BRPI0619100A2 - processo para produzir industrialmente um carbonato de dialquila e um diol, e, coluna de destilação contìnua de estágios múltiplos - Google Patents

processo para produzir industrialmente um carbonato de dialquila e um diol, e, coluna de destilação contìnua de estágios múltiplos Download PDF

Info

Publication number
BRPI0619100A2
BRPI0619100A2 BRPI0619100-2A BRPI0619100A BRPI0619100A2 BR PI0619100 A2 BRPI0619100 A2 BR PI0619100A2 BR PI0619100 A BRPI0619100 A BR PI0619100A BR PI0619100 A2 BRPI0619100 A2 BR PI0619100A2
Authority
BR
Brazil
Prior art keywords
column
distillation column
less
tray
internal diameter
Prior art date
Application number
BRPI0619100-2A
Other languages
English (en)
Inventor
Shinsuke Fukuoka
Hironori Miyaji
Hiroshi Hachiya
Kazuhiko Matsuzaki
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Publication of BRPI0619100A2 publication Critical patent/BRPI0619100A2/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C68/00Preparation of esters of carbonic or haloformic acids
    • C07C68/06Preparation of esters of carbonic or haloformic acids from organic carbonates
    • C07C68/065Preparation of esters of carbonic or haloformic acids from organic carbonates from alkylene carbonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C27/00Processes involving the simultaneous production of more than one class of oxygen-containing compounds
    • C07C27/26Purification; Separation; Stabilisation
    • C07C27/28Purification; Separation; Stabilisation by distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/009Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping in combination with chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/143Fractional distillation or use of a fractionation or rectification column by two or more of a fractionation, separation or rectification step
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • B01D3/32Other features of fractionating columns ; Constructional details of fractionating columns not provided for in groups B01D3/16 - B01D3/30
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • C07C29/80Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment by distillation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PROCESSO PARA PRODUZIR INDUSTRJALMENTE UM CARBONATO DE DIALQUILA E UM DIOL, E, COLUNA DE DESTILAçãO CONTINUA DE ESTáGIOS MúLTIPLOS. é um objeto de a presente invenção prover um processo específico que permite que carbonatos de dialquila e dióis sejam produzidos em uma escala industrial de não menos do que 2 toneladas/h e não menos do que 1,3 toneladas/h, respectivamente, com elevada seletividade e elevada produtividade de modo estável durante um período prolongado de tempo através de um sistema de destilação reativa tomando carbonatos cíclicos e álcoois monoidricos alifáticos como materiais de partida, continuamente alimentando os materiais de partida em uma coluna de destilação contínua de estágios múltiplos em que um catalisador está presente, e realizando a reação e a destilação simultaneamente na coluna. Apesar de terem ocorrido muitas propostas com relação aos processos para a produção dos carbonatos de dialquila e dos dióis através de um método de destilação reativa, todas foram em um nível laboratorial de escala pequena e tempo curto de operação, e não se encontram quaisquer que sejam descrições sobre um processo ou aparelho específico permitindo a produção em massa em uma escala industrial. De acordo com a presente invenção, provê-se uma coluna de destilação contínua de estágios múltiplos específica tendo uma estrutura especificada, e um processo de produção usando esta coluna de destilação contínua de estágios múltiplos, em que os carbonatos de dialquila e os dióis podem ser produzidos em uma escala industrial de não menos do que 2 toneladas/h e não menos do que 1,3 toneladas/h, respectivamente, cada com uma seletividade de não menos que 95%, preferivelmente não menos do que 97%, mais preferivelmente não menos do que 99%, com um elevado rendimento de modo estável durante não menos do que 1000 horas, preferivelmente não menos do que 3000 horas, mais preferido não menos do que 5000 horas.

Description

"PROCESSO PARA PRODUZIR INDUSTRIALMENTE UM CARBONATO DE DIALQUILA E UM DIOL, E, COLUNA DE DESTILAÇÃO CONTÍNUA DE ESTÁGIOS MÚLTIPLOS"
Campo Técnico
A presente invenção refere-se a um processo industrial para a produção de carbonato de dialquila e um diol com um rendimento elevado. Mais particularmente, a presente invenção refere-se a um processo para produzir industrialmente grandes quantidades do carbonato de dialquila e do diol com rendimento elevado de modo estável durante um período prolongado de tempo por um sistema de destilação reativa tomando um carbonato cíclico e um álcool monoídrico alifático como materiais de partida, continuamente alimentando os materiais de partida em uma coluna de destilação contínua de estágios múltiplos em que está presente um catalisador, e realizando a reação e a destilação simultaneamente na coluna.
Arte Antecedente
Vários processos para a produção de um carbonato de dialquila e um diol a partir de uma reação entre um carbonato cíclico e um álcool monoídrico alifático foram propostos, mas a maior parte destas propostas refere-se a um catalisador. Como sistemas de reação, quatro sistemas foram propostos até agora. Estes quatro sistemas de reação são usados em um processo para a produção de carbonato de dimetila e etileno glicol a partir de carbonato de etileno e metanol, que é o exemplo de reação mais típico.
Um primeiro sistema é um sistema de reação completamente em batelada, em que carbonato de etileno, metanol e um catalisador são colocados em uma autoclave, que é um vaso de reação em batelada, e a reação é realizada mantendo durante um tempo de reação predeterminado sob uma temperatura aplicada em uma temperatura de reação acima do ponto de ebulição de metanol (ver, por exemplo, documento de patente 1: patente U.S. 3642858, documento de patente 2: pedido de patente japonesa acessível ao público S54-48715 (correspondendo a patente U.S. 4181676), documento de patente 5: pedido de patente japonesa acessível ao público S54-63023, documento de patente 6: pedido de patente japonesa acessível ao público S54-148726).
Um segundo sistema é um sistema que usa um aparelho em que uma coluna de destilação é provida no topo de um vaso de reação; carbonato de etileno, metanol e um catalisador são colocados no vaso de reação, e a reação é levada a prosseguir por aquecimento em uma temperatura pré- determinada. Com este sistema, para completar pelo metanol destilado fora através de azeotropia com o carbonato de dimetila produzido, metanol é adicionado ao vaso de reação continuamente ou em bateladas, mas em qualquer evento com este sistema a reação prossegue somente no vaso de reação, que é de tipo batelada, em que o catalisador, carbonato de etileno e metanol estão presentes. A reação é assim de tipo batelada, a reação sendo realizada usando um excesso grande de metanol sob refluxo levando um tempo longo em uma faixa de 3 a mais de 20 horas (ver, por exemplo, documento de patente 3: pedido de patente japonesa acessível ao público S51-122025 (correspondendo a patente U.S. 4062884), documento de patente 4: pedido de patente japonesa acessível ao público S54-48716 (correspondendo a patente U.S. 4307032), documento de patente 11: patente U.S. 3803201).
Um terceiro sistema é um sistema de reação contínua em que uma solução mista de carbonato de etileno e metanol é continuamente alimentada em um reator tubular mantido em uma temperatura de reação predeterminada, e uma mistura de reação contendo carbonato de etileno não reagido e metanol e carbonato de dimetila e etileno glicol que são produzidos é continuamente retirada em uma forma líquida de uma saída no outro lado. Qualquer um dos dois processos é usado dependendo da forma do catalisador usado. Isto é, existe um processo em que um catalisador homogêneo é usado, e é passado através do reator tubular junto com a solução mista de carbonato de etileno e metanol e, então, após a reação o catalisador é separado da mistura de reação (ver, por exemplo, documento de patente 7: pedido de patente japonesa acessível ao público 63-41432 (correspondendo a patente U.S. 4661609), documento de patente 10: patente U.S. 4734518), e um processo em que um catalisador heterogêneo fixado dentro do o reator tubular é usado (ver, por exemplo, documento de patente 8: pedido de patente japonesa acessível ao público S63-238043, documento de patente 9: pedido de patente japonesa acessível ao público S64-31737 (correspondendo a patente U.S. 4691041)). A reação de produção de carbonato de dimetila e etileno glicol através da reação entre carbonato de etileno e metanol é uma reação de equilíbrio e, assim, com este sistema de reação de fluxo contínuo usando um reator tubular, é impossível tornar a conversão, de carbonato de etileno maior do que uma conversão de equilíbrio determinada pela relação de composição introduzida e a temperatura de reação. Por exemplo, de acordo com o exemplo 1 no documento de patente 7 (pedido de patente japonesa acessível ao público S63-41432 (correspondendo a patente U.S. 4661609)), para uma reação em fluxo a 130°C usando um material de partida adicionado com uma relação molar de metanol / carbonato de etileno = 4/1, a conversão de carbonato de etileno é 25%. Isto significa que uma quantidade grande de carbonato de etileno e metanol não reagidos restantes na mistura de reação deve ser separada, recuperada, e recirculada de volta ao reator e, na realidade, com o processo de documento de patente 9 (pedido de patente japonesa acessível ao público S64-31737 (correspondendo a patente U.S. 4691041)), são usados muitos equipamentos para tal separação, purificação, recuperação, e recirculação. Um quarto sistema é um sistema de destilação reativa descrito anteriormente pelos inventores presentes (ver, por exemplo, documento de patente 12: pedido de patente japonesa acessível ao público H4-198141, documento de patente 13: pedido de patente japonesa acessível ao público H4-230243, documento de patente 14: pedido de patente japonesa acessível ao público H9-176061, documento de patente 15: pedido de patente japonesa acessível ao público H9-183744, documento de patente 16: pedido de patente japonesa acessível ao público H9-194435, documento de patente 17: publicação internacional WO 97/23445 (correspondendo a patente européia 0889025, patente U.S. 5847189), documento de patente 18: publicação internacional WO 99/64382 (correspondendo a patente européia 1086940, patente U.S. 6346638), documento de patente 19: publicação internacional WO 00/51954 (correspondendo a patente européia 1174406, patente U.S. 6479689), documento de patente 20: pedido de patente japonesa acessível ao público 2002-308804, documento de patente 21: pedido de patente japonesa acessível ao público 2004-131394), que é um processo de produção contínua em que carbonato de etileno e metanol são, cada, continuamente alimentados em uma coluna de destilação de estágios múltiplos, e a reação é realizada na presença de um catalisador em uma pluralidade de estágios na coluna de destilação, enquanto carbonato de dimetila e etileno glicol que são produzidos são separados. Pedidos de patentes em que se usa este sistema de destilação reativa subseqüentemente foram depositados por outras empresas (ver, por exemplo, documento de patente 22: pedido de patente japonesa acessível ao público H5-213830 (correspondendo a patente européia 0530615, patente U.S. 5231212), documento de patente 23: pedido de patente japonesa acessível ao público H6-9507 (correspondendo a patente européia 0569812, patente U.S. 5359118), documento de patente 24: pedido de patente japonesa acessível ao público 2003-119168 (correspondendo a publicação internacional WO 03/006418), documento de patente 25: pedido de patente japonesa acessível ao público 2003-300936, documento de patente 26: pedido de patente japonesa acessível ao público 2003-342209).
Deste modo, os processos propostos até agora para produzir os carbonatos de dialquila e os dióis a partir do carbonato cíclico e do álcool monoídrico alifático incluem os quatros sistemas:
(1) um sistema de reação completamente em batelada;
(2) um sistema de reação em batelada usando um vaso de reação tendo uma coluna de destilação provida no topo do mesmo;
(3) um sistema de reação de líquido fluindo usando um reator tubular; e
(4) um sistema de destilação reativa.
Assim, notam-se os seguintes problemas com estes sistemas.
No caso de (1) e (3), o limite superior da conversão de carbonato cíclico é determinado pela composição introduzida e a temperatura e, assim, a reação não pode ser realizada até ser concluída e, assim, a conversão é baixa. Além disso, no caso (2), para tornar a conversão de carbonato cíclico elevada, o carbonato de dialquila produzido deve ser destilado usando uma quantidade muito grande do álcool monoídrico alifático, e um tempo de reação longo é requerido. No caso de (4), a reação pode ser levada a prosseguir com uma conversão maior do que com (1), (2) ou (3). No entanto, processos de (4) propostos até agora foram relacionados com uma produção do carbonato de dialquila e do diol ou em quantidades pequenas ou durante um período curto de tempo, e não foi relatada a realização da produção em uma escala industrial estável durante um período prolongado de tempo. Isto é, estes processos não atingiram o objetivo de produzir um carbonato de dialquila continuamente em uma quantidade grande (por exemplo, não menor do que 2 toneladas /hora) de modo estável durante um período prolongado de tempo (por exemplo, não menor do que 1000 horas, preferivelmente não menor do que 3000 horas, mais preferivelmente não menor do que 5000 horas).
Por exemplo, os valores máximos da altura (H: cm), diâmetro (D: cm), e número de estágios (n) da coluna de destilação reativa, a quantidade P produzida (kg/h) de carbonato de dimetila, e o tempo de produção contínua T (h) nos exemplos descritos para a produção de carbonato de dimetila (DMC) e etileno glicol (EG) a partir de carbonato de etileno e metanol são como descritos na tabela 1.
TABELA 1
<table>table see original document page 7</column></row><table>
Nota 1: coluna de destilação Oldershaw
Nota 2: nenhuma descrição qualquer que seja definindo a coluna de destilação.
Nota 3: a única descrição definindo coluna de destilação é sobre o número de estágios.
Nota 4: nenhuma descrição qualquer que seja sobre a quantidade produzida. Nota 5: nenhuma descrição qualquer que seja com relação a uma produção estável durante um período prolongado de tempo.
Note-se que documento de patente 25 (pedido de patente japonesa acessível ao público 2003-300936) (parágrafo 0060) descreve que "O exemplo presente usa o mesmo fluxo de processo como para o modo preferido mostrado na FIG. 1 descrito acima, e foi realizado com o objetivo de operar um aparelho em escala comercial para produzir carbonato de dimetila e etileno glicol através de transesterificação por uma reação de conversão catalítica entre carbonato de etileno e metanol. Deve-se notar que os seguintes valores numéricos no presente exemplo podem ser adequadamente usados na operação de um aparelho real", e como este exemplo, afirma-se que 3750 kg/h de carbonato de dimetila foram especificamente produzidos. A escala descrita neste exemplo corresponde a uma produção anual de 30.000 toneladas ou mais e, assim, isto implica que, por ocasião do depósito do pedido de patente para documento de patente 25 (pedido de patente japonesa acessível ao público 2003-300936) (9 de abril de 2002), operação da primeira planta comercial em larga escala do mundo usando este processo tinha sido realizada. No entanto, mesmo por ocasião do depósito do presente pedido, não se notava o fato acima de todo. Além disso, no exemplo de documento de patente 25 (pedido de patente japonesa acessível ao público 2003-300936), exatamente o mesmo valor que o valor teoricamente calculado é descrito para a quantidade produzida de carbonato de dimetila, mas o rendimento para etileno glicol é de aproximadamente 85,6%, e a seletividade é de aproximadamente 88,4% e, assim, não se pode afirmar realmente que um rendimento elevado e uma seletividade elevada foram atingidos. Em particular, a baixa seletividade indica que este processo tem um inconveniente fatal como um processo de produção industrial. (Nota- se também que o documento de patente 25 (pedido de patente japonesa acessível ao público 2003-300936) foi considerado como tendo sido desistido em 26 de julho de 2005 devido ao exame não ter sido requerido).
Com o método de destilação reativa, existem muitas causas de flutuação como variação da composição devido à reação e à variação de composição devido à destilação na coluna de destilação, e variação de temperatura e variação de pressão na coluna e, assim, a continuação de uma operação estável durante um período longo de tempo é acompanhada por muitas dificuldades, e em particular estas dificuldades são ainda aumentadas no caso de manipulação de quantidades grande. Para continuar a produção em massa dos carbonatos de dialquila e dos dióis usando o método de destilação reativa de modo estável durante um período prolongado de tempo enquanto mantendo rendimentos elevados e seletividades elevadas para os carbonatos de dialquila e os dióis, o aparelho de destilação reativa deve ser projetado de modo inteligente. No entanto, a única descrição de produção estável contínua durante um período prolongado de tempo com o método de destilação reativa proposto até agora foi de 200 a 400 horas feita no documento de patente 12 (pedido de patente japonesa acessível ao público H4-198141) e no documento de patente 13 (pedido de patente japonesa acessível ao público H4-230243).
Descrição da invenção
Problemas a serem resolvidos pela invenção E um objeto de a presente invenção prover, para o caso de produção industrial de carbonatos de dialquila e de dióis em quantidades grandes (por exemplo, não menores do que 2 toneladas fh para os carbonatos de dialquila, e não menores do que 1,3 toneladas /h para os dióis) através de um sistema de destilação reativa tomando-se um carbonato cíclico e um álcool monoídrico alifático como materiais de partida, alimentando continuamente os materiais de partida em uma coluna de destilação contínua de estágios múltiplos em que um catalisador homogêneo está presente, e realizando a reação e a destilação simultaneamente na coluna, um processo específico em que os carbonatos de dialquila e os dióis podem ser produzidos com seletividade elevada e produtividade elevada de modo estável durante um período prolongado de tempo (por exemplo, não menor do que 1000 horas, preferivelmente não menor do que 3000 horas, mais preferivelmente não menor do que 5000 horas) com um rendimento elevado.
Meios para resolver os problemas
Desde que os inventores presentes primeiro descreveram um processo para produzir continuamente os carbonatos de dialquila e os dióis usando a coluna de destilação contínua de estágios múltiplos, foram realizadas muitas propostas com relação ao aperfeiçoamento deste processo. No entanto, elas ocorreram em um nível laboratorial em uma escala pequena e tempo de operação curto e, assim, não se encontram quaisquer que sejam descrições sobre um processo ou aparelho específicos permitindo a produção em massa em uma escala industrial de modo estável durante um período prolongado de tempo com base nas descobertas obtidas através de uma implementação real. Os presentes inventores assim realizaram estudos voltados para descobrir um processo específico permitindo que os carbonatos de dialquila e os dióis fossem produzidos em uma escala industrial de, por exemplo, não menos do que 2 toneladas / h para os carbonatos de dialquila e não menos do que 1,3 toneladas / h para os dióis de modo estável durante um período prolongado de tempo com rendimento elevado, seletividade elevada, e produtividade elevada. Como um resultado, os presentes inventores alcançaram a presente invenção.
Isto é, no primeiro aspecto da presente invenção, provê-se:
1. um processo para produzir industrialmente um carbonato de dialquila e um diol em que o carbonato de dialquila e o diol são continuamente produzidos através de um sistema de destilação reativa tomando-se um carbonato cíclico e um álcool monoídrico alifático como materiais de partida, compreendendo as etapas de:
continuamente alimentar os materiais de partida em uma coluna de destilação contínua de estágios múltiplos em que um catalisador homogêneo está presente;
realizar a reação e a destilação simultaneamente na referida
coluna;
continuamente retirar uma mistura de reação de ponto de ebulição baixo contendo o carbonato de dialquila produzido de uma porção superior da coluna em uma forma gasosa; e
continuamente retirar uma mistura de reação de ponto de ebulição elevado contendo o diol de uma porção inferior da coluna em uma forma líquida, em que:
referida coluna de destilação contínua de estágios múltiplos compreende uma porção de tronco cilíndrico tendo um comprimento L (cm) e um diâmetro interno D (cm) e tendo, dentro da mesma, uma bandeja com um número de estágios n, e compreende uma saída de gás tendo um diâmetro interno di (cm) provido em um topo da coluna ou na porção superior da coluna próxima do topo, uma saída de líquido tendo um diâmetro interno d2 (cm) provida em um fundo da coluna ou na porção inferior da coluna próxima do fundo, pelo menos uma primeira entrada provida na porção superior e/ou uma porção do meio da coluna abaixo da referida saída de gás, e pelo menos uma segunda entrada provida na porção do meio e/ou a porção inferior da coluna acima da referida saída de líquido, em que:
(1) o comprimento L (cm) atende à fórmula (1); 2100 ≤ L ≤ 8000 (1),
(2) o diâmetro interno D (cm) da coluna atende à fórmula (2); 180 ≤ D ≤ 2000 (2),
(3) uma relação do comprimento L (cm) para o diâmetro interno D (cm) da coluna atende à fórmula (3);
4 ≤ L / D ≤ 40 (3),
(4) o número de estágios η atende à fórmula (4);
10≤ η ≤ 120 (4),
(5) uma relação do diâmetro interno D (cm) da coluna para o diâmetro interno di (cm) da saída de gás atende à fórmula (5);
3 ≤ D / d1 ≤ 20 (5), e
(6) uma relação do diâmetro interno D (cm) da coluna para o diâmetro interno d2 (cm) da saída de líquido atende à fórmula (6);
5≤D / d2 ≤ 30 (6); e
(7) uma relação de abertura de cada bandeja está em uma faixa de 1,5 a 10%,
2. o processo de acordo com o item 1, em que a quantidade produzida do carbonato de dialquila não é menor do que 2 toneladas/h,
3. o processo de acordo com o item 1 ou 2, em que uma quantidade produzida do diol não é menor do que 1,3 toneladas/h,
4. o processo de acordo com qualquer um dos itens 1 a 3, em que o referido di e o referido d2 atendem à fórmula (7);
1 ≤ d1 / d2 ≤ 5 (7),
5. o processo de acordo com qualquer um dos itens 1 a 4, em que L, D, L/D, n, D/d1} e D/d2 para a referida coluna de destilação contínua de estágios múltiplos atendem à seguintes fórmulas; 2300 ≤ L ≤ 6000, 200 ≤
D ≤ 1000, 5 ≤ L/D ≤ 30, 30 ≤ η < 100, 4 ≤ D/d1 ≤ 15, e 7 ≤ D/d2 ≤ 25, respectivamente,
6. o processo de acordo com qualquer um dos itens 1 a 5, em que L, D, L/D, n, D/d1, e D/d2 para a referida coluna de destilação contínua de estágios múltiplos atendem à seguintes fórmulas; 2500 < L < 5000, 210 < D < 800, 7 < L/D < 20, 40 < η < 90, 5 < D/d] < 13, e 9 < OZd2 < 20, respectivamente,
7. o processo de acordo com qualquer um dos itens 1 a 6, em que a relação de abertura de cada bandeja está em uma faixa de 1,7 a 8,0%,
8. o processo de acordo com qualquer um dos itens 1 a 7, em que a relação de abertura de cada bandeja está em uma faixa de 1,9 a 6,0%,
9. o processo de acordo com qualquer um dos itens 1 a 8, em que a referida bandeja é uma bandeja perfurada tendo uma porção perfurada e uma porção de prato perfurado,
10. o processo de acordo com o item 9, em que a referida bandeja perfurada tem 100 a 1000 orifícios/m2 na referida porção perfurada da mesma,
11. o processo de acordo com o item 9 ou 10, em que uma área de seção transversal por orifício da bandeja perfurada está na faixa de 0,5 a 5 cm2,
12. o processo de acordo com o item 10 ou 11, em que uma relação de abertura (uma relação de área de seção transversal total dos orifícios para uma área total da placa perfurada contendo a área da porção de orifício) de referida bandeja perfurada está em uma faixa de 1,9 a 6,0%.
Além disso, de acordo com o segundo aspecto da presente invenção, provê-se:
13. uma coluna de destilação contínua de estágios múltiplos para realizar a transesterifícação entre um carbonato cíclico e um álcool monoídrico alifático e destilação, a coluna de destilação contínua de estágios múltiplos compreendendo:
uma porção de tronco cilíndrico tendo um comprimento L (cm) e um diâmetro interno D (cm); uma bandeja tendo um número de estágios η provido dentro da referida porção de tronco;
uma saída de gás tendo um diâmetro interno di (cm) provido em um topo da referida coluna ou em uma porção superior da referida coluna próxima do topo;
uma saída de líquido tendo um diâmetro interno d2 (cm) provido em um fundo de referida coluna ou em uma porção inferior de referida coluna próxima do fundo;
pelo menos uma primeira entrada provida na porção superior e/ou uma porção do meio de referida coluna abaixo de referida saída de gás; eMpelo menos uma segunda entrada provida na porção do meio
e/ou a porção inferior da referida coluna acima de referida saída de líquido; em que:
(1) o comprimento L (cm) atende à fórmula (1); 2100 <L< 8000 (1),
(2) o diâmetro interno D (cm) da coluna atende à fórmula (2); 180 <D<2000 (2),
(3) uma relação do comprimento L (cm) para o diâmetro interno D (cm) da coluna atende à fórmula (3);
4 < L / D < 40 (3),
(4) o número de estágios η atende à fórmula (4); < η < 120 (4),
(5) uma relação do diâmetro interno D (cm) da coluna para o diâmetro interno di (cm) da saída de gás atende à fórmula (5);
3 < D / di < 20 (5), e
(6) uma relação do diâmetro interno D (cm) da coluna para o diâmetro interno d2 (cm) da saída de líquido atende à fórmula (6);
5<D/d2<30 (6); e (7) uma relação de abertura de cada bandeja está em uma faixa de 1,5 a 10%,
14. a coluna de destilação contínua de estágios múltiplos de acordo com o item 13, em que referidos di e d2 atendem à fórmula (7): 1<di/d2<_5 (7),
15. a coluna de destilação contínua de estágios múltiplos de acordo com o item 13 ou 14, em que L, D, L / D, n, D / di e D / D2 para referida coluna de destilação contínua de estágios múltiplos atendem às seguintes fórmulas; 2300 < L < 6000, 200 < D < 1000, 5 < L/D < 30, 30 < η < 100,4 < D/d1 < 15, e 7 < DZd2 < 25, respectivamente,
16. a coluna de destilação contínua de estágios múltiplos de acordo com qualquer um dos itens 13 a 15, em que L, D, L/D, n, D/di, e D/d2 para a referida coluna de destilação contínua de estágios múltiplos atendem à seguintes fórmulas; 2500 < L < 5000, 210 < D < 800, 7 < L/D < 20, 40 < η < 90, 5 < D/di < 13, e 9 < D/d2 < 20, respectivamente,
17. a coluna de destilação contínua de estágios múltiplos de acordo com qualquer um dos itens 13 a 16, em que a relação de abertura de cada bandeja está em uma faixa de 1,7 a 8,0%,
18. a coluna de destilação contínua de estágios múltiplos de acordo com qualquer um dos itens 13 a 17, em que a relação de abertura de cada bandeja está em uma faixa de 1,9 a 6,0%,
19. a coluna de destilação contínua de estágios múltiplos de acordo com qualquer um dos itens 13 a 18, em que a referida bandeja é uma bandeja perfurada tendo uma porção perfurada e uma porção de prato perfurado,
20. a coluna de destilação contínua de estágios múltiplos de acordo com o item 19, em que a referida bandeja perfurada tem 100 a 1000 orifícios/m2 na referida porção perfurada da mesma,
21. a coluna de destilação contínua de estágios múltiplos de acordo com o item 19 ou 20, em que uma área de seção transversal por orifício da referida bandeja perfurada está na faixa de 0,5 a 5 cm2,
22. a coluna de destilação contínua de estágios múltiplos de acordo com o item 20 ou 21, em que uma relação de abertura (uma relação de área de seção transversal total dos orifícios para uma área total da placa perfurada contendo a área da porção de orifício) de referida bandeja perfurada está em uma faixa de 1,9 a 6,0%.
Efeitos Vantajosos da Invenção
Descobriu-se que por implementação da presente invenção, os carbonatos de dialquila e os dióis podem ser produzidos cada um com um rendimento elevado e uma seletividade elevada de não menos do que 95%, preferivelmente não menos do que 97%, mais preferivelmente não menos do que 99%, em uma escala industrial não menor do que 2 toneladas/h, preferivelmente não menor do que 3 toneladas/h, mais preferivelmente não menor do que 4 toneladas/h, para os carbonatos de dialquila, e não menor do que 1,3 toneladas/h, preferivelmente não menor do que 1,95 toneladas/h, mais preferivelmente não menor do que 2,6 toneladas/h, para os dióis, de modo estável durante um período prolongado de tempo não menor do que 1000 horas, preferivelmente não menor do que 3000 horas, mais preferivelmente não menor do que 5000 horas, a partir dos carbonatos cíclicos e dos álcoois monoídricos alifáticos.
Breve Descrição do Desenho
FIG. 1 mostra um exemplo de desenho esquemático da coluna de destilação contínua de estágios múltiplos para realizar a presente invenção, a coluna de destilação tendo uma bandeja com η estágios (mostrados esquematicamente na figura 1) providos dentro de uma porção de tronco da mesma. Descrição de Números de Referência:
1: saída de gás; 2: saída de líquido; 3-a a 3-e: entrada; 4-a a 4-b: entrada; 5: placa terminal; 6: bandeja; 7: porção de tronco, 10: coluna de destilação contínua de estágios múltiplos; L: comprimento de porção de tronco (cm); D: diâmetro interno de porção de tronco (cm); di: diâmetro interno de saída a gás; d2: diâmetro interno de saída de líquido (cm).
Melhor Modo para Realizar a Invenção
No seguinte, a presente invenção é descrita em detalhes.
A reação da presente invenção é reação de transesterificação de equilíbrio reversível representada pela seguinte fórmula geral (I) em que um carbonato de dialquila (C) e um diol (D) são produzidos a partir de um carbonato cíclico e um álcool monoídrico alifático;
<formula>formula see original document page 17</formula>
em que R1 representa um grupo bivalente -(CHb)m- (m é um número inteiro de 2 a 6), um ou mais dos hidrogênios dos mesmos sendo opcionalmente substituído com um grupo alquila ou um grupo arila tendo de 1 a 10 átomos de carbono. Além disso, R representa um grupo alifático monovalente tendo de 1 a 12 átomos de carbono, um ou mais dos hidrogênios dos mesmos sendo opcionalmente substituído com um grupo alquila ou um grupo arila tendo de IalO átomos de carbono.
O carbonato cíclico usado como um material de partida na presente invenção é um composto representado por (A) na fórmula (I). Exemplos preferíveis do carbonato cíclico incluem carbonatos de alquileno como carbonato de etileno ou carbonato de propileno; l,3-dioxaciclohexa-2- ona, 1,3-dioxaciclohepta-2-ona, ou outros, carbonato de etileno ou carbonato de propileno sendo mais preferíveis devido à facilidade de sua procura e outros, e o carbonato de etileno sendo particularmente preferível.
Além disso, o álcool monoídrico alifático usado como o outro material de partida é um composto representado por (B) na fórmula (I). Um álcool monoídrico alifático tendo um ponto de ebulição inferior ao do diol produzido é usado. Apesar da possível variação dependendo do tipo de carbonato cíclico usado, exemplos do álcool monoídrico alifático incluem metanol, etanol, propanol (isômeros), álcool alílico, butanol (isômeros), 3- buten-l-ol, álcool amílico (isômeros), álcool hexílico (isômeros), álcool heptílico (isômeros), álcool octílico (isômeros), álcool nonílico (isômeros), álcool decílico (isômeros), álcool undecílico (isômeros), álcool dodecílico (isômeros), ciclopentanol, ciclohexanol, cicloheptanol, ciclooctanol, metilciclopentanol (isômeros), etilciclopentanol (isômeros), metilciclo hexanol (isômeros), etilciclohexanol (isômeros), dimetilciclohexanol (isômeros), dietilciclohexanol (isômeros), fenilciclohexanol (isômeros), álcool benzílico, álcool fenetílico (isômeros), fenilpropanol (isômeros), e assim em diante. Além disso, estes álcoois monoídricos alifáticos podem ser substituídos com substituintes como halogênios, grupos alcóxi inferior, grupos ciano, grupos alcoxicarbonila, grupos ariloxicarbonila, grupos acilóxi, e grupos nitro.
Dentre tais álcoois monoídricos alifáticos, os preferivelmente usados são álcoois tendo de 1 a 6 átomos de carbono, mais preferivelmente álcoois tendo de 1 a 4 átomos de carbono, isto é, metanol, etanol, propanol (isômeros), e butanol (isômeros). No caso de usar carbonato de etileno ou carbonato de propileno como o carbonato cíclico, exemplos preferíveis dos álcoois monoídricos alifáticos incluem metanol e etanol, metanol sendo mais preferível. No processo da presente invenção, um catalisador homogêneo é levado a estar presente na coluna de destilação reativa. O método de levar o catalisador homogêneo a estar presente pode ser qualquer método, mas é preferível alimentar o catalisador dentro da coluna de destilação reativa continuamente de modo a levar o catalisador a estar presente em uma fase líquida na coluna de destilação reativa.
No caso em que um catalisador homogêneo é alimentado continuamente na coluna de destilação reativa, o catalisador homogêneo pode ser alimentado junto com o carbonato cíclico e/ou o álcool monoídrico alifático, ou pode ser alimentado em uma posição diferente nos materiais de partida. A reação realmente prossegue na coluna de destilação em uma região abaixo da posição em que o catalisador é alimentado e, assim, é preferível alimentar o catalisador em uma região entre o topo da coluna e a(s) posição (s) em que os materiais de partida são alimentados. O catalisador deve estar presente em, pelo menos, 5 estágios, preferivelmente, pelo menos, 7 estágios, mais preferivelmente, pelo menos, 10 estágios.
Como o catalisador usado na presente invenção, qualquer um dentre vários catalisadores conhecidos até agora podem ser usados. Exemplos do catalisador incluem:
metais alcalino e metais alcalino terroso como lítio, sódio, potássio, rubídio, césio, magnésio, cálcio, estrôncio, e bário;
compostos básicos de metais alcalinos e metais alcalino- terrosos, como hidretos, hidróxidos, alcóxidos, arilóxidos, e amidas;
compostos básicos de metais alcalinos e metais alcalino-terrosos como carbonatos, bicarbonatos, sais de ácido orgânico;
aminas terciárias como trietilamina, tributilamina, trihexilamina, e benzildietilamina;
compostos heteroaromáticos contendo nitrogênio como N- alquilpirróis, N-alquilindóis, oxazóis, N-alquilimidazóis, N-alquilpirazóis, oxadiazóis, piridina, alquilpiridinas, quinolina, alquilquinolinas, isoquinolina, alquilisoquinolinas, acridina, alquilacridinas, fenantrolina, alquilfenantrolinas, pirimidina, alquilpirimidinas, pirazina, alquilpirazinas, triazinas, e alquiltriazinas;
amidinas cíclicas como diazabicicloundeceno (DBU), e diazabiciclononeno (DBN);
compostos de tálio como óxido de tálio, halogenetos de tálio, hidróxido de tálio, carbonato de tálio, nitrato de tálio, sulfato de tálio, e sais de ácido orgânico de tálio;
compostos de estanho como tributilmetoxiestanho, tributiletoxi estanho, dibutilmetoxiestanho, dietildietoxiestanho, dibutildietoxiestanho, dibutilfenoxiestanho, difenilmetoxiestanho, acetato de dibutilestanho, cloreto de tributilestanho, e 2-etilhexanoato de estanho;
compostos de zinco como dimetoxizinco, dietoxizinco, etilenodioxizinco, e dibutoxizinco;
compostos de alumínio como trimetóxido de alumínio, triisopropóxido de alumínio, e tributóxido de alumínio;
compostos de titânio como tetrametoxititânio, tetraetoxititânio, tetrabutoxititânio, diclorodimetoxititânio, tetraisopropoxititânio, acetato de titânio, e acetilacetonato de titânio;
compostos de fósforo como trimetilfosfina, trietilfosfina, tributil fosfina, trifenilfosfina, halogenetos de tributilmetilfosfônio, halogenetos de trioctilbutilfosfônio, e halogenetos de trifenilmetilfosfônio;
compostos de zircônio como halogenetos de zircônio, acetilacetonato de zircônio, alcóxidos de zircônio, e acetato de zircônio;
chumbo e compostos contendo chumbo, por exemplo, óxidos de chumbo como PbO, PbC>2, e Pb3C^; sulfetos de chumbo como PbS, Pb2S3, e PbS2;
hidróxidos de chumbo como Pb(OH)2, Pb3O2(OH)2, Pb2[Pb02(0H)2], e Pb2O(OH)2;
plumbitos como Na2PbO2, K2PbO2, NaHPbO2, e KHPbO2; plumbatos como Na2PbO3, Na2H2PbO4, K2PbO3, K2[Pb(OH)6], K4PbO4, Ca2PbO4, e CaPbO3;
carbonatos de chumbo e sais básicos dos mesmos como PbCO3 e 2PbC03 .Pb(OH)2;
compostos de alcóxi chumbo e compostos de arilóxi chumbo como Pb(OCH3)2, (CH3O)Pb(OPh), e Pb(OPh)2;
sais de chumbo de ácidos orgânicos, e carbonatos e seus sais básicos, como Pb(OCOCH3)2, Pb(OCOCH3)4, e Pb(OCOCH3)2. Pb0.3H20;
compostos de organochumbo como Bu4Pb, Ph4Pb, Bu3PbCl, Ph3PbBr, Ph3Pb (ou Ph6Pb2), Bu3PbOH, e Ph2PbO (em que Bu representa um grupo butila, e Ph representa um grupo fenila);
ligas de chumbo, Pb-Na, Pb-Ca, Pb-Ba, Pb-Sn, Pb-Sb; minerais de chumbo como mistura de galena e de zinco; e
hidratos de tais compostos de chumbo.
No caso em que o composto usado dissolve em um material de partida da reação, a mistura de reação, um sub-produto de reação ou outro, o composto pode ser usado como um catalisador homogêneo. Alternativamente, também é preferível usar, como o catalisador homogêneo, uma mistura obtida por dissolução de um composto como acima no material de partida da reação, a mistura de reação, um sub-produto de reação ou outro, ou por reação para ocasionar a dissolução.
A quantidade do catalisador usado na presente invenção varia dependendo do tipo do catalisador usado, mas está geralmente em uma faixa de 0,0001 a 50 % em peso, preferivelmente de 0,005 a 20 % em peso, mais preferivelmente de 0,01 a 10 % em peso, como uma proporção do peso total do carbonato cíclico e do álcool monoídrico alifático alimentados como os materiais de partida.
Não se notam limitações particulares no método de alimentar continuamente o carbonato cíclico e o álcool monoídrico alifático em uma coluna de destilação contínua de estágios múltiplos constituindo a coluna de destilação reativa na presente invenção; qualquer método de alimentação pode ser usado desde que o carbonato cíclico e o álcool monoídrico alifático podem ser levados a contatar o catalisador em uma região de pelo menos 5 estágios, preferivelmente pelo menos 7 estágios, mais preferivelmente pelo menos 10 estágios, da coluna de destilação. Isto é, o carbonato cíclico e o álcool monoídrico alifático podem ser alimentados continuamente a partir de um número requerido de entradas em estágios da coluna de destilação contínua de estágios múltiplos atendendo às condições descritas acima. Além disso, o carbonato cíclico e o álcool monoídrico alifático podem ser introduzidos no mesmo estágio da coluna de destilação, ou podem ser introduzidos em estágios diferentes um do outro.
Os materiais de partida são alimentados continuamente na coluna de destilação em uma forma líquida, em uma forma gasosa, ou como uma mistura de um líquido e um gás. Além de alimentar os materiais de partida na coluna de destilação deste modo, também é preferível alimentar adicionalmente um material de partida gasoso intermitentemente ou continuamente a partir de uma porção inferior da coluna de destilação. Além disso, outro método preferível é um em que o carbonato cíclico é alimentado continuamente em uma forma líquida ou uma forma mista gás/líquido em um estágio da coluna de destilação acima dos estágios em que o catalisador está presente, e o álcool monoídrico alifático é alimentado continuamente em uma forma gasosa e/ou em uma forma líquida na porção inferior da coluna de destilação. Neste caso, o carbonato cíclico pode conter, como evidente, o álcool monoídrico alifático.
Na presente invenção, os materiais de partida alimentados podem conter carbonato de dialquila e/ou diol que são os produtos. O teor do mesmo está, para o carbonato de dialquila, geralmente na faixa de 0 a 40% em peso, preferivelmente de 0 a 30% em peso, mais preferivelmente de 0 a 20% em peso, em termos da porcentagem em peso do carbonato de dialquila na mistura de álcool monoídrico alifático / carbonato de dialquila, e está, para o diol, geralmente na faixa de 0 a 10% em peso, preferivelmente de 0 a 7% em peso, mais preferivelmente de 0 a 5% em peso, em termos da porcentagem em peso do diol na mistura de carbonato cíclico / diol.
Quando realizando industrialmente a presente reação, além de carbonato cíclico e/ou álcool monoídrico alifático novos recentemente introduzidos no sistema de reação, materiais tendo o carbonato cíclico e/ou o álcool monoídrico alifático como um componente principal do mesmo recuperados deste processo e/ou outro processo também podem ser preferivelmente usados para os materiais de partida. É um aspecto característico excelente da presente invenção que isto seja possível. Um exemplo de outro processo é um processo em que um carbonato de diarila é produzido a partir do carbonato de dialquila e do composto monohidróxi aromático, o álcool monoídrico alifático sendo sub-produzido neste processo e recuperado. O álcool monoídrico alifático sub-produzido recuperado geralmente contém, com freqüência, o carbonato de dialquila, o composto monohidróxi aromático, um éter alquil arílico e assim em diante, e também pode conter pequenas quantidades de um carbonato de alquil arila, o carbonato de diarila e assim em diante. O álcool monoídrico alifático sub- produzido pode ser usado como tal, como um material de partida na presente invenção, ou pode ser usado como o material de partida após a quantidade de material contido tendo um ponto de ebulição maior do que a do álcool monoídrico alifático ter sido reduzida através de destilação ou outros.
O carbonato cíclico preferivelmente usado na presente invenção é um produzido através da reação entre, por exemplo, um óxido de alquileno como óxido de etileno, óxido de propileno ou óxido de estireno e dióxido de carbono; um carbonato cíclico contendo pequenas quantidades destes compostos de matéria prima ou outros pode ser usado como um material de partida na presente invenção.
Na presente invenção, uma relação entre as, quantidades do carbonato cíclico e do álcool monoídrico alifático alimentadas na coluna de destilação reativa varia de acordo com o tipo e quantidade do catalisador de transesterificação e as condições de reação, mas uma relação molar do álcool monoídrico alifático para o carbonato cíclico alimentados está geralmente na faixa de 0,01 a 1000 vezes. Para aumentar a conversão de carbonato cíclico, é preferível alimentar o álcool monoídrico alifático em um excesso de pelo menos 2 vezes o número de mols do carbonato cíclico, mas se a quantidade do álcool monoídrico alifático usada for muito grande, então é necessário tornar o aparelho maior. Por tais razões, a relação molar do álcool monoídrico alifático para o carbonato cíclico está preferivelmente na faixa de 2 a 20, mais preferivelmente de 3 a 15, ainda mais preferivelmente de 5 a 12. Além disso, se permanecer muito carbonato cíclico não reagido, então o carbonato cíclico não reagido pode reagir com o diol produto para sub- produzir oligômeros como um dímero ou um trímero e, assim, em implementação industrial, é preferível reduzir a quantidade de carbonato cíclico não reagido restante na medida do possível. No processo da presente invenção, mesmo se a relação molar acima não for maior do que 10, a conversão de carbonato cíclico pode ser feita para não ser menor do que 98%, preferivelmente não menor do que 99%, mais preferivelmente não menor do que 99,9%. Isto é outro aspecto característico da invenção.
Na presente invenção, preferivelmente não menos do que 2 t/h do carbonato de dialquila são continuamente produzidas; a quantidade mínima do carbonato cíclico continuamente alimentado para alcançar isto é geralmente de 2,2 P toneladas/h, preferivelmente 2,1 P toneladas/h, mais preferivelmente 2,0 P toneladas/h, com relação à quantidade P (tonelada/h) do carbonato de dialquila a ser produzido. Em um caso ainda mais preferível, esta quantidade pode ser levada a ser menor do que 1,9 P toneladas/h.
FIG. 1 mostra um exemplo de desenho esquemático da coluna de destilação contínua de estágios múltiplos para realizar o processo de produção de acordo com a presente invenção. Aqui, a coluna de destilação contínua de estágios múltiplos 10 usada na presente invenção compreende uma estrutura tendo placas terminais 5 respectivamente acima e abaixo de uma porção de tronco cilíndrico 7 tendo um comprimento L (cm) e um diâmetro interno D (cm) e tendo dentro da mesma uma bandeja 6 com um número de estágios n, e tem uma saída de gás 1 tendo um diâmetro interno di (cm) no topo da coluna ou na porção superior da coluna próxima ao topo, uma saída de líquido 2 tendo um diâmetro interno d2 (cm) em um fundo da coluna ou em uma porção inferior da coluna próxima do fundo, pelo menos uma primeira entrada 3 (a, e) provida na porção superior e/ou em uma porção do meio da coluna abaixo da saída de gás 1, e pelo menos uma segunda entrada 3 (b, c) e 4 (a, b) provida na porção do meio e/ou a porção inferior da coluna acima da saída de líquido 2 e, além disso, deve ser capaz de atender às várias condições de modo a ser capaz de realizar não somente a destilação mas também a reação ao mesmo tempo, de modo a ser capaz de produzir, preferivelmente, não menos do que 2 toneladas/h do carbonato de dialquila e/ou preferivelmente não menos que 1,3 toneladas/h do diol de modo estável durante um período prolongado de tempo. Note-se que figura 1 apenas mostra uma forma de realização da coluna de destilação contínua de estágios múltiplos de acordo com a presente invenção e, assim, o arranjo da bandeja 6 não é limitado ao mostrado na FIG. 1.
A coluna de destilação contínua de estágios múltiplos de acordo com a presente invenção atende não somente às condições de uma perspectiva da função de destilação, mas, de fato, estas condições são combinadas com as condições requeridas de modo a levar a reação a prosseguir estavelmente com uma conversão elevada e uma seletividade elevada, especificamente:
(1) o comprimento L (cm) deve atender à fórmula (1);
2100 <L< 8000 (1),
(2) diâmetro interno D (cm) da coluna deve atender à fórmula (2);
180 <D< 2000 (2),
(3) uma relação do comprimento L (cm) para o diâmetro interno D (cm) da coluna deve atender à fórmula (3);
4 < L / D < 40 (3),
(4) o número de estágios η deve atender à seguinte fórmula (4);
10 < n < 120 (4),
(5) uma relação do diâmetro interno D (cm) da coluna para diâmetro interno di (cm) da saída de gás deve atender à seguinte fórmula (5);
3 < D / di < 20 (5),
(6) uma relação do diâmetro interno D (cm) da coluna para o diâmetro interno d2 (cm) da saída de líquido deve atender à fórmula (6);
5<D/d2<30 (6), e
(7) uma relação de abertura de cada bandeja deve estar em uma faixa de 1,5 a 10%.
Note-se que o termo "o topo da coluna ou a porção superior da coluna próxima ao topo" usado na presente invenção significa a porção do topo da coluna descendente até aproximadamente 0,25L, e o termo "o fundo da coluna ou a porção inferior da coluna próxima do fundo" significa a porção do fundo da coluna ascendente até aproximadamente 0,25 L. Aqui, "L" é como definido acima.
Descobriu-se que usando a coluna de destilação contínua de estágios múltiplos que simultaneamente atende às fórmulas (1) a (6), e para a qual a relação de abertura de cada bandeja está em uma faixa de 1,5 a 10%, como no item (7) acima, o carbonato de dialquila e o diol podem ser produzidos em uma escala industrial de, preferivelmente, não menos do que 2 toneladas/h para o carbonato de dialquila e/ou preferivelmente não menos do que 1,3 toneladas/h do diol com uma conversão elevada, seletividade elevada, e produtividade elevada de modo estável durante um período prolongado de tempo de, por exemplo, não menos do que 1000 horas, preferivelmente não menos do que 3000 horas, mais preferivelmente não menos do que 5000 horas, do carbonato cíclico e do álcool monoídrico alifático. A razão porque se torna possível produzir o carbonato de dialquila e o diol em uma escala industrial com tais efeitos excelentes por implementação do processo da presente invenção não é evidente, mas isto é suposto como sendo devido a um efeito compósito ocasionado quando as condições das fórmulas (1) a (6) acima e a condição sobre a relação de abertura de cada bandeja são combinadas.
O termo "relação de abertura de cada bandeja" usado na presente invenção significa, para cada bandeja na coluna de destilação de estágios múltiplos", a relação entre a área total de aberturas na bandeja através das quais o gás e líquido podem passar e a área da bandeja tendo estas aberturas na mesma. Nota-se que para a bandeja tendo uma porção de prato perfurado, a área da porção em que o borbulhamento substancialmente ocorre, isto é, excluindo a porção de prato perfurado, é tomada como a área da bandeja.
A presente invenção refere-se ao método de destilação reativa em que não somente a destilação é realizada mas, ao contrário, a reação é realizada ao mesmo tempo, e uma elevada conversão e uma elevada seletividade (elevado rendimento) são atingidas; para alcançar isto, foi descoberto que, além das fórmulas (1) a (6) acima serem atendidas, é importante tornar a relação de aberturas a estar em uma faixa especificada, como acima. Deve-se notar que faixas preferíveis para os fatores respectivos são descritas abaixo.
Se L (cm) for menor que 2100, então a conversão diminui e, assim, não é possível atingir a quantidade de produção desejada. Além disso, para abaixar o custo do equipamento enquanto mantendo a conversão permitindo que a quantidade de produção desejada seja atingida, L deve ser levado a não ultrapassar 8.000. Uma faixa mais preferível para L (cm) é 2300 < L < 6000, com 2500 < L < 5000 sendo ainda mais preferível.
Se D (cm) for menor que 180, então não se pode atingir a quantidade de produção desejada. Além disso, para abaixar o custo do equipamento enquanto atingindo a quantidade de produção desejada, D deve ser levado a não ultrapassar mais do que 2000. Faixa mais preferível para D (cm) é 200 < D < 1000, com 210 < D < 800 sendo ainda mais preferível.
Se L / D for menor que 4 ou maior do que 40, então a operação estável se torna difícil. Em particular, se L / D for maior do que 40, então a diferença de pressão entre o topo e o fundo da coluna se torna muito elevada e, assim, uma operação estável prolongada se torna difícil. Além disso, se torna necessário aumentar a temperatura na porção inferior da coluna, e assim reações laterais se tornam possíveis de ocorrer, ocasionando uma diminuição na seletividade. Uma faixa mais preferível para L/Dé5<L/D <30, com 7 < L / D < 20 sendo ainda mais preferível. Se n for menor que 10, então a conversão diminui e, assim, não é possível atingir a quantidade de produção desejada. Além disso, para abaixar o custo do equipamento enquanto mantendo a conversão permitindo que a quantidade de produção desejada seja atingida, n deve ser levado a não ultrapassar 120. Além disso, se n for maior que 120, então a diferença de pressão entre o topo e o fundo da coluna se torna muito grande e, assim, uma operação estável prolongada se torna difícil. Além disso, se torna necessário aumentar a temperatura na porção inferior da coluna e, assim, reações laterais se tornam possíveis de ocorrer, ocasionando uma diminuição na seletividade. Uma faixa mais preferível para n é 30 ≤ n ≤ 100, com 40 ≤ n ≤ 90 sendo ainda mais preferível.
Se D / d1 for menor que 3, então o custo do equipamento se torna elevado. Além disso, uma quantidade grande de um componente gasoso é prontamente liberada para o exterior do sistema e, assim, uma operação estável se torna difícil. Se D / d1 for maior do que 20, então a quantidade retirada de componente gasoso se torna relativamente baixa e, assim, a operação estável se torna difícil e, além disso, uma diminuição na conversão é ocasionada. Uma faixa mais preferível para D/d1 é 4 ≤ D/d1 ≤ 15, com 5 ≤ D / d1 ≤ 13 sendo ainda mais preferível.
Se D / d2 for menor que 5, então o custo do equipamento se torna elevado. Além disso, a quantidade retirada de líquido se torna relativamente elevada e, assim, a operação estável se torna difícil. Se D / d2 for maior que 30, então a taxa de fluxo através da saída de líquido e da tubulação se torna excessivamente rápida e, assim, erosão se torna possível de ocorrer, ocasionando a corrosão do aparelho. Faixa mais preferível para D / d2 é 7 ≤ D / d2 ≤ 25, com 9 ≤ D / d2 ≤ 20 sendo ainda mais preferível.
Além disso, verificou-se que, na presente invenção, é ainda mais preferível se referido d1 e referido d2 atenderem à seguinte fórmula (7); 1<d,/d2<5 (7).
A relação de abertura de cada bandeja deve estar em uma faixa de 1,5 a 10%. Se a relação de abertura for menor do que 1,5%, então o aparelho se torna grande com relação à quantidade de produção requerida, e assim, o custo do equipamento se torna elevado. Além disso, o tempo de residência aumenta e, assim, reações laterais (por exemplo, uma reação entre o diol produto de reação e carbonato cíclico não reagido), podem ocorrer. Além disso, se a relação de abertura for maior do que 10%, então o tempo de residência para cada bandeja diminui e, assim, o número de estágios requeridos para atingir uma conversão elevada aumenta e, assim, os problemas descritos acima para quando η é elevado surgem. Por tais razões, uma faixa preferível para a relação de aberturas é de 1,7 a 8,0%, com 1,9 a 6,0% sendo ainda mais preferível.
Além disso, na presente invenção, a relação de aberturas pode ser igual para todas as bandejas ou pode diferir. Na presente invenção, é geralmente preferível usar a coluna de destilação de estágios múltiplos em que a relação de aberturas da bandeja na porção superior da mesma é maior do que a relação de aberturas da bandeja na porção inferior da mesma.
O termo "operação estável prolongada" usado na presente invenção significa que a coluna de destilação contínua de estágios múltiplos pode ser operada continuamente em um estado uniforme com base nas condições de operação sem inundação, pingamento, entupimento da tubulação ou erosão durante não menos do que 1000 horas, preferivelmente não menos do que 3000 horas, mais preferivelmente não menos do que 5000 horas, e quantidades predeterminadas do carbonato de dialquila e do diol podem ser produzidas enquanto mantendo a conversão elevada, seletividade elevada, e produtividade elevada.
Um aspecto característico da presente invenção é que o carbonato de dialquila e o diol podem ser produzidos de modo estável durante um período prolongado de tempo cada um com seletividade elevada e preferivelmente com produtividade elevada para o carbonato de dialquila não menor do que 2 toneladas/h e produtividade elevada para o diol não menor do que 1,3 toneladas/h. O carbonato de dialquila e o diol são mais preferivelmente produzidos em uma quantidade não menor do que 3 t/h e não menor do que 1,95 t/h respectivamente, ainda mais preferivelmente não menor do que 4 toneladas/h e não menor do que 2,6 t/h respectivamente. Além disso, outro aspecto característico da presente invenção é que no caso em que L, D, L / D, n, D / di, e D / d2, para a coluna de destilação contínua de estágios múltiplos atendem, respectivamente, a 2300 ≤ L ≤ 6000, 200 ≤ D ≤ 1000, 5 ≤ L / D ≤ 30, 30 ≤ η ≤ 100, 4 ≤ D / d, ≤ 15, e 7 ≤ D / d2 ≤ 25, e a relação de abertura de cada bandeja está na faixa de 1,7 a 8,0%, não menos do que 2,5 toneladas/h, preferivelmente não menos do que 3 t/h, mais preferivelmente não menos do que 3,5 toneladas/h do carbonato de dialquila, e não menos do que 1,6 toneladas/h, preferivelmente não menos do que 1,95 toneladas/h, mais preferivelmente não menos do que 2,2 toneladas/h do diol podem ser produzidos. Além disso, outro aspecto característico da presente invenção é que no caso em que L, D, L / D, n, D / dj, e D / d2 para a coluna de destilação contínua estágios múltiplos atendem, respectivamente, a 2500 ≤ L ≤ 5000, 210 ≤ D ≤ 800, 7 ≤ L / D ≤ 20, 40 ≤ η ≤ 90, 5 ≤ D / dj ≤ 13 e 9 ≤ D / d2 ≤ 20, e a relação de abertura de cada bandeja está em uma faixa de 1,9 a 6,0 %, não menos do que 3 t/h, preferivelmente não menos do que 3,5 toneladas/h, mais preferivelmente não menos do que 4 toneladas/h do carbonato de dialquila, e não menos do que 1,95 toneladas/h, preferivelmente não menos do que 2,2 toneladas/h, mais preferivelmente não menos do que 2,6 toneladas/h do diol podem ser produzidos.
O termo "seletividade" para cada um dentre o carbonato de dialquila e o diol na presente invenção é baseado no carbonato cíclico reagido. Na presente invenção, uma seletividade elevada não menor do que 95% pode ser geralmente atingida, preferivelmente não menor do que 97%, mais preferivelmente não menor do que 99%. Além disso, o termo "conversão" na presente invenção geralmente indica a conversão de carbonato cíclico, sendo possível na presente invenção levar a conversão de carbonato cíclico a não ser menor do que 95%, preferivelmente não menor do que 97%, mais preferivelmente não menor do que 99%, ainda mais preferivelmente não menor do que 99,5%, ainda mais preferivelmente não menor do que 99,9%. É um dos aspectos característicos excelentes da presente invenção que uma conversão elevada possa ser mantida enquanto mantendo, deste modo, uma seletividade elevada.
A coluna de destilação contínua de estágios múltiplos usada na invenção é uma coluna de destilação tendo η estágios na bandeja na mesma. Os exemplos da bandeja incluem uma bandeja de topo de borbulhamento, bandeja perfurada, uma bandeja ondulada, uma bandeja de lastro, uma bandeja de válvula, uma bandeja de contra-fluxo, uma bandeja Unifrax, uma bandeja Superfrac, uma bandeja Maxfrac, uma bandeja de fluxo duplo, uma bandeja de placa de grade, uma bandeja de placa turbograde, uma bandeja Kittel, ou semelhantes. No caso em que se tem estágios na coluna de destilação contínua de estágios múltiplos em que o catalisador não está presente e, assim, a reação substancialmente não ocorre (por exemplo, estágios acima do estágio em que o catalisador é introduzido), uma coluna de destilação em que estes estágios são recheados com os recheios, isto é, uma coluna de destilação de estágios múltiplos tendo tanto uma porção de bandeja como uma porção recheada com os recheios, é também preferível. Os exemplos de recheio incluem recheios irregulares como um anel Raschig, um anel Lessing, um anel Pall, uma sela Berl, uma sela Intalox, um recheio Dixon5 um recheio McMahon ou Heli-Pak, ou recheios regulares como Mellapak, Gempak, Techno-pack, Flexipac, um recheio Sulzer, um recheio Goodroll, ou Glitschgrid. Além disso, o termo "número de estágios n" usado na presente invenção significa o número de bandejas no caso das bandejas, e o número teórico de estágios no caso do recheio. O número de estágios η no caso da coluna de destilação de estágios múltiplos tendo tanto a porção de bandeja como a porção recheada com os recheios é, assim, a soma do número de bandejas e o número teórico de estágios.
Para o processo da presente invenção, descobriu-se que a conversão elevada, seletividade elevada, e produtividade elevada podem ser atingidas se n estágios de qualquer uma das bandejas acima forem usados, mas que as bandejas perfuradas tendo, cada, uma porção perfurada e uma porção de prato perfurado são particularmente boas como as bandejas em termos da relação entre o desempenho e custo do equipamento. Também descobriu-se que cada bandeja perfurada preferivelmente tem de 100 a 1000 orifícios/m2 na porção perfurada. Um número mais preferível de orifícios é de 120 a 900 orifícios/m , ainda mais preferivelmente de 150 a 800 orifícios/m2. Além disso, descobriu-se que a área de seção transversal por orifício de cada bandeja perfurada está preferivelmente na faixa de 0,5 a 5 cm2. Uma área de seção transversal mais preferível por orifício é de 0,7 a 4 cm2, ainda mais preferivelmente de 0,9 a 3 cm2. Além disso, descobriu-se que é particularmente preferível se cada bandeja perfurada tiver de 100 a 1000 orifícios/m2 na porção perfurada, e a área de seção transversal por orifício na faixa de 0,5 a 5 cm2. O número de orifícios na porção perfurada pode ser o mesmo para todas as bandejas perfuradas, ou pode diferir.
Também foi descoberto que, para tais bandejas perfuradas, a relação de aberturas de cada bandeja está geralmente em uma faixa de 1,5 a 10%, preferivelmente de 1,7 a 8,0%, e é particularmente preferível se a relação de aberturas de cada bandeja estiver em uma faixa de 1,9 a 6,0%.
Foi demonstrado que por adição das condições acima à coluna de destilação contínua de estágios múltiplos, o objeto da presente invenção pode ser atingido com maior facilidade.
Quando realizando a presente invenção, o carbonato de dialquila e o diol são continuamente produzidos por alimentação contínua do carbonato cíclico e do álcool monoídrico alifático como materiais de partida na coluna de destilação contínua de estágios múltiplos em que o catalisador está presente, realização da reação e destilação simultaneamente na coluna, retirada contínua de uma mistura de reação de ponto de ebulição baixo contendo o carbonato de dialquila produzido da porção superior da coluna em uma forma gasosa, e retirada contínua de uma mistura de reação de ponto de ebulição elevado contendo o diol a partir da porção inferior da coluna em uma forma líquida.
Além disso, na presente invenção, como a alimentação contínua do material de partida carbonato cíclico e álcool monoídrico alifático dentro da coluna de destilação contínua de estágios múltiplos, o carbonato cíclico e o álcool monoídrico alifático podem ser alimentados como uma mistura de material de partida ou separadamente, em uma forma líquida e/ou uma forma gasosa, a partir da(s) entrada (s) provida(s) em um local ou em uma pluralidade de locais na porção superior ou na porção do meio da coluna abaixo da saída de gás na porção superior da coluna de destilação. Um método em que o carbonato cíclico ou o material de partida contendo uma quantidade grande do carbonato cíclico é alimentado na coluna de destilação em uma forma líquida a partir da(s) entrada (s) na porção superior ou na porção do meio da coluna de destilação, e o álcool monoídrico alifático ou o material de partida contendo uma quantidade grande do álcool monoídrico alifático é alimentado na coluna de destilação em uma forma gasosa a partir da entrada (s) provida na porção do meio ou na porção inferior da coluna acima da saída de líquido na porção inferior da coluna de destilação também é preferível.
O tempo de reação para a reação de transesterificação realizada na presente invenção é considerado de modo a igualar o tempo de residência médio do líquido de reação na coluna de destilação contínua de estágios múltiplos. O tempo de reação varia dependendo da forma dos internos na coluna de destilação e o número de estágios, as quantidades dos materiais de partida alimentados, o tipo e quantidade do catalisador, as condições de reação, e assim em diante. O tempo de reação geralmente está na faixa de 0,1 a 20 h, preferivelmente de 0,5 a 15 h, mais preferivelmente de 1 a 10 horas.
A temperatura de reação varia dependendo do tipo dos compostos de material de partida usados, e o tipo e a quantidade do catalisador. A temperatura de reação geralmente está na faixa de 30 a 300°C. Prefere-se aumentar a temperatura de reação de modo a aumentar a taxa de reação. No entanto, se a temperatura de reação for muito elevada, então as reações laterais podem ocorrer. A temperatura de reação está assim preferivelmente na faixa de 40 a 250°C, mais preferivelmente de 50 a 200°C, ainda mais preferivelmente 60 a 150°C. Na presente invenção, a destilação reativa pode ser realizada com a temperatura de fundo da coluna fixada em não mais do que 150°C, preferivelmente não mais que 130°C, mais preferivelmente não mais que IlO0C, ainda mais preferivelmente não mais que 1OO°C. Um aspecto característico excelente da presente invenção é que a conversão elevada, seletividade elevada, e produtividade elevada podem ser atingidas mesmo com tal temperatura baixa de fundo da coluna. Além disso, a pressão de reação varia dependendo do tipo dos compostos de material de partida usados e a composição entre os mesmos, a temperatura de reação, e assim em diante. A pressão de reação pode ser qualquer uma dentre pressão reduzida, pressão normal, ou uma pressão aplicada, e geralmente está na faixa de 1 a 2x107 Pa, preferivelmente de 103 a 107 Pa, mais preferivelmente de 14 a 5xl06 Pa.
O material constituindo a coluna de destilação contínua de estágios múltiplos usada na presente invenção é geralmente um material metálico como aço carbono ou aço inoxidável. Nos termos da qualidade do carbonato de dialquila e diol a serem produzidos, aço inoxidável é preferível.
Exemplos
A seguir, apresenta-se uma descrição mais detalhada da presente invenção através de exemplos. No entanto, a presente invenção não é limitada aos seguintes exemplos.
Exemplo 1:
<Coluna de destilação contínua de estágios múltiplos>
Uma coluna de destilação contínua de estágios múltiplos como mostrado na FIG. 1 tendo L = 3300 cm, D = 300 cm, L / D = 11, η = 60, D / di = 7,5, e D / d2 = 12 foi usada. As bandejas na coluna de destilação foram bandejas perfuradas, cada tendo a área de seção transversal por orifício na porção perfurada da mesma de aproximadamente 1,3 cm e um número de orifícios de aproximadamente 180 a 32 /m2. A relação de abertura de cada uma das bandejas estava em uma faixa de 2,1 a 4,2%.
<Destilação reativa>
3,27 Toneladas/h de carbonato de etileno em uma forma líquida foram continuamente introduzidos na coluna de destilação de uma entrada (3-a) provida no 55° estágio do fundo. 3,238 Toneladas/h de metanol em uma forma gasosa (contendo 8,96% em massa de carbonato de dimetila) e 7,489 toneladas/h de metanol em uma forma líquida (contendo 6,66% em peso de carbonato de dimetila) foram respectivamente continuamente introduzidas na coluna de destilação a partir das entradas (3-b e 3-c) provida no 31° estágio do fundo. A relação molar dos materiais de partida introduzida na coluna de destilação foi metanol / carbonato de etileno = 8,36.
O catalisador usado foi obtido por adição de 4,8 toneladas de etileno glicol a 2,5 toneladas de KOH (48% em peso de solução aquosa), aquecendo a aproximadamente 130°C, reduzindo gradualmente a pressão, e realizando o tratamento térmico durante aproximadamente 3 horas a aproximadamente 1300 Pa, de modo a produzir uma solução homogênea. Esta solução de catalisador foi continuamente introduzida na coluna de destilação de uma entrada (3-e) provida no 54s estágio do fundo (concentração K: 0,1% em peso com base em carbonato de etileno alimentado). A destilação reativa foi realizada continuamente sob condições de uma temperatura de fundo da coluna de 98°C, uma pressão do topo da coluna de aproximadamente 1,118x105 Pa, e uma relação de refluxo de 0,42.
Foi possível atingir uma operação estável em estado uniforme após 24 horas. Uma mistura de reação de ponto de ebulição baixo retirada do topo 1 da coluna em uma forma gasosa foi resfriada usando um trocador de calor e assim se tornou um líquido. A mistura de reação líquida de ponto de ebulição baixo, que foi continuamente retirada da coluna de destilação a 10,678 toneladas/h, continha 4,129 toneladas/h de carbonato de dimetila, e 6,549 toneladas/h de metanol. Um líquido continuamente retirado do fundo 2 da coluna a 3,382 toneladas/h continha 2,356 toneladas/h de etileno glicol, 1,014 toneladas/h de metanol, e 4 kg/h de carbonato de etileno não reagido. Excluindo o carbonato de dimetila contido no material de partida, a quantidade produzida real de carbonato de dimetila foi de 3,340 toneladas/h, e excluindo o etileno glicol contido na solução do catalisador, a quantidade produzida real de etileno glicol foi de 2,301 toneladas/h. A conversão de carbonato de etileno foi de 99,88%, a seletividade de carbonato de dimetila não foi menor do que 99,99%, e a seletividade de etileno glicol não foi menor do que 99,99%.
A operação contínua prolongada foi realizada sob estas condições. Após 500 horas, 2000 horas, 4000 horas, 5000 horas, e 6000 horas, as quantidades reais produzidas por hora foram de 3,340 toneladas, 3,340 toneladas, 3,340 toneladas, 3,340 toneladas, e 3,340 toneladas respectivamente para carbonato de dimetila, e 2,301 toneladas, 2,301 toneladas, 2,301 toneladas, 2,301 toneladas, e 2,301 toneladas respectivamente para etileno glicol, as conversões de carbonato de etileno foram respectivamente de 99,90%, 99,89%, 99,89%, 99,88%, e 99,88%, as seletividades de carbonato de dimetila foram, respectivamente, não menores do que 99,99%, não menores do que 99,99%, não menores do que 99,99%, não menores do que 99,99%, e não menores do que 99,99%, e as seletividades de etileno glicol foram, respectivamente, não menores do que 99,99%, não menores do que 99,99%, não menores do que 99,99%, não menores do que 99,99%, e não menores do que 99,99%.
Exemplo 2:
A destilação reativa foi realizada sob as seguintes condições usando a mesma coluna de destilação contínua de estágios múltiplos como no exemplo 1. 2,61 Toneladas/h de carbonato de etileno em uma forma líquida foram continuamente introduzidas na coluna de destilação da entrada (3-a) provida no 55- estágio do fundo. 4,233 Toneladas/h de metanol em uma forma gasosa (contendo 2,41% em massa de carbonato de dimetila) e 4,227 toneladas/h de metanol em uma forma líquida (contendo 1,46% em massa de carbonato de dimetila) foram respectivamente continuamente introduzidas na coluna de destilação a partir das entradas (3-b e 3-c) provida no 31- estágio do fundo. A relação molar dos materiais de partida introduzidos na coluna de destilação foi metanol / carbonato de etileno = 8,73. O catalisador foi levado a ser o mesmo como no exemplo 1, e continuamente alimentado na coluna de destilação. A destilação reativa foi realizada continuamente sob condições de uma temperatura de fundo de coluna de 93°C, uma pressão de topo de coluna de aproximadamente 1,046x105 Pa, e uma relação de refluxo de 0,48.
Foi possível atingir uma operação estável em estado uniforme após 24 horas. Uma mistura de reação de ponto de ebulição baixo retirada do topo 1 da coluna em uma forma gasosa foi resfriada usando um trocador de calor e assim se tornou um líquido. A mistura de reação líquida de ponto de ebulição baixo, que foi continuamente retirada da coluna de destilação a 8,17 toneladas/h, continha 2,84 toneladas/h de carbonato de dimetila, e 5,33 toneladas/h de metanol. Um líquido continuamente retirado do fundo 2 da coluna a 2,937 toneladas/h continha 1,865 toneladas/h de etileno glicol, 1,062 toneladas/h de metanol, e 0,2 kg/h de carbonato de etileno não reagido. Excluindo o carbonato de dimetila contido no material de partida, a quantidade real produzida de carbonato de dimetila foi de 2,669 toneladas/h, e excluindo o etileno glicol contido na solução do catalisador, a quantidade real produzida de etileno glicol foi de 1,839 toneladas/h. A conversão de carbonato de etileno foi de 99,99%, a seletividade de carbonato de dimetila não foi menor do que 99,99%, e a seletividade de etileno glicol não foi menor do que 99,99%.
A operação contínua prolongada foi realizada sob estas condições. Após 1000 horas, 2000 horas, 3000 horas, e 5000 horas, as quantidades produzidas reais por hora foram de 2,669 toneladas, 2,669 toneladas, 2,669 toneladas, e 2,669 toneladas respectivamente para carbonato de dimetila, e 1,839 toneladas, 1,839 toneladas, 1,839 toneladas, e 1,839 toneladas respectivamente para etileno glicol, as conversões de carbonato de etileno foram respectivamente de 99,99%, 99,99%, 99,99%, e 99,99%, as seletividades de carbonato de dimetila foram respectivamente não menores do que 99,99%, não menores do que 99,99%, não menores do que 99,99%, e não menores do que 99,99%, e as seletividades de etileno glicol foram respectivamente não menores do que 99,99%, não menores do que 99,99%, não menores do que 99,99%, e não menores do que 99,99%.
Exemplo 3:
A coluna de destilação contínua de estágios múltiplos como mostrado na FIG. 1 tendo L = 3300 cm, D = 300 cm, L / D = 11, η = 60, D / di = 7,5, e D / d2 = 12 foi usada. As bandejas na coluna de destilação foram bandejas perfuradas, cada tendo uma área de seção transversal por orifício na porção perfurada da mesma de aproximadamente 1,3 cm2 e um número de orifícios de aproximadamente 220 a 340/m2. A relação de abertura de cada uma das bandejas estava em uma faixa de 2,5 a 4,5%.
3,773 Toneladas/h de carbonato de etileno em uma forma líquida foram continuamente introduzidas na coluna de destilação de uma entrada (3-a) provida no 55° estágio do fundo. 3,736 Toneladas/h de metanol em uma forma gasosa (contendo 8,97% em massa de carbonato de dimetila) e 8,641 toneladas/h de metanol em uma forma líquida (contendo 6,65% em massa de carbonato de dimetila) foram respectivamente continuamente introduzidas na coluna de destilação a partir das entradas (3-b e 3-c) provida no 312 estágio do fundo. A relação molar dos materiais de partida introduzidos na coluna de destilação foi metanol / carbonato de etileno = 8,73. O catalisador foi levado a ser o mesmo como no exemplo 1, e continuamente alimentado na coluna de destilação. A destilação reativa foi realizada continuamente sob condições de uma temperatura de fundo de coluna de 98°C, pressão de topo de coluna de aproximadamente 1,118x105 Pa, e relação de refluxo de 0,42.
Foi possível atingir uma operação estável em estado uniforme após 24 horas. Uma mistura de reação de ponto de ebulição baixo retirada do topo da coluna em uma forma gasosa foi resfriada usando um trocador de calor e assim se tornou um líquido. A mistura de reação líquida de ponto de ebulição baixo, que foi continuamente retirada da coluna de destilação a 12,32 toneladas/h, continha 4,764 toneladas/h de carbonato de dimetila, e 7,556 toneladas/h de metanol. Um líquido continuamente retirado do fundo da coluna a 3,902 toneladas/h continha 2,718 toneladas/h de etileno glicol, 1,17 toneladas/h de metanol, e 4,6 kg/h de carbonato de etileno não reagido. Excluindo o carbonato de dimetila contido no material de partida, a quantidade real produzida de carbonato de dimetila foi de 3,854 toneladas/h, e excluindo o etileno glicol contido na solução do catalisador, a quantidade produzida real de etileno glicol foi de 2,655 toneladas/h. A conversão de carbonato de etileno foi de 99,88%, a seletividade de carbonato de dimetila não foi menor do que 99,99%, e a seletividade de etileno glicol não foi menor do que 99,99%.
A operação contínua prolongada foi realizada sob estas condições. Após 1000 horas, 2000 horas, 3000 horas, e 5000 horas, as quantidades reais produzidas por hora foram de 3,854 toneladas, 3,854 toneladas, 3,854 toneladas, e 3,854 toneladas respectivamente para carbonato de dimetila, e 2,655 toneladas, 2,655 toneladas, 2,655 toneladas, e 2,655 toneladas respectivamente para etileno glicol, as conversões de carbonato de etileno foram respectivamente de 99,99%, 99,99%, 99,99%, e 99,99%, as seletividades de carbonato de dimetila foram respectivamente não menores do que 99,99%, não menores do que 99,99%, não menores do que 99,99%, e não menores do que 99,99%, e as seletividades de etileno glicol foram respectivamente não menores do que 99,99%, não menores do que 99,99%, não menores do que 99,99%, e não menores do que 99,99%.
Exemplo 4:
A coluna de destilação contínua de estágios múltiplos como mostrado na FIG. 1 tendo L = 3300 cm, D = 300 cm, L / D = 11, η = 60, D / di = 7,5, e D / d2 = 12 foi usada. As bandejas na coluna de destilação foram bandejas perfuradas, cada tendo uma área de seção transversal por orifício na porção perfurada da mesma de aproximadamente 1,3 cm2 e um número de orifícios de aproximadamente 240 a 360/m2. A relação de aberturas de cada uma das bandejas estava na faixa de 3,0 a 5,0%.
7,546 Toneladas/h de carbonato de etileno em uma forma líquida foram continuamente introduzidas na coluna de destilação de uma entrada (3-a) provida no 55- estágio do fundo. 7,742 Toneladas/h de metanol em uma forma gasosa (contendo 8,95% em massa de carbonato de dimetila) e 17,282 toneladas/h de metanol em uma forma líquida (contendo 6,66% em massa de carbonato de dimetila) foram respectivamente continuamente introduzidas na coluna de destilação a partir das entradas (3-b e 3-c) providas no 31a estágio do fundo. A relação molar dos materiais de partida introduzidos na coluna de destilação foi metanol / carbonato de etileno = 8,36. O catalisador foi levado a ser o mesmo como no exemplo 1, e continuamente alimentado na coluna de destilação. A destilação reativa foi realizada continuamente sob condições de uma temperatura de topo de coluna de 65°C, uma pressão de topo de coluna de aproximadamente 1,118x105 Pa, e uma relação de refluxo de 0,42.
Foi possível atingir uma operação estável de estado uniforme após 24 horas. Uma mistura de reação de ponto de ebulição baixo retirada do topo 1 da coluna em uma forma gasosa foi resfriada usando um trocador de calor e assim se tornou um líquido. A mistura de reação líquida de ponto de ebulição baixo, que foi continuamente retirada da coluna de destilação a 24,641 toneladas/h, continha 9,527 toneladas/h de carbonato de dimetila, e 15,114 toneladas/h de metanol. Um líquido continuamente retirado do fundo 2 da coluna a 7,804 toneladas/h continha 5,436 toneladas/h de etileno glicol, 2,34 toneladas/h de metanol, e 23 kg/h de carbonato de etileno não reagido. Excluindo o carbonato de dimetila contido no material de partida, a quantidade real produzida de carbonato de dimetila foi de 7,708 toneladas/h, e excluindo o etileno glicol contido na solução do catalisador, a quantidade real produzida de etileno glicol foi de 5,31 toneladas/h. A conversão de carbonato de etileno foi de 99,7%, a seletividade de carbonato de dimetila não foi menor do que 99,99%, e a seletividade de etileno glicol não foi menor do que 99,99%.
A operação contínua prolongada foi realizada sob estas condições. Após 1000 horas, a quantidade real produzida por hora foi de 7,708 toneladas para carbonato de dimetila, e 5,31 toneladas para etileno glicol, a conversão de carbonato de etileno foi de 99,8%, a seletividade de carbonato de dimetila não foi menor do que 99,99%, e a seletividade de etileno glicol não foi menor do que 99,99%.
Aplicabilidade industrial
De acordo com a presente invenção, descobriu-se que o carbonato de dialquila e o diol podem ser produzidos cada com uma seletividade elevada não menor do que 95%, preferivelmente não menor do que 97%, mais preferivelmente não menor do que 99%, em uma escala industrial não menor do que 2 toneladas/h, preferivelmente não menor do que 3 toneladas/h, mais preferivelmente não menor do que 4 toneladas/h, para o carbonato de dialquila, e não menor do que 1,3 toneladas/h, preferivelmente não menor do que 1,95 toneladas/h, mais preferivelmente não menor do que 2,6 toneladas/h, para o diol, com um elevado rendimento de modo estável durante um período prolongado de tempo de não menos do que 1000 horas, preferivelmente não menos do que 3000 horas, mais preferivelmente não menos do que 5000 horas, a partir de um carbonato cíclico e de um álcool monoídrico alifático.

Claims (22)

1. Processo para produzir industrialmente um carbonato de dialquila e um diol em que o carbonato de dialquila e o diol são continuamente produzidos através de um sistema de destilação reativa tomando-se um carbonato cíclico e um álcool monoídrico alifático como materiais de partida, caracterizado pelo fato de compreender as etapas de: continuamente alimentar os materiais de partida em uma coluna de destilação contínua de estágios múltiplos em que um catalisador homogêneo está presente; realizar a reação e a destilação simultaneamente na referida coluna; continuamente retirar uma mistura de reação de ponto de ebulição baixo contendo o carbonato de dialquila produzido de uma porção superior da coluna em uma forma gasosa; e continuamente retirar uma mistura de reação de ponto de ebulição elevado contendo o diol de uma porção inferior da coluna em uma forma líquida, em que: referida coluna de destilação contínua de estágios múltiplos compreende uma porção de tronco cilíndrico tendo um comprimento L (cm) e um diâmetro interno D (cm) e tendo, dentro da mesma, uma bandeja com um número de estágios n, e compreende uma saída de gás tendo um diâmetro interno di (cm) provido em um topo da coluna ou na porção superior da coluna próxima do topo, uma saída de líquido tendo um diâmetro interno d2 (cm) provida em um fundo da coluna ou na porção inferior da coluna próxima do fundo, pelo menos uma primeira entrada provida na porção superior e/ou uma porção do meio da coluna abaixo da referida saída de gás, e pelo menos uma segunda entrada provida na porção do meio e/ou a porção inferior da coluna acima da referida saída de líquido, em que: (1) o comprimento L (cm) atende à fórmula (1); -2100 ≤L≤ 8000 (1), (2) o diâmetro interno D (cm) da coluna atende à fórmula (2); -180 ≤D≤ 2000 (2), (3) uma relação do comprimento L (cm) para o diâmetro interno D (cm) da coluna atende à fórmula (3); -4 ≤ L / D ≤ 40 (3), (4) o número de estágios η atende à fórmula (4); -10≤ n ≤ 120 (4), (5) uma relação do diâmetro interno D (cm) da coluna para o diâmetro interno di (cm) da saída de gás atende à fórmula (5); -3 ≤ D / d1 20 (5), e (6) uma relação do diâmetro interno D (cm) da coluna para o diâmetro interno d2 (cm) da saída de líquido atende à fórmula (6); -5≤D/d2≤30 (6);e (7) uma relação de abertura de cada bandeja está em uma faixa de 1,5 a 10%.
2. Processo de acordo com a reivindicação 1, caracterizado pelo fato de que a quantidade produzida do carbonato de dialquila não é menor do que 2 toneladas/h.
3. Processo de acordo com a reivindicação 1 ou 2, caracterizado pelo fato de que uma quantidade produzida do diol não é menor do que 1,3 toneladas/h.
4. Processo de acordo com qualquer uma das reivindicações 1 a 3, caracterizado pelo fato de que referido di e referido d2 atendem à fórmula (7); -1 ≤ d, / d2 ≤ 5 (7),
5. Processo de acordo com qualquer uma das reivindicações 1 a -4, caracterizado pelo fato de que L, D, L/D, n, D/d1, e D/d2 para a referida coluna de destilação contínua de estágios múltiplos atendem à seguintes fórmulas; 2300 < L < 6000, 200 < D < 1000, 5 < L/D < 30, 30 < n < 100,4 < D/d1 < 15, e 7 < D/d2 < 25, respectivamente.
6. Processo de acordo com qualquer uma das reivindicações 1 a -5, caracterizado pelo fato de que L, D, L/D, n, D/d1, e D/d2 para referida coluna de destilação contínua de estágios múltiplos atendem à seguintes fórmulas; 2500 < L < 5000, 210 < D < 800, 7 < L/D < 20, 40 < n < 90, 5 < D/d1 < 13, e 9 < D/d2 < 20, respectivamente.
7. Processo de acordo com qualquer uma das reivindicações 1 a -6, caracterizado pelo fato de que a relação de abertura de cada bandeja está em uma faixa de 1,7 a 8,0%.
8. Processo de acordo com qualquer uma das reivindicações 1 a -7, caracterizado pelo fato de que a relação de abertura de cada bandeja está em uma faixa de 1,9 a 6,0%.
9. Processo de acordo com qualquer uma das reivindicações 1 a -8, caracterizado pelo fato de que a referida bandeja é uma bandeja perfurada tendo uma porção perfurada e uma porção de prato perfurado,
10. Processo de acordo com a reivindicação 9, caracterizado pelo fato de que a referida bandeja perfurada tem 100 a 1000 orifícios/m2 na referida porção perfurada da mesma.
11. Processo de acordo com a reivindicação 9 ou 10, caracterizado pelo fato de que uma área de seção transversal por orifício da bandeja perfurada está na faixa de 0,5 a 5 cm2.
12. Processo de acordo com a reivindicação 10 ou 11, caracterizado pelo fato de que uma relação de abertura (uma relação de área de seção transversal total dos orifícios para uma área total da placa perfurada contendo a área da porção de orifício) de referida bandeja perfurada está em uma faixa de 1,9 a 6,0%.
13. Coluna de destilação contínua de estágios múltiplos para realizar transesterificação entre um carbonato cíclico e um álcool monoídrico alifático e destilação, a coluna de destilação contínua de estágios múltiplos caracterizada pelo fato de compreender: uma porção de tronco cilíndrico tendo um comprimento L (cm) e um diâmetro interno D (cm); uma bandeja tendo um número de estágios η provido dentro da referida porção de tronco; uma saída de gás tendo um diâmetro interno di (cm) provido em um topo da referida coluna ou em uma porção superior da referida coluna próxima do topo; uma saída de líquido tendo um diâmetro interno d2 (cm) provido em um fundo de referida coluna ou em uma porção inferior de referida coluna próxima do fundo; pelo menos uma primeira entrada provida na porção superior e/ou uma porção do meio de referida coluna abaixo de referida saída de gás; e pelo menos uma segunda entrada provida na porção do meio e/ou a porção inferior da referida coluna acima de referida saída de líquido; em que: (1) o comprimento L (cm) atende à fórmula (1); -2100 <L< 8000 (1), (2) o diâmetro interno D (cm) da coluna atende à fórmula (2); -180 <D<2000 (2), (3) uma relação do comprimento L (cm) para o diâmetro interno D (cm) da coluna atende à fórmula (3); -4 < L / D < 40 (3), (4) o número de estágios η atende à fórmula (4); -10 ≤ n ≤ 120 (4), (5) uma relação do diâmetro interno D (cm) da coluna para o diâmetro interno dj (cm) da saída de gás atende à fórmula (5); -3 ≤ D / d1 ≤ 20 (5), e (6) uma relação do diâmetro interno D (cm) da coluna para o diâmetro interno d2 (cm) da saída de líquido atende à fórmula (6); -5 ≤ D / d2 ≤ 30 (6); e (7) uma relação de abertura de cada bandeja está em uma faixa de 1,5 a 10%.
14. Coluna de destilação contínua de estágios múltiplos de acordo a reivindicação 13, caracterizada pelo fato de que referido di e referido d2 atendem à fórmula (7): -1 ≤ d1 / d2 ≤ 5 (7),
15. Coluna de destilação contínua de estágios múltiplos de acordo com a reivindicação 13 ou 14, caracterizada pelo fato de que L, D, L / D, n, D / di e D / D2 para referida coluna de destilação contínua de estágios múltiplos atendem às seguintes fórmulas; 2300 ≤ L ≤ 6000, 200 ≤ D ≤ 1000, -5 ≤ L/D ≤ 30, 30 ≤ n ≤ 100, 4 ≤ D/d1 ≤ 15, e 7 ≤ D/d2 ≤ 25, respectivamente.
16. Coluna de destilação contínua de estágios múltiplos de acordo com qualquer uma das reivindicações 13 a 15, caracterizada pelo fato de que L, D, L/D, n, D/di, e D/d2 para a referida coluna de destilação contínua de estágios múltiplos atendem à seguintes fórmulas; 2500 ≤ L ≤ -5000, 210 ≤ D ≤ 800, 7 ≤ L/D ≤ 20, 40 ≤ n ≤ 90, 5 ≤ D/d1 ≤ 13, e 9 ≤ D/d2 ≤ 20, respectivamente.
17. Coluna de destilação contínua de estágios múltiplos de acordo com qualquer uma das reivindicações 13 a 16, caracterizada pelo fato de que a relação de abertura de cada bandeja está em uma faixa de 1,7 a 8,0%.
18. Coluna de destilação contínua de estágios múltiplos de acordo com qualquer uma das reivindicações 13 a 17, caracterizada pelo fato que a relação de abertura de cada bandeja está em uma faixa de 1,9 a 6,0%.
19. Coluna de destilação contínua de estágios múltiplos de acordo com qualquer uma das reivindicações 13 a 18, caracterizada pelo fato de que a referida bandeja é uma bandeja perfurada tendo uma porção perfurada e uma porção de prato perfurado.
20. Coluna de destilação contínua de estágios múltiplos de acordo com a reivindicação 19, caracterizada pelo fato de que a referida bandeja perfurada tem 100 a 1000 orifícios/m2 na referida porção perfurada da mesma.
21. Coluna de destilação contínua de estágios múltiplos de acordo com a reivindicação 19 ou 20, caracterizada pelo fato de que uma área de seção transversal por orifício da referida bandeja perfurada está na faixa de 0,5 a 5 cm2.
22. Coluna de destilação contínua de estágios múltiplos de acordo com a reivindicação 20 ou 21, caracterizada pelo fato de que uma relação de abertura (uma relação de área de seção transversal total dos orifícios para uma área total da placa perfurada contendo a área da porção de orifício) de referida bandeja perfurada está em uma faixa de 1,9 a 6,0%.
BRPI0619100-2A 2005-12-12 2006-11-30 processo para produzir industrialmente um carbonato de dialquila e um diol, e, coluna de destilação contìnua de estágios múltiplos BRPI0619100A2 (pt)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005357704 2005-12-12
JP2005-357704 2005-12-12
PCT/JP2006/323910 WO2007069462A1 (ja) 2005-12-12 2006-11-30 ジアルキルカーボネートとジオール類の工業的製造方法

Publications (1)

Publication Number Publication Date
BRPI0619100A2 true BRPI0619100A2 (pt) 2011-09-13

Family

ID=38162773

Family Applications (1)

Application Number Title Priority Date Filing Date
BRPI0619100-2A BRPI0619100A2 (pt) 2005-12-12 2006-11-30 processo para produzir industrialmente um carbonato de dialquila e um diol, e, coluna de destilação contìnua de estágios múltiplos

Country Status (10)

Country Link
US (1) US20090326257A1 (pt)
EP (1) EP1961721A1 (pt)
JP (1) JP4236276B2 (pt)
KR (1) KR20080067709A (pt)
CN (1) CN101326146B (pt)
BR (1) BRPI0619100A2 (pt)
EA (1) EA012027B1 (pt)
IN (1) IN2008KO00907A (pt)
TW (1) TW200734293A (pt)
WO (1) WO2007069462A1 (pt)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8058465B2 (en) 2005-11-25 2011-11-15 Asahi Kasei Chemicals Corporation Process for industrially producing dialkyl carbonate and diol
TWI314549B (en) 2005-12-26 2009-09-11 Asahi Kasei Chemicals Corp Industrial process for separating out dialkyl carbonate
BR112014013557A2 (pt) 2011-12-05 2017-06-13 Basf Se processo para obter um carbonato de dialquila e um alquileno glicol
WO2023058681A1 (ja) 2021-10-05 2023-04-13 旭化成株式会社 高純度ジアリールカーボネートの製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3642858A (en) * 1969-02-12 1972-02-15 Dow Chemical Co Carbonate synthesis from alkylene carbonates
US3803201A (en) * 1971-02-22 1974-04-09 Dow Chemical Co Synthesis of dimethyl carbonate
IT1034961B (it) * 1975-04-09 1979-10-10 Snam Progetti Procedimento per la preparazione di dialchilcarbonati
DE2740243A1 (de) * 1977-09-07 1979-03-15 Bayer Ag Verfahren zur herstellung von dialkylcarbonaten
DE2740251A1 (de) * 1977-09-07 1979-03-22 Bayer Ag Verfahren zur herstellung von dialkylcarbonaten
US4691041A (en) * 1986-01-03 1987-09-01 Texaco Inc. Process for production of ethylene glycol and dimethyl carbonate
US4661609A (en) * 1986-07-31 1987-04-28 Texaco Inc. Process for cosynthesis of ethylene glycol and dimethyl carbonate
US4734518A (en) * 1987-01-12 1988-03-29 Texaco Inc. Process for cosynthesis of ethylene glycol and dimethyl carbonate
DE4129316A1 (de) * 1991-09-03 1993-03-04 Bayer Ag Verfahren zur kontinuierlichen herstellung von dialkylcarbonaten
DE4216121A1 (de) * 1992-05-15 1993-11-18 Bayer Ag Verfahren zur kontinuierlichen Herstellung von Dialkylcarbonaten
JP3652035B2 (ja) * 1995-10-31 2005-05-25 旭化成ケミカルズ株式会社 ジアルキルカーボネートおよびジオールの連続的製造法
DE69620470T2 (de) * 1995-12-22 2002-11-21 Asahi Chemical Ind Verfahren zur kontinuierlichen herstellung von dialkylcarbonaten und diolen
AU2827900A (en) * 1999-03-03 2000-09-21 Asahi Kasei Kabushiki Kaisha Process for continuously producing dialkyl carbonate and diol
JP3963357B2 (ja) * 2002-05-23 2007-08-22 三菱化学株式会社 ジメチルカーボネート及びエチレングリコールの製造方法
EP1760059B1 (en) * 2004-06-17 2016-04-06 Asahi Kasei Chemicals Corporation Process for producing dialkyl carbonate and diol
WO2006001256A1 (ja) * 2004-06-25 2006-01-05 Asahi Kasei Chemicals Corporation 芳香族カーボネートの工業的製造法

Also Published As

Publication number Publication date
KR20080067709A (ko) 2008-07-21
IN2008KO00907A (pt) 2008-12-19
EA200801330A1 (ru) 2009-02-27
JPWO2007069462A1 (ja) 2009-05-21
EA012027B1 (ru) 2009-06-30
CN101326146B (zh) 2011-12-28
EP1961721A1 (en) 2008-08-27
CN101326146A (zh) 2008-12-17
US20090326257A1 (en) 2009-12-31
JP4236276B2 (ja) 2009-03-11
TW200734293A (en) 2007-09-16
WO2007069462A1 (ja) 2007-06-21

Similar Documents

Publication Publication Date Title
BRPI0620605A2 (pt) processo industrial para separar um carbonato de dialquila, carbonato de dialquila, e, coluna de destilaÇço contÍnua de estÁgios méltiplos
JP4986867B2 (ja) 高純度ジオールを工業的に製造する方法
BRPI0620606A2 (pt) Processo industrial para a produção de um carbonato de dialquila e de um diol, e, carbonato de dialquila
BRPI0620119A2 (pt) processo industrial para a produção de um carbonato de dialquila e de um diol, e, coluna de destilação contìnua de estágios múltiplos
JP2006206497A (ja) ジアルキルカーボネートおよびジオールを製造する方法
BRPI0619099A2 (pt) processo para a produção de um carbonato de dialquila e de um diol, e, coluna de destilação contìnua de estágios múltiplos
BRPI0619100A2 (pt) processo para produzir industrialmente um carbonato de dialquila e um diol, e, coluna de destilação contìnua de estágios múltiplos
JP5074213B2 (ja) ジオールの工業的製造方法
BRPI0619423A2 (pt) processo industrial para a produção de um carbonato de dialquila e de um diol
BRPI0619165A2 (pt) processo industrial para a produção de um carbonato de diarila de pureza elevada,e, carbonato de diarila de pureza elevada
BRPI0707214A2 (pt) processo industrial para a produção de um diol de pureza elevada, diol de pureza elevada, e, colunas de destilação contìnua de estágio múltiplos
BRPI0619824A2 (pt) processo industrial para a produção de um carbonato aromático, e carbonato aromático
BRPI0618334B1 (pt) processo para a produção industrial de um carbonato de dialquila e de um diol, e, coluna de destilação contínua de estágios múltiplos
EP1953131A1 (en) Process for industrial production of dialkyl carbonates and diols
BRPI0620910B1 (pt) processo industrial para a produção de um diol de pureza elevada, diol de pureza elevada, e, coluna de destilação contínua de estágios múltiplos

Legal Events

Date Code Title Description
B08F Application dismissed because of non-payment of annual fees [chapter 8.6 patent gazette]

Free format text: REFERENTE A 5A ANUIDADE.

B08K Patent lapsed as no evidence of payment of the annual fee has been furnished to inpi [chapter 8.11 patent gazette]

Free format text: REFERENTE AO DESPACHO 8.6 PUBLICADO NA RPI 2161 DE 05/06/2012.