AU2014204430B1 - Low-lead brass alloy - Google Patents

Low-lead brass alloy Download PDF

Info

Publication number
AU2014204430B1
AU2014204430B1 AU2014204430A AU2014204430A AU2014204430B1 AU 2014204430 B1 AU2014204430 B1 AU 2014204430B1 AU 2014204430 A AU2014204430 A AU 2014204430A AU 2014204430 A AU2014204430 A AU 2014204430A AU 2014204430 B1 AU2014204430 B1 AU 2014204430B1
Authority
AU
Australia
Prior art keywords
brass alloy
lead
alloy
low
brass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
AU2014204430A
Inventor
Jiade LI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGXI AUDY BRASSWORK Inc
Original Assignee
JIANGXI AUDY BRASSWORK Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51167766&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=AU2014204430(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JIANGXI AUDY BRASSWORK Inc filed Critical JIANGXI AUDY BRASSWORK Inc
Publication of AU2014204430B1 publication Critical patent/AU2014204430B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Domestic Plumbing Installations (AREA)
  • Conductive Materials (AREA)

Abstract

The invention relates to a low-lead brass alloy, comprising: by the total weight of the brass alloy, 62.5-63 wt% copper, 0.16-0.24 wt% lead, 0-0.02 wt% antimony, 0-0.01 wt% magnesium, 0-0.2 wt% tin, 0.0005-0.0009 wt% boron, 0.55-0.7 wt% aluminum, 0.05-0.15 wt% iron, 0-0.15 wt% nickel, 0.09-0.12 wt% arsenic, 0-0.005 wt% zirconium, 0-0.01 wt% impurities, and a balance of zinc.

Description

DESCRIPTION LOW-LEAD BRASS ALLOY FIELD OF INVENTION The invention relates to a low-lead brass alloy. BACKGROUND OF INVENTION Copper has excellent electrical conductivity and environmental friendliness, and bacteria harmful to the human can't survive on its surface. Other elements are added into copper, so as to improve its performance. For example, the addition of lead into the brass alloy containing copper and zinc significantly improves the cutting performance of the brass. However, lead has a destructive effect on the human health and ecological balance. It is also a trend around the world that there are increasing restrictions on the application of lead-containing alloy. In addition, the environmental problem is increasingly outstanding, and the working environment is becoming more serious. As a result, the surface strength of brass products is reduced, and the brass tube may even perforate. This greatly reduces the lifetime of brass products and causes problems in application. Therefore, there is a need to provide an alloy formula for solving the above problems, which can replace the brass with a high lead content, is dezincification corrosion resistant, and further has excellent casting performance, forgeability, cutting performance, corrosion resistance and mechanical properties. SUMMARY OF INVENTION It is an object of the invention to provide a brass alloy which exhibits excellent performance like tensile strength, elongation rate, dezincification resistance and cutting performance, which is suitable for cutting processed products that require high strength, wear resistance and waterlogging resistance. The brass alloy of the invention can securely replace the alloy copper with a high lead content, and can completely meet the demands about restrictions on lead-containing products in the development of human society. To achieve the above object, the inventors have proposed the following low-lead brass alloy. A low-lead brass alloy (hereinafter referred to as the inventive product 1) comprises: by the total weight of the brass alloy, 62.5-63 wt% copper, 0.16-0.24 wt% lead, 0.55-0.7 wt%
I
aluminum, and a balance of zinc. In the inventive product 1, the content of lead is reduced to 0.24 wt% or less, the content of copper is maintained at 62.5-63 wt%, and a trace amount of aluminum is added to increase cutting performance of the brass alloy. Meanwhile, since aluminum has a higher tendency to be ionized on the surface of the alloy than zinc, and preferentially reacts with oxygen in a corrosive gas or solution to develop a dense protection film of aluminum oxide on the surface of the alloy, thus increasing corrosion resistance and dezincification resistance of the brass alloy in the severe environment. Besides, aluminum can increase cast flowability of the alloy, so that the alloy exhibits a significant improvement in strength and hardness. In order to make a better use of the above effects, the content of aluminum is 0.55-0.7 wt% by the total weight of the brass alloy. Preferably, the inventive product 1 further comprises: one or more elements selected from the group consisting of 0-0.02 wt% antimony, 0-0.2 wt% tin, 0-0.01 wt% magnesium, and 0.09 0.12 wt% arsenic by the total weight of the brass alloy. All of these elements can to a certain degree increase cutting performance of the brass alloy. The addition of antimony and tin can significantly increase strength of the alloy, and improve its plasticity and corrosion resistance. A trace amount of arsenic can increase dezincification resistance of the alloy. However, a high content of arsenic is not favorable, since it will decrease the thermal forgeability and squeezing performance of the alloy. More preferably, the above-mentioned inventive product further comprises one or more elements selected from the group consisting of 0.0005-0.0009 wt% boron, 0.05-0.15 wt% iron, 0-0.15 wt% nickel, and 0-0.005 wt% zirconium by the total weight of the brass alloy. Boron can increase corrosion resistance of the brass alloy, and can also prevent dezincification. Iron can enhance toughness of the brass alloy. Nickel can not only prevent the brass alloy from rusting, but also can form intermetallic compounds among metals in the alloy, which uniformly precipitate in the matrix, thus increasing wear resistance and strength of the alloy. Zirconium can help to refine grains, thus increasing casting performance of the brass alloy. A low-lead brass alloy (hereinafter referred to as the inventive product 2) comprises: by the total weight of the brass alloy, 62.5-63 wt% copper, 0.16-0.24 wt% lead, two or more elements selected from the group consisting of 0.55-0.7 wt% aluminum, 0-0.02 wt% antimony, 0-0.2 wt% tin, and 0-0.01 wt% magnesium by the total weight of the brass alloy, and a balance of zinc. Aluminum, antimony, tin, and magnesium are added on basis of the same reasons as the inventive product 1, and are added according to actual needs. Preferably, the inventive product 2 further comprises two or more elements selected from the group consisting of 0.09-0.12 wt% arsenic, 0.0005-0.0009 wt% boron, 0.05-0.15 wt% iron, 2 0-0.15 wt% nickel, and 0-0.005 wt% zirconium by the total weight of the brass alloy. Arsenic, boron, iron, nickel, and zirconium are added on basis of the same reasons as the inventive product 1, and are added according to actual needs. A low-lead brass alloy (hereinafter referred to as the inventive product 3) comprises: by the total weight of the brass alloy, 62.5-63 wt% copper, 0.16-0.24 wt% lead, 0-0.02 wt% antimony, 0-0.01 wt% magnesium, 0-0.2 wt% tin, 0.0005-0.0009 wt% boron, 0.55-0.7 wt% aluminum, 0.05-0.15 wt% iron, 0-0.15 wt% nickel, 0.09-0.12 wt% arsenic, 0-0.005 wt% zirconium, 0-0.01 wt% impurities, and a balance of zinc. Antimony, magnesium, tin, boron, aluminum, iron, nickel, arsenic, and zirconium are added on basis of the same reasons as the inventive product 1. In the inventive product 3, these elements are added simultaneously for the purpose of meeting needs for specific product performance. DETAILED DESCRIPTION The technical solutions of the invention will be described expressly by referring to embodiments thereof. It is not intended to limit the scope of the invention to the described exemplary embodiments. The modifications and alterations to features of the invention as described herein, as well as other applications of the concept of the invention (which will occur to the skilled in the art, upon reading the present disclosure) still fall within the scope of the invention. In the invention, the wording "or more", "or less" in the expression for describing values indicates that the expression comprises the relevant values. The dezincification corrosion resistant performance measurement, as used herein, is performed according to AS-2345-2006 specification in the cast state, in which 12.8 g copper chloride is added into 1000C.C deionized water, and the object to be measured is placed in the resulting solution for 24 hr to measure a dezincification depth. O indicates a dezincification depth of less than 300 [tm; 0 indicates a dezincification depth between 300 [tm and 400 [tm; and >( indicates a dezincification depth larger than 400 [am. The cutting performance measurement, as used herein, is performed in the cast state, in which the same cutting tool is adopted with the same cutting speed and feed amount. The cutting speed is 25 m/min (meter per minute), the feed amount is 0.2 mm/r (millimeter per number of cutting edge), the cutting depth is 0.5 mm, the measurement rod has a diameter of 20 mm, and C36000 alloy is taken as a reference. The relative cutting rate is derived by measuring the cutting resistance. The relative cutting rate = cutting resistance of C36000 alloy/cutting resistance of the 3 sample. 0 indicates a relative cutting rate larger than 85%; and 0 indicates a relative cutting rate larger than 70%. Both the tensile strength measurement and the elongation rate measurement, as used herein, are performed in the cast state at room temperature as an elongation measurement. The elongation rate refers to a ratio between the total deformation of gauge section after elongation AL and the initial gauge length L of the sample in percentage: 6=AL/Lx 100%. The reference sample is a lead-containing brass with the same state and specification, i.e., C36000 alloy. As used herein, the performance for elements in alloy to dissolve in water is tested in accordance with GB/T5750-2006 "Standard examination methods for drinking water" and is judged in accordance with GB5749-2006 "Standards for drinking water quality". According to measurement, the proportions for constituents of C36000 alloy mentioned above are listed as follow, in the unit of weight percentage (wt%): Material No. copper zinc bismuth antimon mangan aluminu tin lead iron (Cu) (Zn) (Bi) y (Sb) ese (Mn) m (Al) (Sn) (Pb) (Fe) C36000 alloy 60.53 36.26 0 0 0 0 0.12 2.97 0.12 Embodiment Table 1 lists 15 different constituents for the low-lead brass alloy, each constituent being in the unit of weight percentage (wt%). Table 1 copper zinc magnesi aluminu antimon boron nickel arsenic zirconi No. lead (Pb) urn tin (Sn) iron (Fe) (Cu) (Zn) m (Al) y (Sb) (B) (Ni) (As) um (Zr) (Mg) 1 63.000 36.233 0.215 -- 0.550 -- -- -- -- -- -- - 2 62.542 36.578 0.240 -- 0.638 -- -- -- -- -- -- - 3 62.500 36.638 0.160 -- 0.700 -- -- -- -- -- -- - 4 62.511 36.648 0.168 0.010 0.551 0.020 -- -- -- -- 0.090 - 5 62.780 36.136 0.179 0.009 0.589 -- 0.200 -- -- -- 0.105 - 6 62.993 35.967 0.200 -- 0.688 -- 0.150 -- -- -- -- - 7 62.567 36.541 0.161 -- 0.560 -- -- 0.0005 0.050 -- 0.120 - 8 62.874 36.123 0.187 0.007 0.653 -- -- -- -- 0.150 -- 0.004 9 63.000 36.116 0.192 -- 0.670 0.015 -- -- -- -- -- 0.005 10 62.510 36.416 0.167 -- 0.689 0.018 0.198 -- -- -- -- - 11 62.913 36.860 0.198 0.008 -- 0.019 -- -- -- -- -- - 12 62.780 36.250 0.201 0.009 0.580 -- 0.178 -- -- -- -- - 4 13 62.500 36.541 0.200 -- 0.663 0.017 -- 0.0007 0.076 -- - 14 62.831 35.987 0.212 0.010 0.578 -- 0.132 -- -- 0.132 0.112 0.004 15 62.670 35.845 0.198 0.008 0.674 0.017 0.188 0.0009 0.150 0.143 0.101 0.003 Measurements about cutting performance, dezincification corrosion resistant performance, tensile strength, and elongation rate are performed on alloys with the above constituents in the cast state at room temperature, and the reference sample is a lead-containing brass with the same state and specification, i.e., C36000 alloy. Results of the measurements about tensile strength, elongation rate, cutting performance, and dezincification corrosion resistant performance are listed as follow: TENSILE ELONGATION DEZINCIFIC RELATIVE No. STRENGTH RATE (%) ATION CUTTING RATE (N/mm 2 ) LAYER 1 298 10 0 0 2 301 10 0 0 3 308 10 0 0 4 305 11 0 0 5 310 11 0 0 6 315 12 0 0 7 311 12 0 0 8 317 12 0 0 9 320 11 0 0 10 310 11 0 0 11 300 10 0 0 12 307 11 0 0 13 317 12 0 0 14 335 13 © © 15 326 13 © © C36000 alloy 394 9 > The performance for constituents in alloy to dissolve in water is tested, and the measurement results are listed as follow (in the unit of mg/L): No. copper zinc (Zn) lead (Pb) aluminum antimony boron (B) iron (Fe) nickel (Ni) arsenic (As) (Cu) (Al) (Sb) 5 <1.0 <1.0 <0.01 <0.2 <0.005 <0.5 <0.3 <0.02 <0.01 <1.0 <1.0 <0.01 <0.2 <0.005 <0.5 <0.3 <0.02 <0.01 <1.0 <1.0 <0.01 <0.2 <0.005 <0.5 <0.3 <0.02 <0.01 <1.0 <1.0 <0.01 <0.2 <0.005 <0.5 <0.3 <0.02 <0.01 <1.0 <1.0 <0.01 <0.2 <0.005 <0.5 <0.3 <0.02 <0.01 <1.0 <1.0 <0.01 <0.2 <0.005 <0.5 <0.3 <0.02 <0.01 <1.0 <1.0 <0.01 <0.2 <0.005 <0.5 <0.3 <0.02 <0.01 <1.0 <1.0 <0.01 <0.2 <0.005 <0.5 <0.3 <0.02 <0.01 <1.0 <1.0 <0.01 <0.2 <0.005 <0.5 <0.3 <0.02 <0.01 0 <1.0 <1.0 <0.01 <0.2 <0.005 <0.5 <0.3 <0.02 <0.01 1 <1.0 <1.0 <0.01 <0.2 <0.005 <0.5 <0.3 <0.02 <0.01 2 <1.0 <1.0 <0.01 <0.2 <0.005 <0.5 <0.3 <0.02 <0.01 3 <1.0 <1.0 <0.01 <0.2 <0.005 <0.5 <0.3 <0.02 <0.01 4 <1.0 <1.0 <0.01 <0.2 <0.005 <0.5 <0.3 <0.02 <0.01 5 <1.0 <1.0 <0.01 <0.2 <0.005 <0.5 <0.3 <0.02 <0.01 Although the invention has been described with respect to embodiments thereof, these embodiments do not intend to limit the invention. The ordinary skilled in the art can made modifications and changes to the invention without departing from the spirit and scope of the invention. Thus, the protection of the invention is defined by the appended claims. 6

Claims (6)

1. A low-lead brass alloy, characterized by comprising: by the total weight of the brass alloy, 62.5-63 wt% copper, 0.16-0.24 wt% lead, 0.55-0.7 wt% aluminum, and a balance of zinc.
2. The low-lead brass alloy of claim 1, characterized by further comprising: one or more elements selected from the group consisting of 0-0.02 wt% antimony, 0-0.2 wt% tin, 0-0.01 wt% magnesium, and 0.09-0.12 wt% arsenic by the total weight of the brass alloy.
3. The low-lead brass alloy of claim 2, characterized by further comprising: one or more elements selected from the group consisting of 0.0005-0.0009 wt% boron, 0.05-0.15 wt% iron, 0-0.15 wt% nickel, and 0-0.005 wt% zirconium by the total weight of the brass alloy.
4. A low-lead brass alloy, characterized by comprising: by the total weight of the brass alloy, 62.5-63 wt% copper, 0.16-0.24 wt% lead, two or more elements selected from the group consisting of 0.55-0.7 wt% aluminum, 0-0.02 wt% antimony, 0-0.2 wt% tin, and 0-0.01 wt% magnesium by the total weight of the brass alloy, and a balance of zinc.
5. The low-lead brass alloy of claim 4, characterized by further comprising: two or more elements selected from the group consisting of 0.09-0.12 wt% arsenic, 0.0005-0.0009 wt% boron, 0.05-0.15 wt% iron, 0-0.15 wt% nickel, and 0-0.005 wt% zirconium by the total weight of the brass alloy.
6. A low-lead brass alloy, characterized by comprising: by the total weight of the brass alloy, 62.5-63 wt% copper, 0.16-0.24 wt% lead, 0-0.02 wt% antimony, 0-0.01 wt% magnesium, 0-0.2 wt% tin, 0.0005-0.0009 wt% boron, 0.55-0.7 wt% aluminum, 0.05-0.15 wt% iron, 0-0.15 wt% nickel, 0.09-0.12 wt% arsenic, 0-0.005 wt% zirconium, 0-0.01 wt% impurities, and a balance of zinc.
AU2014204430A 2014-06-23 2014-07-15 Low-lead brass alloy Active AU2014204430B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410282838.4 2014-06-23
CN201410282838.4A CN104032176B (en) 2014-06-23 2014-06-23 Low-lead brass alloy

Publications (1)

Publication Number Publication Date
AU2014204430B1 true AU2014204430B1 (en) 2015-12-10

Family

ID=51167766

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2014204430A Active AU2014204430B1 (en) 2014-06-23 2014-07-15 Low-lead brass alloy

Country Status (11)

Country Link
US (1) US20150368758A1 (en)
EP (1) EP2963134B1 (en)
JP (1) JP6069752B2 (en)
KR (1) KR20150146347A (en)
CN (1) CN104032176B (en)
AU (1) AU2014204430B1 (en)
DK (1) DK2963134T3 (en)
ES (1) ES2680343T3 (en)
PL (1) PL2963134T3 (en)
PT (1) PT2963134T (en)
TW (1) TWI577811B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104745863B (en) * 2015-04-08 2017-09-08 九牧厨卫股份有限公司 A kind of low lead brass alloys of resistance to dezincification for being applied to casting
CN105543548A (en) * 2015-12-22 2016-05-04 路达(厦门)工业有限公司 Low-cost unleaded anti-dezincification brass alloy used for casting
CN107385273B (en) * 2017-07-07 2019-03-01 路达(厦门)工业有限公司 A kind of casting environment-friendly yellow brass alloy and its manufacturing method
DE102017118386A1 (en) * 2017-08-11 2019-02-14 Grohe Ag Copper alloy, use of a copper alloy, sanitary fitting and method of making a sanitary fitting
CN109468488A (en) * 2018-12-24 2019-03-15 广州海鸥住宅工业股份有限公司 Low lead Anti-dezincificationyellow yellow brass alloy and preparation method thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3778237A (en) * 1972-03-29 1973-12-11 Olin Corp Plated copper base alloy article
US3900349A (en) * 1974-01-18 1975-08-19 Anaconda Co Silicon brass resistant to parting corrosion
JPS60194035A (en) * 1984-03-16 1985-10-02 Sanpo Shindo Kogyo Kk Corrosion resistant copper alloy
JPH111736A (en) * 1997-06-09 1999-01-06 Chuetsu Gokin Chuko Kk Brass alloy material for heating device
SE514752C2 (en) 1999-08-26 2001-04-09 Tour & Andersson Hydronics Ab Zinc-resistant brass alloy for die-casting
JP4296344B2 (en) * 2003-03-24 2009-07-15 Dowaメタルテック株式会社 Copper alloy material
JP4522736B2 (en) * 2004-03-30 2010-08-11 株式会社キッツ Copper-base alloy for die casting and ingots and products using this alloy
DE602005023737D1 (en) * 2004-08-10 2010-11-04 Mitsubishi Shindo Kk CASTLE BASE ALLOY WITH REFINED CRYSTAL GRAINS
JP5116976B2 (en) * 2006-02-10 2013-01-09 三菱伸銅株式会社 Raw brass alloy for semi-fusion gold casting
CN101440445B (en) * 2008-12-23 2010-07-07 路达(厦门)工业有限公司 Leadless free-cutting aluminum yellow brass alloy and manufacturing method thereof
TWI390057B (en) * 2009-07-30 2013-03-21 Modern Islands Co Ltd Dezincification resistant and low lead brass alloy
CN101988164A (en) 2009-08-06 2011-03-23 摩登岛股份有限公司 Dezincification resistant brass alloy with low lead content
US20110064602A1 (en) 2009-09-17 2011-03-17 Modern Islands Co., Ltd. Dezincification-resistant copper alloy
CN102618747A (en) * 2011-01-26 2012-08-01 摩登岛股份有限公司 Free cutting brass alloy
CN102312123A (en) * 2011-09-02 2012-01-11 浙江艾迪西流体控制股份有限公司 Brass alloy
WO2013065830A1 (en) * 2011-11-04 2013-05-10 三菱伸銅株式会社 Hot-forged copper alloy article
CN103205596A (en) * 2012-01-16 2013-07-17 摩登岛股份有限公司 Lead-free antimony-titanium-brass alloy
CN103469004B (en) 2013-08-14 2015-12-02 永和流体智控股份有限公司 A kind of Pb-free copper-alloy material
KR20150093099A (en) * 2014-01-03 2015-08-17 찌아싱 아이디시 플러밍 엔드 히팅 테크놀로지 엘티디 Low-lead bismuth-free silicon-free brass

Also Published As

Publication number Publication date
ES2680343T3 (en) 2018-09-06
CN104032176B (en) 2015-03-11
KR20150146347A (en) 2015-12-31
PL2963134T3 (en) 2018-10-31
PT2963134T (en) 2018-10-08
DK2963134T3 (en) 2018-08-27
EP2963134B1 (en) 2018-05-23
EP2963134A1 (en) 2016-01-06
JP6069752B2 (en) 2017-02-01
TWI577811B (en) 2017-04-11
JP2016008354A (en) 2016-01-18
US20150368758A1 (en) 2015-12-24
TW201600618A (en) 2016-01-01
CN104032176A (en) 2014-09-10

Similar Documents

Publication Publication Date Title
DK2963134T3 (en) Low lead content brass alloy
AU2014202539B2 (en) Low-lead bismuth-free silicon-free brass
JP2016511792A (en) Lead-free, easy-to-cut, corrosion-resistant brass alloy with good thermoformability
JP2019504209A (en) Low-cost lead-free dezincing resistant brass alloy for casting
JP4266039B2 (en) Method for producing lead-free free-cutting brass alloy
CN103882255B (en) A kind of unleaded bell metal and application thereof
US20150354028A1 (en) Low-lead brass alloy
AU2014202540B2 (en) Lead-free bismuth-free silicon-free brass
CN101435034A (en) Leadless free-cutting tin-magnesium brass alloy
CN103725919B (en) A kind of LEAD-FREE BRASS ALLOY
CN103194642B (en) Novel lead-free copper-based alloy tube and preparation method thereof
JP2020050914A (en) Lead-free free-cutting phosphor bronze rod wire
CN103184364B (en) Copper-based alloy tube containing silicon and aluminium and preparation method thereof
KR102348780B1 (en) Brass alloy with improved corrosion resistance
TWI500783B (en) Brass alloy and its manufacturing method
TWI576444B (en) Lead-free brass alloy
WO2022039680A1 (en) Low lead boron added brass alloy
JP4871380B2 (en) Copper-base alloy for casting
JP2009133004A (en) Copper-based alloy for casting
KR20140096641A (en) Lead-free and corrosion resistant copper alloy for cast
Лепин METALS AND ALLOYS
US20150203940A1 (en) Brass alloy and method for manufacturing the same
TW201408793A (en) Brass alloy with low contraction and corrosion resistance
JP2010100933A (en) Copper-based alloy for casting
KR20150039729A (en) Lead-free and corrosion resistant copper alloy for cast

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)