BRPI0809269B1 - método de rtm auxiliada com vácuo, e método para produzir um produto moldado de plástico reforçado com fibra - Google Patents

método de rtm auxiliada com vácuo, e método para produzir um produto moldado de plástico reforçado com fibra Download PDF

Info

Publication number
BRPI0809269B1
BRPI0809269B1 BRPI0809269A BRPI0809269A BRPI0809269B1 BR PI0809269 B1 BRPI0809269 B1 BR PI0809269B1 BR PI0809269 A BRPI0809269 A BR PI0809269A BR PI0809269 A BRPI0809269 A BR PI0809269A BR PI0809269 B1 BRPI0809269 B1 BR PI0809269B1
Authority
BR
Brazil
Prior art keywords
resin
reinforcement fiber
substrate
fiber substrate
vacuum
Prior art date
Application number
BRPI0809269A
Other languages
English (en)
Inventor
Takeda Fumihito
Odani Hiroshi
Mizobata Masumi
Nishiyama Shigeru
Original Assignee
Mitsubishi Heavy Ind Ltd
Toray Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Ind Ltd, Toray Industries filed Critical Mitsubishi Heavy Ind Ltd
Publication of BRPI0809269A2 publication Critical patent/BRPI0809269A2/pt
Publication of BRPI0809269B1 publication Critical patent/BRPI0809269B1/pt
Publication of BRPI0809269B8 publication Critical patent/BRPI0809269B8/pt

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/10Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies
    • B29C43/12Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies using bags surrounding the moulding material or using membranes contacting the moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B15/00Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00
    • B29B15/08Pretreatment of the material to be shaped, not covered by groups B29B7/00 - B29B13/00 of reinforcements or fillers
    • B29B15/10Coating or impregnating independently of the moulding or shaping step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/34Feeding the material to the mould or the compression means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/443Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/546Measures for feeding or distributing the matrix material in the reinforcing structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/3642Bags, bleeder sheets or cauls for isostatic pressing
    • B29C2043/3644Vacuum bags; Details thereof, e.g. fixing or clamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0854Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns in the form of a non-woven mat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1039Surface deformation only of sandwich or lamina [e.g., embossed panels]
    • Y10T156/1041Subsequent to lamination

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)

Description

(54) Título: MÉTODO DE RTM AUXILIADA COM VÁCUO, E MÉTODO PARA PRODUZIR UM PRODUTO MOLDADO DE PLÁSTICO REFORÇADO COM FIBRA (73) Titular: MITSUBISHI HEAVY INDUSTRIES, LTD., Sociedade Japonesa. Endereço: 16-5, Konan 2-Chome, MinatoKu, Tokyo, JAPÃO(JP); TORAY INDUSTRIES, INC., Sociedade Japonesa. Endereço: 1-1 Nihonbashi Muromachi 2Chome, Chuo-ku, Tokyo-Ken 103-8666, JAPÃO(JP) (72) Inventor: SHIGERU NISHIYAMA; FUMIHITO TAKEDA; HIROSHI ODANI; MASUMI MIZOBATA.
Prazo de Validade: 10 (dez) anos contados a partir de 06/11/2018, observadas as condições legais
Expedida em: 06/11/2018
Assinado digitalmente por:
Liane Elizabeth Caldeira Lage
Diretora de Patentes, Programas de Computador e Topografias de Circuitos Integrados
Relatório Descritivo da Patente de Invenção para MÉTODO DE
RTM AUXILIADA COM VÁCUO, E MÉTODO PARA PRODUZIR UM
PRODUTO MOLDADO DE PLÁSTICO REFORÇADO COM FIBRA.
Campo técnico da invenção
A presente invenção refere-se a um método de RTM auxiliada com vácuo (moldagem por transferência de resina), e especificamente, a um método de RTM auxiliada com vácuo capaz de impregnar uma resina uniformemente sobre todo o substrato da fibra de reforço e obter de maneira estável um produto moldado de plástico reforçado com fibra (FRP) de excelente qualidade.
Antecedentes da Técnica
Um método de RTM auxiliada com vácuo é conhecido que dispõe um meio de distribuição de resina sobre o todo de uma superfície de um substrato de fibra de reforço (geralmente, um substrato de fibra de reforço formado como uma pré-forma), cobre o todo com um material de saco para reduzir a pressão dentro do material de saco, injeta uma resina para o meio de distribuição de resina, primeiro, distribui a resina injetada substancialmente nas direções no plano do meio de distribuição de resina, e a seguir, impregna a resina no substrato da fibra de reforço na sua direção de espessura. Em um tal método de RTM auxiliada com vácuo, no caso onde a fluidez da resina da pré-forma não é uniforme, pelo fato de que ocorre uma diferença entre os tempos para o fluxo da resina na pré-forma sendo impregnada na pré-forma, pode ocorrer o problema que uma parte não-impregnada seja gerada ou que uma resina previamente impregnada interrompa a rota de sucção entre o orifício de sucção de pressão reduzida e a pré-forma, e a impregnação seguinte da resina é prejudicada. Por exemplo, no caso onde partes com espessura diferente existem na pré-forma, ou no caso onde partes com comprimento ou largura diferente a serem impregnadas com a resina (partes diferentes no comprimento de impregnação da resina) existem na direção longitudinal da pré-forma, pelo fato de que ocorre uma diferença entre os tempos para o fluxo da resina na pré-forma dependendo dessas partes, pode ocorrer o problema que uma parte não-impregnada seja gerada ou que uma resina previamente impregnada prejudique uma impregnação sePetição 870180034971, de 27/04/2018, pág. 13/23 guinte de resina.
A fim de aumentar a propriedade de distribuição da resina devido ao meio de distribuição da resina e melhorar a propriedade de superfície de um produto moldado no método da RTM auxiliada com vácuo, embora uma tecnologia seja conhecida para aumentar o número de meios de distribuição de resina dispostos (por exemplo, documento de Patente 1), meramente aumentando o número de meios de distribuição de resina sobre toda a superfície, embora a fluidez interna do próprio meio de distribuição de resina possa ser melhorada, os problemas acima descritos não podem ser resolvidos no caso onde existe uma mudança na fluidez da resina do substrato da fibra de reforço quando a resina é impregnada do meio de distribuição da resina para o substrato da fibra de reforço. Além disso, pelo fato de que uma grande quantidade de resina é distribuída na parte do meio de distribuição de resina, o desperdício de resina pode se tornar grande.
Além disso, embora um método seja também proposto para prover muitos orifícios de injeção de resina quando um material plano de grande dimensão é moldado pela RTM auxiliada com vácuo (por exemplo, documento de Patente 2), mesmo se a impregnação da resina em um meio de distribuição de resina é melhorada, os problemas acima mencionados não podem ser resolvidos no caso onde existe uma mudança na fluidez da resina do substrato da fibra de reforço quando a resina é impregnada do meio de distribuição de resina para o substrato da fibra de reforço.
Além disso, embora uma tecnologia também seja proposta para usar um meio de distribuição de resina estruturado estéreo similar a uma rede (por exemplo, documento de Patente 3), ela não descreve quanto a uma solução para o problema devido à mudança na fluidez da resina do substrato da fibra de reforço.
Documento de Patente 1: JP-A-2004-188750
Documento de Patente 2: JP-A-2003-011136
Documento de Patente 3; JP-A-2004-249527 Descrição da invenção
Problemas a serem resolvidos pela invenção
Dessa maneira, um objetivo da presente invenção é prover um método de RTM auxiliada com vácuo, no caso onde existe uma mudança na fluidez da resina nas direções no plano de um substrato da fibra de reforço, que pode absorver a mudança pelo lado de um meio de distribuição de resina e com relação ao substrato da fibra de reforço impregnado com resina se tornar um produto ou uma parte estrutural principal de um produto, que pode evitar o problema que uma parte não-impregnada seja gerada ou o problema que uma resina previamente impregnada prejudique a ocorrência de uma impregnação seguinte de resina, e possa obter de maneira estável um produto moldado desejado de fato.
Meios para resolução dos problemas
Para realizar o objetivo acima descrito, um método de RTM auxiliada com vácuo de acordo com a presente invenção, um método para dispor um meio de distribuição de resina em uma superfície de um substrato de fibra de reforço, cobrir o todo com um material de saco, reduzir a pressão dentro do material de saco, injetar uma resina no meio de distribuição de resina para distribuir a resina substancialmente nas direções no plano e a seguir impregnar a resina no substrato da fibra de reforço na sua direção de espessura e é caracterizado em que a resistência de fluxo do próprio meio de distribuição da resina durante a distribuição da resina é alterada em uma direção no plano do substrato da fibra de reforço, de acordo com uma diferença no peso da fibra por área unitária ou densidade entre partes a serem impregnadas com resina do substrato da fibra de reforço presente em uma direção ao longo de uma superfície do substrato da fibra de reforço, ou de acordo com a diferença na distância de uma parte de iniciação de impregnação da resina para uma parte de conclusão de impregnação da resina entre partes a serem impregnadas com resina do substrato da fibra de reforço presente em uma direção ao longo de uma superfície do substrato da fibra de reforço. A resistência de fluxo pode ser determinada pelo método descrito mais tarde.
A saber, alterando a resistência de fluxo do próprio meio de distribuição da resina durante a distribuição da resina de acordo com uma mu4 dança da fluidez da resina nas direções no plano do lado do substrato da fibra de reforço, em particular, uma mudança da fluidez da resina devido à diferença (mudança) no peso da fibra por área unitária ou densidade entre partes respectivas a serem impregnadas com resina do substrato da fibra de reforço presente em uma direção ao longo da superfície do substrato da fibra de reforço disposta sobre ele com o meio de distribuição de resina ou de acordo com uma mudança da fluidez da resina devido a uma diferença (mudança) na distância de uma parte de iniciação de impregnação da resina para uma parte de conclusão de impregnação da resina entre partes respectivas a serem impregnadas com resina do substrato da fibra de reforço presente em uma direção ao longo da superfície do substrato da fibra de reforço disposta nele com o meio de distribuição de resina, a mudança da fluidez da resina do lado do substrato da fibra de reforço é absorvida (ajustada) pelo lado do meio de distribuição de resina. Como um resultado, nas partes respectivas a serem impregnadas com resina do substrato da fibra de reforço, o tempo para a resina alcançar da parte de iniciação de impregnação da resina do meio de distribuição de resina para a parte de conclusão de impregnação da resina através do fluxo no substrato da fibra de reforço pode ser uniformizado, e para o substrato da fibra de reforço, pode ser impedido gerar o problema que a parte não-impregnada seja gerada ou o problema que uma resina previamente impregnada prejudique uma impregnação seguinte de resina. Portanto, um produto moldado impregnado com resina uniformemente sobre todo o substrato da fibra de reforço pode ser obtido.
No método acima descrito da RTM auxiliada com vácuo de acordo com a presente invenção, um método pode ser utilizado onde o meio de distribuição da resina é formado empilhando uma pluralidade de meios de distribuição de resina e a resistência de fluxo é alterada mudando o número de meios de distribuição de resina empilhados em uma direção no plano do substrato da fibra de reforço. Alternativamente, um método pode também ser utilizado onde a resistência de fluxo é alterada mudando a porosidade (a quantidade de poros) do meio de distribuição da resina em uma direção no plano do substrato da fibra de reforço (a saber, mudando a densidade de volume do meio de distribuição da resina na direção no plano).
Nesse método da RTM auxiliada com vácuo de acordo com a presente invenção, é preferido que uma diferença de 1,2 vez ou mais seja dada entre um valor máximo e um valor mínimo da resistência de fluxo, e por isso, uma diferença significativa explícita pode ser fornecida relativamente a uma tecnologia convencional e isso pode ser claramente distinguido de um erro simples na fabricação de um meio de distribuição de resina (uma dispersão da espessura, etc.).
Dessa maneira, no método de RTM auxiliada com vácuo de acordo com a presente invenção, a mudança da fluidez da resina do lado do substrato da fibra de reforço pode ser adequadamente absorvida pelo lado do meio de distribuição de resina. Portanto, o método de acordo com a presente invenção é efetivo para um caso onde a espessura do substrato da fibra de reforço muda em uma direção no plano do substrato da fibra de reforço ou no caso onde a densidade do substrato da fibra de reforço muda em uma direção no plano do substrato da fibra de reforço.
No método acima descrito de acordo com a presente invenção, no caso onde o valor máximo da espessura do substrato da fibra de reforço é 1,5 vez ou mais o valor mínimo da sua espessura, pelo fato de que a diferença no tempo requerido para impregnar completamente a resina na direção de espessura do substrato da fibra de reforço entre a espessura máxima e a espessura mínima se torna claramente grande, o efeito devido à presente invenção se torna mais evidente.
Além disso, no caso onde o substrato da fibra de reforço é um pano tecido unidirecional formado de um grupo de fios de fibra de reforço compreendendo fibras de carbono e um grupo de fios de fibra auxiliar estendido em uma direção através do grupo de fios de fibra de reforço, pelo fato de que as fibras de carbono têm um diâmetro de fibra única fino e o pano tecido unidirecional tem uma formação na qual o vão entre os fios da fibra de reforço é pequeno, a velocidade de impregnação da resina na direção de espessura do substrato da fibra de reforço é pequena e o efeito devido à presente invenção se torna mais evidente.
Além disso, o método de RTM auxiliada com vácuo de acordo com a presente invenção é também efetivo, por exemplo, para o caso onde a resina é injetada no meio de distribuição de resina via uma linha de injeção de resina e o comprimento do substrato da fibra de reforço em uma direção perpendicular à linha de injeção da resina muda em uma direção no plano do substrato da fibra de reforço.
A presente invenção também proporciona um método para produzir um produto moldado de plástico reforçado com fibra tendo um processo para impregnar uma resina em um substrato da fibra de reforço pelo método acima descrito de RTM auxiliada com vácuo de acordo com a presente invenção.
Efeito de acordo com a invenção
No método da RTM auxiliada com vácuo de acordo com a presente invenção, no caso onde existe uma mudança na fluidez da resina nas direções no plano do lado do substrato da fibra de reforço, desde que ela pode ser absorvida mudando a resistência de fluxo do próprio meio de distribuição de resina durante a distribuição da resina em uma direção no plano do substrato da fibra de reforço de acordo com a mudança na fluidez da resina, torna-se possível uniformizar o tempo para a resina alcançar da parte de iniciação de impregnação da resina para o substrato da fibra de reforço para a parte de conclusão da impregnação da resina através do fluxo no substrato da fibra de reforço sobre todo o substrato da fibra de reforço, e torna-se possível impedir o problema que a parte não-impregnada seja gerada ou o problema que a resina previamente impregnada prejudique a ocorrência de uma impregnação seguinte de resina e obtenha um produto moldado de qualidade uniforme sem defeitos mesmo para um produto com mudança na espessura ou com mudança na largura.
Breve explicação dos desenhos
A figura 1 é um diagrama esquemático mostrando um exemplo de um método de RTM auxiliada com vácuo aplicado com a presente invenção.
A figura 2 é uma vista em perspectiva parcial de uma pré-forma do substrato da fibra de reforço e um meio de distribuição de resina mostrando um exemplo de um objeto a ser aplicado com um método de RTM auxiliada com vácuo de acordo com a presente invenção.
A figura 3 é uma vista plana de uma pré-forma do substrato da fibra de reforço mostrando outro exemplo de um objeto a ser aplicado com um método de RTM auxiliada com vácuo de acordo com a presente invenção.
A figura 4 é um diagrama esquemático de um dispositivo de medição mostrando um método para determinar a resistência de fluxo de um meio de distribuição de resina em um método de RTM auxiliada com vácuo de acordo com a presente invenção.
A figura 5 é uma vista plana esquemática do dispositivo de medição representado na figura 4.
O melhor modo para execução da invenção
A seguir, modalidades desejáveis da presente invenção serão explicadas com referência às figuras.
O método da RTM auxiliada com vácuo de acordo com a presente invenção é executado, por exemplo, como mostrado na figura 1. No método mostrado na figura 1, uma pré-forma 2 preparada formando um substrato de fibra de reforço em uma forma predeterminada é colocada em um molde 1, e em uma superfície da mesma sobre toda a superfície, um meio de distribuição de resina 4 é disposto, nessa modalidade, através de uma dobra de casca 3. Para o meio de distribuição da resina 4, um material com resistência de fluxo da resina menor do que o substrato da fibra de reforço é selecionado. O seu todo é coberto com uma película de saco 5 preparada como um material de saco e a circunferência é vedada via um elemento de vedação 6. O interior coberto com a película de saco 5 fica com pressão reduzida pela sucção do vácuo através de um orifício de sucção 7 e depois da redução da pressão, uma resina é injetada através de um orifício de injeção de resina 8. A resina injetada, primeiro, é distribuída nas direções no plano do meio de distribuição de resina 4 compreendendo substancialmente um material com baixa resistência de fluxo, e a seguir, é impregnada do meio de distribuição da resina 4 na pré-forma 2 do substrato da fibra de reforço na direção da espessura. Naturalmente, embora uma pequena quantidade de resina seja impregnada na pré-forma 2 mesmo durante a distribuição no meio de distribuição de resina 4, pelo fato de que a velocidade de distribuição no meio de distribuição da resina 4 é muito mais alta quando comparada com a velocidade de impregnação na pré-forma 2, o fluxo da resina se torna substancíalmente uma tal formação.
Em uma tal RTM auxiliada com vácuo, os problemas acima mencionados ocorrem no caso onde existe uma mudança na resistência de fluxo da resina na direção no plano na pré-forma do substrato da fibra de reforço. Por exemplo, como mostrado na figura 2, no caso onde uma mudança na espessura, portanto, uma mudança no peso da fibra por área unitária, está presente na pré-forma 11 em uma direção ao longo da superfície disposta com o meio de distribuição de resina 12, por exemplo, quando a resina é distribuída no meio de distribuição de resina 12 na direção da seta A do lado do orifício de injeção de resina 11 para o lado do orifício de sucção 13 e a resina distribuída é impregnada na pré-forma 11, pelo fato de que existe uma diferença na espessura entre as partes de impregnação de resina respectivas, ocorre uma dispersão no tempo requerido para a resina ser impregnada sobre toda a espessura em cada parte de impregnação da resina. A saber, o tempo para a impregnação se torna longo em uma parte grossa e o tempo se torna curto em uma parte fina e a impregnação é completada cedo. Portanto, em uma parte grossa, uma parte sem impregnação é propensa a ocorrer. Além disso, pelo fato de que a resina é impregnada cedo em uma parte fina, existe a possibilidade que a resina impregnada interrompa a rota da sucção entre o orifício de sucção 13 e a pré-forma 11 e isso prejudica a impregnação da resina em uma parte grossa.
Na presente invenção, entretanto, de acordo com essa mudança da fluidez da resina se originando da mudança na espessura do lado da préforma 11 do substrato da fibra de reforço, a resistência de fluxo do próprio meio de distribuição da resina 12 durante a distribuição da resina é alterada em uma direção no plano da pré-forma 11. A saber, um meio de distribuição de resina com alta fluidez é disposto para uma parte requerendo um longo tempo de impregnação da resina e um meio de distribuição de resina com pouca fluidez é disposto para uma parte com um curto tempo de impregnação da resina. Concretamente, por exemplo, para uma parte da pré-forma 11 com uma grande espessura, um meio de distribuição da resina com alta fluidez é configurado aumentando o número de empilhamento dos meios de distribuição de resina, e para uma parte da pré-forma 11 com uma pequena espessura, um meio de distribuição de resina com pouca fluidez é configurado diminuindo o número de empilhamento dos meios de distribuição da resina. Por tal estrutura, torna-se possível uniformizar os tempos de conclusão de impregnação da resina entre a parte grossa e a parte fina da pré-forma 11 e isso torna possível resolver os problemas acima descritos de uma vez. Nesse caso, ao invés da mudança acima descrita do número de empilhamento, ou junto com a mudança acima descrita do número de empilhamento, a mudança na resistência de fluxo do meio de distribuição da resina 12 pode ser realizada mudando a porosidade do meio de distribuição da resina
12.
Onde, na modalidade mostrada na figura 2, no caso onde existe uma diferença na espessura na pré-forma 11 em uma direção através da direção de distribuição da resina no meio de distribuição da resina 12 mostrado pelas setas A, embora a resistência de fluxo durante a distribuição da resina do próprio meio de distribuição da resina 12 seja alterada em correspondência com a parte grossa e a parte fina da pré-forma 11, por exemplo, mesmo no caso onde o orifício de injeção da resina 14 é provido no lado direito na figura 2, o orifício de sucção 13 é provido no lado esquerdo na figura 2 e a resina é distribuída no meio de distribuição da resina 12 em uma direção perpendicular à direção da seta A do lado direito para o lado esquerdo na figura 2, por uma estrutura na qual um meio de distribuição da resina com alta fluidez é configurado para uma parte da pré-forma 11 com uma grande espessura aumentando o número de empilhamento dos meios de distribuição de resina, e um meio de distribuição da resina com baixa fluidez é configurado para uma parte da pré-forma 11 com uma pequena espessura dimi10 nuindo o número de empilhamento dos meios de distribuição de resina, torna-se possível uniformizar os tempos de conclusão de impregnação da resina entre a parte grossa e a parte fina da pré-forma 11.
Na presente invenção, no caso onde o valor máximo da espessura da pré-forma 11 é 1,5 vez ou mais o valor mínimo da mesma, pelo fato de que uma diferença no tempo requerido para impregnar completamente a resina na direção da espessura do substrato da fibra de reforço entre a espessura máxima e a espessura mínima se torna teoricamente 2 vezes ou mais, se é utilizado um meio de distribuição da resina uniforme na resistência de fluxo durante a distribuição da resina, a resina é impregnada logo na parte da espessura mínima e, portanto, existe uma possibilidade que a resina impregnada interrompa a rota de sucção entre o orifício de sucção 13 e a pré-forma 11 e isso prejudique a impregnação da resina na parte da espessura máxima. Entretanto, pela presente invenção, um tal temor de prejudicar a impregnação da resina pode ser removido mudando a resistência de fluxo durante a distribuição da resina do próprio meio de distribuição da resina 12 de acordo com a mudança na espessura da pré-forma 11 como descrito acima. Portanto, no caso onde o valor máximo da espessura da pré-forma 11 é 1,5 vez ou mais o seu valor mínimo, o efeito devido à presente invenção se torna mais evidente. Além disso, no caso onde a espessura máxima da préforma 11 é 5 mm ou mais, pelo fato de que o tempo requerido para impregnar completamente a resina na direção de espessura da pré-forma 11 se torna longo, o efeito devido à presente invenção se torna mais evidente.
Além disso, embora o tipo das fibras de reforço e a formação do substrato para a pré-forma de acordo com a presente invenção não sejam particularmente restritos, no caso de uma pré-forma com propriedade de impregnação de resina insuficiente, pelo fato de que o tempo requerido para impregnar completamente a resina na direção da espessura da pré-forma se torna longo, o efeito devido à presente invenção se torna mais evidente. Com relação às fibras de reforço, fibras de carbono com um pequeno diâmetro de fibra única são insuficientes na propriedade de permeação da resina, e com relação à formação do substrato da fibra de reforço, pelo fato de que um pano tecido unidirecional é de vão pequeno entre os fios da fibra de reforço e a propriedade de permeação da resina é insuficiente, por exemplo, quando comparado com o pano tecido bidirecional, o efeito devido à presente invenção se torna mais evidente.
Além disso, mesmo no caso onde o tempo de impregnação da resina da pré-forma 11 do substrato da fibra de reforço muda não pela mudança na espessura, mas pela mudança na densidade do substrato da fibra de reforço que forma a pré-forma 11 (por exemplo, mesmo no caso onde a estrutura de empilhamento do substrato da fibra de reforço que forma a préforma 11 ou o tipo do substrato muda), similarmente ao que descrito acima, mudando a resistência de fluxo do lado do meio de distribuição da resina 12, torna-se possível uniformizar o tempo de conclusão da impregnação da resina sobre o todo da pré-forma 11.
Além disso, como mostrado como uma vista plana na figura 3, com um caso da pré-forma 21 do substrato da fibra de reforço, no caso onde o comprimento na direção de fluxo da resina mostrada pelas setas B muda na direção longitudinal da pré-forma 21, no exemplo mostrado na figura, a resina é injetada em um meio de distribuição da resina (não mostrado, disposto em um lado superior da pré-forma 21) via a linha de injeção de resina 22 (símbolo 23 mostra uma linha de sucção de pressão reduzida), também no caso onde o comprimento da pré-forma 21 compreendendo o substrato da fibra de reforço em uma direção perpendicular relativa à linha de injeção da resina 22 muda em uma direção no plano da pré-forma 21, pelo fato de que o comprimento na direção de fluxo da resina não é uniforme na direção longitudinal da pré-forma 21, no caso onde um meio de distribuição da resina igual sobre toda a superfície é disposto, a resina é impregnada mais rapidamente em uma parte com uma distância de fluxo mais curta, e, portanto, pela mesma razão como descrita acima, existe a possibilidade que a resina previamente impregnada prejudique a impregnação sucessiva da resina.
Pela aplicação da presente invenção, entretanto, mudando a resistência de fluxo do próprio meio de distribuição da resina durante a distribuição da resina de acordo com uma mudança da fluidez da resina devido a uma diferença na distância da parte de iniciação de impregnação da resina para a parte de conclusão da impregnação da resina entre partes respectivas a serem impregnadas com a resina do substrato da fibra de reforço presente na direção ao longo da superfície do substrato da fibra de reforço disposta sobre ele com o meio de distribuição da resina, a mudança da fluidez da resina do lado do substrato da fibra de reforço pode ser absorvida pelo lado do meio de distribuição da resina. A saber, na modalidade mostrada na figura 3, mudando a resistência de fluxo do lado do meio de distribuição da resina de acordo com a mudança no comprimento da distância de fluxo na direção longitudinal da pré-forma 21, torna-se possível uniformizar o tempo de conclusão da impregnação da resina sobre o todo da pré-forma 21. A saber, dispondo um meio de distribuição da resina com alta fluidez (baixa resistência de fluxo) para uma parte da pré-forma 21 com uma longa distância de fluxo na direção longitudinal da pré-forma 21, e dispondo o meio de distribuição da resina com pouca fluidez (alta resistência de fluxo) para uma parte da pré-forma 21 com uma curta distância de fluxo, torna-se possível uniformizar o tempo de conclusão da impregnação da resina sobre o todo da pré-forma
21.
A resistência de fluxo acima descrita do meio de distribuição da resina no método da RTM auxiliada com vácuo de acordo com a presente invenção pode ser determinada pelo método seguinte. A saber, a resistência de fluxo R de acordo com a presente invenção representa uma quantidade da resistência de um meio quando uma resina é circulada através de um meio de distribuição da resina, e isso pode ser medido fluindo um líquido no meio sob uma condição de pressão reduzida. Na determinação da resistência de fluxo R, como mostrado nas figuras 4 e 5, o meio de distribuição da resina 32 com uma largura de 150 mm e um comprimento arbitrário (aproximadamente 1.000 mm) é disposto em um molde de metal 31, um orifício de injeção 33 é colocado em um lado e um orifício de redução de pressão 34 é colocado no outro lado, o seu todo é coberto com um material de saco 35 e a circunstância é vedada por um elemento de vedação 36, o interior do material de saco 34 é sugado por uma bomba de vácuo 37 para reduzir a pres13 são para 666,7 Pa (5 torr) ou menor, um líquido 38 com uma viscosidade μ (uma resina sem mudança na viscosidade, etc.) é injetado do orifício de injeção 33 e o líquido 38 é distribuído no meio de distribuição da resina 32. Depois que o líquido 38 é circulado para dentro do meio de distribuição da resina 32 por um tempo predeterminado de T segundos, uma distância L do orifício de injeção 33 para uma parte frontal de fluxo 39 (figura 5) do líquido é medida. É planejado que quanto mais longa seja essa distância L, maior é a fluidez do meio de distribuição da resina 32, a saber, menor é a resistência de fluxo.
Quantitativamente, a resistência de fluxo R na presente invenção é definida como mostrado nas equações (1) e (2) seguintes.
L = V(2 · Κ · T · Ρ/μ) (1)
R = V(1/K) (2)
Onde,
T: tempo predeterminado (s)
L: distância circulada com a resina pelo tempo predeterminado (mm)
K: coeficiente para o fluxo (mm2) μ: viscosidade do líquido (Pa · s)
P: diferença na pressão entre o interior do material de saco e a pressão da resina
R: resistência de fluxo (mm'1).
Como descrito acima, na presente invenção, mudando a fluidez do meio de distribuição da resina em uma direção no plano, concretamente, pela distribuição precoce da resina parcialmente dispondo um meio de distribuição da resina com alta fluidez em uma parte com uma grande espessura, uma parte com uma grande resistência de fluxo da pré-forma ou uma parte com uma longa distância de fluxo, o tempo para a resina impregnar no todo da pré-forma se torna uniforme e a qualidade do produto moldado pode ser estabilizada. Além disso, sem a interrupção da rota de sucção pela resina, a resina pode ser impregnada no todo da pré-forma seguramente.
Exemplos
Exemplo 1:
Um pano tecido multiaxial (produzido por Toray Industries, Inc., tipo: MK8260-JN, peso da fibra por área unitária por uma camada: 300 g/m2) preparado costurando duas camadas de camadas de fibra de reforço unidirecionais, cada uma formada com fibras de carbono T700S (fibras de carbono do sistema PAN) produzidas por Toray Industries, Inc. foi cortado em 8 pedaços, cada com uma largura de 400 mm e um comprimento de 800 mm, e além disso, cortado em 8 pedaços, cada um com uma largura de 400 mm e um comprimento de 400 mm. A seguir, depois que os 8 pedaços de panos tecidos de fibra de carbono, cada um com um tamanho de 400 mm x 800 mm foram empilhados em um molde de metal, 8 pedaços de panos tecidos de fibra de carbono, cada um com um tamanho de 400 mm x 400 mm foram empilhados para preparar uma pré-forma de fibra de reforço 11 presente com partes tendo espessuras diferentes uma da outra, como mostrado na figura 2.
A seguir, como o meio de distribuição da resina 12, dois materiais de malha de polipropileno (TSX-400P, produzido por Tokyo Polymer Corporation), um dos quais tinha um tamanho de largura de 400 mm e um comprimento de 800 mm e o outro dos quais tinha um tamanho de largura de 400 mm e um comprimento de 400 mm, foram preparados.
A seguir, como mostrado na figura 1, a pré-forma de fibra de reforço acima descrita 2 (pré-forma de fibra de reforço 11 na figura 2) foi colocada no molde de aço similar a uma placa plana 1, de modo que a espessura mudou na mesma direção que o orifício de sucção 7, e depois que o meio de distribuição da resina 4 com uma largura de 400 mm e um comprimento de 800 mm (meio de distribuição da resina 12 na figura 2) foi colocado em toda a sua superfície superior, um meio de distribuição da resina com uma largura de 400 mm e um comprimento de 400 mm foi também colocado na parte grossa (a parte empilhada com 16 pedaços de panos tecidos de fibra de carbono).
A seguir, depois que o orifício de injeção da resina 8 e o orifício de sucção 7 foram dispostos, o todo da pré-forma da fibra de reforço 2 foi coberto com a película do saco 5 (uma película de náilon), a circunferência foi fechada por vedador 6 (SM5126, produzido por Richmond Corporation) e o interior da película do saco 5 foi reduzido na pressão por uma bomba de vácuo em comunicação com o orifício de sucção 7.
A seguir, o todo do dispositivo de moldagem foi colocado sob uma atmosfera em 20°C, uma resina de viniléster termorrígida (viscosidade: 200 mPa . s, R-7070 produzida por Showa Polymer Corporation) foi preparada e a injeção da resina foi iniciada do orifício de injeção 8. A resina foi distribuída no meio de distribuição da resina 12 com uma diferença de velocidade, depois de 2 minutos do início da injeção, a distribuição da resina foi concluída antecipadamente na parte empilhada com dois pedaços de meios de distribuição de resina (em uma superfície da parte grossa da pré-forma da fibra de reforço) e depois de 4 minutos do início da injeção, a resina foi distribuída no todo do meio de distribuição da resina. Além disso, a resina foi impregnada do meio de distribuição da resina na pré-forma, depois de 8 minutos do início da injeção, a resina foi impregnada no todo da pré-forma da fibra de reforço e a resina circulada para fora do todo da pré-forma da fibra de reforço 11, simultaneamente.
Finalmente, a injeção da resina foi parada, a resina foi curada e um produto moldado de plástico reforçado com fibra foi retirado do molde de metal. Como o resultado da inspeção da aparência do produto moldado, uma parte não-impregnada com resina não estava presente na superfície, e além do que, como o resultado da inspeção dos defeitos no interior do produto moldado de FRP pelo detector ultrassônico (EPOCH4, produzido por Panametrics Corporation), um eco de uma superfície inferior foi reconhecido sobre toda a superfície do FRP e um produto moldado de plástico reforçado com fibra de qualidade excelente, no qual não existia parte não-impregnada com resina sobre todo o FRP, pôde ser obtido.
Exemplo comparativo 1:
Em uma maneira similar a essa no exemplo 1, a pré-forma da fibra de reforço 11, na qual existiam partes diferentes na espessura uma da outra como mostrado na figura 2, foi preparada. A seguir, como o meio de distribuição da resina 12, um pedaço de material de malha de polipropileno (TSX-400P, produzido por Tokyo Polymer Corporation) tendo um tamanho de largura de 400 mm e um comprimento de 800 mm foi preparado.
Como mostrado na figura 1, a pré-forma de fibra de reforço acima descrita 2(11) foi colocada no molde de aço similar a uma placa plana 1, de modo que a espessura mudou na mesma direção que a direção de extensão do orifício de sucção 7, e em toda a sua superfície superior, o meio de distribuição da resina 4(12) com uma largura de 400 mm e um comprimento de 800 mm foi colocado por somente um pedaço.
A seguir, o dispositivo de moldagem foi estruturado da mesma maneira que esse no exemplo 1 e a injeção da resina foi iniciada. A resina foi distribuída no meio de distribuição de resina em uma mesma velocidade e depois de 4 minutos do inicio da injeção, a resina foi distribuída sobre toda a superfície do meio de distribuição da resina. A resina foi impregnada do meio de distribuição da resina na pré-forma, depois de 8 minutos do início da injeção, a resina circulou para fora da parte fina do substrato da fibra de reforço para o orifício de sucção e um estado apareceu onde a resina circulada para fora interrompeu a rota de sucção entre o orifício de sucção 7 e a parte grossa da pré-forma.
A injeção da resina foi parada depois de 30 minutos do início da injeção, a resina foi curada e um produto moldado de plástico reforçado com fibra foi retirado do molde de metal. Como o resultado da inspeção da aparência do produto moldado, uma parte não-impregnada com resina foi reconhecida na superfície do lado do produto moldado na parte da placa grossa do produto moldado de plástico reforçado com fibra.
Aplicações industriais da invenção
A presente invenção pode ser aplicada em qualquer RTM auxiliada com vácuo, e em particular, ela é adequada para moldagem de um produto moldado com uma forma complicada ou um produto moldado de largura variada, etc.
Listagem de referência
1: molde
2: pré-forma do substrato da fibra de reforço
3: dobra de casca
5 4: meio de distribuição da resina
5: película de saco como material de saco
6: elemento de vedação
7: 8: orifício de sucção orifício de injeção de resina
10 11: pré-forma do substrato da fibra de reforço
12: meio de distribuição da resina
13: orifício de sucção
14: orifício de injeção da resina
21: pré-forma do substrato da fibra de reforço
15 22: linha de injeção de resina
23: linha de sucção de pressão reduzida

Claims (6)

  1. REIVINDICAÇÕES
    1. Método de RTM auxiliada com vácuo para dispor um meio de distribuição de resina (4, 12) em uma superfície de um substrato de fibra de reforço (2, 11, 21), cobrir todo o com um material de saco (5), reduzir a
    5 pressão dentro do dito material de saco (5), injetar uma resina no dito meio de distribuição de resina (4, 12) para distribuir a dita resina substancialmente nas direções no plano e a seguir impregnar a dita resina no dito substrato da fibra de reforço (2, 11, 21) na sua direção de espessura, caracterizado pelo fato de que a resistência de fluxo do dito próprio meio de distribuição da
    10 resina (4, 12) durante a distribuição da resina é alterada em uma direção no plano do dito substrato da fibra de reforço (2, 11,21), (A) de acordo com uma diferença no peso da fibra por área unitária ou densidade entre partes a serem impregnadas com resina do dito substrato da fibra de reforço (2, 11, 21) presente em uma direção ao longo
    15 da dita uma superfície do dito substrato da fibra de reforço (2, 11, 21), em que uma porção do meio de distribuição de resina (4, 12) maior em fluidez está disposta adjacente a uma porção do substrato da fibra de reforço (2, 11, 21) tendo um maior peso de fibra por unidade de área ou densidade e uma porção do meio de distribuição de resina (4, 12) menor em fluidez é disposta
    20 adjacente a uma porção do substrato da fibra de reforço (2, 11,21) tendo um peso de fibra menor por unidade de área ou densidade, ou (B) de acordo com a diferença na distância de uma parte de iniciação de impregnação da resina para uma parte de conclusão de impregnação da resina entre partes a serem impregnadas com resina do dito
    25 substrato da fibra de reforço presente em uma direção ao longo da dita uma superfície do dito substrato da fibra de reforço, em que uma porção do meio de distribuição de resina (4, 12) maior em fluidez é disposta adjacente a uma porção do substrato da fibra de reforço (2, 11, 21) tendo um comprimento maior de distância de fluxo e uma porção do meio de distribuição de resina
    30 (4, 12) menor em fluidez é disposta adjacente a uma porção do substrato de fibra da reforço (2, 11, 21) tendo um comprimento menor de distância de fluxo.
    Petição 870180034971, de 27/04/2018, pág. 14/23
  2. 2. Método de RTM auxiliada com vácuo de acordo com a reivindicação 1, caracterizado pelo fato de que o meio de distribuição da resina (4, 12) é formado empilhando uma pluralidade de meios de distribuição de resina e a dita resistência de fluxo é alterada mudando o
    5 número de meios de distribuição de resina empilhados em uma direção no plano do dito substrato da fibra de reforço (2, 11,21).
  3. 3. Método de RTM auxiliada com vácuo de acordo com a reivindicação 1, caracterizado pelo fato de que a dita resistência de fluxo é alterada mudando a porosidade do dito meio de distribuição da resina (4, 12)
    10 em uma direção no plano do dito substrato da fibra de reforço (2, 11,21).
  4. 4. Método de RTM auxiliada com vácuo de acordo com qualquer uma das reivindicações de 1 a 3, caracterizado pelo fato de que uma diferença de 1,2 vez ou mais é dada entre um valor máximo e um valor mínimo da dita resistência de fluxo.
    15 5. Método de RTM auxiliada com vácuo de acordo com qualquer uma das reivindicações de 1 a 4, caracterizado pelo fato de que a espessura do dito substrato da fibra de reforço (2, 11, 21) muda em uma direção no plano do dito substrato da fibra de reforço (2, 11,21).
    6. Método de RTM auxiliada com vácuo de acordo com a
    20 reivindicação 5, caracterizado pelo fato de que o valor máximo da dita espessura do dito substrato da fibra de reforço (2, 11, 21) é 1,5 vez ou mais o valor mínimo da dita espessura.
    7. Método de RTM auxiliada com vácuo de acordo com qualquer uma das reivindicações de 1 a 4, caracterizado pelo fato de que a densidade
    25 do dito substrato da fibra de reforço (2, 11, 21) muda em uma direção no plano do dito substrato da fibra de reforço (2, 11,21).
    8. Método de RTM auxiliada com vácuo de acordo com qualquer uma das reivindicações de 1 a 7, caracterizado pelo fato de que o dito substrato da fibra de reforço (2, 11, 21) é um pano tecido unidirecional
    30 formado de um grupo de fios de fibra de reforço compreendendo fibras de carbono e um grupo de fios de fibra auxiliar estendido em uma direção através do dito grupo de fios de fibra de reforço.
    Petição 870180034971, de 27/04/2018, pág. 15/23
    9. Método de RTM auxiliada com vácuo de acordo com qualquer uma das reivindicações de 1 a 4, caracterizado pelo fato de que a dita resina é injetada no dito meio de distribuição de resina (4, 12) via uma linha de injeção de resina e o comprimento do dito substrato da fibra de reforço (2,
  5. 5 11, 21) em uma direção perpendicular à dita linha de injeção da resina muda em uma direção no plano do dito substrato da fibra de reforço (2, 11,21).
  6. 10. Método para produzir um produto moldado de plástico reforçado com fibra, caracterizado pelo fato de que tem um processo para impregnar uma resina em um substrato da fibra de reforço (4, 12) por um
    10 método de RTM auxiliada com vácuo como definido em qualquer uma das reivindicações de 1 a 9.
    Petição 870180034971, de 27/04/2018, pág. 16/23
    1/3
BRPI0809269A 2007-03-20 2008-03-19 Método de rtm auxiliada com vácuo, e método para produzir um produto moldado de plástico reforçado com fibra BRPI0809269B8 (pt)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007-072069 2007-03-20
JP2007072069 2007-03-20
PCT/JP2008/055039 WO2008114809A1 (ja) 2007-03-20 2008-03-19 真空rtm成形方法

Publications (3)

Publication Number Publication Date
BRPI0809269A2 BRPI0809269A2 (pt) 2014-09-02
BRPI0809269B1 true BRPI0809269B1 (pt) 2018-11-06
BRPI0809269B8 BRPI0809269B8 (pt) 2023-03-28

Family

ID=39765913

Family Applications (1)

Application Number Title Priority Date Filing Date
BRPI0809269A BRPI0809269B8 (pt) 2007-03-20 2008-03-19 Método de rtm auxiliada com vácuo, e método para produzir um produto moldado de plástico reforçado com fibra

Country Status (8)

Country Link
US (1) US8753469B2 (pt)
EP (1) EP2149441B1 (pt)
JP (1) JP5322920B2 (pt)
CN (1) CN101641196B (pt)
AU (1) AU2008227492B2 (pt)
BR (1) BRPI0809269B8 (pt)
CA (1) CA2681348C (pt)
WO (1) WO2008114809A1 (pt)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010062871A1 (de) * 2009-12-29 2011-06-30 Airbus Operations GmbH, 21129 Infusionsverfahren und Aufbau eines Infusionsverfahrens
DE102009060699B4 (de) 2009-12-29 2014-07-03 Airbus Operations Gmbh Infusionsverfahren und Fließhilfe
US9682514B2 (en) 2010-06-25 2017-06-20 The Boeing Company Method of manufacturing resin infused composite parts using a perforated caul sheet
US8940213B2 (en) * 2010-06-25 2015-01-27 The Boeing Company Resin infusion of composite parts using a perforated caul sheet
US8636252B2 (en) 2010-06-25 2014-01-28 The Boeing Company Composite structures having integrated stiffeners with smooth runouts and method of making the same
JP5533743B2 (ja) * 2010-09-24 2014-06-25 東レ株式会社 繊維強化プラスチックの製造方法
WO2012115067A1 (ja) * 2011-02-25 2012-08-30 東レ株式会社 Frpの製造方法
DK2511078T3 (en) 2011-04-14 2018-09-03 Siemens Ag Process for producing a fiber reinforced structure
JP5786616B2 (ja) * 2011-09-30 2015-09-30 東レ株式会社 繊維強化プラスチック構造体の成形方法および装置
EP2700492B1 (en) 2012-08-23 2017-02-01 Airbus Operations GmbH Infusion method and structure for infusion method
KR101452411B1 (ko) 2013-03-26 2014-10-22 국립대학법인 울산과학기술대학교 산학협력단 브이에이알티엠에 의한 수지복합체 제조방법 및 이에 의하여 제조된 수지복합체
DE102013006940B4 (de) * 2013-04-23 2015-11-19 Airbus Defence and Space GmbH Fließhilfe für Infusionsaufbau, Infusionsaufbau mit Fließhilfe sowie Verfahren zum Infiltrieren von Fasermaterial mit Harz
JP6154670B2 (ja) * 2013-06-06 2017-06-28 三菱航空機株式会社 繊維強化プラスチック部材の成形方法及び成形装置
CN104139529B (zh) * 2014-06-25 2017-10-27 中国兵器工业集团第五三研究所 一种夹芯结构复合材料成型方法
KR102213059B1 (ko) * 2015-01-06 2021-02-05 에스케이케미칼 주식회사 선박용 복합재 패널 및 그 제조방법
JP6661273B2 (ja) 2015-02-19 2020-03-11 三菱航空機株式会社 繊維基材を積層する方法、繊維基材群ロールの製造方法、繊維基材群、および航空機
JP2016221733A (ja) * 2015-05-28 2016-12-28 三菱航空機株式会社 VaRTM工法による成形方法
WO2017042921A1 (ja) * 2015-09-09 2017-03-16 日産自動車株式会社 複合材料の製造方法、複合材料の製造装置および複合材料用プリフォーム
US11220073B2 (en) * 2016-04-07 2022-01-11 Mitsubishi Heavy Industries, Ltd. Method for manufacturing composite material
KR101997778B1 (ko) * 2017-12-18 2019-07-08 울산과학기술원 브이에이알티엠(vartm)에 의한 수지 복합체 제조 시, 수지의 경화 거동, 흐름 및 함침 정도 측정 방법
KR102038045B1 (ko) * 2017-12-21 2019-10-29 울산과학기술원 섬유 복합체의 제조방법
CN111263289A (zh) * 2018-11-30 2020-06-09 大原博 利用辅材协助含浸的弹波制造方法
JP7501067B2 (ja) 2019-04-26 2024-06-18 東レ株式会社 構造体の補修方法および構造補修成形体の製造方法
JP7354843B2 (ja) * 2020-01-08 2023-10-03 トヨタ紡織株式会社 成形構造体の製造方法、及び成形構造体
CN113059826B (zh) * 2021-04-01 2022-03-29 南京航空航天大学 一种复合材料构件中树脂流动分区控制方法
CN113291014B (zh) * 2021-04-13 2022-07-15 山东医学高等专科学校 一种纤维增强复合材料的制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5052906A (en) * 1989-03-30 1991-10-01 Seemann Composite Systems, Inc. Plastic transfer molding apparatus for the production of fiber reinforced plastic structures
US5281388A (en) * 1992-03-20 1994-01-25 Mcdonnell Douglas Corporation Resin impregnation process for producing a resin-fiber composite
EP1103973A3 (en) * 1999-11-18 2002-02-06 Pioneer Corporation Apparatus for and method of recording and reproducing information
US6818159B2 (en) * 2000-03-17 2004-11-16 Deutsches Zentrum Fuer Luft-Und Raumfahrt E.V. Process for the production of a composite consisting of a fiber reinforced material
CN1142054C (zh) * 2000-04-24 2004-03-17 国家建筑材料工业局玻璃钢研究设计院 树脂传递模塑生产工艺
JP2002192535A (ja) * 2000-12-27 2002-07-10 Toray Ind Inc Rtm成形方法
JP4761178B2 (ja) 2001-06-28 2011-08-31 東レ株式会社 Frp製大型面状体の製造方法
JP4806866B2 (ja) * 2001-07-16 2011-11-02 東レ株式会社 真空rtm成形方法
JP4730637B2 (ja) * 2001-08-01 2011-07-20 東レ株式会社 Rtm成形法
WO2003101708A1 (en) * 2002-05-29 2003-12-11 The Boeing Company Controlled atmospheric pressure resin infusion process
EP2644364A3 (en) * 2002-10-09 2014-08-13 Toray Industries, Inc. Method of RTM molding
JP3986426B2 (ja) 2002-12-11 2007-10-03 三菱重工業株式会社 繊維強化プラスチックの製造方法
JP4371671B2 (ja) 2003-02-19 2009-11-25 東邦テナックス株式会社 樹脂トランスファー成形法及びサンドイッチ積層板の製造方法
JP4378687B2 (ja) * 2004-02-17 2009-12-09 東レ株式会社 繊維強化樹脂およびその製造方法
JP4803028B2 (ja) 2004-03-30 2011-10-26 東レ株式会社 プリフォーム、frpおよびそれらの製造方法
JP4706244B2 (ja) * 2004-12-03 2011-06-22 東レ株式会社 Frp中空構造体の成形方法
JP4770298B2 (ja) 2005-07-07 2011-09-14 東レ株式会社 プリフォーム用基材、プリフォーム、およびこれらを用いた繊維強化複合材料構造物

Also Published As

Publication number Publication date
AU2008227492B2 (en) 2013-02-14
CA2681348C (en) 2014-07-29
BRPI0809269B8 (pt) 2023-03-28
CN101641196A (zh) 2010-02-03
JPWO2008114809A1 (ja) 2010-07-08
US8753469B2 (en) 2014-06-17
EP2149441A4 (en) 2015-03-18
BRPI0809269A2 (pt) 2014-09-02
EP2149441B1 (en) 2017-01-18
CN101641196B (zh) 2013-06-05
AU2008227492A1 (en) 2008-09-25
JP5322920B2 (ja) 2013-10-23
CA2681348A1 (en) 2008-09-25
WO2008114809A1 (ja) 2008-09-25
EP2149441A1 (en) 2010-02-03
US20100108245A1 (en) 2010-05-06

Similar Documents

Publication Publication Date Title
BRPI0809269B1 (pt) método de rtm auxiliada com vácuo, e método para produzir um produto moldado de plástico reforçado com fibra
US7048985B2 (en) Three-dimensional spacer fabric resin infusion media and reinforcing composite lamina
US7060156B2 (en) Three-dimensional spacer fabric resin interlaminar infusion media process and vacuum-induced reinforcing composite laminate structures
US8652371B2 (en) Constant pressure infusion process for resin transfer molding
CN101495285B (zh) 树脂传递模塑装置和树脂传递模塑方法
DK176135B1 (da) Vakuuminfusion ved hjælp af semipermeabel membran
KR101332539B1 (ko) 섬유 강화 수지의 제조 방법
BR112013011577B1 (pt) preforma de fibra, e, componente compósito
BRPI0708513B1 (pt) Método e aparelho para provisão de polímero a serem usados em infusão a vácuo
JP5223505B2 (ja) Frpの製造方法
KR102090632B1 (ko) Ⅴartm공정을 이용한 섬유강화 복합재료의 성형장치 및 이를 이용한 섬유강화 복합재료의 성형방법
KR20180025179A (ko) 드라이 프리폼의 수지 침투성에 국부적으로 영향을 주는 방법
US10369753B2 (en) Fiber substrate stacking method, manufacturing method of roll of fiber substrate group, fiber substrate group, and aircraft
JP4442256B2 (ja) Rtm成形方法
US10807323B2 (en) Manufacture of objects having a fiber-reinforced region
US8210841B2 (en) Apparatus and method for preform relaxation and flow control in liquid composite molding processes
KR102220831B1 (ko) 복합재 프리폼에 수지를 주입하는 방법 및 시스템
JP2009090646A (ja) Rtm成形方法
JP7085803B2 (ja) 複合材の成形方法及び複合材の成形装置
US20070290401A1 (en) Process for making a composite structure
JP2004130598A (ja) Rtm成形方法
JP2016068385A (ja) 繊維強化プラスチックの製造方法
JP2008132697A (ja) 繊維強化樹脂およびその製造方法
JP2023048312A (ja) 繊維強化樹脂成形体及びその製造方法
BR112020016880A2 (pt) Um reforço multiaxial costurado e um método de produzir o mesmo

Legal Events

Date Code Title Description
B07A Application suspended after technical examination (opinion) [chapter 7.1 patent gazette]
B09A Decision: intention to grant [chapter 9.1 patent gazette]
B16A Patent or certificate of addition of invention granted [chapter 16.1 patent gazette]

Free format text: PRAZO DE VALIDADE: 10 (DEZ) ANOS CONTADOS A PARTIR DE 06/11/2018, OBSERVADAS AS CONDICOES LEGAIS.

B25G Requested change of headquarter approved

Owner name: MITSUBISHI HEAVY INDUSTRIES, LTD. (JP) ; TORAY INDUSTRIES, INC. (JP)

B25G Requested change of headquarter approved

Owner name: MITSUBISHI HEAVY INDUSTRIES, LTD. (JP) ; TORAY INDUSTRIES, INC. (JP)

B25A Requested transfer of rights approved

Owner name: TORAY INDUSTRIES, INC. (JP)