BE522308A - - Google Patents

Info

Publication number
BE522308A
BE522308A BE522308TA BE522308A BE 522308 A BE522308 A BE 522308A BE 522308T A BE522308T A BE 522308TA BE 522308 A BE522308 A BE 522308A
Authority
BE
Belgium
Prior art keywords
catalyst
alumina
halogen
platinum
fraction
Prior art date
Application number
Other languages
English (en)
Publication date
Publication of BE522308A publication Critical patent/BE522308A/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G59/00Treatment of naphtha by two or more reforming processes only or by at least one reforming process and at least one process which does not substantially change the boiling range of the naphtha
    • C10G59/02Treatment of naphtha by two or more reforming processes only or by at least one reforming process and at least one process which does not substantially change the boiling range of the naphtha plural serial stages only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description


   <Desc/Clms Page number 1> 
 



  CATALYSEUR ET PROCEDE POUR LE REFORMING ET L'ISOMERISATION 
La présente invention se rapporte au reforming hydrogénant de l'essence et autres fractions de naphte en vue par exemple d'obtenir un carburant moteur à valeur d'octance améliorée ou pour produire et récupérer des composés aromatiques,, 
Il a été précédemment proposé dans le brevet belge n    511.418   déposé le 15 mai 1952, d'effectuer l'ennoblissement des fractions d'essence et de naphte contenant des naphtènes (y compris des alkylcylopentanes) avec ou sans des quantités plus ou moins importantes de paraffines normales par reforming hydrogénant sous une pression partielle d'hydrogène supérieure à la pression atmosphérique sur un catalyseur comprenant une quantité mineure d'un métal noble de la famille du platine distribué dans un support composé d'alumine traitée par un acide.

   Conformément au brevet précité on prépare le catalyseur par traitement de   12alumine   (telle que de l'alumine activée du commerce) avec un sel ou complexe soluble du composé métallique noble, par exemple de l'acide   chloroplatinique,   en quantité voulue pour introduire environ 0,1 à 2,0% du métal noble dans   l'alumine  en soumettant alors le produit au séchage et à la réduction dans de l'hydrogène ou à un autre traitement pour décomposer le sel ou complexe du métal   nobleo   Le procédé de reforming décrit s'effectue à des températures de 400 à 565 C (de préférence 454-538 C), sous des pressions de   14-70     Kg/cm2,

     avec addition de l'hydrogène à la zone de réaction en quantités allant de 3 à 10 moles par mole de la charge   d'hydro-   carbureo Suivant le procédé décrit on effectue en plus de la déshydrogénation des naphtènes avec noyau en C6 d'autres réactions avantageuses comprenant la déshydroisomérisation de cyclopentanes   alkylés   en composés aromatiques aussi bien que la conversion de composés aliphatiques en isomères à chaîne ramifiée et en d'autres produits recherchés. 

 <Desc/Clms Page number 2> 

 



   La présente invention se rapporte à des nouveaux perfectionnements et modifications du catalyseur et du procédé de conversion d'hydrocarbure décrits dans ledit brevet précédent, comprenant certaines techniques améliorées dans la préparation ou le traitement du catalyseur aussi bien que sa régénération après de longues périodes de service,si on le désire. 



   Une forme de perfectionnement du catalyseur comprend l'emploi d'un support d'alumine substantiellement exempt de contaminant métallique alcalin. 



  L'alumine commerciale contient souvent une certaine quantité de sodium qui peut être de l'ordre d'environ 0,3 à   06 %   de   N a20   en poids (calculé sur le produit calciné) .Le sodium n'est pas facilement éliminable par les procédés connusOn a trouvé toutefois que lorsque l'alumine est calcinée à une   tem=   pérature dans l'intervalle d'environ 371-593 C, on peut la lessiver avec une solution modérément acide pour extraire substantiellement tout le sodium combinéL'alumine préparée et séchéesoit en poudre ou sous la forme de pastillesest de préférence calcinée dans l'intervalle d'environ 427-565 C pendant 2   à   5 heures pour obtenir de meilleurs résultatso 
Dans un catalyseur contenant de faibles quantités de métal noble, jusqu'à environ 2 % de son poids,

  le manière d'incorporer ce métal devient extrêmement importante au point de vue de la surface accessible de catalyseur qui y est créée,laquelle détermine dans une grande mesure   1"activité   initiale et la stabilité relative du catalyseur. Dans un procédé modifié de préparation du catalyseur on lave   de l'alumine   traitée à l'acide avec une eau exempte d'alcali dans une mesure suffisante pour enlever substantiellement tout   l'alcali   ainsi libérémais le lavage à l'eau n'est pas poursuivi suffisamment loin pour enlever l'acide acétique ou autre acide, de sorte qu'à la fin de l'opération de lavage reste encore retenue une certaine quantité d'acide dans   l'alumine'.   suffisante pour que l'alumine après séchage soit encore légèrementmais   sûrement,

     du côté acide; c'est-à=dire,l'alumine sèche broyée en une bouillie avec de l'eau neutre devra indiquer un pH infé= rieur à 6,0 et de préférence de 3,5 à 5,0. On sèche ensuite l'alumine obtenue sous cet état et contenant de l'acide à une température à laquelle l'acide se fixe sur   l'alumine,  mais inférieure à celle produisant la   décomposi-   tion ou la volatilisation de la majeure partie de l'acide; un chauffage pouvant aller jusqu'à une heure, sans dépasser cette durée, en-dessous de 149 C convient à cet effet.

   On   immerge   alors l'alumine sèche contenant de   l'acide,   dans de l'acide   cbloroplatinique   aqueux ou dans tout autre composé ou   comple-   xe du métal noble soluble dans   l'eau,   en solution aqueusependant un temps suffisant pour permettre au métal de diffuser à travers les pastilles, on sèche ensuite puis on calcine. Les pastilles ainsi préparées ont le platine fixé dans une bonne condition de distribution dans toute la masse de la pastille. 



   Bien que9 comme indiqué antérieurementune régénération ne soit pas requise pour   l'exécution   de longue durée des types de réactions avec les catalyseurs   indiqués,   il existe des circonstances où il peut être souhaité de recourir à une sorte de traitement de régénération de manière à ce que le catalyseur puisse encore fournir un service utile supplémentaire sans devoir faire appel à l'expédient consistant à enlever le catalyseur usé et à le remplacer par du catalyseur   frais.   Comme cela arrive assez rarement, certaines circonstances   particulières  telles qu'une perte de pression ou une autre difficulté opératoire, peuvent amener le dépôt sur le catalyseur de   quantités inactivantes de coke ;

   par suite d'une prolongation de l'opéra-     tion;,  certaines quantités de   coké   relativement petites;,déposées au cours de la longue période d'opération, peuvent éventuellement s'accumuler en quantité suffisante pour inactiver jusqu'à un niveau bas au point de vue économique une ou plusieurs des fonctions catalysantes du catalyseur à fonction double. Il est par conséquent souhaitable d'avoir à sa disposition un moyen permettant d'éliminer ces quantités inactivantes de coke du catalyseur sans interrompre démesurément le processus opératoire ou sans affecter défavorablement le catalyseur.

   Un des avantages remarquables du catalyseur précédemment décrit est qu'il peut être régénéré pour en éliminer une accumulation inactivante de coke et que l'on peut restaurer substantiellement 

 <Desc/Clms Page number 3> 

   Inactivité   à un niveau voisin de celui du catalyseur frais. 



   On a trouvé que l'on peut obtenir une réactivation satisfaisante du catalyseur contenant un métal noble, avec la perspective d'une durée de service raisonnable du catalyseur réactivé, par un procédé de régénération suivant lequel on soumet le catalyseur désactivé, provenant du reforming hy- drogénant ou de réactions de conversion d'hydrocarbure similaires,,à un   trai-   tement avec un gaz de régénération comprenant une proportion majeure d'un gaz inerte ne réagissant ni avec le dépôt sur le catalyseur ni avec le cataly- seur lui-même, le gaz de régénération contenant une quantité mineure d'oxy-   gène, ne   dépassant pas 195 % de concentration d'oxygène en volume.

   Le gaz de régénération est alimenté à un débit prédéterminé permettant d'éliminer pas plus de 3 et de préférence environ 0,5 à 1,5 moles de carbone par mole de platine par heure; on maintient des températures modérées inférieures à
538 C. de préférence inférieures à 510 C. 



   En ce qui concerne la température de l'opération de régénération, il est préférable de commencer approximativement à la température d'ignition du coke qui, dans le cas catalyseurs contenant du platine chargés de coke, peut être aussi basse que 204-232  C, et d'accroftre ensuite lentement la température au cours de la régénération jusqu'à une température ne dépassant pas de préférence 510  Co L'emploi d'une pression élevée n'est pas requis pendant la régénération,et il est préférable d'effectuer toute,   ou prati-   quement toute la régénération à la pression atmosphérique ou au voisinage de   celle-ci;

     toutefois,lorsque la plus grande partie du dépôt inactivant a été éliminé au cours du gros de la régénération il peut être souhaitable   d'accroitre   la pression jusqu'au voisinage de la pression opératoire en cours, qui est d'habitude de l'ordre de   28-42   Kg/cm2 mais qui peut être plus basse ou plus haute en fonction de la technique opératoire.

   Lorsqu'on utilise des pressions supérieures à la pression atmosphérique à un moment quelconque de la régénération, on doit veiller à ce que la concentration d'oxygène ne dépasse pas celle qui pourrait aboutir à une élimination du carbone à une vitesse plus grande que celle qui est décrite 
Tenant compte de la susceptibilité des catalyseurs contenant du platine vis-à-vis de certains agents nuisibles pouvant être contenus dans les fumées de régénération, il est nécessaire de s'assurer de leur absence ou bien,s'il y en a, que leurs concentrations soient bien inférieures au niveau pouvant être nuisible au catalyseur par réaction avec ce dernier au cours de l'opération de régénération.

   Il est donc souhaitable de s'assurer de l'absence relative ou substantielle dans le gaz de régénération de matières telles que des hydrocarbures, de l'anhydride sulfureux, de l'eau et autres matières pouvant consommer de   l'oxygène;   ou d'autres matières telles que   l'oxyde   de carbone pouvant être adsorbées préférentiellement par les catalyseurs au détriment de leur activité.

   Par conséquent, il est important que dans le gaz de régénération des composants éventuellement nuisibles soient absents ou qu'ils n'y existent pas plus qu'à l'état de traces, Par exemple, le gaz de régénération doit être sec ou du moins assez sec pour ne pas contenir pratiquement une quantité d'eau supérieure à celle donnant une pression partielle de 10,5 g/cm2, et le total des autres gaz pouvant désactiver doit être limité à moins de 10 % de l'oxygène disponible.

   Un genre de milieu de régénération gazeux convenant à cette opération consiste en du gaz de fumée préparé par la combustion du propane avec   l'oxygéne   dans l'air, ce gaz de fumée, avant ajustement de la teneur en oxygène et admission à la zone de régénération, étant traité pour en éliminer substantiellement la totalité de   l'eau9 de   l'oxyde de carbone et des composés sulfurés éventuels pouvant s'y trouver. 



   Le gaz effluent venant de la régénération avec un minime réglage de la concentration d'oxygène peut être recyclé à la phase de régénération. 



  Le gaz effluent doit être traité pour éliminer tous gaz de combustion nuisibles pouvant s'y trouver et on peut le mélanger par après avec approximativement 1/20 en volume (dans les conditions standards de température et de pression)   d'air   pour produire un gaz de régénération convenable. Un tel recyclage du gaz de régénération est naturellement souhaitable au point de vue 

 <Desc/Clms Page number 4> 

 économique et pratique en ce   qu'il   peut être effectué relativement facilement et en ce qu'il peut satisfaire aux nécessités du système de régénératien sans préparation   dune   grande quantité de matière de remplacement.

   Ainsi, les diluants gazeux éventuels que l'on peut utiliser comprennent l'azote les gaz inertes du groupe zéro du tableau périodique,du gaz de fumée préparé extérieurement de même que du gaz recyclé venant de la régénération et les autres agents gazeux qui sont substantiellement inactifs ou ne réagissent pas au détriment du catalyseur. 



   En ce qui concerne les autres conditions opératoires, la température générale moyenne du catalyseur ne doit pas dépasser 538  C au cours de la régénération et elle est maintenue de préférence en-dessous de   510 Co   La condition du platine est très sensible aux températures élevées du fait que des températures dépassant   538 C   amènent une désactivation sensible du   cata-   lyseur. Par conséquent,lorsque   cest   possible, il est souhaitable de commencer la régénération à une température aussi basse que possible,à laquelle la combustion du dépôt de coke est à même de se produire,.

   Comme indiqué pré-   cédemment  cette température peut être aussi basse que 204-232 C, des   tempé-   ratures basses étant souhaitables du moins au cours de l'enlèvement de la majeure partie du dépôt de coke. A mesure que le dépôt de coke diminue,la pos-   sibilité   d'une surchauffe du catalyseur lors de la combustion du coke diminue aussi,et par conséquent on peut utiliser des températures plus élevées pour la dernière partie de la période de régénérationo 
La vitesse   denlèvement   du carbone ne doit pas dépasser 3 moles de carbone par mole de platine dans le catalyseur par heureautrement les vitesses de combustion approchent,

   si elles ne dépassent pas réellement la limite supérieure de sécurité de la combustion à laquelle l'élévation   loca-   le de température causée par la chaleur de cette combustion dépasse celle à laquelle la chaleur peut être dissipée en toute sécurité par exemple par conduction convection et radiation, sans endommager le catalyseuro Cette dissipation de la chaleur à une vitesse suffisamment élevée pour éviter toute élévation appréciable de la température dans le platine et au voisinage de celui-ci est d'importance considérable pour le maintien de   l'activité   du catalyseur et pour obtenir, suite au procédé de régénération,

   une réactivation appréciable et l'assurance de pouvoir continuellement opérer à un degré   d9activité   élevé pendant des périodes de temps étendueso La limite inférieure de la vitesse d'élimination du carbone est relativement de peu d'importance dans Inexécution de la régénération mais, au point de vue pratique, elle doit de préférence être d'au moins environ 0,5 moles de carbone par mole de platine dans le catalyseur par heure. 



   Lorsqu'on opère à la pression atmosphérique, le gaz de régénération peut contenir une concentration d'oxygène dans   l'intervalle   de 0.1 à 1,5% en volume du gaz totalo L'intervalle préféré de concentration   d oxygè-   ne est de   1  ordre   d'environ 0,15 à 0,3% en volume et peut être accru jusqu'à environ   0,5 %   en volume lorsque le dépôt de coke a été réduit de   maniè-   re substantielle par le traitement de   régénération.   Lorsqu'on opère la régénération sous des pressions supérieures à la pression atmosphérique, la concentration   doxygène   est ajustée pour obtenir des pressions partielles d'oxygène du même ordre que celles existant dans les conditions normales;

   ceci implique l'emploi de moins d'oxygène en volume à mesure que la pression augmente. 



   La quantité de dépôt de coke amenant l'inactivation des   cataly-   seurs du genre considéré dépend de divers facteurs comprenant le genre d'opération, par exemple le reforming, l'aromatisation, etc. Généralement, un dépôt de coke dépassant environ 0,5 % en poids du catalyseur aboutit à la désactivation du catalyseur à un niveau indésirable,alors que pour   certai-   nes réactions de conversion telles que le reforming du naphte moteur on peut tolérer des niveaux plus élevés de coke, par exemple jusqu'à 2   %   en poids du catalyseur, avant que la régénération devienne souhaitable économiquement. 



  En tout cas,la régénération doit être conduite pour effectuer l'élimination d'au moins la partie du dépôt inactivant dépassant   0,,5 %   en poids du cata-   lyseur.   

 <Desc/Clms Page number 5> 

 



   Lorsqu'une fraction de naphte contenant des naphtènes en C5 alky- lés est traitée en présence d'halogène avec un catalyseur tel que du platine sur de l'alumine activée, ces naphtènes sont convertis en composés   aromati-   ques par déshydroisomérisation. D'autre part, la présence d'halogène tendra   à   favoriser la réaction. inverse suivant la formule d'équilibre   g   (MCP) (CH) méthylcyclopentane   @   cyclohexane 
Vers 427 C, la constante d'action de masse K (isomérisation) est égale à
0,111 et il y a environ 0,9 fraction de mole de MCP dans le mélange, un peu plus lorsqu'on augmente la température.

   Il est recommandé par conséquent au moment où on traite une fraction de naphte contenant une quantité substan- tielle de cyclohexane en plus des cyclopentanes alkylés, que la charge soit tout d'abord soumise aux conditions effectuant la désbydrogénation du cyclo- hexane en benzène  obtenant   ainsi la conversion en composés aromatiques de quantités plus grandes des naphtènes totaux présents dans la charge de naph- te. Cette déshydrogénation initiale des naphtènes du type à noyau en C6 peut facilement   s'effectua' sur   le même type de catalyseur que celui qui est uti- lisé pour la conversion du méthylcyclopentane et autres naphtènes avec noyau en C5   alliés  mais sans addition d'halogène.

   L'opération s'effectue le mieux dans une série de réacteurs ou de zones de réaction contenant le catalyseur spécifié. On n'ajoute pas d'halogène à la charge introduite dans la zone ou les zones de réaction initiales, mais on ajoute l'halogène à l'effluent pas- sant de cette ou de ces zones à la phase de réaction subséquentepour promouvoir la   déshydroisomérisation   des naphtènes à noyau en C5 alkylés qui s'y trouvent; les composés aromatiques préalablement formés par conversion des naphtènes du type à noyau en C6 restent dans une grande mesure inaffectés au cours de la phase de réaction subséquente.

   Le procédé à plusieurs phases décrit est particulièrement avantageux dans le traitement d'une fraction de naphte étroite d'intervalle d'ébullition approprié pour la récupération d'hydrocarbures aromatiques; une fraction de ce genre sera par exemple celle qui bout dans l'intervalle d'environ 82 à 110 C, utilisée pour la production de benzène et de toluène. 



   Dans l'opération du procédé décrit à plusieurs phaseson   n'est   pas limité à l'emploi des mêmes conditions opératoires dans les différentes phases de réaction. En général9 les températures et pressions plus basses;, dans les conditions opératoires décritespeuvent être utilisées dans la dernière phase. 



   De ce qui a été dit plus haut, il apparaît qu'une certaine   quan-   tité d'halogène sera retenue en équilibre avec l'alumine (sous forme d'un complexe stable)cette quantité étant une fonction de l'étendue de la surface de l'alumine,et que la perte de l'halogène ainsi fixé peut être effec= tuée par dissociation temporaire ou permanente du complexe halogéné par réaction chimique à l'emplacement de l'halogénure,, par exemple par déplacement de l'halogène par d'autres ions ou groupes. Au-delà du niveau d'équili bre, l'alumine peut continuer à fixer d'autres quantités d'halogène dans une proportion qui est fonction de la concentration ou de la pression partielle de l'halogène dans le fuide d'imprégnation.

   Cet halogène additionnel est fixé relativement plus lâchement par l'alumine et sera cédé à un courant gareux ou à un solvant liquide non-aqueux jusqu'au point où le niveau d'équilibre en halogène est de nouveau atteint. Cette quantité d'halogène à l'équilibre est efficace pour la stabilisation du platine; un excès d'halogène d'autre part aboutit à un accroissement de l'activité de cracking avec production conséquente de coke qui par elle-même et/ou comme conséquence d'un autre mécanisme de réaction concurrenta tendance à produire une désactivation initiale rapide du catalyseur. En général, il peut être établi que des catalyseurs au platine relativement stables s'obtiennent lorsqu'il y a environ 0,1% en poids d'ion chlorure (ou une quantité atomique correspondante d'un autre ion halogénure) par 10 m2 de surface d'alumine.

   Lorsque la quantité d'halogénure dépasse environ   0,1 %   en poids, par 10 m2/g Al2O3, la 

 <Desc/Clms Page number 6> 

 fonction de cracking additionnelle fait plus que surmonter   l'effet   stabilisant de l'halogène. 



   Un catalyseur préparé par imprégnation d'alumine activée avec de   1 acide     chloroplatinique   doit être stable par nature   s'il   contient suffisantment d9halogénure pour satisfaire au niveau d'équilibre décrit pour cette portion à section transversale du catalyseur imprégnée par le platinée Cependant9lorsque l'alumine imprégnée est soumise à un milieu ambiant dans lequel l'halogène est éliminé du catalyseurcomme cela se produira en présence de vapeur   d'eau   aux températures élevées et par d'autres influences prévalant au cours de la réduction avec de   l'hydrogène   9 influence stabilisante de l'halogène est perdue au point que le platine,

  à moins qu'il ne soit stabilisé   dune   autre façonest libre maintenant de former des plus grands agrégats avec perte de surface et déclin correspondant de   19 activité   catalytiqueo Par la présence d'halogène dans le courant gazeux de traitement la perte en halogène est   prévenue   ou 1-'halogène qui a pu être perdu est remplacé, maintenant ainsi   Inactivité   et la stabilité du catalyseur. 



   Alors que dans la discussion précédente sur les effets de   l'halo-   gène il est particulièrement fait allusion aux catalyseurs mieux connus   com-   portant du platine ou du palladium supporté sur de   l'alumine  les mêmes considérations   sappliquent   en général aux catalyseurs comprenant   d'àutres   métaux nobles appartenant au groupe   VIII   supportés par de   12' alumine   de même qu'aux catalyseurs comportant comme supports d'autres oxydes métalliques se comportant plus ou moins comme l'alumineparticulièrement lesoxydes de magnésium, de zirconium, de titane et de beryllium.

   Il n'y a pas d'indication claire que la présence d'halogène affectera ou améliorera la stabilisation du platine supporté sur du charbon actif ou sur des matières siliceuses telles que le silica gel9 la silice-alumine et les argiles et terres siliceuses naturelleso 
Dans le traitement du catalyseur d'alumine   platinisée   avec un courant gazeux tel qu'un courant d'hydrogène réducteur  l'addition   d'halogène dans le courant est à conseiller,.

   Le traitement est effectué pendant un temps suffisant et en employant une concentration d'halogène adéquate dans le   cou-   rant gazeux pour assurer la présence finale dans le catalyseur d'une quantité   d9halogène   substantiellement égale et guère plus grande que celle requise pour satisfaire le niveau d'équilibre en halogène de   l'alumine   particulière Ceci peut se faire en utilisant un courant gazeux ayant une concentration assez basse en halogène, contenant par exemple une concentration d'halogène correspondant à 0,01-0,1% en volume d'acide chlorhydrique ou une quantité atomique correspondante   d'un   autre halogénure gazeux ou à   l'état   de vapeur,

   et en opérant pendant une période prédéterminée par un essai d'échantillon pour assurer la teneur requise en halogène dans le catalyseurLe traitement peut être étendu sur un laps de temps tel que la quantité   d'halogène     incor-   porée dans le catalyseur soit en excès par rapport au niveau d'équilibre, puis on fait ensuite un traitement avec un courant gazeux exempt (ou déficient en) d'halogène.

   Au cours de ce dernier traitement,  9 l'excès   d'halogène sera éliminé tout d'abord à une vitesse relativement rapide mais, mesure qu'on approche du niveau d'équilibre en halogène, 19halogène sera cédé par le catalyseur à une vitesse considérablement plus faible9 de sorte qu'un traitement excessif avec le gaz exempt d'halogène n'est pas susceptible de se produire la présence d'un excès substantiel d'halogène dans le catalyseur étant pareillement évitée 
L'emploi d'halogène dans le courant d'hydrogène utilisé pour la réduction du catalyseur s'applique dans le cas de catalyseurs contenant déjà une quantité d'halogène égale ou dépassant la valeur requise à   léquili-   bre, pour éviter de tomber fortement en-dessous de ce niveau par suite de la réduction,

   de même que dans le cas de catalyseurs contenant moins que la quantité d'halogène requise au niveau de l'équilibre. Des catalyseurs préparés par imprégnation de l'alumine avec de l'acide chloroplatinique, par exemple, peut déjà contenir la quantité d'halogène qui suffit à la   sta-   bilisation du platine; en soumettant ces catalyseurs à la réduction en pré- 

 <Desc/Clms Page number 7> 

 sence d'halogène, le maintien de cette teneur en halogène est assurée. Des catalyseurs ainsi préparés, ayant moins que la quantité requise pour l'équi- libre en halogène, sont portés au niveau requis au cours de la réduction dé- crite. 



   Le traitement avec un gaz réducteur contenant de l'halogène s'ap- plique dans le cas de catalyseurs fraîchement préparés de même qu'aux cataly- seurs qui ont été soumis à la régénération oxydante ou à d'autres procédés de régénération. 



   Dans la description précédente on a traité d'une manière générale des opérations de reforming hydrogénant du type simple en une seule phase. 



   Dans certains cas des résultats meilleurs ou particuliers   s'obtiennent   par diverses opérations à phases multiples avec des conditions opératoires cor- respondantes telles qu'elles sont décrites ci-après. 



   Par exemple, dans la production de rendements élevés en hydrocar- bures aromatiques à partir de fractions de naphte contenant des quantités re- lativement importantes de constituants naphténiques, certaines modifications dans le processus opératoire s'avèrent avantageuses, par exemple dans la production de grands rendements en benzène à partir de fractions légères de naphte contenant du méthylcyclopentane. Dans la modification proposée une fraction de naphte contenant des hydrocarbures naphténiques est mise en con- tact avec un platine supporté ou tout autre catalyseur de reforming hydrogé- nant, dans des conditions favorisant la déshydrogénation des hydrocarbures naphténiques,et défavorisant de préférence des réactions secondaires indé- sirables telles que le cracking et la polymérisation.

   Dans cette'phase, des hydrocarbures aromatiques sont produits à partir de cyclohexanes, mais normalement en l'absence d'une fonction acide dans le catalyseur des proportions relativement faibles de méthylcyclopentanes sont seulement isomérisées en cyclohexanes et déshydrogénées en hydrocarbures aromatiques. Les   hydrocarbu-   res aromatiques produits dans la fraction de naphte déshydrogénée peuvent être facilement séparés des produits normalement liquides restants-,et la fraction naphténique ou paraffino-naphténique restante (contenant par exemple des méthylcyclopentanes) est alors mise en contact avec un catalyseur d'isomérisation dans des conditions favorisant la conversion du méthylcyclopentane et de ses homologues en composés du type de cyclohexane.

   Des catalyseurs du type halogénure d'aluminium-hydracide halogéné et du type fluorure de bore-acide fluorhydrique sont recommandée pour cette opération d'iso-   mérisation.   La fraction de naphte isomérisée, contenant les cyclohexanes, est recyclée à la catalyse avec le catalyseur de reforming hydrogénant pour entamer un autre cycle, de préférence après mélange du naphte recyclé avec la charge de naphte frais devant subir le reforming. 



   Des résultats avantageux similaires,tels que des accroissements voulus dans les rendements en hydrocarbures aromatiques,  s'obtiennent   lorsque le procédé décrit à deux phases   s'applique   à des charges contenant des diméthylcyclopentanes et du méthylcyclohexane. 



   De bons rendements en composés aromatiques s'obtiennent dans toute la gamme des naphtènes correspondants, contenus dans une charge de naphte à point d'ébullition étendu, par conversion catalytique sur un catalyseur de   déshydrogénation   dans des phases de réaction successives travaillant sous des pressions différentes choisies, cette conversion étant telle que dans la ou les phases initiales d'opération sous pression plus élevée,la conversion des composants naphténiques de la charge à point d'ébullition élevé en   com-   posés aromatiques correspondants soit favorisée avec un cracking   d'accompa   gnement et une formation de coke minima,

  et qu'au cours de la ou des phases subséquentes d'opération sous pression plus basse choisie soit favorisée la conversion supplémentaire des naphtènes à bas point d'ébullition, non'encore convertis précédemment, dans   1-'effluent   venant de la phase précédente,avec par conséquent une production accrue de la totalité des composés   aromatiqueso   Donc on obtient des rendements totaux pratiques plus élevés,avec une faible production de coke inusitée par rapport   à   l'ampleur de la conversion réalisée,

   tandis que   l'on   obtient des rendements maxima en composés aromatiques 

 <Desc/Clms Page number 8> 

 désirésUne opération uniquement faite sous pression élevée aboutit à de faibles rendements en composés aromatiques totauxtandis que l'opération sous basse pression appliquée seule à la charge initiale conduirait à une formation excessive de coke. 



   Dans l'opération de ce procédé en plusieurs phases;,tel qu'il est appliqué à une charge comprenant des naphtènes allant de C6 à C8 par exemple, le traitement initial de la charge de naphte est ordinairement effectué sous une pression partielle   dhydrogène   qui n'est pas inférieure à 28 kg/cm2 et qui ne dépasse pas 56 kg/cm2;

   il est préférable   dopérer   sous une pression partielle d'hydrogène voisine de 31,5 à 38,5   kg/cm2o   Pour la ou les phases de traitement finaleen vue   d'obtenir   les rendements les plus élevés en benzène,la pression partielle d'hydrogène ne doit pas dépasser environ 21 kg et la phase finale est de préférence effectuée sous une pression partielle   d'hydrogène   d'environ 17,5 Kg ou moinso Des pressions inférieures à 10,5 kg ne sont pas à recommander par suite de la production excessive de coke et de produits de cracking. On recommande pour le traitement des naphtènes à poids moléculaire plus élevé des pressions correspondantes plus grandes. 



   Les avantages assurés par les opérations en plusieurs phases sont généralement mis en évidence quel que soit le catalyseur particulier de déshydrogénation utilisé pour autant que le catalyseur convienne à la déshydrogénation des naphtènes mais on préfère les catalyseurs au platine décrits pour   l'emploi   avec une ou plusieurs phases supportés soit sur des supports d'alumine active ou sur des supports modifiés par traitement avec des acides ou des matières à réaction acideou par incorporation de quantités minimes de composés   alcaline-   terreux.

   D'autres supports connus comprennent par exemple la magnésie, la silice et le charbon de boiso 
Le procédé à plusieurs phases décrit offre une souplesse   opéra-   toire considérable au point de vue du catalyseur employé de même qu'en ce qui concerne le choix des conditions opératoires dans chacune des phases utilisées. En dehors de l'exigence dune pression relativement basse dans la ou les phases finales du procédé,les conditions telles que la température, la durée de réaction et le rapport hydrogène-huile peuvent varier dans de larges limites et peuvent être identiques ou différentes dans les phases initiales et finales de l'opération.

   En généralla température utilisée se situe aux environs dé   455-    565 G;,   les vitesses spatiales horaires du liquide d'environ 0,5 à 10,et   1 hydrogène   peut être ajouté comme tel ou sous la forme de gaz de recyclage riche en hydrogène pour produire un rapport initial   hydrogène-huile     d'au   moins 3 jusqu'à 10 moles d'hydrogène par mole d'huile. 



   L'effet de l'opération en plusieurs phases décrites ci-dessus va être constaté à partir des résultats typiques obtenus dans'le reforming   d'un   naphte dans un système ayant tous les 3 réacteurs en série sous pression élevée, comparés à ceux obtenus dans une opération bù toutes les conditions restent les mêmes mais où on utilise une pression plus basse dans le dernier réacteur Dans ce dernier cas,on peut obtenir presque 50 % d'augmentation du rendement en benzène.

   Si on essaie d'ôpérer avec tous les 3 réacteurs sous une pression faible (20 atmosphères)   9 il   se produit généralement une   cokéfac-   tion considérable, particulièrement dans les premiers réacteurs 
Dans le traitement des fractions de naphte dont la gamme de points d'ébullition est plus élevéepar exemple dans la conversion dune fraction de naphte bouillant environ dans l'intervalle de 105-190  C, la ou les phases initiales peuvent fonctionner sous environ 56   kg/cm2   de pression partielle   dhydrogène   (70 kg/cm2 de pression totale) et la phase finale sous environ 31,5   kg/cm2   de pression partielle d'hydrogène (42   kg/cm2   de pression to-   tale).   En général;

  ,lorsqu'on traite des fractions bouillant.dans un large intervalledont le point initial et le point final   débullition   sont   sépa-   rés par plus de 38  Cla pression partielle   d'hydrogène   dans la phase finale de traitement doit être réduite d'au moins 25 % par rapport à celle de la première phase de traitement. Des opérations comportant un tel abaissement de la pression dans la phase finale peuvent s'effectuer avec le même cataly- 

 <Desc/Clms Page number 9> 

 seur ou un catalyseur différent dans les différentes phases. 



   Une autre opération en plusieurs phases à considérer concerne la déshydrogénation9 la désbydroisomérisation et   lisomérisation   d'hydrocar- bures à noyau naphténique et de fractions d9hydrocarbure les contenant pour former des produits avec une valeur d'octane plus élevée.Un tel procédé con- vient au reforming de distillats d'hydrocarbure contenant des naphtènes, bouillant approximativement dans la région de 1 essence, pour produire des rendements élevés en essence ayant la meilleure valeur   doctane   désirée et une bonne susceptibilité au plomb tout en minimisant la formation ou   l'éten-   due des réactions accompagnatrices telles que le cracking,

   lesquelles ont tendance à produire du coke et des gaz hydrocarbonés à poids moléculaire in- férieur aux dépens des rendements désirés en essenceen maintenant une ac-   tivité élevée du catalyseur, Pour obtenir ces résultats particuliers, la matière chargée est tout d'abord fractionnée en une fraction à point d ébulli-    tion plus bas et en une fraction à point   d'ébullition   plus élevé.

   La fraction à point   débullition   plus bas est ensuite chargée dans une unité de reforming catalytique appropriée sous des conditions relativement sévères permettant la déshydrogénation, la   désbydroisomérisation   et l'isomérisation des hydro- carbures avec une bonne conversion résultante en composés aromatiques et autres composés ayant les valeurs d'octane désirablement élevées. 



   La fraction à point   d'ébullition   plus élevé est traitée avec un catalyseur de reforming dans des conditions relativement plus douces. Cette fraction à point d'ébullition plus élevé ne requiert pas une isomérisation étendue9 elle nécessite principalement une déshydrogénation qui est une réac- tion relativement rapide.

   Toutefois, la fraction à point   d'ébullition   élevé est moins réfractaire que la fraction à point d'ébullition plus baset elle est par conséquent plus sujette au cracking et à la formation de sous-produits indésirables qui diminuent l'activité du catalyseur, Par conséquent, cette modification dans le procédé permet le reforming de la fraction point d'é- bullition élevé dans des conditions qui sont relativement douces par rapport aux conditions requises dans le reforming conventionnel de la matière de base et par rapport aux conditions requises pour le reforming des fractions à bas point d'ébullition. 



   En scindant la charge en deux fractions, on obtient un double a- vantage en réduisant la tendance à la cokéfaction de la fraction à point d'é- bullition plus élevé en opérant sous une pression plus élevée tout en permet- tant l'emploi d'une pression plus basse là où elle est la plus demandée pour des considérations d'équilibre, c'est-à-dire dans le traitement des fractions à point   débullition   plus bas. 



   La conversion des   naphtènes   en composés aromatiques est en tout cas favorisée par une élévation de la température, mais celle-ci est limitée par la réfractairité relative des composants de la charge en traitement9é- tant donné qu'avec des températures croissantes, la tendance à la formation de coke est plus grande. En traitant les composants supérieurs à la tempéra- ture plus basse9 leur tendance à la cokéfaction est par conséquent réduite. 



  La température plus élevée est employée pour les matières à point   d'ébulli-   tion plus bas présentant une tendance moindre à la   cokéfaction   avec tous les avantages demandés que la température plus élevée apporte à la conversion de ces matières à point d'ébullition plus bas par déshydrogénation et déshy- droisomérisation. 



   Un changement dans la vitesse spatiale agit quelque peu dans le même sens, étant donné que plus la vitesse spatiale est faible (sévérité plus grande de traitement) plus grande est la tendance au cracking en com- posés gazeux à faible poids moléculaire et la production concomitante de coke. 



   Le point de fractionnement pour des naphtes bouillant vers 82-205 C est de préférence dans l'intervalle d'environ   126-149    C. Les conditions re-   lativement   sévères, sous lesquelles la fraction à point d'ébullition plus bas est soumise au reforming, comprennent de préférence des pressions de 1 J'or- 

 <Desc/Clms Page number 10> 

 dre d'environ 10,5- 35 kg/cm2, des températures d'environ 483-566 C, des vi- tesses spatiales d'environ 0,4 à environ 4 et des rapports hydrogène-huile d'environ 3:1 à environ 10:1. 



   Les conditions relativement plus douces sous lesquelles la frac- tion à point d'ébullition plus élevé est soumise au reforming comprennent de préférence des pressions de   l'ordre   d'environ 28-49 kg/cm2, des températures d'environ   427-510    C,des vitesses spatiales d'environ 3 à environ 10 et des rapports hydrogène-huile d'environ 3:1 à environ 10:1. Pour un degré donné de condition, sévère ou de condition relativement douce, suivant le casdes températures élevées doivent être compensées par des vitesses spatiales plus élevées et/ou des pressions plus élevées,chose bien connue dans la techni- que de reforming d'hydrocarbure. 



   Les opérations de reforming relativement sévères aussi bien que celles relativement plus douces sont exécutées de préférence en présence du même type de catalyseur de reforming, par exemple un catalyseur métal noble- alumine du type décrit précédemment ou bien un dont   Inactivité   de cracking a été substantiellement restreinte ou "inactivée"par exemple par   laddi-   tion à l'alumine d'une petite quantité   d'un   oxyde de métal   alcalino-terreux,   catalyseur qui sera décrit avec plus de détails ci-après,

   
Au lieu d'employer deux jeux de réacteurs séparés pour les frac- tions respectivement à bas point d'ébullition et à point d'ébullition élevé on peut charger la fraction à point   débullition   plus bas dans le premier dune série de 3 réacteurs conventionnels ou plus;,dans des conditions de re- forming relativement plus sévèreset charger la fraction à point d'ébulli- tion plus élevé seulement dans le deuxième ou le troisième réacteur de la sé- rie utilisée pour le reforming de la fraction à point d'ébullition plus bas réacteur dans lequel prévalent des durées de contact plus courtes ou des con- ditions moins sévères,9 obtenant ainsi sous forme   d'un   mélange,une essence à haute valeur d'octane.

   On a trouvé qu'il convenait également de charger la fraction à bas point d'ébullition dans le ou les premiers réacteurs   d'une   série dans des conditions relativement sévères,et de traiter la fraction à point   débullition   élevé sous des conditions choisies relativement plus douces dans un réacteur séparé puis de traiter les deux effluents respec- tifs dans les récateurs de la série restant en commun. 



   Un reforming séparé sur du platine supporté par de   l'alumine   lavée à l'acide acétiqueavec des vitesses spatiales de 2 et 4 et des pressions de 3195 et 42   Kg/cm2   pour les fractions respectivement à bas point   débulli-   tion et à point d'ébullition élevé, provenant   d'un   naphte bouillant dans l'in-   tervalle de 86-187 C, donne un gain de rendement de 3,5% en volume au même niveau d'octane9 ou un gain d'octane de 4 unités au même niveau de rendement   par comparaison avec le traitement en bloc de la charge non fractionnée. 



   Une autre modification de l'opération en plusieurs phases   compri-   se dans les limites de l'invention,appliquée égalementà l'ennoblissement d'essences naphténiques,tire profit des propriétés de différents catalyseurs pour effectuer la déshydrogénation des naphtènes comme réaction principale durant la première phase et une aromatisation,9 une isomérisation et un crac- king contrôlés dans une phase subséquente.   Ainsi,,  on peut employer un cataly- seur du type oxyde de molybdène-alumine dans la ou les premières phases9et un catalyseur au platine seulement dans une phase subséquente ou ultime du processus.

   Le catalyseur au platine sert seulement ici à achever   l'ennoblis-   sement des essences naphténiques à valeur d'octane médiocre ennoblies partiel- lement au préalable par le traitement en présence   dun   catalyseur oxyde de molybdène-alumine. Ainsi il faut seulement une quantité relativement très pe- tite du catalyseur au platine9 coûteux et difficilement disponible les résul- tats étant comparables à ceux obtenus avec   l'emploi     d'un   catalyseur au pla- tine depuis le début et durant tout le processus.

   Les inconvénients des ca- talyseurs oxyde de molybdène-alumine   détre   empoisonnés par certains types de composés sulfurés dans certaines conditions,  particulièrement   aux pressions basses et modérées,et de montrer dans certaines conditions une tendance à la formation de coke, particulièrement dans l'isomérisation de composés du 

 <Desc/Clms Page number 11> 

   type méthylcyclopentane peuvent donc être évitéso A cet effet on utilise une pression suffisamment élevée dans au moins la ou les premières phases   du processus pour inhiber l'empoisonnement par le soufre du catalyseur du type oxyde de molybdène-alumine employé les conditions étant d'autre part maintenues relativement douces en vue d inhiber une formation substantielle de coke.

   De cette façonil est possible d'opérer la ou les phases primaires sans qu'il soit nécessaire de régénérer le catalyseur employé dans ces pha- seso Toutefois9 les conditions relativement douces qui y sont maintenues limiteront dans une certaine mesure la conversion des naphtènes à noyau en 
C6 en composés aromatiques et maintiendront l'isomérisation à une valeur basse correspondanteo   L'aromatisation   des naphtènes à noyau en C6 et la   déshydroisomérisation des naphtènes à noyau en C5 est achevée dans la phase subséquente dans laquelle on utilise le catalyseur au platine dans des con-   ditions assez sévères. 



   Le catalyseur décrit devant être utilisé dans la ou les premières phases du procédé, peut être obtenu en traitant de   1.9 alumine   calcinée ou ac- tivée en morceaux ou tablettes avec des composés solubles de magnésium qui sont ensuite convertis en magnésie.,de manière que la base ou support d'a- lumine modifiée ainsi obtenue   nexerce   pas une activité de cracking marquée. 



     L'oxyde   de molybdène est incorporé dans le support séché d'une manière connue ou appropriée, par exemple en plongeant   l'alumine-magnésie   séchée dans une solution d'un sel de molybdène tel que du molybdate d'ammonium9et en   décom-   posant alors le sel en oxyde. Les catalyseurs de reforming oxyde de molyb- dène-alumine-magnésie qui ont peu ou pas d'activité pour promouvoir le crac- king des hydrocarbures, sont fortement sélectifs pour promouvoir la   déshydro-   génation des naphtènes. Il est important que la magnésie soit incorporée dans l'alumine préalablement à lincorporation de l'oxyde de molybdène.

   L'ef- fet du traitement du support avec la magnésie est déjà sensible lorsqu'on incorpore dans l'alumine une quantité de magnésie aussi petite que 0,05 %; des quantités de magnésie dépassant environ 2-3 % ne semblent pas avoir un effet utile supplémentaire quelconque et peuvent être   indésirableso   De pré- férence on emploie.environ 0,1 à 2,0 % de magnésie en poids. L'oxyde de mo- lybdène peut être présent en quantités d'environ 390 à 15,0 % en poids du catalyseur finale Il est important que   l'alumine  avant ou après dépôt du composé de molybdène, ne soit pas chauffée à des températures élevées ou au- trement traitées pour ne pas provoquer sa transformation dans les formes d'a-   lumine   dites "bëta". 



   Le catalyseur à utiliser dans la dernière phase peut être celui consistant en du platine supporté par de   l'alumine   particulièrement par de l'alumine lavée à l'acide, préparé de la manière décrite plus haut. 



   Le catalyseur à l'oxyde de molybdèneutilisé dans la ou les pre- mières phases du processus de reforming ou   d'ennoblissement   d'essences naph-   téniques en présence d'hydrogène est maintenu de préférence à des températures comprises entre environ 454 et 5100 C, sous des pressions d'environ   21-70 kg/cm29 et avec des vitesses spatiales allant   denviron   2 à 10. On main- tient de préférence un rapport initial hydrogène-charge   denviron   au moins 3 moles d'hydrogène par mole d'huileo Lorsqu'on opère dans ces conditions relativement douces et sous une pression suffisamment élevée,la conversion des naphtènes à noyau en C6 en composés aromatiques se limitera à environ 70 % et l'isomérisation sera maintenue à une valeur basse correspondante. 



  L'empoisonnement du catalyseur par le soufre sera inhibé par la pression par- tielle élevée d'hydrogène utilisée. 



   L'effluent provenant du dernier réacteur contenant le catalyseur à   le oxyde   de molybdène,si c'est nécessaire après réchauffage,est traité dans le réacteur suivant contenant un catalyseur au platine dans des condi- tions assez sévères pour convertir tous les naphtènes à noyauen C6 présents   et pour isomériser les naphtènes à noyau en C5 restant dans l'effluento Les conditions opératoires ici seront de préférence une température d'environ     482-538 C ,  des vitesses spatiales d'environ 2 à 5,et unrapport hydrogène- huile   d'au   moins 3 environ.

   En général les conditions opératoires les plus 

 <Desc/Clms Page number 12> 

 sévères sont obtenues aux températures plus élevées et/ou avec des vitesses spatiales plus faibles, en utilisant la même pression ou une pression plus basseo
Etant donné qu'il se produit de 1 'hydrogène au cours de la réaction dans les deux premiers réacteurs,ce gain d'hydrogène fera plus que compenser une consommation faible éventuelle d'hydrogène dans le troisième réacteur due à un hydro-cracking et il permettra en plus au troisième réacteur d'opérer avec un rapport hydrogène-huile plus élevé, supprimant la formation de cokeo 
Les avantages de souplesse et de sélectivité du procédé en plusieurs phases décrit peuvent s'obtenir par l'addition judicieuse d'halogène' après la déshydrogénation initiale de la charge, en utilisant un catalyseur, tel que platine-alumine,

   activé par l'halogène En omettant l'addition d'halogène au cours de la phase initiale de réaction et en opérant dans des conditions choisies,les naphtènes dans la chargeet particulièrement ceux du type hydroaromatique, sont presque quantitativement convertis en composés aromatiques tout en évitant un cracking ou en réduisant ce dernier à un mi-   nimumo   Les composés aromatiques formés étant relativement stables,

  l'addition désirée d'halogène peut être alors effectuée dans une phase de réaction subséquente exécutée sur l'effluent provenant de la phase précédente9et favorisant l'isomérisation et le cracking choisi des composants   paraffiniques   ou autres composants non aromatiques avec accompagnement d'une-amélioration supplémentaire de la qualité d'octane des produits   forméso   
Ainsi on a trouvé lors du reforming   d'un.   naphte lourd dans un système utilisant 3 réacteurs en série, que par l'addition de   0,05 %   de chlore (sous forme de chlorure de butyle) en poids du naphte frais chargé,

   on obtient lorsque cette addition de chlore est faite au second réacteur un accroissement d'environ 10 % en volume de liquide récupéré par rapport à la quantité obtenue avec la même addition de chlore au premier réacteur dé la série,et la valeur d'octane méthode F-1 du liquide récupéré est de   9795   contre la valeur de 96,1 obtenue avec une addition de chlore au réacteur ini-   tialo  
Les limitations pratiques imposées lorsqu'on ajoute de l'halogène à la zone de réaction initiale ne s'applique pas strictement dans ce cas,

   vu que une perte possible de produits à valeur d'octane élevée par cracking des naphtènes formant des composés aromatiques est évitée dans une large mesure au cours de la   déshydrogénation   préalable de ces naphtènes en   compo-'   sés aromatiques se produisant sans addition d'halogène à la zone initiale de   réactiono   Du fait que dans une zone subséquente de réaction on peut tolérer maintenant un   cracking   limité et que le cracking peut même être avantageux, la quantité d'halogène ajoutée peut être vraiment élevée comparativement aux limites mentionnées dans les formes d'exécution décrites précédemment auxquelles il a été fait allusion auparavant. 



   Un procédé simple et commode pour appliquer pratiquement les principes et obtenir les avantages d'une addition d'halogène ultérieure   consiste   à faire passer le naphte à traiter à travers le système tout entier comprenant une série de réacteurs ou de zones de réaction séparées, simultanément avec l'halogène ajouté, le catalyseur en contact avec la charge dans une ou plusieurs des zones deréaction initiales de la série étant toutefois un   ca-   talyseur promoteur principalement d'une déshydrogénation, essentiellement non acide et non   àctivé   par l'halogène pour promouvoir des réactions catalysées par un acide,

  l'effet de l'halogène étant ainsi reporté à une phase ou des phases de réaction subséquentes où l'effluent provenant de la phase de réaction précédente et contenant l'halogène est mis en contact avec un   cata-   lyseur capable de promouvoir des réactions catalysées par un acide en présence d'halogène,effectuant ainsi l'isomérisation et le cracking sélectif désirés dans cette phase postérieure. Cette disposition des divers types   diffé-   rents de catalyseur dans l'ordre ainsi indiqué permet le recyclage de gaz riche en hydrogène,séparé du produit final ayant subi le reforming, directement au réacteur ou zone de réaction initiale sans avoir à tenir compte de 

 <Desc/Clms Page number 13> 

 la présence éventuelle d'halogène dans ce gaz affectant la réaction dans cet- te phase initiale.

   Dans une forme d'exécution pratique;,le premier réacteur peut contenir comme catalyseur,effectif principalement pour la promotion de la déshydrogénation du platine ou autre métal noble de la famille du plati- ne en quantité de 0,05% à 1 ou 2 %, supporté sur un support tel que du si- lica geldu charbon actif ou de la magnésie ou sur un autre support non aci- de ayant peu ou pas d'activité de cracking comme tel ou en présence d'halo- gèneo Les autres réacteurs de la série contiendront le catalyseur promoteur des réactions catalysées par un acide, qui peut être sous la forme   denviron   
0,05 % à 1%, et pas plus de 2% de platine (ou d'un métal noble apparenté) sur une alumine adsorbante telle que l'alumine activée du commerce;

   un cata- lyseur de ce genre a l'effet promoteur désiré en présence   d'halogène..   Dans certains cas il peut être préférable d'employer le catalyseur, promoteur en présence d'halogèneuniquement dans le dernier réacteur,les autres réac- teurs de la série contenant du platine sur de la silice ou un catalyseur de métal noble supporté de manière analogue, sélectif pour la déshydrogénation. 



   Puisque un cracking limité peut être toléré ou même être avanta- geux dans les phases de réaction subséquentes,la quantité d'halogène utili- sée peut être vraiment élevée comparativement aux limites spécifiées plus haut., L'addition à la charge d'une quantité d'halogène plus grande qu'envi- ron 0,5% n'est pas à recommander vu que, à des niveaux d'halogène aussi é- levés, l'importance du cracking peut être excessive et que la perte corres- pondante de rendement en liquide peut être disproportionnée par rapport au gain d'octane réalisé.

   Bien que l'effet de l'addition d'halogène soit sensi- ble même avec des taux aussi bas que 1,0 partie par 1.000.000 de naphte chargé on doit, pour obtenir des avantages pratiques,utiliser au moins   0,001% d'halogène en poids; pour la plupart des opérations ayant pour objet 1 ennoblissement d'une essence sur un catalyseur contenant jusqu'à 1% de   platine (ou de palladium) sur de l'alumine activée,là quantité préférée d'halogène ajouté sera dans l'intervalle de 0,005 à 0,1% en poids de la charge d'essence originale.. 



   Dans l'exécution de la forme d'invention visant une addition d'ha- logène dans une phase opératoire ultérieure en vue d'ennoblir l'essence ou de produire des composés aromatiques,on n'est pas limité à   lemplôi   de con- ditions opératoires identiques dans les divers réacteurs de la série; en fait des modifications dans les conditions opératoires peuvent être utilisées avec profit et contribuer à la souplesse générale du procédé.

   Etant donné que la réaction désirée dans la phase initiale est principalement la déshydrogéna- tion et que le catalyseur utilisé est extrêmement sélectif pour cette réac- tion, l'effet favorable d'une température élevée sur cette réaction dans l'intervalle opératoire décrit peut être utilisé avec profit, en opérant sous des pressions plus élevées dans l'intervalle indiqué pour réduire la tendan- ce à la formation de coke. Dans la ou les dernières phases appliquées à la matière déjà déshydrogénée,la pression peut être réduite pour obtenir des rendements améliorés en produits ayant subi le reforming, une cokéfaction excessive étant évitée par réduction de la température.

   Ainsi pour l'enno- blissement d'un carburant moteur, la fraction de naphte peut etre mise en contact avec le platine sur de la silice,ou sur un catalyseur   apparenté,   à des températures de   483-524 C   sous une pression de jauge de 42-49 kg/cm2, la phase de traitement subséquente ayant lieu sur un catalyseur platine-alu- mine à 440-483 C,sous une pression dejauge de 21-35 Kg/cm2. L'hydrogène ou le gaz de recyclage riche en hydrogène, de même que l'halogène,sont a- joutés à la charge initiale comme décrit plus haut mais l'halogène n'exerce pas un effet sensible sur les réactions tant qu'il ne parvient pas à la dernière phase de traitement sur le catalyseur platine-alumine. 



   On a également constaté que les opérations de reforming du genre mentionné plus haut, effectuées sous une pression partielle d'hydrogène su- périeure à la pression atmosphérique en présence d'un catalyseur à fonction double ayant une "fonction acide" en plus de son activité hydrogénante-dés-   hydrogénante ,  et particulièrement en présence de catalyseurs supportés de la famille du platine,sont étonnement favorisées par l'addition à la charge 

 <Desc/Clms Page number 14> 

   de naphte d'hydrocarbures aliphatiques en C3 à Co Les hydrocarbures ajoutés de préférence sont des paraffines contenant de 1 hydrogène attaché à un ato-   me de carbone tertiaire ou capables de former ces composés tertiaires dans les conditions existantes de réaction;

   par exemplerespectivement de   l'iso-   butane ou du n-butane. 



   Comme conséquence d'une addition de ce genre en hydrocarbures   ali-     phatiques, en quantité suffisante on obtient des rendements exceptionnellement élevés en produits de conversion d'hydrocarbures liquides désirés à par-   tir   d'une   charge de naphte, avec en même temps une meilleure valeur d'octane du produit liquide. Dans toutes les conditions de traitement choisies à l'in- térieur du domaine opératoire, la relation rendement-octane du produit liqui- de récupéré est portée à un niveau étonnement plus élevé que celui obtenu sans faire une telle addition de paraffines. 



   Dans les opérations préférées conformes à cette forme particule- re de l'invention,le reforming de l'essence ou d'autres fractions de naph- te s'effectue sur le catalyseur décrit précédemment comprenant du platine ou un autre métal noble du groupement du platine porté sur un support pré- sentant par'sa   natureg   ou en raison de son association avec le composé de métal noble la propriété de promouvoir les réactions catalysées par un aci- de. L'opération de reforming s'effectue généralement à des températures dans la région supérieure environ  à 455 C,   sans dépasser   552 C,   sous une pression totale de 20-50 atmosphères et avec l'addition d'au moins 3 moles de hydrogène (ou de gaz de recyclage riche en hydrogène fournissant cette quantité d'hydrogène) par mole de naphte chargé.

   Avec la charge d'essence ou de naphte on ajoute au moins environ 0,2 moles d'hydrocarbures aliphati- ques en C3-C5 par mole de naphte, particulièrement des paraffines telles que du butane normale ou de l'isobutane. Il est avantageux d'ajouter des proportions plus grandes d'hydrocarbures aliphatiques, de préférence une quantité telle qu'il y ait consommation sensible des hydrocarbures ajoutés dans la réaction, ou bien on n'ajoute pas moins que cette quantité d'hy- drocarbures aliphatiques en C4 qui est telle que la proportion de ces   hydro-   carbures se trouvant dans l'effluent de la réaction ne dépasse pas la pro- portion présente dans la charge.

   Cette consommation d'une portion au moins des hydrocarbures aliphatiques ajoutés s'accompagnant d'un rendement nette-   ment amélioré en produits +Ce, a lieu généralement lorsqu'on ajoute au moins 1/3 de mole de ces hydrocarbures aliphatiques par mole d'essence ou de naph-   te chargé. Avec des quantités croissantes en hydrocarbures aliphatiques ajoutés,on obtient de nouveau une amélioration des valeurs rendement-octa- ne jusqu'à environ 3-4 moles d'hydrocarbures aliphatiques en C4 par mole de naphte chargé; une addition de quantités plus grandes de ces hydrocarbures aliphatiques   net   toutefois généralement pas faisable pour des considéra- tions d'ordre économique.

   Les fractions paraffiniques riches en C4 que l'on peut obtenir aisément à partir d'autres opérations de raffinage fournissant des mélanges de butane normal et d'isobutane avec en même temps des quantités plus ou moins grandes d'hydrocarbures aliphatiques inférieurs et/ou supérieurs, peuvent s'employer avantageusement   comme   source des hydrocarbures aliphati- ques requis devant servir dans le procédé décrit, de même que des fractions contenant des quantités plus ou moins grandes d'oléfines, par exemple les fractions usuelles B-B que l'on peut obtenir dans des nombreuses raffineries (composées principalement d'hydrocarbures acycliques en C4 saturés et non saturés).

   Lorsqu'on emploie des fractions contenant des quantités assez im- portantes de composés non saturés oléfiniques, la quantité d'hydrogène ajou- tée ou recyclée au procédé de reforming doit toutefois être accrue de manière correspondante pour satisfaire à l'hydrogénation de ces oléfines au cours du traitement. 



   En général, l'effet indiqué de l'addition des hydrocarbures alipha- tiques décrits avec une essence ou naphte devant être soumise au reforming,   s'obtient   dans les conditions habituelles utilisées dans le reforming hydro- génant lorsque le procédé est effectué en présence de catalyseurs à fonction.

   double ayant une fonction acide en plus de leur fonction hydrogénante-déhy- drogénanteo Ces catalyseurs comprennent par exemple ceux qui contiennent une 

 <Desc/Clms Page number 15> 

 faible quantité d'un composant promoteur de déshydrogénation fixé sur un sup- port acide catalytiquement actif par exemple sur dé la   silice-alumine  de la silice-magnésiede la silice-oxyde de zirconiumde   l'alumine   traitée par un halogène et autres matières naturelles ou synthétiques ayant une activité marquée de cracking et/ou d'isomérisation, comprenant les matières de support telles qu'elles sont préparées ou traitées pour réduire l'activité de crac- king.

   Bien que dans cette opération le composant   déshydrogénant   peut être un oxyde d'un métal du groupe VI, particulièrement de l'oxyde de chrome ou un oxyde de molybdène, dans les opérations de reforming s'effectuant pendant des périodes de fonctionnement relativement longues sans nécessairement une réactivation ou un remplacement du catalyseuril est avantageux d'employer des catalyseurs comprenant des métaux nobles du groupe   VIII,   c'est-à-dire de la famille du platine. 



   Dans l'opération de reforming décrite il y a généralement une pro- duction nette d'hydrogène résultant de la déshydrogénation des naphtènes pré- sents dans la charge. Les produits gazeux séparés du liquide ayant subi le reforming comprennentsupplémentairement à l'hydrogènedes quantités mineu- res d'hydrocarbures gazeux contenant une certaine quantité d'hydrocarbures enC3 et   C4   que l'on peut recycler à la phase de reforming en même temps qu'avec l'hydrogèneen faisant le nécessaire pour enrichir ou ajuster de manière appropriée le gaz de recyclage par l'addition de gaz étranger ou de tout autre façon, en vue de fournir les quantités nécessaires d'hydrogène et d'hydrocarbures aliphatiques additionnels, requis respectivement dans la ré- action de reforming. 



   Avec l'addition de 10 % en poids d'hydrocarbures en C4 avec la charge de naphte, la teneur totale en composés en C4 dans le produit est appréciablement réduite par rapport à celle qui est obtenue sans addition des hydrocarbures   aliphatiques,   ce qui indique qu'une portion des composés en C4 totaux ajoutés et autrement formés sont consommés dans l'opération. 



  A mesure que la quantité des hydrocarbures en C4 ajoutés est accruedes quantités progressivement plus faibles de composés en C4 sont formés dans le procédé jusqu'à ce que les composés en   C4   totaux dans le produit soient moindres que ceux ajoutés à la charge. En un certain point   intermédiaire,   il s'établit un équilibre auquel la teneur réelle en composés en C4 du   produit équivaut à la quantité des composés en C4 ajoutés au processus, ce point variant quelque peu avec les conditions operatoires particulières   mais étant approximativement au voisinage de 15 % en poids de paraffines en C4 ajoutées avec la charge de naphte.

   Pour les meilleurs résultats don- nant les rendements les plus élevés à une valeur d'octane donnéeil est préférable d'ajouter au moins cette quantité d'hydrocarbures aliphatiques qui ne produira pas un accroissement de ces mêmes composés dans le produite et particulièrement d'ajouter des quantités plus grandes conduisant à une perte nette ou consommation partielle des hydrocarbures aliphatiques addi- tionnels fournis. 



   Dans une opération caractéristique où on ajoute une mole d'iso- butane par mole de naphte chargé,20% environ de l'isobutane total ajouté est consommé dans le processus dont 80 % environ vont à la production d'hy- drocarbures +C5. La fraction +C5 obtenue contient 67   %   en volume de composés aromatiques alors que la teneur en composés aromatiques dans la charge é- tait de 15 % à l'origine. Etant donné qu'avec une conversion totale des naph- tènes présents dans la charge les composés aromatiques totaux dans le pro- duit ne représenteraient pas plus de   605 %   en volume9   il   est évident qu'il se produit une aromatisation des paraffines au cours du traitement. 



   REVENDICATIONS. 

**ATTENTION** fin du champ DESC peut contenir debut de CLMS **.

Claims (1)

  1. 1/ Perfectionnements ou modifications apportés au procédé décrit dans le brevet principal, caractérisés en ce qu'une fraction d'essence ou de naphte devant être soumise au reforming, subit un reforming catalytique en plusieurs phases, en ce qu'on utilise au moins dans les dernières phases <Desc/Clms Page number 16> de l'opération un catalyseur composé d'un métal noble de la famille du pla- tine sur un support d'alumine,et en ce qu'on ajoute un halogène à la charge seulement dans la ou les dernières phases de traitement.
    2/ Procédé suivant la revendication 1, caractérisé en ce qu'on a- joute un halogène à raison de moins de 0,5 % en poids des hydrocarbures originaux chargés.
    3/ Procédé suivant les revendications 1 et 2, caractérisa en ce qu'on ajoute 0,005 à 0,1 % d'halogène à l'effluent d'une phase primaire devant être soumis à une phase de traitement ultérieure.
    4/ Procédé suivant les revendications 1 à 3 caractérisé en ce qu'on met initialement en contact dans une phase primaire la fraction dessence ou de naphte avec un catalyseur de déshydrogénation qui n'est pas activé par l'halogène et en ce qu'on traite ensuite dans une phase ultérieure l'effluent avec le catalyseur platine-alumine l'halogène en petite quantité étant ajouté à la fraction pour le contact initial et le gaz riche en hydrogène provenant de la phase ultérieure étant recyclé à la phase primaire.
    5/ Procédé suivant la revendication 1, caractérisé en ce qu'on ajoute à la fraction originale d'essence ou de naphte devant subir le reforming un ou plusieurs hydrocarbures aliphatiques ayant 3 à 5 atomes de carbone,à raison d'au moins 10% en poids de cette fraction en plus du composé halogéné ou à la place de ce dernier.
    6/ Procédé suivant les revendications 1à 5, caractérisé en ce quon soumet le catalyseur de métal noble sur alumine utilisé à une réduction en présence de vapeur d'halogénure avant de le mettre en contact avec les hydrocarbures pour supprimer au cours de la réduction,dans le catalyseur, une perte en halogène combiné chimiquement.
    7/ Procédé suivant la revendication 6, caractérisé en ce qu'on effectue la réduction pendant une durée et dans des conditions conduisant à une teneur finale en halogènure dans le catalyseur d'environ 0,05 à 0,1 % en poids par 10 m2 de surface de support d'alumine.
    8/ Procédé suivant la revendication 1,caractérisé en ce qu'on applique les opérations successives de reforming à une charge préfractionnée telle que la fraction bouillant le plus bas subit une conversion, relativement sévère et la fraction bouillant plus haut subit une conversion relativement plus douce,ces fractions étant mélangées pour produire une essence supérieure de pouvoir anti-détonnant élevée 9/ Procédé suivant la revendication 1, caractérisé en ce qu'avant de mettre en contact la matière chargée avec le catalyseur au platine on l'a tout d'abord déshydrogénisée sur un catalyseur oxyde de molybdène-alumine en présence d'hydrogène et sous une pression suffisamment élevée pour inhiber l'empoisonnement de ce catalyseur par le soufre,réduisant ainsi les besoins en platine.
    10/ Procédé suivant la revendication 9, caractérisé en ce que le catalyseur oxyde de molybdène-alumine contient une quantité mineure de magnésie ou d'oxyde d'un métal alcalino-terreux, incorporée dans l'alumine préalablement à l'imprégnation avec le composé de molybdène..
    11/ Procédé suivant les revendications 1 à 10, caractérisé en ce qu'après une période relativement longue d'utilisation non interrompue on soumet éventuellement le catalyseur platine-alumine à une régénération pour éliminer le dépôt de carbone par combustion dans un mélange gazeux consistant en un gaz inerte contenant moins de 1,5 % d'oxygène en volume et à une température inférieure à 540 C (1000 F), le mélange gazeux étant alimenté avec des débits produisant l'élimination du dépôt de carbone,à raison de moins de 3 et de préférence 0,5 à 1,5 moles de carbone par mole de platine par heure, 12/ Procédé suivant la revendication 11,caractérisé en ce qu'on effectue la régénération sous une pression inférieure à celle de la conver- <Desc/Clms Page number 17> sion de l'hydrocarbure,
    de préférence au voisinage de la pression atmosphériqueo 13/ Procédé suivant les revendications 11 et 12, caractérisé en ce qu'avant de mettre de nouveau en contact le catalyseur.régénéré avec les hydrocarbures9 on le soumet à une réduction dans un courant d'hydrogène contenant une quantité faible de composé halogène.
    14/ Procédé suivant les revendications 1 à 139 caractérisé en ce que le catalyseur platine-alumine est un catalyseur substantiellement exempt de métal alcalin contaminant, en ce qu'on a préparé l'alumine par calcination à une température dans l'intervalle de 370-595 C (700-1100 F) suivie d'un lavage avec un acide faible préalablement à l'imprégnation avec le platine.
    15/ Procédé suivant les revendications 1 à 13, caractérisé en ce quon prépare le catalyseur platine-alumine en traitant l'alumine calcinée avec un acide dilué9en séchant tout en maintenant de l'acide résiduel dans l'alumine séchée 9 en imprégnant l'alumine acide avec un composé soluble d'un métal de la famille du platine puis en séchant.
    16/ Procédé suivant les revendications 1 à 3, caractérisé en ce quon utilise un catalyseur au platine sur alumine dans chacune des diverses phases opératoireso 17/ Procédé suivant la revendication 4, caractérisé en ce qu'on utilise du platine sur un support non activé par un halogène dans la ou les phases opératoires.
BE522308T BE522308A (fr)

Publications (1)

Publication Number Publication Date
BE522308A true BE522308A (fr) 1953-09-15

Family

ID=157619

Family Applications (1)

Application Number Title Priority Date Filing Date
BE522308T BE522308A (fr)

Country Status (1)

Country Link
BE (1) BE522308A (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0001928A1 (fr) * 1977-11-03 1979-05-16 Cosden Technology Inc. Procédé, sous des conditions extrêmes, pour la production d'hydrocarbures
CN114609323A (zh) * 2020-12-09 2022-06-10 中国石油天然气集团有限公司 连续重整催化剂的评价方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0001928A1 (fr) * 1977-11-03 1979-05-16 Cosden Technology Inc. Procédé, sous des conditions extrêmes, pour la production d'hydrocarbures
CN114609323A (zh) * 2020-12-09 2022-06-10 中国石油天然气集团有限公司 连续重整催化剂的评价方法

Similar Documents

Publication Publication Date Title
EP0040119B1 (fr) Procédé de déshydrocyclisation des paraffines à très basse pression
EP0020240B1 (fr) Catalyseurs d&#39;hydrotraitement d&#39;hydrocarbures et applications desdits catalyseurs au reformage et à l&#39;isomérisation d&#39;hydrocarbures en présence d&#39;hydrogène
CA1067104A (fr) Procede d&#39;hydrodealkylation d&#39;hydrocarbures alkyl aromatiques
CA2138357A1 (fr) Catalyseurs de deshydrogenation de paraffines c3-c20 et leur preparation
US5294328A (en) Production of reformulated gasoline
EP0832167B1 (fr) Procede de reformage avec un catalyseur contenant des metaux alcalins ou alcalino-terreux
EP0610168B1 (fr) Procédé de production d&#39;essences à haut indice d&#39;octane
EP2296809B1 (fr) Preparation de supports soufres pour le reformage catalytique
US3649524A (en) Method for reforming paraffinic and naphthenic rich hydrocarbon feed streams
US4166024A (en) Process for suppression of hydrogenolysis and C5+ liquid yield loss in a cyclic reforming unit
EP1417283B1 (fr) Procede d&#39;isomerisation d&#39;une coupe c5-c8 mettant en oeuvre deux reacteurs en parallele
JPS5953094B2 (ja) 炭化水素転化触媒再生法
EP0948405B1 (fr) Procede d&#39;activation de catalyseurs halogenes supportes
BE522308A (fr)
US4541915A (en) Catalytic reforming process
US4342644A (en) Reforming with multimetallic catalysts
FR2600668A1 (fr) Procede de reformage catalytique a travers au moins deux lits de catalyseur
US4292204A (en) Reforming with multimetallic catalysts
US4498907A (en) Process for upgrading cuts of very high cycloparaffins content
US2999805A (en) Paraffin isomerization process
US3017344A (en) Serial reforming of hydrocarbons
US3785961A (en) Catalytic reforming of a relatively lean charge stock in a two-step process
JPH083098B2 (ja) 芳香族炭化水素の製造方法
FR2464095A1 (fr) Nouveaux catalyseurs de conversion d&#39;hydrocarbures
BE598929A (fr)