thereof
EP2714937B1 (en) 2011-06-03 2018-11-14 Eisai R&D Management Co., Ltd. Biomarkers for predicting and assessing responsiveness of thyroid and kidney cancer subjects to lenvatinib compounds
KR20140034898A (en) 2011-06-09 2014-03-20 노파르티스 아게 Heterocyclic sulfonamide derivatives
WO2012175520A1 (en) 2011-06-20 2012-12-27 Novartis Ag Hydroxy substituted isoquinolinone derivatives
EP2721007B1 (en) 2011-06-20 2015-04-29 Novartis AG Cyclohexyl isoquinolinone compounds
SG195067A1 (en) 2011-06-27 2013-12-30 Novartis Ag Solid forms and salts of tetrahydro-pyrido-pyrimidine derivatives
MX2013014687A (en) 2011-06-30 2014-02-17 Genentech Inc Anti-c-met antibody formulations.
WO2013007768A1 (en) 2011-07-13 2013-01-17 F. Hoffmann-La Roche Ag Tricyclic heterocyclic compounds, compositions and methods of use thereof as jak inhibitors
WO2013007765A1 (en) 2011-07-13 2013-01-17 F. Hoffmann-La Roche Ag Fused tricyclic compounds for use as inhibitors of janus kinases
CA2843499A1 (en) 2011-08-12 2013-02-21 F. Hoffmann-La Roche Ag Indazole compounds, compositions and methods of use
EP3392274A1 (en) 2011-08-12 2018-10-24 Omeros Corporation Anti-fzd10 monoclonal antibodies and methods for their use
US9745288B2 (en) 2011-08-16 2017-08-29 Indiana University Research And Technology Corporation Compounds and methods for treating cancer by inhibiting the urokinase receptor
MX2014001766A (en) 2011-08-17 2014-05-01 Genentech Inc Neuregulin antibodies and uses thereof.
EP2758043A4 (en) 2011-08-17 2016-02-24 Dennis M Brown Compositions and methods to improve the therapeutic benefit of suboptimally administered chemical compounds including substituted hexitols such as dibromodulcitol
SG2014011316A (en) 2011-08-31 2014-06-27 Genentech Inc Diagnostic markers
AU2012310168B2 (en) 2011-09-15 2015-07-16 Novartis Ag 6 - substituted 3 - (quinolin- 6 - ylthio) - [1,2,4] triazolo [4, 3 -a] pyradines as tyrosine kinase
KR20140082710A (en) 2011-09-20 2014-07-02 에프. 호프만-라 로슈 아게 Imidazopyridine compounds, compositions and methods of use
CN103012290B (en) * 2011-09-28 2015-05-13 齐鲁制药有限公司 Preparation method of high-purity gefitinib
BR112014007569A2 (en) 2011-09-30 2017-04-18 Genentech Inc diagnostic methylation markers epithelial or mesenchymal phenotype and response to egfr kinase inhibitor in tumors or tumor cells
US20140309229A1 (en) 2011-10-13 2014-10-16 Bristol-Myers Squibb Company Methods for selecting and treating cancer in patients with igf-1r/ir inhibitors
PH12014500912A1 (en) 2011-10-28 2014-06-09 Novartis Ag Novel purine derivatives and their use in the treatment of disease
AR092289A1 (en) * 2011-11-14 2015-04-15 Sunshine Lake Pharma Co Ltd DERIVATIVES OF AMINOQUINAZOLINE AND ITS SALTS AND METHODS OF USE
CN103102345B (en) * 2011-11-14 2015-06-03 广东东阳光药业有限公司 Aminoquinazoline derivative, salts thereof and application method
CN103102342B (en) * 2011-11-14 2014-10-29 广东东阳光药业有限公司 Aminoquinazoline derivative, salts thereof and application method
JP5992054B2 (en) 2011-11-29 2016-09-14 ノバルティス アーゲー Pyrazolopyrrolidine compound
JP2015500638A (en) 2011-11-30 2015-01-08 ジェネンテック, インコーポレイテッド ERBB3 mutations in cancer
US9408885B2 (en) 2011-12-01 2016-08-09 Vib Vzw Combinations of therapeutic agents for treating melanoma
CN103130729B (en) * 2011-12-05 2015-07-15 齐鲁制药有限公司 Preparation method of 4-chloro-7-methoxyl quinazoline-6-alchol acetate
CN103172576B (en) * 2011-12-21 2015-08-05 沈阳药科大学 The malate acid addition salt of Gefitinib and Synthesis and applications thereof
MY170922A (en) 2011-12-22 2019-09-18 Novartis Ag Dihydro-benzo-oxazine and dihydro-pyrido-oxazine derivatives
EP2794594A1 (en) 2011-12-22 2014-10-29 Novartis AG Quinoline derivatives
EA201491265A1 (en) 2011-12-23 2014-11-28 Новартис Аг COMPOUNDS FOR INHIBITING THE INTERACTION OF BCL-2 WITH PARTNERS ON BINDING
CA2859869A1 (en) 2011-12-23 2013-06-27 Novartis Ag Compounds for inhibiting the interaction of bcl2 with binding partners
EA201491260A1 (en) 2011-12-23 2014-11-28 Новартис Аг COMPOUNDS AND COMPOSITIONS FOR INHIBITING THE INTERACTION OF BCL2 WITH PARTNERS ON THE LINKAGE
US20130178520A1 (en) 2011-12-23 2013-07-11 Duke University Methods of treatment using arylcyclopropylamine compounds
KR20140107573A (en) 2011-12-23 2014-09-04 노파르티스 아게 Compounds for inhibiting the interaction of bcl2 with binding partners
EP2794589A1 (en) 2011-12-23 2014-10-29 Novartis AG Compounds for inhibiting the interaction of bcl2 with binding partners
UY34591A (en) 2012-01-26 2013-09-02 Novartis Ag IMIDAZOPIRROLIDINONA COMPOUNDS
EP2809805A1 (en) 2012-01-31 2014-12-10 SmithKline Beecham (Cork) Limited Method of treating cancer
AR090263A1 (en) 2012-03-08 2014-10-29 Hoffmann La Roche COMBINED ANTIBODY THERAPY AGAINST HUMAN CSF-1R AND USES OF THE SAME
WO2013134743A1 (en) 2012-03-08 2013-09-12 Halozyme, Inc. Conditionally active anti-epidermal growth factor receptor antibodies and methods of use thereof
EP2752413B1 (en) 2012-03-26 2016-03-23 Fujian Institute Of Research On The Structure Of Matter, Chinese Academy Of Sciences Quinazoline derivative and application thereof
MX2014011500A (en) 2012-03-27 2014-12-05 Genentech Inc Diagnosis and treatments relating to her3 inhibitors.
AU2013243097A1 (en) 2012-04-03 2014-10-09 Novartis Ag Combination products with tyrosine kinase inhibitors and their use
WO2013152252A1 (en) 2012-04-06 2013-10-10 OSI Pharmaceuticals, LLC Combination anti-cancer therapy
SG10201608469RA (en) 2012-05-16 2016-11-29 Novartis Ag Dosage regimen for a pi-3 kinase inhibitor
CN104321325B (en) 2012-05-24 2016-11-16 诺华股份有限公司 Pyrrolopyrrole alkanone compound
KR101457453B1 (en) * 2012-05-31 2014-11-04 주식회사 종근당 Process for preparing gefitinib and an intermediate used for preparing thereof
CN104582732A (en) 2012-06-15 2015-04-29 布里格姆及妇女医院股份有限公司 Composition for treating cancer and its production method
WO2013190089A1 (en) 2012-06-21 2013-12-27 Pangaea Biotech, S.L. Molecular biomarkers for predicting outcome in lung cancer
WO2014016848A2 (en) 2012-07-24 2014-01-30 Laurus Labs Private Limited Solid forms of tyrosine kinase inhibitors, process for the preparation and their pharmaceutical composition thereof
US9738643B2 (en) 2012-08-06 2017-08-22 Duke University Substituted indazoles for targeting Hsp90
US9505749B2 (en) 2012-08-29 2016-11-29 Amgen Inc. Quinazolinone compounds and derivatives thereof
CN105377288B (en) 2012-11-05 2019-11-15 达纳-法伯癌症研究所股份有限公司 Use of a combination of XBP1, CD138 and CS1 peptides for the preparation of a medicament
TW201422625A (en) 2012-11-26 2014-06-16 Novartis Ag Solid form of dihydro-pyrido-oxazine derivative
AU2013364953A1 (en) 2012-12-21 2015-04-30 Eisai R&D Management Co., Ltd. Amorphous form of quinoline derivative, and method for producing same
CN103073509A (en) * 2012-12-31 2013-05-01 广东先强药业有限公司 Preparation method of quinazoline derivative
CN103910690A (en) * 2013-01-06 2014-07-09 上海科胜药物研发有限公司 New iressa crystal form and preparation methods thereof
WO2014108858A1 (en) 2013-01-10 2014-07-17 Glaxosmithkline Intellectual Property (No.2) Limited Fatty acid synthase inhibitors
WO2014115080A1 (en) 2013-01-22 2014-07-31 Novartis Ag Pyrazolo[3,4-d]pyrimidinone compounds as inhibitors of the p53/mdm2 interaction
US9403827B2 (en) 2013-01-22 2016-08-02 Novartis Ag Substituted purinone compounds
RU2721418C2 (en) 2013-02-01 2020-05-19 Веллстат Терапьютикс Корпорейшн Amine compounds having anti-inflammatory, antifungal, anti-parasitic and anticancer activity
WO2014128612A1 (en) 2013-02-20 2014-08-28 Novartis Ag Quinazolin-4-one derivatives
EP2958943B1 (en) 2013-02-20 2019-09-11 The Trustees Of The University Of Pennsylvania Treatment of cancer using humanized anti-egfrviii chimeric antigen receptor
CA2900097A1 (en) 2013-02-22 2014-08-28 F. Hoffmann-La Roche Ag Methods of treating cancer and preventing drug resistance
CA2941010A1 (en) 2013-02-26 2014-09-04 Triact Therapeutics, Inc. Cancer therapy
US9468681B2 (en) 2013-03-01 2016-10-18 California Institute Of Technology Targeted nanoparticles
CA2902263A1 (en) 2013-03-06 2014-09-12 Genentech, Inc. Methods of treating and preventing cancer drug resistance
UA115686C2 (en) 2013-03-06 2017-12-11 Астразенека Аб Quinazoline inhibitors of activating mutant forms of epidermal growth factor receptor
KR20150130491A (en) 2013-03-13 2015-11-23 제넨테크, 인크. Pyrazolo compounds and uses thereof
CA2905993C (en) 2013-03-14 2022-12-06 Tolero Pharmaceuticals, Inc. Substituted 4-amino-pyrimidinyl-2-amino-phenyl derivatives and pharmaceutical compositions thereof for use as jak2 and alk2 inhibitors
CA2903480A1 (en) 2013-03-14 2014-09-25 Genentech, Inc. Combinations of a mek inhibitor compound with an her3/egfr inhibitor compound and methods of use
CN105307683A (en) 2013-03-14 2016-02-03 基因泰克公司 Methods of treating cancer and preventing cancer drug resistance
US20160143910A1 (en) 2013-03-15 2016-05-26 Constellation Pharmaceuticals, Inc. Methods of treating cancer and preventing cancer drug resistance
EP2968340A4 (en) 2013-03-15 2016-08-10 Intellikine Llc Combination of kinase inhibitors and uses thereof
US20160051556A1 (en) 2013-03-21 2016-02-25 INSERM (Institut National de la Santé et de la Recherche Médicale) Method and Pharmaceutical Composition for use in the Treatment of Chronic Liver Diseases Associated with a Low Hepcidin Expression
WO2014147631A1 (en) 2013-03-22 2014-09-25 Natco Pharma Limited Formulation comprising gefitinib as oral suspension
WO2014155268A2 (en) 2013-03-25 2014-10-02 Novartis Ag Fgf-r tyrosine kinase activity inhibitors - use in diseases associated with lack of or reduced snf5 activity
KR102204279B1 (en) 2013-05-14 2021-01-15 에자이 알앤드디 매니지먼트 가부시키가이샤 Biomarkers for predicting and assessing responsiveness of endometrial cancer subjects to lenvatinib compounds
US20150018376A1 (en) 2013-05-17 2015-01-15 Novartis Ag Pyrimidin-4-yl)oxy)-1h-indole-1-carboxamide derivatives and use thereof
CN103304491A (en) * 2013-06-17 2013-09-18 连云港盛和生物科技有限公司 Preparation method of gefitinib
KR20150001936A (en) * 2013-06-28 2015-01-07 제일약품주식회사 Novel Crystalline Form Of Gefitinib And Method for Preparing the Same
UY35675A (en) 2013-07-24 2015-02-27 Novartis Ag SUBSTITUTED DERIVATIVES OF QUINAZOLIN-4-ONA
TW201536291A (en) * 2013-08-02 2015-10-01 Cephalon Inc Methods of treating various cancers using an AXL/cMET inhibitor alone or in combination with other agents
US9227969B2 (en) 2013-08-14 2016-01-05 Novartis Ag Compounds and compositions as inhibitors of MEK
WO2015022664A1 (en) 2013-08-14 2015-02-19 Novartis Ag Compounds and compositions as inhibitors of mek
WO2015022663A1 (en) 2013-08-14 2015-02-19 Novartis Ag Compounds and compositions as inhibitors of mek
JP6336598B2 (en) 2013-09-05 2018-06-06 ジェネンテック, インコーポレイテッド Antiproliferative compound
CA2923667A1 (en) 2013-09-09 2015-03-12 Triact Therapeutics, Inc. Cancer therapy
WO2015038984A2 (en) 2013-09-12 2015-03-19 Halozyme, Inc. Modified anti-epidermal growth factor receptor antibodies and methods of use thereof
CA2924286C (en) 2013-09-17 2022-06-21 Obi Pharma, Inc. Compositions of a carbohydrate vaccine for inducing immune responses and uses thereof in cancer treatment
KR20160058889A (en) 2013-09-22 2016-05-25 칼리토르 사이언시즈, 엘엘씨 Substituted aminopyrimidine compounds and methods of use
CN104513253A (en) * 2013-10-01 2015-04-15 南京波尔泰药业科技有限公司 Macrocyclic compounds for the treatment of proliferative diseases
TW201605857A (en) 2013-10-03 2016-02-16 赫孚孟拉羅股份公司 Therapeutic inhibitors of CDK8 and uses thereof
CN105744954B (en) 2013-10-18 2021-03-05 豪夫迈·罗氏有限公司 anti-RSPO 2 and/or anti-RSPO 3 antibodies and uses thereof
TW201605450A (en) 2013-12-03 2016-02-16 諾華公司 Combination of Mdm2 inhibitor and BRAF inhibitor and their use
SI3076969T1 (en) 2013-12-06 2021-12-31 Novartis Ag Dosage regimen for an alpha-isoform selective phosphatidylinositol 3-kinase inhibitor
WO2015095418A1 (en) 2013-12-17 2015-06-25 Genentech, Inc. Methods of treating her2-positive cancers using pd-1 axis binding antagonists and anti-her2 antibodies
AU2014364606A1 (en) 2013-12-17 2016-07-07 Genentech, Inc. Combination therapy comprising OX40 binding agonists and PD-1 axis binding antagonists
US9242965B2 (en) 2013-12-31 2016-01-26 Boehringer Ingelheim International Gmbh Process for the manufacture of (E)-4-N,N-dialkylamino crotonic acid in HX salt form and use thereof for synthesis of EGFR tyrosine kinase inhibitors
US20160361309A1 (en) 2014-02-26 2016-12-15 Glaxosmithkline Intellectual Property (No.2) Limited Methods of treating cancer patients responding to ezh2 inhibitor gsk126
KR20160137599A (en) 2014-03-24 2016-11-30 제넨테크, 인크. Cancer treatment with c-met antagonists and correlation of the latter with hgf expression
WO2015148714A1 (en) 2014-03-25 2015-10-01 Duke University Heat shock protein 70 (hsp-70) receptor ligands
WO2015145388A2 (en) 2014-03-27 2015-10-01 Novartis Ag Methods of treating colorectal cancers harboring upstream wnt pathway mutations
EP3122730B1 (en) 2014-03-28 2020-03-25 Calitor Sciences, LLC Substituted heteroaryl compounds and methods of use
AU2015241038A1 (en) 2014-03-31 2016-10-13 Genentech, Inc. Combination therapy comprising anti-angiogenesis agents and OX40 binding agonists
ES2763898T3 (en) 2014-03-31 2020-06-01 Hoffmann La Roche Anti-OX40 antibodies and usage procedures
AU2015241198A1 (en) 2014-04-03 2016-11-17 Invictus Oncology Pvt. Ltd. Supramolecular combinatorial therapeutics
US20170027940A1 (en) 2014-04-10 2017-02-02 Stichting Het Nederlands Kanker Instituut Method for treating cancer
WO2015170345A1 (en) 2014-05-09 2015-11-12 Council Of Scientific & Industrial Research Pharmaceutical cocrystals of gefitinib
RU2577518C2 (en) * 2014-06-02 2016-03-20 Олег Ростиславович Михайлов CRYSTALLINE ANHYDROUS γ-MODIFICATION OF 4-(3'-CHLOR-4'-FLUORANILINO)-7-METHOXY-6-(3-MORPHOLINOPROPOXY)QUINAZOLINE, METHOD FOR PRODUCING IT AND BASED PHARMACEUTICAL COMPOSITION
JP6276894B2 (en) * 2014-06-10 2018-02-07 サイノファーム (チャンシュー) ファーマシューティカルズ リミテッド Method for preparing quinazoline derivative
WO2016011658A1 (en) 2014-07-25 2016-01-28 Novartis Ag Combination therapy
EP3174869B1 (en) 2014-07-31 2020-08-19 Novartis AG Combination therapy of a met inhibitor and an egfr inhibitor
JP6659554B2 (en) 2014-08-28 2020-03-04 エーザイ・アール・アンド・ディー・マネジメント株式会社 High purity quinoline derivative and method for producing the same
WO2016036873A1 (en) 2014-09-05 2016-03-10 Genentech, Inc. Therapeutic compounds and uses thereof
TWI567063B (en) * 2014-09-05 2017-01-21 國立交通大學 A compound for promoting apoptosis of cancer cells, a pharmaceutical composition containing the same and uses thereof
JP2017529358A (en) 2014-09-19 2017-10-05 ジェネンテック, インコーポレイテッド Use of CBP / EP300 inhibitors and BET inhibitors for the treatment of cancer
CN107912040B (en) 2014-10-10 2021-04-06 基因泰克公司 Pyrrolidine amide compounds as histone demethylase inhibitors
JP2017536347A (en) 2014-10-17 2017-12-07 ノバルティス アーゲー Combination of ceritinib and EGFR inhibitor
EP3215850B1 (en) 2014-11-03 2019-07-03 F. Hoffmann-La Roche AG Assays for detecting t cell immune subsets and methods of use thereof
EP3215637B1 (en) 2014-11-03 2019-07-03 F. Hoffmann-La Roche AG Methods and biomarkers for predicting efficacy and valuation of an ox40 agonist treatment
KR20170072343A (en) 2014-11-06 2017-06-26 제넨테크, 인크. Combination therapy comprising ox40 binding agonists and tigit inhibitors
MA40943A (en) 2014-11-10 2017-09-19 Constellation Pharmaceuticals Inc SUBSTITUTED PYRROLOPYRIDINES USED AS BROMODOMA INHIBITORS
MA40940A (en) 2014-11-10 2017-09-19 Constellation Pharmaceuticals Inc SUBSTITUTED PYRROLOPYRIDINES USED AS BROMODOMA INHIBITORS
EP3218376B1 (en) 2014-11-10 2019-12-25 Genentech, Inc. Bromodomain inhibitors and uses thereof
KR20170096112A (en) 2014-11-17 2017-08-23 제넨테크, 인크. Combination therapy comprising ox40 binding agonists and pd-1 axis binding antagonists
EP3224258B1 (en) 2014-11-27 2019-08-14 Genentech, Inc. 4,5,6,7-tetrahydro-1h-pyrazolo[4,3-c]pyridin-3-amine compounds as cbp and/or ep300 inhibitors
EP3228650B1 (en) 2014-12-04 2022-03-09 Delta-Fly Pharma, Inc. Novel peg derivative
WO2016096999A1 (en) 2014-12-19 2016-06-23 Synthon B.V. Pharmaceutical composition comprising gefifinib
KR20170094165A (en) 2014-12-23 2017-08-17 제넨테크, 인크. Compositions and methods for treating and diagnosing chemotherapy-resistant cancers
RU2739942C2 (en) 2014-12-24 2020-12-30 Дженентек, Инк. Therapeutic, diagnostic and prognostic methods for bladder cancer
EP3240908A2 (en) 2014-12-30 2017-11-08 F. Hoffmann-La Roche AG Methods and compositions for prognosis and treatment of cancers
PT3242666T (en) 2015-01-06 2024-12-09 Arena Pharm Inc Methods of treating conditions related to the s1p1 receptor
CA2972592A1 (en) 2015-01-08 2016-07-14 The Board Of Trustees Of The Leland Stanford Junior University Factors and cells that provide for induction of bone, bone marrow, and cartilage
EP3242874B1 (en) 2015-01-09 2018-10-31 Genentech, Inc. Pyridazinone derivatives and their use in the treatment of cancer
JP6855379B2 (en) 2015-01-09 2021-04-07 ジェネンテック, インコーポレイテッド (Piperidin-3-yl) (naphthalene-2-yl) metanone derivatives and related compounds as inhibitors of histone demethylase KDM2B for the treatment of cancer
CN107406418B (en) 2015-01-09 2021-10-29 基因泰克公司 4,5-Dihydroimidazole derivatives and their use as histone demethylase (KDM2B) inhibitors
MA41414A (en) 2015-01-28 2017-12-05 Centre Nat Rech Scient ICOS AGONIST BINDING PROTEINS
KR101635724B1 (en) * 2015-01-28 2016-07-05 일동제약주식회사 An improved process for the preparation of gefitinib
WO2016123391A1 (en) 2015-01-29 2016-08-04 Genentech, Inc. Therapeutic compounds and uses thereof
JP6636031B2 (en) 2015-01-30 2020-01-29 ジェネンテック, インコーポレイテッド Therapeutic compounds and uses thereof
RS65049B1 (en) 2015-02-25 2024-02-29 Eisai R&D Man Co Ltd METHOD FOR SUPPRESSING THE BITTERNESS OF QUINOLINE DERIVATIVES
MA41598A (en) 2015-02-25 2018-01-02 Constellation Pharmaceuticals Inc PYRIDAZINE THERAPEUTIC COMPOUNDS AND THEIR USES
KR102662228B1 (en) 2015-03-04 2024-05-02 머크 샤프 앤드 돔 코포레이션 Combination of PD-1 antagonists and VEGFR/FGFR/RET tyrosine kinase inhibitors to treat cancer
EP3272746B1 (en) * 2015-03-20 2019-12-25 Chia Tai Tianqing Pharmaceutical Group Co., Ltd. Salts of quinazoline derivative and method for preparing same
CN107709364A (en) 2015-04-07 2018-02-16 豪夫迈·罗氏有限公司 Antigen binding complex and application method with agonist activity
IL295002A (en) 2015-05-12 2022-09-01 Genentech Inc Therapeutic and diagnostic methods for cancer containing a pd–l1 binding antagonist
KR20180012753A (en) 2015-05-29 2018-02-06 제넨테크, 인크. Treatment and Diagnosis Methods for Cancer
KR20180011839A (en) 2015-06-08 2018-02-02 제넨테크, 인크. Treatment of Cancer Using Anti-OX40 Antibody
MX2017015937A (en) 2015-06-08 2018-12-11 Genentech Inc Methods of treating cancer using anti-ox40 antibodies and pd-1 axis binding antagonists.
JP6757959B2 (en) 2015-06-16 2020-09-23 株式会社 PRISM BioLab Anti-cancer agent
EP3310815A1 (en) 2015-06-17 2018-04-25 F. Hoffmann-La Roche AG Methods of treating locally advanced or metastatic breast cancers using pd-1 axis binding antagonists and taxanes
SI3310760T1 (en) 2015-06-22 2023-02-28 Arena Pharmaceuticals, Inc. Crystalline l-arginine salt of (r)-2-(7-(4-cyclopentyl-3-(trifluoromethyl)benzyloxy)-1,2,3,4-tetrahydrocyclo-penta(b)indol-3-yl)acetic acid for use in s1p1 receptor-associated disorders
JP6914860B2 (en) 2015-07-01 2021-08-04 カリフォルニア インスティチュート オブ テクノロジー Cationic mucic acid polymer delivery system
WO2017025871A1 (en) 2015-08-07 2017-02-16 Glaxosmithkline Intellectual Property Development Limited Combination therapy comprising anti ctla-4 antibodies
ES2887426T3 (en) 2015-08-20 2021-12-22 Eisai R&D Man Co Ltd Lenvatinib combined with etoposide and ifosfamide for use in treating a tumor
PL3341376T3 (en) 2015-08-26 2021-08-02 Fundación Del Sector Público Estatal Centro Nacional De Investigaciones Oncológicas Carlos III (F.S.P. CNIO) Condensed tricyclic compounds as protein kinase inhibitors
HK1256912A1 (en) 2015-09-04 2019-10-04 台湾浩鼎生技股份有限公司 Glycan arrays and method of use
EP3347097B1 (en) 2015-09-11 2021-02-24 Sunshine Lake Pharma Co., Ltd. Substituted aminopyrimidine derivatives as modulators of the kinases jak, flt3 and aurora
GB201516905D0 (en) 2015-09-24 2015-11-11 Stratified Medical Ltd Treatment of Neurodegenerative diseases
TWI871732B (en) 2015-09-25 2025-02-01 美商建南德克公司 Anti-tigit antibodies and methods of use
CN105250228B (en) * 2015-10-12 2017-10-24 山东罗欣药业集团股份有限公司 A kind of tablet of Gefitinib and its preparation method of raw material
CN108472289A (en) 2015-11-02 2018-08-31 诺华股份有限公司 The dosage regimen of inhibitors of phosphatidylinositol3 3-kinase
CA3006934A1 (en) 2015-12-01 2017-06-08 Glaxosmithkline Intellectual Property Development Limited Combination of antibodies targeting bcma, pd-1 and ox40 in cancer treatments and uses therof
CN113999249B (en) 2015-12-16 2025-03-25 基因泰克公司 Methods for preparing tricyclic PI3K inhibitor compounds and methods for treating cancer using the same
EP3397618B1 (en) 2015-12-30 2020-11-18 Synthon B.V. Process for making crystalline form a of gefitinib
CN105503748A (en) * 2015-12-31 2016-04-20 哈药集团技术中心 Preparation method of gefitinib
US10596257B2 (en) 2016-01-08 2020-03-24 Hoffmann-La Roche Inc. Methods of treating CEA-positive cancers using PD-1 axis binding antagonists and anti-CEA/anti-CD3 bispecific antibodies
KR20180119632A (en) 2016-02-29 2018-11-02 제넨테크, 인크. Treatment and Diagnosis Methods for Cancer
US10980894B2 (en) 2016-03-29 2021-04-20 Obi Pharma, Inc. Antibodies, pharmaceutical compositions and methods
TWI780045B (en) 2016-03-29 2022-10-11 台灣浩鼎生技股份有限公司 Antibodies, pharmaceutical compositions and methods
WO2017180864A1 (en) 2016-04-14 2017-10-19 Genentech, Inc. Anti-rspo3 antibodies and methods of use
JP2019518426A (en) 2016-04-15 2019-07-04 ジェネンテック, インコーポレイテッド Cancer diagnosis and treatment method
JP7503887B2 (en) 2016-04-15 2024-06-21 ジェネンテック, インコーポレイテッド Methods for monitoring and treating cancer - Patents.com
JP2019515670A (en) 2016-04-15 2019-06-13 ジェネンテック, インコーポレイテッド Methods for monitoring and treating cancer
CN109379889A (en) 2016-04-22 2019-02-22 台湾浩鼎生技股份有限公司 Cancer immunotherapy by immune activation or immunomodulation via antigens of the GLOBO series
US11261187B2 (en) 2016-04-22 2022-03-01 Duke University Compounds and methods for targeting HSP90
EP3454863A1 (en) 2016-05-10 2019-03-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Combinations therapies for the treatment of cancer
KR101796684B1 (en) * 2016-05-19 2017-11-10 건국대학교 산학협력단 Pharmaceutical composition for prevention or treatment of age-related mascular degeneration comprising inhibitor of Keratin 8 phosphorylation and screening method of therapeutic agents for the same
WO2017205538A1 (en) 2016-05-24 2017-11-30 Genentech, Inc. Pyrazolopyridine derivatives for the treatment of cancer
CN115028617A (en) 2016-05-24 2022-09-09 基因泰克公司 Heterocyclic inhibitors of CBP/EP300 and their use in the treatment of cancer
CN106045980B (en) * 2016-06-03 2017-11-03 江苏开放大学 A kind of quinazoline derivant and preparation method thereof
US20200129519A1 (en) 2016-06-08 2020-04-30 Genentech, Inc. Diagnostic and therapeutic methods for cancer
JP7148504B2 (en) 2016-06-08 2022-10-05 ゼンコー,インコーポレイティド Treatment of IgG4-related diseases with anti-CD19 antibodies cross-linked to CD32B
CA3032049C (en) 2016-07-27 2023-11-07 Obi Pharma, Inc. Immunogenic/therapeutic glycan compositions and uses thereof
CN110062767B (en) 2016-07-29 2023-07-11 台湾浩鼎生技股份有限公司 Human antibodies, pharmaceutical compositions and methods
EP3494140A1 (en) 2016-08-04 2019-06-12 GlaxoSmithKline Intellectual Property Development Ltd Anti-icos and anti-pd-1 antibody combination therapy
CN109963871A (en) 2016-08-05 2019-07-02 豪夫迈·罗氏有限公司 Multivalent and multiepitopic antibodies with agonistic activity and methods of use
WO2018029124A1 (en) 2016-08-08 2018-02-15 F. Hoffmann-La Roche Ag Therapeutic and diagnostic methods for cancer
WO2018039203A1 (en) 2016-08-23 2018-03-01 Oncopep, Inc. Peptide vaccines and durvalumab for treating multiple myeloma
CA3034666A1 (en) 2016-08-23 2018-03-01 Oncopep, Inc. Peptide vaccines and durvalumab for treating breast cancer
CN106432202B (en) * 2016-09-22 2019-04-02 郑州大学第一附属医院 Quinazoline derivative and its application
RU2019112860A (en) 2016-09-27 2020-10-30 Серо Терапьютикс, Инк. CHIMERIC INTERNALIZING RECEPTOR MOLECULES
WO2018060833A1 (en) 2016-09-27 2018-04-05 Novartis Ag Dosage regimen for alpha-isoform selective phosphatidylinositol 3-kinase inhibitor alpelisib
US10207998B2 (en) 2016-09-29 2019-02-19 Duke University Substituted benzimidazole and substituted benzothiazole inhibitors of transforming growth factor-β kinase and methods of use thereof
US10927083B2 (en) 2016-09-29 2021-02-23 Duke University Substituted benzimidazoles as inhibitors of transforming growth factor-β kinase
CN110418851A (en) 2016-10-06 2019-11-05 基因泰克公司 Methods of treatment and diagnosis of cancer
WO2018078143A1 (en) 2016-10-28 2018-05-03 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Means and methods for determining efficacy of anti-egfr inhibitors in colorectal cancer (crc) therapy
US11555076B2 (en) 2016-10-29 2023-01-17 Genentech, Inc. Anti-MIC antibodies and methods of use
BR112019010356A2 (en) 2016-11-21 2019-08-27 Obi Pharma Inc carbohydrate molecule, antibody-antibody conjugate (adc), composition, method for preparing the composition, method for treating cancer in an individual, method for inducing or ameliorating the immune reaction in an individual in need thereof, drug-antibody conjugate compound, use of an antibody-drug conjugate compound, method for determining therapeutic efficacy of adcc cancer cells, and method for imaging an individual
MX387210B (en) 2016-12-22 2025-03-18 Amgen Inc BENZISOTHIAZOLE, ISOTHIAZOLO[3,4-B]PYRIDINE, QUINAZOLINE, PHTHALAZINE, PYRIDO[2,3-D]PYRIDAZINE AND PYRIDO[2,3-D]PYRIMIDINE DERIVATIVES AS KRAS G12C INHIBITORS FOR THE TREATMENT OF LUNG, PANCREATIC OR COLORECTAL CANCER.
AU2018219637B2 (en) 2017-02-08 2023-07-13 Eisai R&D Management Co., Ltd. Tumor-treating pharmaceutical composition
CA3052670A1 (en) 2017-03-01 2018-09-07 Genentech, Inc. Diagnostic and therapeutic methods for cancer
US9980967B1 (en) 2017-03-16 2018-05-29 National Chiao Tung University Method for overcoming drug resistance of EGFR mutation and cancerous stemness of human non-small cell lung carcinoma
CA3058279A1 (en) 2017-04-13 2018-10-18 F.Hoffmann-La Roche Ag An interleukin-2 immunoconjugate, a cd40 agonist, and optionally a pd-1 axis binding antagonist for use in methods of treating cancer
KR20200013644A (en) 2017-05-16 2020-02-07 에자이 알앤드디 매니지먼트 가부시키가이샤 Treatment of Hepatocellular Carcinoma
JOP20190272A1 (en) 2017-05-22 2019-11-21 Amgen Inc Kras g12c inhibitors and methods of using the same
TWI823859B (en) 2017-07-21 2023-12-01 美商建南德克公司 Therapeutic and diagnostic methods for cancer
CA3070297A1 (en) 2017-08-11 2019-02-14 Genentech, Inc. Anti-cd8 antibodies and uses thereof
EP3679159A1 (en) 2017-09-08 2020-07-15 H. Hoffnabb-La Roche Ag Diagnostic and therapeutic methods for cancer
TWI731264B (en) 2017-09-08 2021-06-21 美商安進公司 Inhibitors of kras g12c and methods of using the same
US11708423B2 (en) 2017-09-26 2023-07-25 Cero Therapeutics, Inc. Chimeric engulfment receptor molecules and methods of use
WO2019083960A1 (en) 2017-10-24 2019-05-02 Oncopep, Inc. Peptide vaccines and hdac inhibitors for treating multiple myeloma
US12059463B2 (en) 2017-10-24 2024-08-13 Oncopep, Inc. Peptide vaccines and pembrolizumab for treating breast cancer
EP3710001B1 (en) 2017-10-27 2025-06-18 University Of Virginia Patent Foundation Compounds and methods for regulating, limiting, or inhibiting avil expression
CN109721552B (en) * 2017-10-30 2022-09-20 上海北卡医药技术有限公司 Preparation method of gefitinib
MX2020004567A (en) 2017-11-06 2020-08-13 Genentech Inc Diagnostic and therapeutic methods for cancer.
JP7254076B2 (en) 2017-11-19 2023-04-07 サンシャイン・レイク・ファーマ・カンパニー・リミテッド Substituted heteroaryl compounds and methods of use
JP2021506974A (en) 2017-12-18 2021-02-22 スターングリーン、インク. Pyrimidine compounds useful as tyrosine kinase inhibitors
JP7021356B2 (en) 2017-12-21 2022-02-16 ヘフェイ インスティテューツ オブ フィジカル サイエンス, チャイニーズ アカデミー オブ サイエンシーズ Pyrimidine derivative kinase inhibitors
EP3740756A4 (en) 2018-01-15 2021-10-27 Epiaxis Therapeutics Pty Ltd MEANS AND METHOD OF PREDICTING RESPONSE TO THERAPY
AU2019209960B2 (en) 2018-01-20 2023-11-23 Sunshine Lake Pharma Co., Ltd. Substituted aminopyrimidine compounds and methods of use
AU2019212800B2 (en) 2018-01-26 2024-05-23 Exelixis, Inc. Compounds for the treatment of kinase-dependent disorders
SG11202006945PA (en) 2018-01-26 2020-08-28 Exelixis Inc Compounds for the treatment of kinase-dependent disorders
CR20230287A (en) 2018-01-26 2023-07-26 Exelixis Inc COMPOUNDS FOR THE TREATMENT OF KINASE DEPENDENT DISORDERS (Divisional 2020-358)
CN111836831A (en) 2018-02-26 2020-10-27 豪夫迈·罗氏有限公司 Administration for Anti-TIGIT Antagonist Antibody and Anti-PD-L1 Antagonist Antibody Therapy
US20210024607A1 (en) 2018-03-28 2021-01-28 Cero Therapeutics, Inc. Expression vectors for chimeric engulfment receptors, genetically modified host cells, and uses thereof
WO2019191334A1 (en) 2018-03-28 2019-10-03 Cero Therapeutics, Inc. Chimeric tim4 receptors and uses thereof
CA3093973A1 (en) 2018-03-28 2019-10-03 Cero Therapeutics, Inc. Cellular immunotherapy compositions and uses thereof
EP3773591A4 (en) * 2018-04-05 2021-12-22 Sumitomo Dainippon Pharma Oncology, Inc. AXL KINASE INHIBITORS AND THEIR USES
EP3788038B1 (en) 2018-05-04 2023-10-11 Amgen Inc. Kras g12c inhibitors and methods of using the same
CA3099118A1 (en) 2018-05-04 2019-11-07 Amgen Inc. Kras g12c inhibitors and methods of using the same
CN108395410A (en) * 2018-05-09 2018-08-14 日照市普达医药科技有限公司 A kind of anilinoquinazoline compound and its application in antitumor drug
EP3790886B1 (en) 2018-05-10 2024-06-26 Amgen Inc. Kras g12c inhibitors for the treatment of cancer
AU2019275404A1 (en) 2018-05-21 2020-12-03 Bruker Spatial Biology, Inc. Molecular gene signatures and methods of using same
JP7360396B2 (en) 2018-06-01 2023-10-12 アムジエン・インコーポレーテツド KRAS G12C inhibitors and methods of using the same
US12324807B2 (en) 2018-06-01 2025-06-10 Cornell University Combination therapy for PI3K-associated disease or disorder
CA3102136A1 (en) 2018-06-06 2019-12-12 Arena Pharmaceuticals, Inc. Methods of treating conditions related to the s1p1 receptor
MX2020012204A (en) 2018-06-11 2021-03-31 Amgen Inc Kras g12c inhibitors for treating cancer.
US11285156B2 (en) 2018-06-12 2022-03-29 Amgen Inc. Substituted piperazines as KRAS G12C inhibitors
WO2019241327A1 (en) 2018-06-13 2019-12-19 California Institute Of Technology Nanoparticles for crossing the blood brain barrier and methods of treatment using the same
CN112585166A (en) 2018-06-23 2021-03-30 豪夫迈·罗氏有限公司 Methods of treating lung cancer with PD-1 axis binding antagonists, platinating agents, and topoisomerase II inhibitors
WO2020006176A1 (en) 2018-06-27 2020-01-02 Obi Pharma, Inc. Glycosynthase variants for glycoprotein engineering and methods of use
JP2021530502A (en) 2018-07-18 2021-11-11 ジェネンテック, インコーポレイテッド How to Treat Lung Cancer with PD-1 Axial Binding Antagonists, Antimetabolites, and Platinums
EP3826988A4 (en) 2018-07-24 2023-03-22 Hygia Pharmaceuticals, LLC COMPOUNDS, DERIVATIVES AND ANALOGS AGAINST CANCER
US11040038B2 (en) 2018-07-26 2021-06-22 Sumitomo Dainippon Pharma Oncology, Inc. Methods for treating diseases associated with abnormal ACVR1 expression and ACVR1 inhibitors for use in the same
TW202024023A (en) 2018-09-03 2020-07-01 瑞士商赫孚孟拉羅股份公司 Therapeutic compounds and methods of use
CN112955747A (en) 2018-09-19 2021-06-11 豪夫迈·罗氏有限公司 Methods for treatment and diagnosis of bladder cancer
EP4249917A3 (en) 2018-09-21 2023-11-08 F. Hoffmann-La Roche AG Diagnostic methods for triple-negative breast cancer
BR112021006407A8 (en) 2018-10-04 2022-12-06 Inst Nat Sante Rech Med use of egfr inhibitors for keratoderms
AU2019361983A1 (en) 2018-10-18 2021-05-20 Genentech, Inc. Diagnostic and therapeutic methods for sarcomatoid kidney cancer
JP7516029B2 (en) 2018-11-16 2024-07-16 アムジエン・インコーポレーテツド Improved synthesis of key intermediates for KRAS G12C inhibitor compounds
JP7377679B2 (en) 2018-11-19 2023-11-10 アムジエン・インコーポレーテツド Combination therapy comprising a KRASG12C inhibitor and one or more additional pharmaceutically active agents for the treatment of cancer
JP7454572B2 (en) 2018-11-19 2024-03-22 アムジエン・インコーポレーテツド KRAS G12C inhibitor and its use
JP2022515197A (en) 2018-12-19 2022-02-17 アレイ バイオファーマ インコーポレイテッド 7-((3,5-dimethoxyphenyl) amino) quinoxaline derivative as an FGFR inhibitor for treating cancer
US12180207B2 (en) 2018-12-19 2024-12-31 Array Biopharma Inc. Substituted pyrazolo[1,5-a]pyridine compounds as inhibitors of FGFR tyrosine kinases
MX2021007157A (en) 2018-12-20 2021-08-16 Amgen Inc Heteroaryl amides useful as kif18a inhibitors.
ES2953821T3 (en) 2018-12-20 2023-11-16 Amgen Inc KIF18A inhibitors
CR20210387A (en) 2018-12-20 2021-08-19 Amgen Inc Kif18a inhibitors
JP2022513967A (en) 2018-12-20 2022-02-09 アムジエン・インコーポレーテツド Heteroarylamide useful as a KIF18A inhibitor
KR20210107069A (en) 2018-12-21 2021-08-31 다이이찌 산쿄 가부시키가이샤 Combination of antibody-drug conjugates and kinase inhibitors
US20220098303A1 (en) 2019-02-01 2022-03-31 Glaxosmithkline Intellectual Property Development Limited Combination treatments for cancer comprising belantamab mafodotin and an anti ox40 antibody and uses and methods thereof
JP2022519649A (en) 2019-02-08 2022-03-24 ジェネンテック, インコーポレイテッド How to diagnose and treat cancer
SG11202108707WA (en) 2019-02-27 2021-09-29 Epiaxis Therapeutics Pty Ltd Methods and agents for assessing t-cell function and predicting response to therapy
MX2021010313A (en) 2019-02-27 2021-09-23 Genentech Inc Dosing for treatment with anti-tigit and anti-cd20 or anti-cd38 antibodies.
WO2020180768A1 (en) 2019-03-01 2020-09-10 Revolution Medicines, Inc. Bicyclic heteroaryl compounds and uses thereof
EP3930845A1 (en) 2019-03-01 2022-01-05 Revolution Medicines, Inc. Bicyclic heterocyclyl compounds and uses thereof
WO2020223233A1 (en) 2019-04-30 2020-11-05 Genentech, Inc. Prognostic and therapeutic methods for colorectal cancer
AU2020270376A1 (en) 2019-05-03 2021-10-07 Genentech, Inc. Methods of treating cancer with an anti-PD-L1 antibody
EP3738593A1 (en) 2019-05-14 2020-11-18 Amgen, Inc Dosing of kras inhibitor for treatment of cancers
SG11202112855WA (en) 2019-05-21 2021-12-30 Amgen Inc Solid state forms
MA56397A (en) 2019-06-26 2022-05-04 Glaxosmithkline Ip Dev Ltd IL1RAP BINDING PROTEINS
CN112300279A (en) 2019-07-26 2021-02-02 上海复宏汉霖生物技术股份有限公司 Methods and compositions directed to anti-CD 73 antibodies and variants
AU2020324406A1 (en) 2019-08-02 2022-03-17 Amgen Inc. KIF18A inhibitors
US20220372018A1 (en) 2019-08-02 2022-11-24 Amgen Inc. Kif18a inhibitors
JP2022542967A (en) 2019-08-02 2022-10-07 アムジエン・インコーポレーテツド KIF18A inhibitor
US20220281843A1 (en) 2019-08-02 2022-09-08 Amgen Inc. Kif18a inhibitors
BR112022003998A2 (en) 2019-09-04 2022-05-31 Genentech Inc Group of differentiation 8 agglutinating agent, isolated nucleic acid, expression vector, host cell, methods for making a group of differentiation 8 agglutinating agent, for detecting positive grouping of differentiation 8 cells, for predicting responsiveness, for monitoring disease progression, to monitor treatment progress, to identify intestinal microbial strains, and to prepare a labeled group of differentiation 8 binding agent, and kit
WO2021043961A1 (en) 2019-09-06 2021-03-11 Glaxosmithkline Intellectual Property Development Limited Dosing regimen for the treatment of cancer with an anti icos agonistic antibody and chemotherapy
WO2021046293A1 (en) 2019-09-06 2021-03-11 Glaxosmithkline Intellectual Property Development Limited Dosing regimen for the treatment of cancer with an anti icos agonistic antibody and tremelimumab
CA3155924A1 (en) 2019-09-26 2021-04-01 Exelixis, Inc. Pyridone compounds and methods of use in the modulation of a protein kinase
KR20220070237A (en) 2019-09-27 2022-05-30 제넨테크, 인크. Dosing for treatment with anti-TIGIT and anti-PD-L1 antagonist antibodies
US20240058446A1 (en) 2019-10-03 2024-02-22 Cero Therapeutics, Inc. Chimeric tim4 receptors and uses thereof
MX2022004656A (en) 2019-10-24 2022-05-25 Amgen Inc PYRIDOPYRIMIDINE DERIVATIVES USEFUL AS INHIBITORS OF KRAS G12C AND KRAS G12D IN THE TREATMENT OF CANCER.
JP2023511472A (en) 2019-10-29 2023-03-20 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Bifunctional compounds for the treatment of cancer
KR20220109407A (en) 2019-11-04 2022-08-04 레볼루션 메디슨즈, 인크. RAS inhibitors
CN114786777A (en) 2019-11-04 2022-07-22 锐新医药公司 RAS inhibitors
TW202132315A (en) 2019-11-04 2021-09-01 美商銳新醫藥公司 Ras inhibitors
MX2022005400A (en) 2019-11-06 2022-05-24 Genentech Inc Diagnostic and therapeutic methods for treatment of hematologic cancers.
CA3156359A1 (en) 2019-11-08 2021-05-14 Adrian Liam Gill Bicyclic heteroaryl compounds and uses thereof
WO2021094379A1 (en) 2019-11-12 2021-05-20 Astrazeneca Ab Epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of cancer
CN114728905B (en) 2019-11-13 2025-08-01 基因泰克公司 Therapeutic compounds and methods of use
TWI882037B (en) 2019-11-14 2025-05-01 美商安進公司 Improved synthesis of kras g12c inhibitor compound
AR120456A1 (en) 2019-11-14 2022-02-16 Amgen Inc ENHANCED SYNTHESIS OF KRAS G12C INHIBITOR COMPOUND
US20220395553A1 (en) 2019-11-14 2022-12-15 Cohbar, Inc. Cxcr4 antagonist peptides
EP4065231A1 (en) 2019-11-27 2022-10-05 Revolution Medicines, Inc. Covalent ras inhibitors and uses thereof
EP4072584A1 (en) 2019-12-13 2022-10-19 Genentech, Inc. Anti-ly6g6d antibodies and methods of use
CA3164995A1 (en) 2019-12-20 2021-06-24 Erasca, Inc. Tricyclic pyridones and pyrimidones
JP2023509701A (en) 2020-01-07 2023-03-09 レヴォリューション・メディスンズ,インコーポレイテッド SHP2 inhibitor dosing and methods of treating cancer
AU2021211871A1 (en) 2020-01-20 2022-09-08 Astrazeneca Ab Epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of cancer
WO2022050954A1 (en) 2020-09-04 2022-03-10 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
WO2021194481A1 (en) 2020-03-24 2021-09-30 Genentech, Inc. Dosing for treatment with anti-tigit and anti-pd-l1 antagonist antibodies
IL294800A (en) 2020-01-27 2022-09-01 Genentech Inc Methods of treating cancer with an antibody to an anti-ti antagonist
EP4096718A1 (en) 2020-01-28 2022-12-07 GlaxoSmithKline Intellectual Property Development Limited Combination treatments and uses and methods thereof
WO2021177980A1 (en) 2020-03-06 2021-09-10 Genentech, Inc. Combination therapy for cancer comprising pd-1 axis binding antagonist and il6 antagonist
WO2021185844A1 (en) 2020-03-16 2021-09-23 Pvac Medical Technologies Ltd Use of substance and pharmaceutical composition thereof, and medical treatments or uses thereof
WO2021233534A1 (en) 2020-05-20 2021-11-25 Pvac Medical Technologies Ltd Use of substance and pharmaceutical composition thereof, and medical treatments or uses thereof
WO2021185291A1 (en) * 2020-03-17 2021-09-23 南京明德新药研发有限公司 Proteolysis regulator and method for using same
EP4127724A1 (en) 2020-04-03 2023-02-08 Genentech, Inc. Therapeutic and diagnostic methods for cancer
WO2021211776A1 (en) 2020-04-15 2021-10-21 California Institute Of Technology Thermal control of t-cell immunotherapy through molecular and physical actuation
EP4143345A1 (en) 2020-04-28 2023-03-08 Genentech, Inc. Methods and compositions for non-small cell lung cancer immunotherapy
CN118221596A (en) * 2020-06-15 2024-06-21 山东新时代药业有限公司 Organic acid salt of gefitinib
AU2021293038A1 (en) 2020-06-16 2023-02-02 F. Hoffmann-La Roche Ag Methods and compositions for treating triple-negative breast cancer
MX2022016355A (en) 2020-06-18 2023-04-03 Revolution Medicines Inc Methods for delaying, preventing, and treating acquired resistance to ras inhibitors.
IL298946A (en) 2020-06-18 2023-02-01 Genentech Inc Treatment with anti-TIGIT antibodies and PD-1 spindle-binding antagonists
WO2022002874A1 (en) 2020-06-30 2022-01-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the risk of recurrence and/or death of patients suffering from a solid cancer after preoperative adjuvant therapy and radical surgery
WO2022002873A1 (en) 2020-06-30 2022-01-06 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods for predicting the risk of recurrence and/or death of patients suffering from a solid cancer after preoperative adjuvant therapies
US11787775B2 (en) 2020-07-24 2023-10-17 Genentech, Inc. Therapeutic compounds and methods of use
WO2022031749A1 (en) 2020-08-03 2022-02-10 Genentech, Inc. Diagnostic and therapeutic methods for lymphoma
JP2023536346A (en) 2020-08-05 2023-08-24 エリプシーズ ファーマ リミテッド Treatment of Cancer with Cyclodextrin-Containing Polymeric Topoisomerase Inhibitor Conjugates and PARP Inhibitors
WO2022036146A1 (en) 2020-08-12 2022-02-17 Genentech, Inc. Diagnostic and therapeutic methods for cancer
WO2022036265A1 (en) 2020-08-14 2022-02-17 Cero Therapeutics, Inc. Chimeric tim receptors and uses thereof
WO2022036287A1 (en) 2020-08-14 2022-02-17 Cero Therapeutics, Inc. Anti-cd72 chimeric receptors and uses thereof
WO2022036285A1 (en) 2020-08-14 2022-02-17 Cero Therapeutics, Inc. Compositions and methods for treating cancer with chimeric tim receptors in combination with inhibitors of poly (adp-ribose) polymerase
IL300930A (en) 2020-08-27 2023-04-01 Enosi Therapeutics Corp Methods and compositions to treat autoimmune diseases and cancer
US11999964B2 (en) 2020-08-28 2024-06-04 California Institute Of Technology Synthetic mammalian signaling circuits for robust cell population control
CA3187757A1 (en) 2020-09-03 2022-03-24 Ethan AHLER Use of sos1 inhibitors to treat malignancies with shp2 mutations
WO2022060836A1 (en) 2020-09-15 2022-03-24 Revolution Medicines, Inc. Indole derivatives as ras inhibitors in the treatment of cancer
CA3196277A1 (en) 2020-09-23 2022-03-31 Erasca, Inc. Tricyclic pyridones and pyrimidones
TWI836278B (en) 2020-10-05 2024-03-21 美商建南德克公司 Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
TW202237638A (en) 2020-12-09 2022-10-01 日商武田藥品工業股份有限公司 Compositions of guanylyl cyclase c (gcc) antigen binding agents and methods of use thereof
WO2022133345A1 (en) 2020-12-18 2022-06-23 Erasca, Inc. Tricyclic pyridones and pyrimidones
AR124449A1 (en) 2020-12-22 2023-03-29 Qilu Regor Therapeutics Inc SOS1 INHIBITORS AND USES THEREOF
CN112321814B (en) * 2020-12-30 2021-03-23 广州初曲科技有限公司 Preparation and application of gefitinib idebenone conjugate
EP4291558A1 (en) 2021-02-12 2023-12-20 F. Hoffmann-La Roche AG Bicyclic tetrahydroazepine derivatives for the treatment of cancer
JP2024507794A (en) 2021-02-19 2024-02-21 エグゼリクシス, インコーポレイテッド Pyridone compounds and methods of use
US20240218390A1 (en) 2021-02-26 2024-07-04 Kelonia Therapeutics, Inc. Lymphocyte targeted lentiviral vectors
MX2023013085A (en) 2021-05-05 2023-11-16 Revolution Medicines Inc Ras inhibitors.
JP2024516450A (en) 2021-05-05 2024-04-15 レボリューション メディシンズ インコーポレイテッド Covalent RAS inhibitors and uses thereof
MX2023013084A (en) 2021-05-05 2023-11-17 Revolution Medicines Inc Ras inhibitors for the treatment of cancer.
EP4347603A1 (en) 2021-05-25 2024-04-10 Erasca, Inc. Sulfur-containing heteroaromatic tricyclic kras inhibitors
US20240293558A1 (en) 2021-06-16 2024-09-05 Erasca, Inc. Kras inhibitor conjugates
CN113527266A (en) * 2021-06-23 2021-10-22 上海健康医学院 A hydrogen peroxide-responsive prodrug targeting FAP and its preparation method and application
CN113336742B (en) 2021-06-29 2022-05-10 山东金吉利新材料有限公司 Synthesis method of pyrroltinib maleate intermediate
CA3226019A1 (en) 2021-07-20 2023-01-26 Ags Therapeutics Sas Extracellular vesicles from microalgae, their preparation, and uses
WO2023010097A1 (en) 2021-07-28 2023-02-02 Cero Therapeutics, Inc. Chimeric tim4 receptors and uses thereof
WO2023018699A1 (en) 2021-08-10 2023-02-16 Erasca, Inc. Selective kras inhibitors
AR127308A1 (en) 2021-10-08 2024-01-10 Revolution Medicines Inc RAS INHIBITORS
CN113845485B (en) * 2021-10-22 2023-03-14 湖南中医药大学 Amino acid derivative and preparation method and application thereof
JP2024543912A (en) 2021-11-24 2024-11-26 ジェネンテック, インコーポレイテッド Bicyclic therapeutic compounds and methods of use in the treatment of cancer - Patents.com
JP2024541508A (en) 2021-11-24 2024-11-08 ジェネンテック, インコーポレイテッド Therapeutic indazole compounds and methods of use in the treatment of cancer - Patents.com
JP2025500878A (en) 2021-12-17 2025-01-15 ジェンザイム・コーポレーション PYRAZOLO-PYRAZINE COMPOUNDS AS SHP2 INHIBITORS
WO2023144127A1 (en) 2022-01-31 2023-08-03 Ags Therapeutics Sas Extracellular vesicles from microalgae, their biodistribution upon administration, and uses
EP4227307A1 (en) 2022-02-11 2023-08-16 Genzyme Corporation Pyrazolopyrazine compounds as shp2 inhibitors
WO2023172940A1 (en) 2022-03-08 2023-09-14 Revolution Medicines, Inc. Methods for treating immune refractory lung cancer
EP4499102A1 (en) 2022-03-31 2025-02-05 Astrazeneca AB Epidermal growth factor receptor (egfr) tyrosine kinase inhibitors in combination with an akt inhibitor for the treatment of cancer
KR20240169042A (en) 2022-04-01 2024-12-02 제넨테크, 인크. Dosage regimen for treatment with anti-FCRH5/anti-CD3 bispecific antibodies
CN119317641A (en) 2022-05-11 2025-01-14 基因泰克公司 Administration for treatment with anti-FCRH5/anti-CD3 bispecific antibodies
KR20250022049A (en) 2022-06-07 2025-02-14 제넨테크, 인크. Method for determining the efficacy of a treatment for lung cancer comprising an anti-PD-L1 antagonist and an anti-TIGIT antagonist antibody
WO2023240263A1 (en) 2022-06-10 2023-12-14 Revolution Medicines, Inc. Macrocyclic ras inhibitors
TW202417040A (en) 2022-06-27 2024-05-01 瑞典商阿斯特捷利康公司 Combinations involving epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of cancer
CN119585308A (en) 2022-07-13 2025-03-07 基因泰克公司 Administration of anti-FCRH5/anti-CD3 bispecific antibodies for treatment
CN119604530A (en) 2022-07-19 2025-03-11 基因泰克公司 Administration of Therapeutic Antibodies Using Anti-FCRH5/Anti-CD3 Bispecific Antibodies
WO2024030441A1 (en) 2022-08-02 2024-02-08 National University Corporation Hokkaido University Methods of improving cellular therapy with organelle complexes
TW202417439A (en) 2022-08-11 2024-05-01 瑞士商赫孚孟拉羅股份公司 Bicyclic tetrahydrothiazepine derivatives
IL318163A (en) 2022-08-11 2025-03-01 Hoffmann La Roche Bicyclic tetrahydrothiazepine derivatives
AR130167A1 (en) 2022-08-11 2024-11-13 Hoffmann La Roche BICYCLIC TETRAHYDROAZEPINE DERIVATIVES
IL316935A (en) 2022-08-11 2025-01-01 Hoffmann La Roche Bicyclic tetrahydrothiazepine derivatives
CR20250141A (en) 2022-10-14 2025-05-26 Black Diamond Therapeutics Inc Cancer treatment methods using isoquinoline or 6-azaquinoline derivatives
WO2024085242A2 (en) 2022-10-21 2024-04-25 Kawasaki Institute Of Industrial Promotion Non-fouling or super stealth vesicle
WO2024088808A1 (en) 2022-10-24 2024-05-02 Ags Therapeutics Sas Extracellular vesicles from microalgae, their biodistribution upon intranasal administration, and uses thereof
KR20250093336A (en) 2022-10-25 2025-06-24 제넨테크, 인크. Treatment and Diagnosis Methods for Multiple Myeloma
WO2024173842A1 (en) 2023-02-17 2024-08-22 Erasca, Inc. Kras inhibitors
WO2024206858A1 (en) 2023-03-30 2024-10-03 Revolution Medicines, Inc. Compositions for inducing ras gtp hydrolysis and uses thereof
WO2024211663A1 (en) 2023-04-07 2024-10-10 Revolution Medicines, Inc. Condensed macrocyclic compounds as ras inhibitors
WO2024211712A1 (en) 2023-04-07 2024-10-10 Revolution Medicines, Inc. Condensed macrocyclic compounds as ras inhibitors
WO2024216048A1 (en) 2023-04-14 2024-10-17 Revolution Medicines, Inc. Crystalline forms of ras inhibitors, compositions containing the same, and methods of use thereof
TW202446388A (en) 2023-04-14 2024-12-01 美商銳新醫藥公司 Crystalline forms of ras inhibitors, compositions containing the same, and methods of use thereof
TW202508595A (en) 2023-05-04 2025-03-01 美商銳新醫藥公司 Combination therapy for a ras related disease or disorder
WO2024233341A1 (en) 2023-05-05 2024-11-14 Genentech, Inc. Dosing for treatment with anti-fcrh5/anti-cd3 bispecific antibodies
TW202504641A (en) 2023-06-08 2025-02-01 美商建南德克公司 Macrophage signatures for diagnostic and therapeutic methods for lymphoma
WO2025024257A1 (en) 2023-07-21 2025-01-30 Genentech, Inc. Diagnostic and therapeutic methods for cancer
WO2025034702A1 (en) 2023-08-07 2025-02-13 Revolution Medicines, Inc. Rmc-6291 for use in the treatment of ras protein-related disease or disorder
WO2025049277A1 (en) 2023-08-25 2025-03-06 Genentech, Inc. Methods and compositions for treating non-small cell lung cancer comprising an anti-tigit antagonist antibody and a pd-1 axis binding antagonist
WO2025080946A2 (en) 2023-10-12 2025-04-17 Revolution Medicines, Inc. Ras inhibitors
WO2025137507A1 (en) 2023-12-22 2025-06-26 Regor Pharmaceuticals, Inc. Sos1 inhibitors and uses thereof
WO2025171296A1 (en) 2024-02-09 2025-08-14 Revolution Medicines, Inc. Ras inhibitors

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3266990A (en) * 1963-09-24 1966-08-16 Warner Lambert Pharmaceutical Derivatives of quinazoline
JPS5538325A (en) * 1978-09-11 1980-03-17 Sankyo Co Ltd 4-anilinoquinazoline derivative and its preparation
US4343940A (en) * 1979-02-13 1982-08-10 Mead Johnson & Company Anti-tumor quinazoline compounds
GB2160201B (en) * 1984-06-14 1988-05-11 Wyeth John & Brother Ltd Quinazoline and cinnoline derivatives
EP0326307B1 (en) * 1988-01-23 1994-08-17 Kyowa Hakko Kogyo Co., Ltd. Novel pyridazinone derivatives and pharmaceutical preparations containing them
IL89029A (en) * 1988-01-29 1993-01-31 Lilly Co Eli Fungicidal quinoline and cinnoline derivatives, compositions containing them, and fungicidal methods of using them
JPH06500117A (en) * 1991-02-20 1994-01-06 フアイザー・インコーポレイテツド 2,4-diaminoquinazoline derivatives that enhance antitumor activity
US5710158A (en) * 1991-05-10 1998-01-20 Rhone-Poulenc Rorer Pharmaceuticals Inc. Aryl and heteroaryl quinazoline compounds which inhibit EGF and/or PDGF receptor tyrosine kinase
CA2102780C (en) * 1991-05-10 2007-01-09 Alfred P. Spada Bis mono-and bicyclic aryl and heteroaryl compounds which inhibit egf and/or pdgf receptor tyrosine kinase
US5721237A (en) * 1991-05-10 1998-02-24 Rhone-Poulenc Rorer Pharmaceuticals Inc. Protein tyrosine kinase aryl and heteroaryl quinazoline compounds having selective inhibition of HER-2 autophosphorylation properties
NZ243082A (en) * 1991-06-28 1995-02-24 Ici Plc 4-anilino-quinazoline derivatives; pharmaceutical compositions, preparatory processes, and use thereof
AU661533B2 (en) * 1992-01-20 1995-07-27 Astrazeneca Ab Quinazoline derivatives
US6177401B1 (en) * 1992-11-13 2001-01-23 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften Use of organic compounds for the inhibition of Flk-1 mediated vasculogenesis and angiogenesis
GB9323290D0 (en) * 1992-12-10 1994-01-05 Zeneca Ltd Quinazoline derivatives
GB9314893D0 (en) * 1993-07-19 1993-09-01 Zeneca Ltd Quinazoline derivatives
GB9314884D0 (en) * 1993-07-19 1993-09-01 Zeneca Ltd Tricyclic derivatives
US5661147A (en) * 1993-09-03 1997-08-26 Kyowa Hakko Kogyo Co., Ltd. Imidazoquinazoline derivatives
US5409000A (en) * 1993-09-14 1995-04-25 Cardiac Pathways Corporation Endocardial mapping and ablation system utilizing separately controlled steerable ablation catheter with ultrasonic imaging capabilities and method
GB9325217D0 (en) * 1993-12-09 1994-02-09 Zeneca Ltd Pyrimidine derivatives
US5700823A (en) * 1994-01-07 1997-12-23 Sugen, Inc. Treatment of platelet derived growth factor related disorders such as cancers
IL112249A (en) * 1994-01-25 2001-11-25 Warner Lambert Co Pharmaceutical compositions containing di and tricyclic pyrimidine derivatives for inhibiting tyrosine kinases of the epidermal growth factor receptor family and some new such compounds
IL112248A0 (en) * 1994-01-25 1995-03-30 Warner Lambert Co Tricyclic heteroaromatic compounds and pharmaceutical compositions containing them
CN1141633A (en) * 1994-02-23 1997-01-29 辉瑞大药厂 4-heterocyclyl-substituted Quinazoline derivatives, method for prepn. of same and the use as anti-cancer agent
WO1995024190A2 (en) * 1994-03-07 1995-09-14 Sugen, Inc. Receptor tyrosine kinase inhibitors for inhibiting cell proliferative disorders and compositions thereof
EP0682027B1 (en) * 1994-05-03 1997-10-15 Novartis AG Pyrrolopyrimidine derivatives with antiproliferative action
GB9510757D0 (en) * 1994-09-19 1995-07-19 Wellcome Found Therapeuticaly active compounds
TW321649B (en) 1994-11-12 1997-12-01 Zeneca Ltd
GB9424233D0 (en) * 1994-11-30 1995-01-18 Zeneca Ltd Quinazoline derivatives
DE19510019A1 (en) * 1995-03-20 1996-09-26 Thomae Gmbh Dr K New imidazo-quinazoline derivs.
WO1996029331A1 (en) * 1995-03-20 1996-09-26 Dr. Karl Thomae Gmbh Imidazoquinazolines, drugs containing these compounds, their use and process for their preparation
EP3103799B1 (en) * 1995-03-30 2018-06-06 OSI Pharmaceuticals, LLC Quinazoline derivatives
CA2214086C (en) * 1995-04-03 2008-07-29 Novartis Ag Pyrazole derivatives and processes for the preparation thereof
GB9508565D0 (en) * 1995-04-27 1995-06-14 Zeneca Ltd Quiazoline derivative
GB9508535D0 (en) * 1995-04-27 1995-06-14 Zeneca Ltd Quinazoline derivative
GB9508537D0 (en) * 1995-04-27 1995-06-14 Zeneca Ltd Quinazoline derivatives
US5932574A (en) * 1995-04-27 1999-08-03 Zeneca Limited Quinazoline derivatives
IL117923A (en) * 1995-05-03 2000-06-01 Warner Lambert Co Anti-cancer pharmaceutical compositions containing polysubstituted pyrido¬2,3-d¾pyrimidine derivatives and certain such novel compounds
DE69603240T2 (en) * 1995-05-12 2000-01-05 Neurogen Corp., Branford NEW DEAZAPORE DERIVATIVES; A NEW CLASS OF CRF1-SPECIFIC LIGANDS
AU5984296A (en) * 1995-06-07 1996-12-30 Sugen, Inc. Quinazolines and pharmaceutical compositions
ATE247469T1 (en) * 1995-06-07 2003-09-15 Pfizer HETEROCYCLIC CONDENSED PYRIMIDINE DERIVATIVES
ATE212993T1 (en) * 1995-07-06 2002-02-15 Novartis Erfind Verwalt Gmbh PYROLOPYRIMIDINES AND METHOD FOR THE PRODUCTION THEREOF
GB9514265D0 (en) * 1995-07-13 1995-09-13 Wellcome Found Hetrocyclic compounds
GB9520822D0 (en) * 1995-10-11 1995-12-13 Wellcome Found Therapeutically active compounds
AR004010A1 (en) * 1995-10-11 1998-09-30 Glaxo Group Ltd HETERO CYCLIC COMPOUNDS

Also Published As

Publication number Publication date
NO2009028I1 (en) 2014-05-19
TW436486B (en) 2001-05-28
ATE198329T1 (en) 2001-01-15
SK282236B6 (en) 2001-12-03
JPH11504033A (en) 1999-04-06
GB9508538D0 (en) 1995-06-14
RU2153495C2 (en) 2000-07-27
IL118045A (en) 2001-10-31
SI0823900T1 (en) 2001-06-30
FR09C0065I1 (en) 2010-01-22
DE122009000076I1 (en) 2010-05-06
EE03482B1 (en) 2001-08-15
BRPI9608082B1 (en) 2019-04-30
BG62730B1 (en) 2000-06-30
NO2009028I2 (en) 2011-10-17
NO309472B1 (en) 2001-02-05
CN1100046C (en) 2003-01-29
GR3035211T3 (en) 2001-04-30
BRPI9608082A (en) 1999-01-26
NO974940D0 (en) 1997-10-24
NL300429I1 (en) 2010-03-01
UA52602C2 (en) 2003-01-15
US5770599A (en) 1998-06-23
WO1996033980A1 (en) 1996-10-31
DE69611361D1 (en) 2001-02-01
DE69611361T2 (en) 2001-04-26
HUP9802839A3 (en) 2001-02-28
NO974940L (en) 1997-10-24
AR003944A1 (en) 1998-09-30
SK145497A3 (en) 1998-02-04
HU223313B1 (en) 2004-05-28
CN1182421A (en) 1998-05-20
PL323066A1 (en) 1998-03-02
ZA963358B (en) 1996-10-28
BG102052A (en) 1998-08-31
DK0823900T3 (en) 2001-04-02
AU5343396A (en) 1996-11-18
HUP9802839A2 (en) 1999-03-29
CZ339697A3 (en) 1998-02-18
EE9700252A (en) 1998-04-15
NZ305444A (en) 1999-03-29
EP0823900A1 (en) 1998-02-18
EG24134A (en) 2008-08-06
JP3040486B2 (en) 2000-05-15
CZ288489B6 (en) 2001-06-13
RO117849B1 (en) 2002-08-30
CA2215732A1 (en) 1996-10-31
ES2153098T3 (en) 2001-02-16
EP0823900B1 (en) 2000-12-27
LU91631I2 (en) 2010-02-17
IL118045A0 (en) 1996-08-04
MY114425A (en) 2002-10-31
FR09C0065I2 (en) 2014-03-28
KR19990007987A (en) 1999-01-25
BRPI9608082B8 (en) 2021-07-06
PL189182B1 (en) 2005-07-29
HK1005371A1 (en) 1999-01-08
PT823900E (en) 2001-04-30
HRP960204A2 (en) 1997-08-31
AU699163B2 (en) 1998-11-26
HRP960204B1 (en) 2001-10-31
KR100296656B1 (en) 2001-08-07

Similar Documents

Publication Publication Date Title
CA2215732C (en) Quinazoline derivatives
US6015814A (en) Quinazoline derivative
US5932574A (en) Quinazoline derivatives
US5942514A (en) Quinazoline derivatives
US5814630A (en) Quinazoline compounds
US5866572A (en) Quinazoline derivatives
US5952333A (en) Quinazoline derivative
US5475001A (en) Quinazoline derivatives
US5770603A (en) Quinazoline derivatives
US5580870A (en) Quinazoline derivatives
HK1005371B (en) Quinazoline derivatives
MXPA97008177A (en) Quinazol derivatives

Legal Events

Date Code Title Description
EEER Examination request
MKEX Expiry

Effective date: 20160425