JP2009133004A - Copper-based alloy for casting - Google Patents

Copper-based alloy for casting Download PDF

Info

Publication number
JP2009133004A
JP2009133004A JP2008280781A JP2008280781A JP2009133004A JP 2009133004 A JP2009133004 A JP 2009133004A JP 2008280781 A JP2008280781 A JP 2008280781A JP 2008280781 A JP2008280781 A JP 2008280781A JP 2009133004 A JP2009133004 A JP 2009133004A
Authority
JP
Japan
Prior art keywords
mass
casting
copper
germanium
antimony
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008280781A
Other languages
Japanese (ja)
Inventor
Takeshi Nishikawa
武 西川
Hiromasa Suzuki
宏昌 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP2008280781A priority Critical patent/JP2009133004A/en
Publication of JP2009133004A publication Critical patent/JP2009133004A/en
Pending legal-status Critical Current

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a copper-based alloy for casting which exhibits excellent corrosion resistance and dezincification resistance and hardly causes casting cracks. <P>SOLUTION: The copper-based alloy for casting has a composition containing copper as a main component, 36.0±1.0 mass% zinc, 0.005-1.9 mass% germanium, and 0.045-0.135 mass% antimony. Furthermore, the allay is added with less than 0.05 mass% tin, 2.0±0.5 mass% lead, 0.11±0.1 mass% iron, 1.0±0.5 mass% nickel, 0.2-0.6 mass% aluminum, and 8-30 ppm boron. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は鋳造用銅基合金に関する。   The present invention relates to a copper base alloy for casting.

一般的な鋳造用黄銅、例えばYBsC3(CAC203)は、スズ(Sn)が1.0質量%以下、鉛(Pb)が0.5〜3.0質量%、アルミニウム(Al)が0.5質量%以下、鉄(Fe)が0.8質量%以下、銅(Cu)が58.0〜64.0質量%、亜鉛(Zn)が残部である。YBsC3は、鋳造性、切削性等の観点から水栓金具や水道管等の水道用器具等の製品に用いられている。   General casting brass, such as YBsC3 (CAC203), tin (Sn) is 1.0 mass% or less, lead (Pb) is 0.5 to 3.0 mass%, aluminum (Al) is 0.5 mass. % Or less, iron (Fe) is 0.8 mass% or less, copper (Cu) is 58.0 to 64.0 mass%, and zinc (Zn) is the balance. YBsC3 is used in products such as faucet fittings and water pipes such as water pipes from the viewpoints of castability and machinability.

しかし、YBsC3では、脱亜鉛腐食が発生するという問題がある。発明者らの試験結果によれば、YBsC3は、JBMAT−303試験にて198μmの脱亜鉛深さを示した。よって、現在一般的な鋳造用黄銅からなる製品には、より高い耐食性が要求されている。このため、特許文献1、2開示の耐食性を考慮した鋳造用銅基合金が提案されている。   However, YBsC3 has a problem that dezincification corrosion occurs. According to the test results of the inventors, YBsC3 showed a dezincification depth of 198 μm in the JBMAT-303 test. Therefore, higher corrosion resistance is required for products made of currently general brass for casting. For this reason, the copper base alloy for casting in consideration of the corrosion resistance disclosed in Patent Documents 1 and 2 has been proposed.

特許文献1開示の鋳造用銅基合金は、スズが0.05〜0.2質量%、鉛が0.5〜3.0質量%、アルミニウムが0.1〜0.5質量%、アンチモン(Sb)、ヒ素(As)又はリン(P)のいずれか1種又は2種以上が0.05〜0.3質量%、亜鉛が33.0〜37.0質量%、銅が残部である。   The copper-based alloy for casting disclosed in Patent Document 1 is 0.05 to 0.2% by mass of tin, 0.5 to 3.0% by mass of lead, 0.1 to 0.5% by mass of aluminum, antimony ( Any one or more of Sb), arsenic (As) or phosphorus (P) is 0.05 to 0.3% by mass, zinc is 33.0 to 37.0% by mass, and copper is the balance.

また、特許文献2開示の鋳造用銅基合金は、スズが0.5〜1.2質量%、鉛が1.5〜2.4質量%、アルミニウムが0.5〜1.2質量%、ニッケル(Ni)が0.5〜1.2質量%、ホウ素(B)が4〜12ppm、銅が60.0〜65.0質量%、亜鉛(Zn)が残部である。   Moreover, the copper-based alloy for casting disclosed in Patent Document 2 is 0.5 to 1.2% by mass of tin, 1.5 to 2.4% by mass of lead, 0.5 to 1.2% by mass of aluminum, Nickel (Ni) is 0.5 to 1.2% by mass, boron (B) is 4 to 12 ppm, copper is 60.0 to 65.0% by mass, and zinc (Zn) is the balance.

これらの鋳造用銅基合金は、一般的な鋳造用黄銅よりも高い耐食性を有している。例えば、特許文献1の鋳造用銅基合金は、発明者らの試験結果によれば、JBMAT−303試験にて約40〜50μmの脱亜鉛深さを示した。   These copper-based alloys for casting have higher corrosion resistance than general casting brass. For example, according to the test results of the inventors, the copper base alloy for casting of Patent Document 1 showed a dezincification depth of about 40 to 50 μm in the JBMAT-303 test.

特許第3461081号公報Japanese Patent No. 3461081 特開平9−176762号公報JP-A-9-176762

しかし、発明者らの試験結果によれば、上記のような耐食性を考慮した鋳造用銅基合金には、耐食性を向上させるためにアンチモン、スズ及びニッケルが意図的に添加されており、これらの添加元素の影響により、製品が複雑な形状であればある程、製品を鋳造する場合に鋳造割れが発生しやすくなる。   However, according to the test results of the inventors, antimony, tin and nickel are intentionally added to the copper base alloy for casting considering the above corrosion resistance in order to improve the corrosion resistance. Due to the influence of the additive element, the more complicated the product is, the easier it is to cause casting cracks when casting the product.

また、上記の耐食性を考慮した鋳造用銅基合金は、一般的な鋳造用黄銅に比べて脱亜鉛腐食が改善はされているものの、JBMAT−303試験にて約40〜50μmの脱亜鉛深さを示し、脱亜鉛腐食が発生しない訳ではない。   In addition, the above-described copper-based alloy for casting considering the corrosion resistance has a dezincification depth of about 40 to 50 μm in the JBMAT-303 test, although the dezincification corrosion is improved as compared with general casting brass. This does not mean that dezincification corrosion does not occur.

本発明は、上記従来の実情に鑑みてなされたものであって、鋳造割れを生じ難く、かつ耐脱亜鉛性を含むより優れた耐食性を発揮可能な鋳造用銅基合金を提供することを解決すべき課題としている。   The present invention has been made in view of the above-described conventional situation, and solves the problem of providing a copper base alloy for casting that is less prone to casting cracking and that can exhibit better corrosion resistance including dezincing resistance. It is an issue that should be done.

発明者らは、上記課題解決のために鋭意研究を行い、一般に黄銅における耐脱亜鉛性の向上の効果が知られているアンチモン(第15族一第5周期)やヒ素(第15族一第4周期)と周期表上の位置が近いゲルマニウム(Ge)(第14族一第4周期)の添加を試みた。その結果、ゲルマニウム単体の添加量の増加によって耐脱亜鉛性の向上が確認されるとともに、ゲルマニウム及びアンチモンの共存により上記課題を解決できることを発見した。こうして、発明者らは本発明を完成させるに至った。   The inventors have conducted intensive research to solve the above-mentioned problems, and are generally known to have an effect of improving dezincing resistance in brass, such as antimony (Group 15-1 period) and arsenic (Group 15-1). (4 periods) and germanium (Ge) (Group 14-1 period 4), which is close in position on the periodic table, was tried. As a result, it was found that an improvement in dezincing resistance was confirmed by increasing the amount of germanium alone, and that the above problem could be solved by the coexistence of germanium and antimony. Thus, the inventors have completed the present invention.

すなわち、本発明の鋳造用銅基合金は、銅を主成分とし、亜鉛を含む鋳造用銅基合金であって、ゲルマニウム及びアンチモンをさらに含むことを特徴とする。   That is, the copper-based alloy for casting of the present invention is a copper-based alloy for casting containing copper as a main component and containing zinc, and further includes germanium and antimony.

発明者らの試験結果によれば、ゲルマニウム及びアンチモンを添加した鋳造用銅基合金は、JBMAT−303試験にて3〜6μmを示し、従来の耐食性を考慮した鋳造用銅基合金に比べ、耐脱亜鉛性が向上した。ゲルマニウム及びアンチモンの相乗効果と考えられる。また、本発明の鋳造用銅基合金は、凝固温度幅も従来の耐食性を考慮した鋳造用銅基合金に比べて減少した。   According to the test results of the inventors, the copper base alloy for casting to which germanium and antimony are added shows 3 to 6 μm in the JBMAT-303 test, which is more resistant to the conventional copper base alloy for casting considering the corrosion resistance. Dezincing property improved. This is considered to be a synergistic effect of germanium and antimony. Moreover, the solidification temperature range of the copper-based alloy for casting according to the present invention also decreased compared to the conventional copper-based alloy for casting considering the corrosion resistance.

したがって、本発明の鋳造用銅基合金によれば、鋳造割れを生じ難く、かつ耐脱亜鉛性を含むより優れた耐食性を発揮可能である。   Therefore, according to the copper base alloy for casting of the present invention, it is difficult to cause casting cracks and can exhibit more excellent corrosion resistance including dezincing resistance.

発明者らの試験結果によれば、本発明の鋳造用銅基合金は、亜鉛が36.0±1.0質量%、ゲルマニウムが0.005質量%以上、アンチモンが0.045〜0.135質量%であることが好ましい。ゲルマニウムは1.9質量%以下であることがより好ましい。発明者らは、これらの鋳造用銅基合金において、上記効果を確認した。   According to the test results of the inventors, the copper-based alloy for casting according to the present invention has 36.0 ± 1.0% by mass of zinc, 0.005% by mass or more of germanium, and 0.045 to 0.135 of antimony. It is preferable that it is mass%. The germanium content is more preferably 1.9% by mass or less. The inventors confirmed the above effects in these copper-based alloys for casting.

また、発明者らの試験結果によれば、本発明の鋳造用銅基合金は、スズが0.05質量%未満、鉛が2.0±0.5質量%、鉄が0.11±0.1質量%、ニッケルが1.0±0.5質量%、アルミニウムが0.2〜0.6質量%、ホウ素が8〜30ppmであることが好ましい。発明者らは、これらの鋳造用銅基合金において、上記効果を確認した。スズ及びニッケルは鋳造用銅基合金の耐食性を向上させ、鉛は鋳造用銅基合金の加工性を向上させ、ホウ素は鋳造用銅基合金の結晶を微細化し、アルミニウムは湯流れを向上させる。   According to the test results of the inventors, the copper-based alloy for casting according to the present invention has tin of less than 0.05% by mass, lead of 2.0 ± 0.5% by mass, and iron of 0.11 ± 0. 0.1% by mass, nickel is 1.0 ± 0.5% by mass, aluminum is 0.2-0.6% by mass, and boron is preferably 8-30 ppm. The inventors confirmed the above effects in these copper-based alloys for casting. Tin and nickel improve the corrosion resistance of the casting copper base alloy, lead improves the workability of the casting copper base alloy, boron refines the crystals of the casting copper base alloy, and aluminum improves the hot water flow.

以下、本発明を試験に基づいて説明する。   Hereinafter, the present invention will be described based on tests.

ゲルマニウムの添加の効果を調べるため、表1に示す割合でゲルマニウムを添加した鋳造用銅基合金を用意し、これらの鋳造用銅基合金を用いて試験品1−1〜1−5の試料を鋳造した。また、YBsC3(CAC203)を比較品1とした。各試料について、後述の耐脱亜鉛性試験及び鋳造割れ性評価を行った。   In order to investigate the effect of addition of germanium, a copper base alloy for casting to which germanium was added at a ratio shown in Table 1 was prepared, and samples of test products 1-1 to 1-5 were prepared using these copper base alloys for casting. Casted. Moreover, YBsC3 (CAC203) was used as comparative product 1. About each sample, the below-mentioned dezincing resistance test and cast cracking evaluation were performed.

また、ゲルマニウム及びアンチモンの相乗効果を調べるため、表2に示す割合でゲルマニウム及びアンチモンを添加した鋳造用銅基合金を用意し、これらの鋳造用銅基合金を用いて試験品2−1〜2−9の試料を鋳造した。また、Sb=0.08%、Ge=0%の割合で添加した鋳造用銅基合金を比較例2とした。各試料について、後述の耐脱亜鉛性試験及び鋳造割れ性評価を行った。   Moreover, in order to investigate the synergistic effect of germanium and antimony, a copper base alloy for casting to which germanium and antimony were added in the ratio shown in Table 2 was prepared, and test products 2-1 to 2 were prepared using these copper base alloys for casting. A sample of -9 was cast. Further, a copper base alloy for casting added at a ratio of Sb = 0.08% and Ge = 0% was set as Comparative Example 2. About each sample, the below-mentioned dezincing resistance test and cast cracking evaluation were performed.

(耐脱亜鉛性試験)
JBMA T−303試験:塩化物(0.5NaCl)を含む炭酸塩緩衝液(5×10-3MのNaHCO3)を試験液(60°C)として、CO2+O2+N2(10:20:70)の混合ガスを飽和させた環境下、樹脂に埋め込んだ各試料(面積100〜200mm2)にリード線を通じて1.0mA/cm2のアノード電流を24時間通電した後、顕微鏡で断面を観察して、脱亜鉛層の深さ(μm)を測定した。
(Dezincing resistance test)
JBMA T-303 test: Carbonate buffer solution (5 × 10 −3 M NaHCO 3 ) containing chloride (0.5 NaCl) was used as a test solution (60 ° C.), and CO 2 + O 2 + N 2 (10:20). :)) In an environment saturated with a mixed gas of 70), each sample (area 100 to 200 mm 2 ) embedded in the resin was supplied with an anode current of 1.0 mA / cm 2 through a lead wire for 24 hours, and then the cross section was observed with a microscope. Observed, the depth (μm) of the dezincification layer was measured.

結果を表3、表4及び図1〜3に示す。図1及び図2はゲルマニウム量の変化による脱亜鉛深さ(μm)を示し、図2は図1の一部を拡大して示す。図3はアンチモン量の変化による脱亜鉛深さ(μm)を示す。   The results are shown in Tables 3 and 4 and FIGS. 1 and 2 show the dezincing depth (μm) due to the change in the amount of germanium, and FIG. 2 shows a part of FIG. 1 in an enlarged manner. FIG. 3 shows the dezincing depth (μm) due to the change in the amount of antimony.

表3並びに図1に示すように、アンチモンが無添加である場合、ゲルマニウムが0.7質量%までは添加量の増加に伴って、脱亜鉛深さが約200μmから約40μmに減少し、耐脱亜鉛性が向上していることがわかる。しかし、ゲルマニウムが0.7質量%を超えると、脱亜鉛深さが約40μmでほぼ一定となり、それ以上の耐脱亜鉛性の向上は見られない。   As shown in Table 3 and FIG. 1, when antimony is not added, the dezincing depth is reduced from about 200 μm to about 40 μm with an increase in the amount of germanium up to 0.7 mass%. It can be seen that the dezincification property is improved. However, when germanium exceeds 0.7 mass%, the dezincing depth becomes substantially constant at about 40 μm, and no further improvement in dezincing resistance is observed.

また、表4及び図3に示すように、ゲルマニウムが無添加である場合、アンチモンが0.08質量%で脱亜鉛深さが約40μmとなったが、それ以上アンチモンを添加すると、耐脱亜鉛性が悪化している。つまり、ゲルマニウム及びアンチモンがともに単体のみの添加では、脱亜鉛深さが約40μmまでしか耐脱亜鉛性が向上しない。   Moreover, as shown in Table 4 and FIG. 3, when no germanium was added, antimony was 0.08% by mass and the dezincification depth was about 40 μm. Sex is getting worse. That is, when only germanium and antimony are added alone, the dezincing resistance is improved only when the dezincing depth is about 40 μm.

一方、図2に示すように、ゲルマニウムが0.02〜0.1質量%かつアンチモンが0.08質量%である場合、脱亜鉛深さが3〜6μmとなり、公知の耐食性を考慮した鋳造用銅基合金以上の耐脱亜鉛性であることがわかる。また、ゲルマニウムが0.02〜0.1質量%かつアンチモンが0.18%又は0.35%の場合も、ゲルマニウムの増量による耐脱亜鉛性の向上は見られた。   On the other hand, as shown in FIG. 2, when germanium is 0.02 to 0.1% by mass and antimony is 0.08% by mass, the dezincification depth becomes 3 to 6 μm, and the known corrosion resistance is taken into consideration. It can be seen that it is more dezincing resistant than copper-based alloys. In addition, when the amount of germanium is 0.02 to 0.1% by mass and the amount of antimony is 0.18% or 0.35%, an improvement in dezincing resistance by increasing the amount of germanium was observed.

よって、ゲルマニウムを0.02〜0.1質量%かつアンチモンを0.08質量%添加した組成の鋳造用銅基合金が最も耐脱亜鉛性が良好となり、公知の耐食性を考慮した鋳造用銅基合金以上の耐脱亜鉛性を示すことがわかる。   Therefore, a casting copper base alloy having a composition in which germanium is added in an amount of 0.02 to 0.1% by mass and antimony is added in an amount of 0.08% by mass has the best dezincing resistance. It can be seen that it exhibits dezincing resistance higher than that of the alloy.

(鋳造割れ性評価)
DSC分析:上記試験品2−1〜2−3及び比較品2について、成分分析用サンプルから試料を得て、熱分析を行った。測定条件は、昇温速度が20°C/min(700°C)→10°C/min(1030°C)→10°C/min(700°C)である。雰囲気は、N2とし、標準試料及び使用セルはAl23とした。凝固温度幅(°C)の結果を表5に示す。また、ゲルマニウム量と凝固温度幅(°C)との関係を図4に示す。凝固温度幅が広いと、デンドライト結晶の成長が進みやすく、結晶同士が絡み合い、収縮応力が発生して鋳造割れが生じやすくなる。
(Casting cracking evaluation)
DSC analysis: For the test products 2-1 to 2-3 and the comparative product 2, samples were obtained from the component analysis samples and subjected to thermal analysis. Measurement conditions are a temperature rising rate of 20 ° C./min (700 ° C.) → 10 ° C./min (1030 ° C.) → 10 ° C./min (700 ° C.). The atmosphere was N 2 and the standard sample and cell used were Al 2 O 3 . Table 5 shows the results of the solidification temperature range (° C). FIG. 4 shows the relationship between the amount of germanium and the solidification temperature width (° C.). When the solidification temperature range is wide, the growth of dendrite crystals tends to proceed, the crystals are entangled with each other, shrinkage stress is generated, and casting cracks are likely to occur.

この結果より、ゲルマニウム及びアンチモンを添加した場合、ゲルマニウムの添加量の増加に伴い、凝固温度幅が小さくなることがわかる。また、ゲルマニウムを添加した鋳造用銅基合金は、一般的な鋳造用黄銅である比較品1(YBsC3)と比べれば凝固温度幅が広いが、上記特許文献1及び2の鋳造用銅基合金や公知の耐食性を考慮した鋳造用銅基合金に比べれば凝固温度幅が狭い。この結果より、ゲルマニウムの添加により、公知の耐食性を考慮した鋳造用銅基合金よりも鋳造割れ性が向上していることが明らかである。   From this result, it can be seen that when germanium and antimony are added, the solidification temperature width decreases as the amount of germanium added increases. Further, the casting copper-based alloy to which germanium is added has a wider solidification temperature range than the comparative product 1 (YBsC3) which is a general casting brass. Compared to known copper-based alloys for casting considering corrosion resistance, the solidification temperature range is narrow. From this result, it is clear that the addition of germanium improves the cast cracking property over the known copper-based alloy for casting considering the corrosion resistance.

試験品2−3の面分析結果を図5〜7に示す。図5は鋳造用銅基合金中での亜鉛の分布状態を示し、図6は鋳造用銅基合金中でのゲルマニウムの分布状態を示し、図7は鋳造用銅基合金中でのアンチモンの分布状態を示す。測定条件は、加速電圧が15.0kV、照射電流が4.996e−07A、測定領域が102μm角、1点あたりの測定時間が100m秒である。図5の亜鉛が多い部分はβ相で、亜鉛が少ない部分はα相である。α相と比較すると、β相の方が脱亜鉛腐食しやすく、β相の耐食性を向上させることが全体の耐食性の向上に繋がる。   The surface analysis results of the test product 2-3 are shown in FIGS. FIG. 5 shows the distribution of zinc in the copper-based alloy for casting, FIG. 6 shows the distribution of germanium in the copper-based alloy for casting, and FIG. 7 shows the distribution of antimony in the copper-based alloy for casting. Indicates the state. The measurement conditions are an acceleration voltage of 15.0 kV, an irradiation current of 4.996e-07A, a measurement region of 102 μm square, and a measurement time per point of 100 milliseconds. The portion with a lot of zinc in FIG. 5 is a β phase, and the portion with a small amount of zinc is an α phase. Compared to the α phase, the β phase is more susceptible to dezincification, and improving the corrosion resistance of the β phase leads to an improvement in the overall corrosion resistance.

図5〜7より、ゲルマニウム及びアンチモンは、鋳造用銅基合金中のβ相に多く存在し、亜鉛と共存していることがわかる。このことから、ゲルマニウム及びアンチモンの相乗効果により、β相の脱亜鉛腐食を防ぐことが推察される。   5-7, it turns out that germanium and antimony exist abundantly in the beta phase in the copper base alloy for casting, and coexist with zinc. From this, it is presumed that β-phase dezincification corrosion is prevented by the synergistic effect of germanium and antimony.

したがって、本発明の鋳造用銅基合金によれば、鋳造割れを生じ難く、かつ耐脱亜鉛性を含むより優れた耐食性を発揮可能であることがわかる。また、この鋳造用銅基合金は、耐脱亜鉛性に優れていることから、水道水等の水によって侵食される現象である潰食が進み難いことがわかる。このため、この鋳造用銅基合金が水栓金具のシール部等を構成しても、その水栓金具は優れた耐久性を発揮可能である。また、この鋳造用銅基合金はシール部等を一体とした水栓金具を構成し得る。   Therefore, according to the copper base alloy for casting of this invention, it turns out that it is hard to produce a casting crack and can exhibit more superior corrosion resistance including dezincification resistance. Moreover, since this copper base alloy for casting is excellent in dezincing resistance, it turns out that the erosion which is a phenomenon eroded by water, such as a tap water, does not advance easily. For this reason, even if this copper-based alloy for casting constitutes a seal portion or the like of the faucet fitting, the faucet fitting can exhibit excellent durability. Further, this copper-based alloy for casting can constitute a faucet fitting with an integrated seal portion and the like.

本発明は水栓金具等の水道用器具に利用可能である。   The present invention can be used for water supply equipment such as a faucet fitting.

ゲルマニウム量と脱亜鉛深さとの関係を示すグラフである。It is a graph which shows the relationship between the amount of germanium and the dezincification depth. ゲルマニウム量と脱亜鉛深さとの関係を示すグラフである。It is a graph which shows the relationship between the amount of germanium and the dezincification depth. アンチモン量と脱亜鉛深さとの関係を示すグラフである。It is a graph which shows the relationship between an antimony amount and a dezincification depth. ゲルマニウム量と凝固温度幅との関係を示すグラフである。It is a graph which shows the relationship between the amount of germanium and the solidification temperature range. 鋳造用銅基合金中での亜鉛の分布状態を示す面分析結果である。It is a surface analysis result which shows the distribution state of zinc in the copper base alloy for casting. 鋳造用銅基合金中でのゲルマニウムの分布状態を示す面分析結果である。It is a surface analysis result which shows the distribution state of germanium in the copper base alloy for casting. 鋳造用銅基合金中でのアンチモンの分布状態を示す面分析結果である。It is a surface analysis result which shows the distribution state of antimony in the copper base alloy for casting.

Claims (5)

銅を主成分とし、亜鉛を含む鋳造用銅基合金であって、ゲルマニウム及びアンチモンをさらに含むことを特徴とする鋳造用銅基合金。   A copper-based alloy for casting, which contains copper as a main component and contains zinc, and further contains germanium and antimony. 亜鉛が36.0±1.0質量%、ゲルマニウムが0.005質量%以上、アンチモンが0.045〜0.135質量%である請求項1記載の鋳造用銅基合金。   The copper-based alloy for casting according to claim 1, wherein zinc is 36.0 ± 1.0% by mass, germanium is 0.005% by mass or more, and antimony is 0.045 to 0.135% by mass. ゲルマニウムが1.9質量%以下である請求項2記載の鋳造用銅基合金。   The copper base alloy for casting according to claim 2, wherein germanium is 1.9% by mass or less. スズが0.05質量%未満、鉛が2.0±0.5質量%、鉄が0.11±0.1質量%、ニッケルが1.0±0.5質量%、アルミニウムが0.2〜0.6質量%、ホウ素が8〜30ppmである請求項2又は3記載の鋳造用銅基合金。   Tin is less than 0.05% by mass, lead is 2.0 ± 0.5% by mass, iron is 0.11 ± 0.1% by mass, nickel is 1.0 ± 0.5% by mass, aluminum is 0.2% The copper-based alloy for casting according to claim 2 or 3, wherein -0.6 mass% and boron are 8-30 ppm. ゲルマニウムが0.02〜0.1質量%、アンチモンが0.08質量%である請求項1乃至4のいずれか1項記載の鋳造用銅基合金。   The copper-based alloy for casting according to any one of claims 1 to 4, wherein germanium is 0.02 to 0.1% by mass and antimony is 0.08% by mass.
JP2008280781A 2007-11-07 2008-10-31 Copper-based alloy for casting Pending JP2009133004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008280781A JP2009133004A (en) 2007-11-07 2008-10-31 Copper-based alloy for casting

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007289357 2007-11-07
JP2008280781A JP2009133004A (en) 2007-11-07 2008-10-31 Copper-based alloy for casting

Publications (1)

Publication Number Publication Date
JP2009133004A true JP2009133004A (en) 2009-06-18

Family

ID=40865146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008280781A Pending JP2009133004A (en) 2007-11-07 2008-10-31 Copper-based alloy for casting

Country Status (1)

Country Link
JP (1) JP2009133004A (en)

Similar Documents

Publication Publication Date Title
JP5522582B2 (en) Brass alloy for water supply components
JP5591661B2 (en) Copper-based alloy for die casting with excellent dezincification corrosion resistance
KR102623143B1 (en) Free-cutting copper alloy castings, and method for manufacturing free-cutting copper alloy castings
JP6069752B2 (en) Low lead brass alloy
JP2019504209A (en) Low-cost lead-free dezincing resistant brass alloy for casting
JP4294793B2 (en) Lead-free free-cutting bronze alloy
JP5642603B2 (en) Lead-free free-cutting brass alloy for casting
JP2010242184A (en) Lead-free, free-machining brass excellent in castability and corrosion resistance
WO2011121799A1 (en) Lead-free free-machining bronze casting alloy
TWI597371B (en) White antimicrobial copper alloy
AU2014202540A1 (en) Lead-free bismuth-free silicon-free brass
CN101435034A (en) Leadless free-cutting tin-magnesium brass alloy
JP4522736B2 (en) Copper-base alloy for die casting and ingots and products using this alloy
JP2009133004A (en) Copper-based alloy for casting
JP4871380B2 (en) Copper-base alloy for casting
WO2019049307A1 (en) Zn-Al-Mg PLATED STEEL SHEET
JP2010100933A (en) Copper-based alloy for casting
Xiangyang et al. Effect of rare earths on corrosion resistance of Cu-30Ni alloys in simulated seawater
FI102908B (en) Corrosion resistant copper alloy
JP5869422B2 (en) Brass alloy with excellent high temperature brittleness resistance
JP6709012B2 (en) Copper-based alloy
Zhu et al. Study on microstructure and properties of brass containing Sb and Mg
KR20140096641A (en) Lead-free and corrosion resistant copper alloy for cast
JP2003147460A (en) Lead-free copper alloy for casting having excellent machinability
JPS58104148A (en) Copper alloy for lead material of semiconductor apparatus

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20091229

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Effective date: 20100130

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110523