BR102012005857A2 - mÉtodo para reconhecer ao menos uma caracterÍstica do combustÍvel em um motor a combustço interna - Google Patents

mÉtodo para reconhecer ao menos uma caracterÍstica do combustÍvel em um motor a combustço interna Download PDF

Info

Publication number
BR102012005857A2
BR102012005857A2 BR102012005857-0A BR102012005857A BR102012005857A2 BR 102012005857 A2 BR102012005857 A2 BR 102012005857A2 BR 102012005857 A BR102012005857 A BR 102012005857A BR 102012005857 A2 BR102012005857 A2 BR 102012005857A2
Authority
BR
Brazil
Prior art keywords
internal combustion
combustion engine
recognition method
synthetic index
value
Prior art date
Application number
BR102012005857-0A
Other languages
English (en)
Other versions
BR102012005857A8 (pt
BR102012005857B1 (pt
Inventor
Stefano Sgatti
Alberto Bucci
Nicola Cavina
Marco Cesaroni
Filippo Cavanna
Ludovico Ausiello
Original Assignee
Magneti Marelli Spa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magneti Marelli Spa filed Critical Magneti Marelli Spa
Publication of BR102012005857A2 publication Critical patent/BR102012005857A2/pt
Publication of BR102012005857A8 publication Critical patent/BR102012005857A8/pt
Publication of BR102012005857B1 publication Critical patent/BR102012005857B1/pt

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/12Testing internal-combustion engines by monitoring vibrations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/42Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
    • A61B5/4211Diagnosing or evaluating reflux
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4209Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames
    • A61B8/4227Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames characterised by straps, belts, cuffs or braces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4455Features of the external shape of the probe, e.g. ergonomic aspects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/026Measuring or estimating parameters related to the fuel supply system
    • F02D19/029Determining density, viscosity, concentration or composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0639Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed characterised by the type of fuels
    • F02D19/0649Liquid fuels having different boiling temperatures, volatilities, densities, viscosities, cetane or octane numbers
    • F02D19/0652Biofuels, e.g. plant oils
    • F02D19/0655Biofuels, e.g. plant oils at least one fuel being an alcohol, e.g. ethanol
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0431Portable apparatus, e.g. comprising a handle or case
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6831Straps, bands or harnesses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7282Event detection, e.g. detecting unique waveforms indicative of a medical condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7475User input or interface means, e.g. keyboard, pointing device, joystick
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/42Details of probe positioning or probe attachment to the patient
    • A61B8/4272Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue
    • A61B8/4281Details of probe positioning or probe attachment to the patient involving the acoustic interface between the transducer and the tissue characterised by sound-transmitting media or devices for coupling the transducer to the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4416Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to combined acquisition of different diagnostic modalities, e.g. combination of ultrasound and X-ray acquisitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4477Constructional features of the ultrasonic, sonic or infrasonic diagnostic device using several separate ultrasound transducers or probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/56Details of data transmission or power supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • F02D2041/288Interface circuits comprising means for signal processing for performing a transformation into the frequency domain, e.g. Fourier transformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/025Engine noise, e.g. determined by using an acoustic sensor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Botany (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physiology (AREA)
  • Biotechnology (AREA)
  • Sustainable Development (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Sustainable Energy (AREA)
  • General Physics & Mathematics (AREA)
  • Databases & Information Systems (AREA)
  • Epidemiology (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Endocrinology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Primary Health Care (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

MÉTODO PARA RECONHECER AO MENOS UMA CARACTERÍSTICA DO COMBUSTÍVEL EM UM MOTOR A COMBUSTçO INTERNA. Um método para reconhecer ao menos uma característica do combustível em um motor de combustão interna (1); o método de reconhecimento inclui as etapas de: detectar, por meio de ao menos um sensor, a intensidade (S) das vibrações geradas pelo motor de combustão interna (1) dentro de uma janela de tempo de medição; determinar o valor de ao menos um índice sintético (I) através do processamento da intensidade (S) das vibrações geradas pelo motor de combustão interna (1) dentro da jenala de tempo de medição; comparar o índice sintético (I) com ao menos um predeterinado valor de comparação (TH); e reconhecer a característica do combustível como uma função da comparação entre o índice sintético (I) e o valor de comparação (TH).

Description

Método para reconhecer ao menos uma característica do combustível em um motor
a combustão interna.
CAMPO TÉCNICO
A presente invenção se refere a um método para reconhecer ao menos uma característica do combustível em um motor de combustão interna. ESTADO DA ARTE
Em algumas áreas do mundo (por exemplo, no Brasil), já há vários anos, os motores de combustão interna de ignição por centelha podem ser alimentados com diferentes tipos de combustível líquido (por exemplo, gasolina pura, álcool hidrato ou uma mistura de gasolina e álcool), que apresentam características diferentes (por exemplo, diferentes proporções estequiométricas de ar/combustível). Recentemente, os modernos motores a diesel também podem usar outros combustíveis além do diesel combustível puro, tais combustíveis são comercialmente chamados de "bio-diesel" e consistem de uma mistura de diesel combustível e combustíveis originados de bio-massa (por exemplo, óleos vegetais tais como o óleo de semente de colza).
Consequentemente, é importante para a unidade de controle eletrônico do motor saber o tipo de combustível que está atualmente utilizado pelo motor de combustão interna, de tal forma a ser capaz de otimizar o controle da combustão, como uma função das características do combustível efetivamente utilizados (por exemplo, é fundamental saber a real proporção estequiométrica de ar/combustível, a fim de minimizar a geração de poluentes, e é muito útil saber a volatilidade, para garantir a partida a "frio" correta do motor de combustão interna).
Diferentes métodos de reconhecimento de tipo de combustível são baseados nas informações fornecidas pela sonda Iambda presente no escapamento. No entanto, é sentida a necessidade de se ser capaz de usar outros métodos de reconhecimento de tipo de combustível que não explorem as informações fornecidas pela sonda Iambda presente no escape, a fim de ter a possibilidade de reconhecer o tipo de combustível também no modo de "recuperação", quando a sonda Iambda não está funcionando de forma correta, e para ter a possibilidade de comparar o reconhecimento do tipo de combustível realizada inicialmente a partir da informação fornecida pela sonda Iambda com um outro reconhecimento independente, de tal forma a aumentar a confiança do reconhecimento. DESCRIÇÃO DA INVENÇÃO
É o objetivo da presente invenção fornecer um método para reconhecer ao menos uma característica do combustível em um motor de combustão interna, sendo que o método de reconhecimento de não utiliza as informações fornecidas pela sonda Iambda presente no escapamento e, em particular, seja tanto fácil como de baixo custo para implementar.
De acordo com a presente invenção, é fornecido um método para reconhecer ao menos uma característica do combustível em um motor de combustão interna, conforme descrito nas reivindicações anexas. BREVE DESCRIÇÃO DOS DESENHOS
A presente invenção será agora descrita com referência aos desenhos acompanhantes, os quais ilustram uma forma de realização não Iimitativa da mesma, nos quais:
- a figura 1 é uma vista esquemática de um motor de combustão interna dotado de uma unidade de controle a qual implementa o método de reconhecimento de, ao menos, uma característica do combustível, objeto da presente invenção;
- a figura 2 é um gráfico que ilustra a FFT do ruído gerado pelo motor de combustão interna na figura 1, quando o motor de combustão interna em si utiliza dois tipos diferentes de combustível; e
- a figura 3 é um gráfico que ilustra o padrão de um índice sintético determinado como uma função da FFT do ruído gerado pelo motor de combustão interna na figura 1, quando o motor de combustão interna utiliza dois tipos diferentes de combustível e, em pontos diferentes do motor.
FORMAS DE REALIZAÇÃO PREFERIDAS DA INVENÇÃO
In figure 1, number 1 indicates as a whole an internai combustion engine comprising four cylinders 2 in straight arrangement. Each cylinder 2 comprises a respective piston 3 mechanically connected by means of a connecting rod to a drive shaft 4 for transmitting the force generated by the combustion in the cylinder 2 to the drive shaft 4 itself.
The internai combustion engine 1 is governed by an electronic control unit (normally named "ECU"), which is arranged near the internai combustion engine 1 and is normally accommodated in an engine compartment of the vehicle (not shown). The electronic control unit 5 comprises a microphone 6 (i.e. an acoustic type pressure sensor 6), which is accommodated within the control unit 5 and is adapted to detect the intensity"of the noise generated by the internai combustion engine 1 (i.e. is adapted to recognize the intensity of the acoustic - sound - pressure waves generated by the internai combustion engine 1).
In use, the electronic control unit 5 detects, by means of the microphone 6, the intensity S of the noise generated by the internai combustion engine 1 (i.e. of the vibrations generated by the internai combustion engine 1) in a measurement time window of a given amplitude (normally in the order of 1-5 tenths of a second). In the electronic control unit 5, the intensity S of the noise generated by the internai combustion engine 1 is digitalized using a relative high frequency sampling (in the order of 50 kHz). Subsequently, the electronic control unit 5 determines the value of at Ieast one synthetic index I by processing the intensity S of the noise generated by the internai combustion engine 1 in the measurement time window. The synthetic index I is compared with at Ieast one predetermined comparison quantity TH, and thus a feature (i.e. the composition) of the fuel used by the internai combustion engine 1 is recognized as a function of the comparison between the synthetic index I and the comparison quantity TH. The comparison quantity TH is experimentally determined during a step of calibrating performed by feeding fuels having different known features to the internai combustion engine 1 appropriately provided with Iaboratory instruments.
Normally, the comparison quantity TH is associated to a given recognition operating point of the internai combustion engine 1; in other words, the comparison quantity TH is determined in the recognition operating point, and is thus only valid at the recognition operating point itself. The operating point of the engine 1 (also said "engine point") is generally identified by a revolution rate value and by a Ioad value (provided by the aspiration pressure or by the aspiration efficiency, i.e. by the ratio between amount of air actually aspirated and the maximum amount of air which may be aspirated). The synthetic index I and the comparison quantity TH are only compared when the current operating point of the internai combustion engine 1 is a neighborhood of the recognition operating point, i.e. when the difference between the current parameters (revolution rate and load) and the recognition operation point parameters is "low" (i.e. Iowerthan a threshold, as an absolute value).
According to a preferred embodiment, the intensity S of the noise generated by the internai combustion engine 1 in the measurement time window is preventively filtered by a band-pass filter, or by a "A weighting" filter (or "A averaging", which is a particular type of equalization which enhances the frequencies mostly perceived by humans and cuts off those which are Iess audible).
During system calibration, the recognition operating point is chosen so as to optimize (maximize) the existing differences between different fuels; in other words, the perceivable differences in the noise generated by the internai combustion engine 1 as a function of the type of fuel used are Iess evident in some operating points and more evident in other operating points. In order to simplify the recognition of the type of fuel used, it is apparent that the recognition operating points should be chosen in a zone in which the differences existing between different fuels are maximum. In order to increase the possibility of recognition, it is possible to use several comparison quantities TH, each of which is associated to its own recognition operating point different from the other recognition operating points of the other comparison quantities TH.
According to a first, simplified (and thus more robust) recognition method, the electronic control unit 5 assigns a first value to the fuel feature if the synthetic index I is higher (Iower) than the comparison quantity TH1 and assigns a second value, different from the first value, to the fuel feature if the synthetic index I is Iower (higher) than the comparison quantity TH. This first, simplified mode is of the "binary" type, i.e. includes the choice of two different values only as a function of the comparison between the synthetic index I and the comparison quantity TH. According to a second, more refined (thus, at Ieast potentially, Iess robust) recognition method, the electronic control unit 5 calculates the value of the feature of the fuel by means of an interpolation performed as a function of the comparison between the synthetic index I and a comparison quantity TH. In this second, more refined recognition method at Ieast two comparison quantities TH are normally used, which delimit a window in which the synthetic index I is found, and the feature of the fuel is determined by interpolating the fuel feature values associated to the two comparison quantities TH.
According to a first embodiment, the electronic control unit 5 calculates the FFT (Fast Fourier Transform) of the intensity S of the noise generated by the internai combustion engine 1 in the measurement time window, and thus calculates the synthetic index value I in the frequency domain as a function of the amplitude of at Ieast one harmonic of the FFT. In some types of internai combustion engines 1, the synthetic index value I is only a function of the amplitude of the second harmonic of the FFT; in other words, the synthetic index I is equal to the energy levei of the second harmonic of the FFT. In other types of internai combustion engines 1, the value of the synthetic index I is only a function of the sum of the amplitudes of at Ieast two even harmonics of the FFT (typically, the sum of the amplitudes of the second harmonic of the FFT and of the fourth harmonic of the FFT). Alternatively, the value of the synthetic index I is a function only of the ratio between the amplitude of an even harmonic of the FFT and the amplitude of an odd harmonic of the FFT (e.g. the ratio between amplitude of the second harmonic of the FFT and the amplitude of the first harmonic of the FFT), or is a function of only the ratio between the sum of amplitudes of at Ieast two even harmonics of the FFT and the sum of the amplitudes of at Ieast two odd harmonics of the FFT, e.g. the ratio between the sum of the amplitude of the second harmonic of the FFT and of the fourth harmonic of the FFT, and the sum of the amplitude of the first harmonic of the FFT and of the third harmonic of the FFT). The value of the synthetic index I can also be correlated to the peak features of the amplitudes of the harmonics of the FFT, i.e. to how bigger and/or steeper is the difference between peak and valley in the spectrum of the harmonics of the FFT.
According to a different embodiment, the electronic control
unit 5 calculates the synthetic index I directly as a function of the time variation of the noise intensity S of the internai combustion engine 1, and thus calculates the value of the synthetic index I in the time domain. In this case, the synthetic index I is correlated to the timbre of the intensity S of the vibrations. It is worth noting that according to the constructive features of the internai combustion engine 1 (number of cylinders, position and conformation of the exhausts, number and actuation of the valves etc.) may considerable vary the generated noise timbre; thus, the best method for calculating the synthetic index I must be experimentally determined for each internai combustion engine 1, i.e. with which calculation method of the synthetic index I can recognition of the sought feature be optimized.
In the embodiment described above, the sensor used by the electronic control unit 5 is a microphone 6 and detects the intensity S of the noise generated by the internai combustion engine 1. In an equivalent embodiment, the sensor used by the electronic control unit 5 is an accelerometer 7, which is directly fitted on the internai combustion engine 1 and detects the intensity S of the mechanical vibrations generated by the internai combustion engine 1. In other words, in order to recognize the features of the fuel, the electronic control unit 5 uses the intensity S of vibrations generated by the internai combustion engine 1, and such vibrations may be acoustic (sound) vibrations, and thus detected by the microphone 6, or mechanical vibrations, and thus detected by the accelerometer 7. It is worth noting that the mechanical vibrations generated by the internai combustion engine 1 are closely correlated to the noise generated by the internai combustion engine 1, because both are originated by the same physical phenomena generated by the fuel combustion in the cylinders 2.
According to a preferred embodiment, the intensity S of the mechanical vibrations measured by the accelerometer 7 in the measurement time window is preventively filtered by means of a band-pass filter which works in the 3-12 kHz window (i.e. the band-pass filter attenuates the frequencies Iower than 3 kHz and higher than 12 kHz and enhances the frequencies comprised between 3-12 kHz).
According to a preferred embodiment, the feature of the fuel which is recognized by the electronic control unit 5 as a function of the intensity S of the vibrations generated by the internai combustion engine 1 is the percentage of ethanol present in the fuel (obviously for a spark-controlled internai combustion engine 1 operating according to the "Otto" cycle). According to other embodiments, other features of the fuel can be determined, such as, for example, the percentage of vegetable oils (such as rape- seed oil) present in the fuel (obviously for a compression internai combustion engine 1 working operating to the "Diesel" cycle).
Figure 2 is a chart illustrating the FFT of the intensity S of the noise generated by the internai combustion engine 1 when the internai combustion engine 1 uses two different types of fuel (a solid Iine indicates that the fuel consists of 100% ethanol, while the dashed Iine indicates that the fuel consists of 22% ethanol and 78% petrol commercially known as "Gasohol"). It is worth noting the difference which occurs in the second harmonic of the FFT by varying the fuel type in figure 2. The difference of timbre of the noise generated by the internai combustion engine 1 as the type of fuel varies is due to the fact that varying the type of fuel will vary the dynamic of the combustion within the cylinders 2, and consequently vary, among other, the combustion speed, the pressure gradient inside the cylinders 2, and the pressure inside the cylinders 2 as the exhaust valves open.
Figure 3 is a chart illustrating the trend of the synthetic index I determined only as a function of the amplitude of the second harmonic of the FFT when the internai combustion engine 1 uses two different types of fuel (a solid Iine indicates that the fuel consists of 100% ethanol, while the dashed Iine indicates that the fuel consists of 22% ethanol and 78% petrol commercially known as "Gasohol"). The Ieft part of figure 3 shows the values of four synthetic indexes I calculated at four different engine recognition points (identified by numbers 1-4) during normal operation; instead, the right part of figure 3 shows the values of two synthetic indexes I calculated in two different engine recognition points (identified by numbers 5-6) during an emergency operation ("recovery") in which a Iambda probe arranged in the exhaust of the internai combustion engine 1 is not working correctly.
In the recognition method described above, a "recovery" method may be used when the Iambda probe present in the exhaust of the internai combustion engine 1 is not working correctly; in other words, the fuel features are normally recognized by using the information provided by the Iambda probe, and in the case of malfunction of the Iambda probe the fuel features are recognized as a function of the recognition method described above, which does not include the use of the information provided by the Iambda probe.
Furthermore1 the recognition method described above may be used as comparison sample with the same recognition performed using the information provided by the Iambda probe so as to increase the recognition confidence.
The recognition method described above has many advantages because it can be easily implemented also in an existing electronic control unit 5 because it does not require a high additional computational burden. Furthermore, the recognition method described above allows to accurately and confidently estimate the features of the fuel actually used by the internai combustion engine 1.
Finally, the recognition method described above is completely independent from the information provided by the Iambda probe present in the exhaust of the internai combustion engine 1, and consequently may be used both in "recovery" mode, when the Iambda probe is not working correctly, and as comparison sample for the recognition itself performed using the information provided by the Iambda probe.

Claims (15)

1.Método para reconhecer ao menos uma característica do combustível em um motor de combustão interna (1); o método de reconhecimento compreende as etapas de: - detectar por meio de, ao menos, um sensor, a intensidade (S) das vibrações geradas pelo motor de combustão interna (1) dentro de uma janela de tempo de medição; e - determinar o valor de ao menos um índice sintético (I) através do processamento da intensidade (S) das vibrações geradas pelo motor de combustão interna (1) dentro da janela de tempo de medição; o método de reconhecimento sendo caracterizado pelo fato de compreender as etapas adicionais de: - comparar o índice sintético (I) com, ao menos, uma quantidade predeterminada de comparação (TH); e - reconhecer a característica do combustível como uma função para comparar entre o índice sintético (I) e a quantidade de comparação (TH).
2.Método de reconhecimento de acordo com a reivindicação 1, caracterizado pelo fato de que a etapa de reconhecer a característica do combustível compreende as etapas adicionais de: - atribuir um primeiro valor para a característica de que o combustível, caso o índice sintético (I) seja maior do que a quantidade de comparação (TH); e - atribuir um segundo valor, diferente do primeiro valor, para a característica de que o combustível, caso o índice sintético (I) seja menor do que a quantidade de comparação (TH).
3.Método de reconhecimento de acordo com a reivindicação 1, caracterizado pelo fato de que a etapa de reconhecer a característica do combustível compreende ainda a etapa de calcular o valor da característica do combustível por meio de uma interpolação realizada como uma função da comparação entre o índice sintético (I) e a quantidade de comparação (TH).
4.Método de reconhecimento de acordo com qualquer uma dentre as reivindicações de 1 a 3, caracterizado pelo fato de que a etapa de determinação do valor do índice sintético (I) compreende as etapas adicionais de: - calcular a intensidade FFT (S) das vibrações geradas pelo motor de combustão interna (1) dentro da janela de tempo de medição; - calcular o valor do índice sintético (I) como uma função apenas da amplitude de ao menos uma harmônica da FFT.
5.Método de reconhecimento de acordo com a reivindicação 4, caracterizado pelo fato de que o valor do índice sintético (I) é uma função apenas da amplitude da segunda harmônica da FFT.
6.Método de reconhecimento de acordo com a reivindicação 4, caracterizado pelo fato de que o valor do índice sintético (I) é uma função apenas da soma das amplitudes de, ao menos, duas harmônicas da mesma FFT.
7. Método de reconhecimento de acordo com a reivindicação 6, caracterizado pelo fato de que o valor do índice sintético (I) é uma função apenas da soma das amplitudes da segunda harmônica da FFT e da quarta harmônica da FFT.
8. Método de reconhecimento de acordo com a reivindicação 4, caracterizado pelo fato de que o valor do índice sintético (I) é uma função apenas da relação entre a amplitude de uma mesma harmônica da FFT e a amplitude de uma harmônica impar da FFT.
9. Método de reconhecimento de acordo com a reivindicação 4, caracterizado pelo fato de que o valor do índice sintético (I) é uma função apenas da razão entre a soma das amplitudes de, ao menos, duas harmônicas da mesma FFT e a soma das amplitudes de ao menos duas harmônicos ímpares da FFT.
10. Método de reconhecimento de acordo com a reivindicação 4, caracterizado pelo fato de que o índice sintético é correlacionado com as características dos picos das amplitudes das harmônicas da FFT.
11. Método de reconhecimento de acordo com qualquer uma dentre as reivindicações de 1 a 3, caracterizado pelo fato de que o índice sintético (I) é determinado diretamente como uma função da variação no tempo da intensidade (S) das vibrações geradas pelo motor de combustão interna (1) e é correlacionada com o timbre das vibrações da intensidade (S).
12. Método de reconhecimento de acordo com qualquer uma dentre as reivindicações de 1 a 11 e que compreende as etapas adicionais de: - associar a quantidade de comparação (TH) a um dado ponto de reconhecimento de funcionamento do motor de combustão interna (1); e - realizar a comparação entre o índice sintético (I) e a quantidade de comparação (TH) apenas quando o ponto de operação corrente do motor de combustão interna for uma vizinhança do ponto operacional do reconhecimento.
13. Método de reconhecimento de acordo com qualquer uma dentre as reivindicações de 1 a 12, caracterizado pelo fato de que a característica do combustível é a percentagem de etanol presente do combustível.
14. Método de reconhecimento de acordo com qualquer uma dentre as reivindicações de 1 a 13, caracterizado pelo fato de que o sensor é um microfone (6) o qual detecta a intensidade (S) do ruído gerado pelo motor de combustão interna (1).
15. Método de reconhecimento de acordo com qualquer uma dentre as reivindicações de 1 a 13, caracterizado pelo fato de que o sensor é um acelerômetro (7) o qual detecta a intensidade (S) das vibrações mecânicas geradas pelo motor de combustão interna (1).
BR102012005857A 2011-03-15 2012-03-15 método para reconhecer ao menos uma característica do combustível em um motor a combustão interna BR102012005857B1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITBO2011A000123 2011-03-15
IT000122A ITBO20110122A1 (it) 2011-03-15 2011-03-15 Metodo di riconoscimento di almeno una caratteristica del carburante in un motore a combustione interna

Publications (3)

Publication Number Publication Date
BR102012005857A2 true BR102012005857A2 (pt) 2013-10-01
BR102012005857A8 BR102012005857A8 (pt) 2018-03-13
BR102012005857B1 BR102012005857B1 (pt) 2020-02-04

Family

ID=43976848

Family Applications (1)

Application Number Title Priority Date Filing Date
BR102012005857A BR102012005857B1 (pt) 2011-03-15 2012-03-15 método para reconhecer ao menos uma característica do combustível em um motor a combustão interna

Country Status (3)

Country Link
US (1) US8555702B2 (pt)
BR (1) BR102012005857B1 (pt)
IT (1) ITBO20110122A1 (pt)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2693031B9 (en) * 2011-03-29 2018-09-19 Toyota Jidosha Kabushiki Kaisha Cetane number estimation device
US11643986B2 (en) * 2011-12-16 2023-05-09 Transportation Ip Holdings, Llc Multi-fuel system and method
US11905897B2 (en) 2011-12-16 2024-02-20 Transportation Ip Holdings, Llc Fuel selection method and related system for a mobile asset
US9157385B2 (en) 2011-12-16 2015-10-13 General Electric Company Fuel selection method and related system for a mobile asset
US20160222895A1 (en) 2011-12-16 2016-08-04 General Electric Company Multi-fuel system and method
US10344687B2 (en) 2011-12-16 2019-07-09 Ge Global Sourcing Llc Fuel selection method and related system for a mobile asset
US9309819B2 (en) * 2012-11-14 2016-04-12 General Electric Company Multi-fuel system and method
US11578684B2 (en) 2012-05-31 2023-02-14 Transportation Ip Holdings, Llc Method for operating an engine
ITBO20120591A1 (it) 2012-10-29 2014-04-30 Magneti Marelli Spa Metodo di riconoscimento del tipo di carburante effettivamente utilizzato in un motore a combustione interna

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3873959B2 (ja) * 2003-09-22 2007-01-31 日産自動車株式会社 内燃機関の燃料性状判定装置
JP4075858B2 (ja) * 2004-06-01 2008-04-16 トヨタ自動車株式会社 内燃機関の燃料セタン価測定方法
JP2007231898A (ja) * 2006-03-03 2007-09-13 Nissan Motor Co Ltd エンジン使用燃料のセタン価検出装置
WO2008070037A1 (en) * 2006-12-01 2008-06-12 Petroleum Analyzer Company, L.P. A method and system of measuring cetane values for middle distillate fuels
JP4404101B2 (ja) * 2007-03-12 2010-01-27 日産自動車株式会社 内燃機関の燃料性状判定装置
DE102007054650B3 (de) * 2007-11-15 2009-07-09 Continental Automotive Gmbh Ermittlung der Kraftstoffqualität bei einer selbstzündenden Brennkraftmaschine
JP4600469B2 (ja) * 2007-12-11 2010-12-15 株式会社デンソー 燃料性状検出装置、燃料性状検出方法
JP4600484B2 (ja) * 2008-01-31 2010-12-15 株式会社デンソー 燃料性状検出装置およびそれを用いた燃料噴射システム
DE102008025350A1 (de) * 2008-05-27 2009-12-03 Man Nutzfahrzeuge Ag Bestimmen der Kraftstoffeigenschaften und deren Einfluss auf die Abgasemissionen während des Betriebs einer Brennkraftmaschine
JP4596064B2 (ja) * 2008-10-03 2010-12-08 株式会社デンソー 内燃機関制御装置及び内燃機関制御システム
JP4710961B2 (ja) * 2008-11-19 2011-06-29 株式会社デンソー 燃料性状検出装置
CN101903631B (zh) * 2009-02-23 2013-05-08 丰田自动车株式会社 内燃机的燃料性状判定装置

Also Published As

Publication number Publication date
ITBO20110122A1 (it) 2012-09-16
BR102012005857A8 (pt) 2018-03-13
BR102012005857B1 (pt) 2020-02-04
US20130067990A1 (en) 2013-03-21
US8555702B2 (en) 2013-10-15

Similar Documents

Publication Publication Date Title
BR102012005857A2 (pt) mÉtodo para reconhecer ao menos uma caracterÍstica do combustÍvel em um motor a combustço interna
KR101841331B1 (ko) 내연기관의 이상 연소를 검출하기 위한 장치
US8478511B2 (en) System and method for knock detection based on ethanol concentration in fuel
US8151627B2 (en) Knock detection device and knock detection system diagnosis device
JP6362713B2 (ja) ノック検出装置
JP2011132814A (ja) 内燃機関のノック判定装置
JP5839972B2 (ja) 内燃機関の制御装置
JP4327582B2 (ja) ノッキング検知装置
US9587575B2 (en) Cylinder-to-cylinder variation abnormality detecting device
US20090223280A1 (en) Knock detection device for internal combustion engine
US9856812B2 (en) Method for recognising the type of fuel actually used in an internal combustion engine
JP5826054B2 (ja) 内燃機関のノック検出装置
JP2018096255A (ja) 内燃機関のノッキング検出装置
JP6554073B2 (ja) 内燃機関の制御装置及びノック判定方法
JP4939591B2 (ja) 内燃機関の燃焼状態監視装置
JP2009209828A (ja) 内燃機関のノック検出装置
JP2013204496A (ja) ノック検出方法および装置
Cavina et al. Ethanol to gasoline ratio detection via time-frequency analysis of engine acoustic emission
JP2015113805A (ja) 内燃機関
JP5851361B2 (ja) 内燃機関の診断装置
JP2015190409A (ja) 失火検出装置および失火検出方法
JP2016003568A (ja) 内燃機関の制御装置及び内燃機関の制御方法
JP2010190091A (ja) 内燃機関の筒内圧力検出装置
JP2017166437A (ja) 筒内圧センサのデポジット付着判定装置
JP2016011596A (ja) 内燃機関の燃焼圧検出方法及び燃焼圧検出装置

Legal Events

Date Code Title Description
B03A Publication of a patent application or of a certificate of addition of invention [chapter 3.1 patent gazette]
B03H Publication of an application: rectification [chapter 3.8 patent gazette]
B06F Objections, documents and/or translations needed after an examination request according [chapter 6.6 patent gazette]
B06U Preliminary requirement: requests with searches performed by other patent offices: procedure suspended [chapter 6.21 patent gazette]
B09A Decision: intention to grant [chapter 9.1 patent gazette]
B16A Patent or certificate of addition of invention granted [chapter 16.1 patent gazette]

Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 15/03/2012, OBSERVADAS AS CONDICOES LEGAIS.

B21F Lapse acc. art. 78, item iv - on non-payment of the annual fees in time

Free format text: REFERENTE A 12A ANUIDADE.

B24J Lapse because of non-payment of annual fees (definitively: art 78 iv lpi, resolution 113/2013 art. 12)

Free format text: EM VIRTUDE DA EXTINCAO PUBLICADA NA RPI 2766 DE 09-01-2024 E CONSIDERANDO AUSENCIA DE MANIFESTACAO DENTRO DOS PRAZOS LEGAIS, INFORMO QUE CABE SER MANTIDA A EXTINCAO DA PATENTE E SEUS CERTIFICADOS, CONFORME O DISPOSTO NO ARTIGO 12, DA RESOLUCAO 113/2013.