IE812064L - Increasing the band gap in photoresponsive amorphous alloys¹and devices - Google Patents

Increasing the band gap in photoresponsive amorphous alloys¹and devices

Info

Publication number
IE812064L
IE812064L IE812064A IE206481A IE812064L IE 812064 L IE812064 L IE 812064L IE 812064 A IE812064 A IE 812064A IE 206481 A IE206481 A IE 206481A IE 812064 L IE812064 L IE 812064L
Authority
IE
Ireland
Prior art keywords
band gap
devices
alloys1and
increasing
photoresponsive amorphous
Prior art date
Application number
IE812064A
Other versions
IE52208B1 (en
Original Assignee
Energy Conversion Devices Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/185,520 external-priority patent/US4342044A/en
Application filed by Energy Conversion Devices Inc filed Critical Energy Conversion Devices Inc
Publication of IE812064L publication Critical patent/IE812064L/en
Publication of IE52208B1 publication Critical patent/IE52208B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0026Activation or excitation of reactive gases outside the coating chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1604Amorphous materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/065Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the graded gap type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

A semiconductor material comprises amorphous Si containing F (a- Si: F) together with a band gap increasing modifier (e.g. C or N). H may also be incorporated in the material which may be doped. The material may be used in Schottky, MIS and PIN solar cells or in photoconductive or electrophotographic devices. [GB2083704A]
IE2064/81A 1980-09-09 1981-09-07 Method for increasing the band gap in photoresponsive amorphous alloys and devices IE52208B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/185,520 US4342044A (en) 1978-03-08 1980-09-09 Method for optimizing photoresponsive amorphous alloys and devices
US20647680A 1980-11-13 1980-11-13

Publications (2)

Publication Number Publication Date
IE812064L true IE812064L (en) 1982-03-09
IE52208B1 IE52208B1 (en) 1987-08-05

Family

ID=26881209

Family Applications (1)

Application Number Title Priority Date Filing Date
IE2064/81A IE52208B1 (en) 1980-09-09 1981-09-07 Method for increasing the band gap in photoresponsive amorphous alloys and devices

Country Status (14)

Country Link
KR (1) KR890000479B1 (en)
AU (1) AU541939B2 (en)
BR (1) BR8105746A (en)
CA (1) CA1192817A (en)
DE (1) DE3135412C2 (en)
ES (1) ES8302362A1 (en)
FR (1) FR2490019B1 (en)
GB (1) GB2083704B (en)
IE (1) IE52208B1 (en)
IL (1) IL63755A (en)
IN (1) IN157494B (en)
IT (1) IT1138204B (en)
NL (1) NL8104139A (en)
SE (1) SE8105278L (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4400409A (en) * 1980-05-19 1983-08-23 Energy Conversion Devices, Inc. Method of making p-doped silicon films
NL8104140A (en) * 1980-09-09 1982-04-01 Energy Conversion Devices Inc METHOD FOR MANUFACTURING AMORPHIC SEMICONDUCTOR DEVICES WITH IMPROVED PHOTOSENSITIVE PROPERTIES AND EQUIPMENT OBTAINED AS SUCH.
GB2083705B (en) * 1980-09-09 1985-07-03 Energy Conversion Devices Inc Stacked photoresponsive cells of amorphous semiconductors
US4379943A (en) * 1981-12-14 1983-04-12 Energy Conversion Devices, Inc. Current enhanced photovoltaic device
JPS59111152A (en) * 1982-12-16 1984-06-27 Sharp Corp Photosensitive body for electrophotography
GB2137810B (en) * 1983-03-08 1986-10-22 Agency Ind Science Techn A solar cell of amorphous silicon
US4572882A (en) * 1983-09-09 1986-02-25 Canon Kabushiki Kaisha Photoconductive member containing amorphous silicon and germanium
ATE70665T1 (en) * 1984-02-14 1992-01-15 Energy Conversion Devices Inc PROCESS FOR MAKING A PHOTOCONDUCTIVE ELEMENT.
JPH0624238B2 (en) * 1985-04-16 1994-03-30 キヤノン株式会社 Photosensor array manufacturing method
CA1321660C (en) * 1985-11-05 1993-08-24 Hideo Yamagishi Amorphous-containing semiconductor device with high resistivity interlayer or with highly doped interlayer
US4887134A (en) * 1986-09-26 1989-12-12 Canon Kabushiki Kaisha Semiconductor device having a semiconductor region in which either the conduction or valence band remains flat while bandgap is continuously graded
US5155567A (en) * 1990-01-17 1992-10-13 Ricoh Company, Ltd. Amorphous photoconductive material and photosensor employing the photoconductive material
JP3099957B2 (en) * 1990-01-17 2000-10-16 株式会社リコー Photoconductive member
DE19524459A1 (en) * 1995-07-07 1997-01-09 Forschungszentrum Juelich Gmbh Solar cell, esp. concentrator solar cell - having crystalline silicon@ layer and adjacent amorphous silicon-contg. layer with means for reducing potential barrier in vicinity of amorphous layer boundary face
JP3119131B2 (en) * 1995-08-01 2000-12-18 トヨタ自動車株式会社 Method for producing silicon thin film and method for producing solar cell using this method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4217374A (en) * 1978-03-08 1980-08-12 Energy Conversion Devices, Inc. Amorphous semiconductors equivalent to crystalline semiconductors
US4226898A (en) * 1978-03-16 1980-10-07 Energy Conversion Devices, Inc. Amorphous semiconductors equivalent to crystalline semiconductors produced by a glow discharge process
JPS554040A (en) * 1978-06-26 1980-01-12 Hitachi Ltd Photoconductive material
GB2038086A (en) * 1978-12-19 1980-07-16 Standard Telephones Cables Ltd Amorphous semiconductor devices

Also Published As

Publication number Publication date
IL63755A0 (en) 1981-12-31
IT1138204B (en) 1986-09-17
GB2083704B (en) 1985-08-21
AU7502081A (en) 1982-03-18
IT8123828A0 (en) 1981-09-07
SE8105278L (en) 1982-03-10
ES505269A0 (en) 1982-12-16
IN157494B (en) 1986-04-12
KR890000479B1 (en) 1989-03-18
AU541939B2 (en) 1985-01-31
IE52208B1 (en) 1987-08-05
FR2490019B1 (en) 1985-10-31
DE3135412A1 (en) 1982-08-12
KR830008407A (en) 1983-11-18
GB2083704A (en) 1982-03-24
CA1192817A (en) 1985-09-03
DE3135412C2 (en) 1985-11-21
IL63755A (en) 1984-07-31
ES8302362A1 (en) 1982-12-16
FR2490019A1 (en) 1982-03-12
BR8105746A (en) 1982-05-25
NL8104139A (en) 1982-04-01

Similar Documents

Publication Publication Date Title
ES8302361A1 (en) Graded bandgap amorphous semiconductors
IE812064L (en) Increasing the band gap in photoresponsive amorphous alloys¹and devices
GB2020095A (en) Schottky barrier amorphous silicon solar cell
AU1241483A (en) Amorphous photovoltaic cells
JPS564287A (en) Amorphous silicon solar battery
AU522819B2 (en) Wave-powered device, moored float type
ES512728A0 (en) A P-N OR P-I-N UNION DEVICE FOR SOLAR CELLS.
AU6525280A (en) Solar cell
JPS5544793A (en) Amorphous silicon solar battery
JPS54141593A (en) Amorphous silicon solar battery
JPS5664476A (en) Armophous silicon solar battery
AU528382B2 (en) Solar grade silicon
AU8354691A (en) Amorphous silicon solar cell and method for manufacturing the same
AU508168B2 (en) Photovoltaic cells
AU534829B2 (en) Photovoltaic cell
ES8302365A1 (en) Stacked photoresponsive cells of amorphous semiconductors
AU548553B2 (en) Amorphous silicon solar cell
DE3479272D1 (en) Amorphous silicon solar cells
AU498057B2 (en) High efficiency selenium heterojunction solar cells
AU558650B2 (en) Amorphous semiconductor high-voltage photovoltaic cell
ES8302363A1 (en) Amorphous semiconductors
ES478910A1 (en) Optically Sensitive Switch
JPS55141765A (en) Amorphous silicon solar battery
AU521068B2 (en) Fabricating conducting oxide-silicon solar cells
AU2547777A (en) Solar cell

Legal Events

Date Code Title Description
MM4A Patent lapsed