CA1192817A - Method for increasing the band gap in photoresponsive amorphous alloys and devices - Google Patents

Method for increasing the band gap in photoresponsive amorphous alloys and devices

Info

Publication number
CA1192817A
CA1192817A CA000385389A CA385389A CA1192817A CA 1192817 A CA1192817 A CA 1192817A CA 000385389 A CA000385389 A CA 000385389A CA 385389 A CA385389 A CA 385389A CA 1192817 A CA1192817 A CA 1192817A
Authority
CA
Canada
Prior art keywords
alloy
band gap
layer
deposited
increasing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
CA000385389A
Other languages
English (en)
French (fr)
Inventor
Stanford R. Ovshinsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Energy Conversion Devices Inc
Original Assignee
Energy Conversion Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/185,520 external-priority patent/US4342044A/en
Application filed by Energy Conversion Devices Inc filed Critical Energy Conversion Devices Inc
Application granted granted Critical
Publication of CA1192817A publication Critical patent/CA1192817A/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/10Semiconductor bodies
    • H10F77/16Material structures, e.g. crystalline structures, film structures or crystal plane orientations
    • H10F77/162Non-monocrystalline materials, e.g. semiconductor particles embedded in insulating materials
    • H10F77/166Amorphous semiconductors
    • H10F77/1662Amorphous semiconductors including only Group IV materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0026Activation or excitation of reactive gases outside the coating chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/40Crystalline structures
    • H10D62/402Amorphous materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/80Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
    • H10D62/83Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F10/00Individual photovoltaic cells, e.g. solar cells
    • H10F10/10Individual photovoltaic cells, e.g. solar cells having potential barriers
    • H10F10/13Photovoltaic cells having absorbing layers comprising graded bandgaps
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/10Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material
    • H10F71/103Manufacture or treatment of devices covered by this subclass the devices comprising amorphous semiconductor material including only Group IV materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Photovoltaic Devices (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)
CA000385389A 1980-09-09 1981-09-08 Method for increasing the band gap in photoresponsive amorphous alloys and devices Expired CA1192817A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US06/185,520 US4342044A (en) 1978-03-08 1980-09-09 Method for optimizing photoresponsive amorphous alloys and devices
US185,520 1980-09-09
US20647680A 1980-11-13 1980-11-13
US206,476 1980-11-13

Publications (1)

Publication Number Publication Date
CA1192817A true CA1192817A (en) 1985-09-03

Family

ID=26881209

Family Applications (1)

Application Number Title Priority Date Filing Date
CA000385389A Expired CA1192817A (en) 1980-09-09 1981-09-08 Method for increasing the band gap in photoresponsive amorphous alloys and devices

Country Status (14)

Country Link
KR (1) KR890000479B1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
AU (1) AU541939B2 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
BR (1) BR8105746A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
CA (1) CA1192817A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
DE (1) DE3135412C2 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
ES (1) ES505269A0 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
FR (1) FR2490019B1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
GB (1) GB2083704B (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
IE (1) IE52208B1 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
IL (1) IL63755A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
IN (1) IN157494B (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
IT (1) IT1138204B (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
NL (1) NL8104139A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)
SE (1) SE8105278L (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400409A (en) * 1980-05-19 1983-08-23 Energy Conversion Devices, Inc. Method of making p-doped silicon films
IL63754A (en) * 1980-09-09 1984-07-31 Energy Conversion Devices Inc Photoresponsive amorphous alloys having a graded band gap,their production and devices made therefrom
IN157288B (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) * 1980-09-09 1986-02-22 Energy Conversion Devices Inc
US4379943A (en) * 1981-12-14 1983-04-12 Energy Conversion Devices, Inc. Current enhanced photovoltaic device
JPS59111152A (ja) * 1982-12-16 1984-06-27 Sharp Corp 電子写真用感光体
GB2137810B (en) * 1983-03-08 1986-10-22 Agency Ind Science Techn A solar cell of amorphous silicon
US4572882A (en) * 1983-09-09 1986-02-25 Canon Kabushiki Kaisha Photoconductive member containing amorphous silicon and germanium
ATE70665T1 (de) * 1984-02-14 1992-01-15 Energy Conversion Devices Inc Verfahren zur herstellung eines fotoleitfaehigen elementes.
JPH0624238B2 (ja) * 1985-04-16 1994-03-30 キヤノン株式会社 フォトセンサアレイの製造方法
CA1321660C (en) * 1985-11-05 1993-08-24 Hideo Yamagishi Amorphous-containing semiconductor device with high resistivity interlayer or with highly doped interlayer
US4887134A (en) * 1986-09-26 1989-12-12 Canon Kabushiki Kaisha Semiconductor device having a semiconductor region in which either the conduction or valence band remains flat while bandgap is continuously graded
JP3099957B2 (ja) * 1990-01-17 2000-10-16 株式会社リコー 光導電部材
US5155567A (en) * 1990-01-17 1992-10-13 Ricoh Company, Ltd. Amorphous photoconductive material and photosensor employing the photoconductive material
DE19524459A1 (de) * 1995-07-07 1997-01-09 Forschungszentrum Juelich Gmbh Solarzelle, insbesondere Konzentrator-Solarzelle oder Eine-Sonne-Solarzelle auf Siliziumbasis mit deponierten amorphen Silizium, Silizium-Germanium und/oder anderen Siliziumlegierungs-Schichten
JP3119131B2 (ja) * 1995-08-01 2000-12-18 トヨタ自動車株式会社 シリコン薄膜の製造方法及びこの方法を用いた太陽電池の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217374A (en) * 1978-03-08 1980-08-12 Energy Conversion Devices, Inc. Amorphous semiconductors equivalent to crystalline semiconductors
US4226898A (en) * 1978-03-16 1980-10-07 Energy Conversion Devices, Inc. Amorphous semiconductors equivalent to crystalline semiconductors produced by a glow discharge process
JPS554040A (en) * 1978-06-26 1980-01-12 Hitachi Ltd Photoconductive material
GB2038086A (en) * 1978-12-19 1980-07-16 Standard Telephones Cables Ltd Amorphous semiconductor devices

Also Published As

Publication number Publication date
IL63755A (en) 1984-07-31
IN157494B (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) 1986-04-12
ES8302362A1 (es) 1982-12-16
DE3135412C2 (de) 1985-11-21
GB2083704A (en) 1982-03-24
GB2083704B (en) 1985-08-21
BR8105746A (pt) 1982-05-25
IT1138204B (it) 1986-09-17
FR2490019A1 (fr) 1982-03-12
IL63755A0 (en) 1981-12-31
IE812064L (en) 1982-03-09
KR890000479B1 (ko) 1989-03-18
AU7502081A (en) 1982-03-18
DE3135412A1 (de) 1982-08-12
FR2490019B1 (fr) 1985-10-31
IE52208B1 (en) 1987-08-05
SE8105278L (sv) 1982-03-10
ES505269A0 (es) 1982-12-16
AU541939B2 (en) 1985-01-31
KR830008407A (ko) 1983-11-18
NL8104139A (nl) 1982-04-01
IT8123828A0 (it) 1981-09-07

Similar Documents

Publication Publication Date Title
US4441113A (en) P-Type semiconductor material having a wide band gap
US4522663A (en) Method for optimizing photoresponsive amorphous alloys and devices
US4342044A (en) Method for optimizing photoresponsive amorphous alloys and devices
US4517223A (en) Method of making amorphous semiconductor alloys and devices using microwave energy
US4615905A (en) Method of depositing semiconductor films by free radical generation
US4664937A (en) Method of depositing semiconductor films by free radical generation
US4504518A (en) Method of making amorphous semiconductor alloys and devices using microwave energy
US4492810A (en) Optimized doped and band gap adjusted photoresponsive amorphous alloys and devices
CA1189601A (en) Current enhanced photovoltaic device
CA1122687A (en) Amorphous semiconductors equivalent to crystalline semiconductors
CA1192819A (en) Method for grading the band gaps of amorphous alloys and devices
CA1192817A (en) Method for increasing the band gap in photoresponsive amorphous alloys and devices
US4485389A (en) Amorphous semiconductors equivalent to crystalline semiconductors
CA1172742A (en) Multiple cell photoresponsive amorphous alloys and devices
US4891074A (en) Multiple cell photoresponsive amorphous alloys and devices
US4954182A (en) Multiple cell photoresponsive amorphous photo voltaic devices including graded band gaps
US4605941A (en) Amorphous semiconductors equivalent to crystalline semiconductors
EP0058543B1 (en) Photoresponsive amorphous semiconductor alloys
GB2111534A (en) Making photoresponsive amorphous alloys and devices by reactive plasma sputtering
US4469715A (en) P-type semiconductor material having a wide band gap
CA1192816A (en) Method for making photoresponsive amorphous germanium alloys and devices
US4701343A (en) Method of depositing thin films using microwave energy
US4689645A (en) Current control device
US4745000A (en) Method of fabricating electrostatic drums using microwave energy

Legal Events

Date Code Title Description
MKEX Expiry