AU2004286877A1 - Electromagnetic agitation method for continuous casting of metal products having an elongate section - Google Patents

Electromagnetic agitation method for continuous casting of metal products having an elongate section Download PDF

Info

Publication number
AU2004286877A1
AU2004286877A1 AU2004286877A AU2004286877A AU2004286877A1 AU 2004286877 A1 AU2004286877 A1 AU 2004286877A1 AU 2004286877 A AU2004286877 A AU 2004286877A AU 2004286877 A AU2004286877 A AU 2004286877A AU 2004286877 A1 AU2004286877 A1 AU 2004286877A1
Authority
AU
Australia
Prior art keywords
mould
metal
cast product
casting
jets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
AU2004286877A
Other versions
AU2004286877B2 (en
Inventor
Siebo Kunstreich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rotelec SA
Original Assignee
Rotelec SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rotelec SA filed Critical Rotelec SA
Publication of AU2004286877A1 publication Critical patent/AU2004286877A1/en
Application granted granted Critical
Publication of AU2004286877B2 publication Critical patent/AU2004286877B2/en
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/45Magnetic mixers; Mixers with magnetically driven stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/02Use of electric or magnetic effects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Continuous Casting (AREA)
  • Alcoholic Beverages (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

The electromagnetic stirring in a continuous casting installation for slabs, in which the mould (1) is equipped with an immersed casting nozzle (4) with lateral outlet holes (5, 5') directed towards the small faces, is carried out with the aid of sliding magnetic fields generated by polyphase induction coils arranged in the proximity of the cast metal. With the primary aim of favoring liquid metal exchanges at the heart of the solidification well (6) between the secondary zone (2) and the mould, one forces the establishment of a longitudinal metal flow in the central region of the cast product along two opposed collinear currents (10a, 10b). An independent claim is also included for a metal product with a elongated straight section from a continuous casting installation using this method of electromagnetic stirring.

Description

IN THE MATTER OF an Australian Application corresponding to PCT Application PCT/FR2004/002728 I, Roger Walter GRAY MA, DPhil, CPhys, translator to RWS Group Ltd, of Europa House, Marsham Way, Gerrards Cross, Buckinghamshire, England, do solemnly and sincerely declare that I am conversant with the English and French languages and am a competent translator thereof, and that to the best of my knowledge and belief the following is a true and correct translation of the PCT Application filed under No. PCT/FR2004/002728. Date: 26 April 2006 R. W. GRAY For and on behalf of RWS Group Ltd W02005/044487 - 1 - PCT/FR2004/002728 The present invention relates to the continuous casting of metals, especially steel. It relates more particularly to the electromagnetic stirring of flat products (i.e. of elongate cross section) while they 5 are being cast, and even more precisely to the establishment in the metallic liquid pool of a particular distribution of the flows by means of applied magnetic fields. 10 It is reminded that the expression "product of elongate cross section" has to be understood to designate metallurgical products whose width is at least twice the thickness, especially slabs, narrow slabs, thin slabs, etc. 15 Coming out the field of continuous steel casting at the start of the seventies, electromagnetic stirring has rapidly confirmed its position as an almost indispensable tool for controlling the flows in the 20 pool undergoing solidification. It will be recalled that the principle most commonly employed is the well known principle of MHD (magnetohydrodynamics) which, by means of a moving (rotating or travelling) magnetic field generated by a multiphase inductor, or more 25 generally by several multiphase inductors, placed in the immediate vicinity of the cast product, drives the liquid metal with its displacement. Suitably located on the metallurgical height of the casting machine, these inductors, supplied with electrical current at an 30 adjustable frequency, therefore allow various types of stirring modes that can be matched to the requirements of the metallurgist. Moreover, constant progress in understanding the 35 mechanisms of metal solidification during continuous casting has specifically demonstrated the important role played by the circulatory movements of the liquid REPLACEMENT SHEET (RULE) 26 -2 metal on the general quality (i.e. internal soundness, surface cleanness or lack of inclusions, solidification structure, etc.) of the final solidified product. 5 In this regard, the movements imparted to the molten metal during continuous casting may be schematically classed into two separate categories, depending on whether we consider the mould or, beneath it, the secondary cooling stages of the casting machine. 10 The movements settled on the liquid metal within the mould, at a level where the liquid portion of the cast metal is greatly predominant, are essentially designed to control the flows in this critical area. Indeed, 15 here, where the free surface of the cast metal is found, its internal cleanliness depends greatly on the geometrical shape of this surface. It is also here where the first solidification skin occurs, the major importance of which being well known as regards both 20 the surface quality of the final cast product and the control of the casting process itself. On the other hand, by stirring the metal in the liquid pool beneath the mould, therefore in the secondary 25 cooling zone (usually called "in the secondary") , the aim is first to improve the internal metallurgical structure of the product via the development of a largest equiaxed solidification, this being known to be favourable both to the microsegregation of the alloying 30 elements and to the absence of central porosity in the cast product, for example. Thus, electromagnetic stirring is used for the continuous casting of slabs more and more frequently whenever products that require good internal quality free of porosity have to be 35 produced, such as for example thick plates for making boilers, or large welded pipes. It should be only a reminder here, for better understanding of the invention as will be explained -3 below, that it is well known, as shown by the diagram of the appended Figure 3 taken from the document FR 72/20546, to use, in the secondary cooling zone of a continuous slab casting machine, linear inductors 41, 5 41' placed facing each other, on either side of the large faces of the cast product, and producing transversal magnetic fields that travel over the width of the product. The aim is thus to set up, within the liquid metal, flows which essentially develop as two 10 adjacent loops rotating in opposite directions. These loops 42, 43 are established parallel to the large faces and extend in stages along the length of the cast product on either side of a common transverse zone of driving action of the magnetic field, the flows of each 15 loop rising along one small face and descending along the opposite small face. Such a movement configuration is conventionally termed a "butterfly wings configuration". 20 It is possible, as shown in the appended Figure 4 extracted from document FR 82/10844, to multiply, depending on the length of the casting machine, the transverse zones 51, 52 of the driving action of the magnetic fields. In this case, said zones are, 25 pairwise, in opposite directions of rotation, between the closest neighbouring loops, for example so as to generate the largest possible stirred volume for a given available stirring power. Thus, a flow pattern referred to as a "triple-zero configuration" is 30 produced, this being formed from three adjacent loops rotating pairwise in opposite directions, namely a central loop 60 located between the two transverse driving zones 51 and 52, and two outer loops 61 and 62 on either side of the central loop and rotating in the 35 same direction. Whatever the implementation mode adopted, this can be achieved just as well with inductors placed behind the support rollers of the secondary cooling zone of the -4 casting machine as between these rollers (FR 72/20547) or inductors housed within the actual rollers (FR 72/20546) . The same also applies as regards the means of implementing the invention, which will be explained 5 below. Historically, it seems that the discovery of this type of movement, based on recirculation of the metal in loops set up in a plane parallel to the large faces of 10 the slab, stems from the fact that, unlike in long products, in the continuous casting of flat products the elongate shape of the cross section of the product does not easily lend itself to the establishment of a stable rotational movement about the casting axis. The 15 main reason probably lies in the large velocity gradients that this requires in the thickness of a product, which barely exceeds some twenty centimeters for the thickest products. 20 However, a staged-loop configuration of the type shown in Figures 3 and 4, which develops over the metallurgical length parallel to the large faces of the product, does not suffer from such a handicap. It also has the advantage of ensuring better heat exchange 25 between the top and bottom means of the casting machine. The hottest molten metal from the top is driven by forced convection downwards by the descending runnings 42a and 43b, while the rising runnings 42b and 43b seed the top with crystallites of solidified metal 30 that have collected in the bottom, thus favouring the early development of extensive uniform equiaxed solidification from the periphery right to the centre of the cast product. However, these loops 42, 43 cannot be developed too vigorously near the top as one would 35 wish, owing to the risk of disturbing the free surface of the metal in the mould. At the present time, it is known in fact how much the preservation of the fragile hydrodynamic equilibrium of the in-mould flows prevailing at this level of the mould is necessary for -5 obtaining good quality of the surface, of the sub-skin and of the core of the cast product. Precisely, the introduction of the metal to be cast via 5 the top of the mould using a submerged nozzle having lateral discharge outlets opening onto the narrow faces sides of the mould has become virtually general practice at the present time, replacing the straight nozzle with a single axial discharge, consequently 10 reserved practically only for long products. A major advantage obtained over in-mould flows lies in the fact that, as shown by the diagram in Figure 1 appended hereto, by means of a rebound effect occurring on the narrow faces of the mould, the jet of hot liquid metal 15 coming out from each lateral outlet 27, 27' in the nozzle 26 is therefore spread out naturally into two fractions. A main fraction 21 is directed downwards, in the direction of extraction of the cast product. The other fraction 22 is reflected upwards so as to 20 provide, near the free surface 23 of the in-mould metal, the enthalpy needed to prevent the of cast metal solidifying at the meniscus, which is very often the cause of accidental stoppages of the casting process. The aim is thus to produce, in the mould, a circulation 25 mode called "double roll" as opposed to the "single roll" mode. The latter mode, shown in Figure 6, is firstly manifested by the phenomenon of metal rising up towards 30 the meniscus upon being discharged from the outlets in the nozzle, very often resulting from an injection of argon to prevent clogging of the nozzle from the casting tundish located above it. This first upward rise is then continued by a surface current towards 35 each narrow face, and after by a downward-going flow along the latter. In this way, the velocity map is quite rapidly established in the mould, in which the velocities are generally directed downwards in the direction of extraction of the product, with the -6 absence of the upper roll 22 for supplying "hot" metal to the meniscus. However, the "double roll" mode lasts during casting 5 only if the casting conditions (casting speed, width of the slab, depth of immersion of the casting nozzle, flow rate of anti-clogging argon, etc.) lend themselves thereto. Random transitions in "single roll" mode may appear during the actual course of casting if these 10 conditions fluctuate, which in fact corresponds to a general case. In addition, an essential aspect, in terms of controlling the in-mould "double roll" flows, lies in 15 the preservation within the mould of a "left-right" symmetry of the recirculating movements at the meniscus on either side of the nozzle. This is because it is known that the occurrence of "left-right" asymmetries is the grounds of oscillations in the metal bath that 20 may result in unacceptable rolling of the surface, well known to the operator standing on the casting platform. This means that care must be taken to ensure that the partial recirculation currents 22, 22' near the top are, above all, steady over time in order to avoid the 25 occurrence of "left-right" asymmetries. These ascending currents, while still being thermally effective enough to deliver the desired heat to the meniscus, must however not be too intense from the hydrodynamics standpoint in order to avoid excessive agitation of the 30 line of first solidification 25 that forms around the border of the meniscus against the cooled copper wall of the mould. The regularity of this line of first solidification is in fact the warrant of uniformity of formation of the first skin in the top of the mould, 35 without which there is inevitably a risk of break-outs beneath the mould by encrustations of slag or by local thinning of the thickness of the solidified skin. Stated more simply, by casting with a submerged nozzle -7 having lateral discharge outlets, it is possible to achieve, over the course of any one casting run, randomly or, in any case, not necessarily desirable, in-mould flows that are either of the "double roll" 5 type, or of the "single roll" type, or unstable flows owing to "left-right" asymmetries. It is in particular because of these difficulties in controlling flows in the top area of continuous casting 10 machines that electromagnetic stirring systems have more recently appeared that act in the mould, already on the lateral discharge jets coming from the nozzle. As the diagrams of the appended Figures 2a and 2b show, which are extracted from document JP 1 534 702, 15 magnetic fields moving horizontally are produced by multiphase linear inductors 30a, 30b and 30a', 30b' placed along large faces of the mould 32 facing the discharge path of the metal jets on either side of the nozzle 31. By adjusting the direction of travel of the 20 fields, it is then possible to slow down the current of said jets of metal (countercurrent travel of the fields, going from the small face to the nozzle (Figure 3bi) or, on the contrary, to speed it up (cocurrent travel in the direction going from the nozzle towards 25 the small face (Figure 3b 2 ) . In principle, this allows the amount of enthalpy supplied to the surface of the cast metal to be adjusted, for example according. to the casting conditions, without excessively disturbing the in-mould flow mode that has to be preserved as a matter 30 of priority. The above rapid review of the prior art therefore clearly shows the separation, if not the conflict, that exists when casting products having an elongate cross 35 section between the stirring of the metal in the mould on the one hand and the stirring in the secondary cooling zone on the other. The object of the present invention is specifically to -8 overcome such a handicap. Stated another way, applicable to the continuous casting of flat products, particularly slabs, the object of the invention is, via a studied overall stirring movement of the molten metal 5 over the metallurgical length, to provide good exchange of still-liquid metal in both directions between the secondary cooling zone and the mould. This will consequently achieve thermal and chemical uniformity between the top and bottom of the pool of cast liquid 10 metal without disturbing the in-mould flow mode and, where possible, without correspondingly being deprived of the cumulative beneficial effects specific to stirring in the mould and to stirring in the secondary cooling zone respectively. 15 One complementary object of the invention is to help to improve the metallurgical quality of steel grades that it is desired to produce with good internal quality, such as grades for thick plate or for large welded 20 pipes, ferritic stainless steel, or silicon electric steel. Another complementary object is to be able to vary the flows in the secondary cooling zone in order to use 25 them level with the casting jets coming out from the nozzle, either as an accelerating agent or on the contrary as a braking agent for the metal entering the mould, or else as a means for counteracting the "left right" asymmetry tendencies of the metal movements 30 within the mould. With these objectives in mind, the subject of the invention is a method of electromagnetic stirring in the secondary cooling zone of a plant for the 35 continuous casting of slabs, or other similar flat products, the mould of which is provided with a submerged casting nozzle having lateral discharge outlets directed towards the narrow faces, which stirring method is implemented by means of travelling -9 magnetic fields generated by multiphase inductors placed near the cast metal, characterized in that a longitudinal liquid metal flow is forcibly established in the said secondary cooling zone, the flow being 5 localized in the middle region of the cast product, as two opposing collinear currents. This one naturally establishes a circulation of the entire liquid metal in the secondary, having the 10 configuration of a "four-leaf clover" with two upper lobes and two lower lobes, the upper lobes of which extend into the mould right up to the level of the jets coming out from the discharge outlets of the casting nozzle. 15 According to one implementation mode, these two longitudinal opposing collinear currents in the middle part of the product, which move away from each other, are created in such a way that the two upper lobes 20 which extend into the mould right up to the level of the jets coming out from the discharge outlets of the casting nozzle merge concurrently with the said jets in order to reinforce them. 25 According to another implementation mode, these two longitudinal opposing collinear currents in the middle part of the product, which converge on each other, are created in such a way that the two upper lobes that extend into the mould up to the level of the jets 30 coming out from the discharge outlets of the casting nozzle are superposed countercurrently on the said jets in order to slow them down. According to one particular embodiment of the method, 35 the location of the central longitudinal flow in the secondary is shifted laterally towards one or other of the narrow faces of the cast product so as to counteract the "left-right" asymmetry tendencies of the metal movements within the mould.
- 10 According to one method of implementation, the longitudinal metal flow in the middle region of the cast product is created as two opposing collinear 5 streams by means of collinear moving magnetic fields that travel longitudinally in the said middle region, either coming closer together, or further apart. According to the preferred implementation, the 10 longitudinal metal flow in the middle region of the cast product is created as two opposing collinear streams by means of collinear moving magnetic fields that travel transversely over the width of the cast product, either coming closer together from the edge 15 towards the centre of the cast product, or moving further apart from the centre towards the edge of the cast product. According to another preferred implementation, the 20 travelling magnetic fields are generated by means of multiphase linear inductors that are placed facing the large faces of the cast product. As another implementation mode, the inductors are 25 supplied with electric currents of different intensities, so as to vary, in a different manner, the action on the two opposing collinear metal streams created by the travelling magnetic fields that they generate. 30 The term "collinear" applied to the travel of the fields or to the metal flows should be understood to mean that the magnetic fields, or alternatively the streams of metal, do not travel parallel to one another 35 but instead travel along the same line, in the manner of two collinear vectors as opposed to two parallel vectors. As will have been understood, the invention consists, - 11 in its principal basics, in creating, in the secondary cooling zone, a "stirring cross" having two transverse branches and two longitudinal branches. The transverse branches (or horizontal branches if it is assumed that 5 the casting axis is vertical) develop across the width of the cast product and the two longitudinal (or vertical) branches develop within the middle region (usually the axial region) of the cast product. 10 Indeed, this stirring cross in the secondary zone leads to the development of recirculation flows in the liquid pool of quadrilobate configuration, and then creates a global configuration of the movements that also relates to the mould region, such that the aforementioned 15 objectives intended by the invention are reached. The invention will be more clearly understood and other aspects will become more clearly apparent in the light of the description that is given with reference to the 20 appended plates of drawings in which: - Figures 1 to 4 are representative of the prior art, already considered above. More precisely: *Figure 1 is a standard diagram showing, in summary form, in vertical central section parallel to 25 the large faces of the mould, the known map of the circulatory movements of the liquid metal entering a mould for the continuous casting of slabs via a submerged nozzle provided with lateral discharge outlets that open onto the narrow faces; 30 *Figures 2a, 2b, and 2b 2 are diagrams, in two views (on the left in perspective and on the right in cross section), of known in-mould electromagnetic stirring modes for the continuous casting of slabs with a submerged nozzle having lateral discharge outlets (cf. 35 Fig. 1) by means of linear multiphase inductors housed on either side of the nozzle on each large face and producing magnetic fields that travel horizontally in opposed directions, pairwise, over the same large face, either in the same direction as the discharging jet of - 12 metal to which the field is applied (Fig. 2b 2 ), or in the opposite direction (Figs 2bi and 2a); *Figure 3 is a simplified diagram showing, in perspective, a slab during continuous casting as can be 5 seen in the secondary cooling zone of the casting machine. This zone is provided with a pair of linear inductors facing each other on each side of the product over the width of the latter and generating a magnetic field gliding horizontally, so as to produce a 10 "butterfly wings"-shaped electromagnetic stirring mode known is for example from the aforementioned document FR 72/20546; *Figure 4 is a diagram similar to the previous one in figure 3, but showing a "triple roll" 15 electromagnetic stirring mode, such as that produced for example by implementing the teaching of the afore mentioned document FR 82/10844; - The other figures, numbered 5 to 9, are specific to the invention. More precisely: 20 *Figure 5 is a general diagram, seen in axial vertical section parallel to the large faces of a mould for the continuous casting of slabs, the said mould being provided with a submerged nozzle having lateral discharge outlets that open towards the narrow faces, 25 showing the principle of the global stirring in the form of a four-leaf clover in the secondary cooling zone according to one of the two implementation modes of the invention in which the opposing longitudinal streams move away from each other, and the map of the 30 circulatory movements of the liquid metal that results therefrom within this zone just below the mould; *Figure 6 is a diagram similar to that of Figure 5, but in the case in which the in-mould flow mode is no longer of the "double roll" type but is of the 35 "single roll" type; *Figure 7a is a diagram which, on the basis of a repeat of Figure 5, shows by means of implementing the stirring in the form of a four-leaf clover by means of linear inductors having a horizontally travelling - 13 magnetic field; *Figure 7b is a diagram similar to Figure 7a, but illustrating another embodiment of this method of implementing the invention, this time using linear 5 inductors having a vertically travelling magnetic field; *Figure 8 is also a diagram which, on the basis of a repeat of Figure 5, illustrates a preferred embodiment of the invention, setting up a complementary 10 in-mould flow in "double roll" mode by means of linear inductors generating a horizontally travelling field, which act directly on the jets of metal discharging from the outlets in the casting nozzle; and *Figure 9 illustrates another implementation 15 implementation mode of the invention, which consists in creating opposing longitudinal streams in the middle part of the cast product, these no longer being divergent but convergent. 20 It will be recalled that Figures 1 to 4 were used to support the explanation of the prior art already made at the beginning of this document. They will therefore not be referred to again in the following text. 25 In Figures 5 to 9 representative of the mode of stirring in the secondary cooling zone specific to the invention in these two implementation modes (divergent or convergent streams at the middle), the travelling magnetic fields, just like the linear inductors that 30 produce them, are represented by thick vertical or horizontal arrows. The convective movements produced are themselves shown by their main paths in the form of lines carrying arrowheads indicating the direction of circulation of the movement over the carrying path. The 35 solid lines represent active convection zones, and therefore circulation zones subjected to the action of the travelling magnetic fields. The broken lines represent the passive convection zones, in other words recirculation zones which are necessarily complementary - 14 to the active zones in order to close the loop of the movements. In these figures, the same elements are denoted by 5 identical references. Where necessary, in order not to unnecessarily overload certain figures, recurrent references have not been indicated so as to make the essential elements of the invention shown in these figures clearer. 10 Each of the figures shows a continuous slab casting mould 1 followed beneath it by the secondary cooling zone 2 of the casting machine, here intentionally shown without the support rolls in order not to unnecessarily 15 reduce the clarity of the drawing. Since the views are in a plane parallel to the large faces of the mould, only the narrow faces are visible at 3 and 3', these faces determining the narrow faces 18, 18' of the cast product 6. Since the large faces are in the plane of 20 the figures, they are not referenced in the figures. Moreover, for greater clarity, the reference 6 will denote either the cast slab itself or its still-liquid core, more generally called the "liquid pool". 25 A submerged nozzle 4 centred on the casting axis A (which is coincident here, as is conventionally the case, with the longitudinal axis of the cast product) supplies the mould with molten metal from a tundish (not shown) located above it. This nozzle is provided 30 with lateral discharge outlets 5 and 5' each facing one or other of the narrow faces 3 and 3' respectively. The size of the cast product is determined by the inside dimensions of the mould that defines the casting space into which the molten metal enters in the form of jets 35 7, 7' discharging from the outlets in the nozzle 4, conventionally along a more or less horizontal mean direction, or slightly inclined downwards. The cast product thus advances from the top, level with the meniscus 8, downwards, in the extraction direction of - 15 the casting machine, along the vertical or along a curved path in a plane orthogonal to that in the figures, at an extraction rate (casting rate) usually of the order to one metre per minute. As it advances, 5 the product progressively solidifies from its periphery up to the centre, by extraction of its internal heat, firstly into the mould 1 in contact with the cooled copper walls and then in the secondary cooling zone 2 under the effect of the water spray rails. 10 It will be reminded that the metallurgical length (or depth of the liquid pool) is conventionally defined as the difference in the dimensions along the vertical between the level of the free surface of the cast metal 15 in the mould (or meniscus) and that of the bottom of the liquid pool below the secondary cooling zone, at the point where the finishing solidification fronts, which develop over each of the large faces of the cast product as the solidification progresses, meet. 20 Located arbitrarily along the longitudinal axis of the product (which is coincident with the casting axis A), about 3 or 4 m below the meniscus 8, and therefore within the secondary cooling zone 2, is a point P that 25 will be termed the centre of the stirring cross 9 which is a specific feature of the invention. This cross 9 is a cross with four branches, these being collinear in pairs, namely two longitudinal (and here vertical) branches 10a, 10b, forming a pair aligned with the 30 casting axis A, and two transverse (and here horizontal) branches lla, llb forming a pair that develops over the width of the cast product. In each of the two branches of any one pair, the liquid metal circulates therein, pairwise, in opposite directions. 35 Moreover, the circulation of the metal in one pair is in the opposite direction to that of the other pair. Owing to the necessarily "finite" dimensional character of the cast product, these branches, as may be seen, - 16 are as it were connected together by recirculation loops in order to form an overall flow that develops in the plane of the large faces of the cast product in a four-leaf clover configuration, the leaves constituting 5 the lobes L1, L2, L3, L4, the upper two of which, Ll and L4, extend up to the mould level with the discharge jets 7 and 7'. Thus, in the stirring mode shown in Figures 5 to 8, the 10 pair of vertical branches is of a "divergent" convection type - the streams of metal move away from each other from the centre P. One, 10a, flows away towards the mould 1 lying above it while the other 10b flows away downwards, in the direction of extraction of 15 the cast product, towards the closure point of the liquid pool. In the horizontal pair 11a, 11b, the convection of the metal is therefore of the "convergent" type - the metal streams flow towards each other in the direction of the centre of confluence P, 20 flowing from the small faces of the product towards the longitudinal axis A. As already mentioned, the metal streams that form these branches are created by travelling magnetic fields, 25 which are themselves generated by linear inductors placed in the immediate vicinity of the cast product facing these large faces (preferably both sides) . Of course, it is unnecessary for the two pairs of branches to be simultaneously activated by the magnetic fields. 30 Only one may be activated, for example the vertical branches 10a, 10b, the other branches 11a, 11b then becoming, of course, the site of recirculation by reaction, since the centre P acts as a current passage node that maintains the mass flow rates and the 35 movement quantities, and vice versa. However, in this first stirring mode of the invention, it is important for the vertical branches 10a and 10b to flow away from each other, as shown in Figures 5 to - 17 8. In the upper lobes Li and L4 that are close to the mould, the metal rises along the centre and descends along the narrow faces, the opposite being the case in the lower lobes L2 and L3. 5 Under these conditions, it turns out that the implementation of the invention maximizes the exchange of metal material between the bottom and top of the liquid pool. Firstly, the circulation of metal in any 10 one lobe takes place in the direction of rotation opposite to that established in the two closest neighbouring lobes. Secondly, since the force of the casting jets 7 and 7' is then systematically reinforced by the cocurrent rising central flux 10a, the 15 recirculation loops L5 and L6 in the mould near the meniscus 8 are in turn reinforced. Consequently, the "double roll" mode L5, L1, L4 and L6 present within the mould are thus additionally stabilized. 20 It will therefore be readily understood that any liquid metal element (conceptually isolated at an arbitrary point along the metallurgical length) will have a high probability of being present, by randomly following the successive ascending or descending running, at least 25 once in the mould before redescending if it is initially in the secondary cooling zone, and vice versa if it is initially chosen to be in the mould, it being understood that overall the element will necessarily undergo a mean downward displacement in the direction 30 of extraction with a mean speed equal to the casting speed. In other words, this implementation of the invention maximizes the exchange of molten metal material between the hot zones of the mould and those cooler zones of the secondary and does so by 35 reinforcing, in the mould, the known means suitable for stabilizing the "double roll" mode. Such an exchange contributes in particular to better removal of the excess heat and to the initiation of - 18 early and ample equiaxed solidification of the metal, without any risk of disturbing the in-mould flow mode, by instead reinforcing the stability -of the "left right" symmetry of the movements on either side of the 5 nozzle, and to do so whatever the local mode present, namely "double roll" (cf. Fig. 5) or "single roll" (cf. Fig. 6), and therefore counteracting the natural random tendency for transition from one mode to the other. 10 As already mentioned, the branches 10 and 11 of the stirring cross 9 are generated by the action applied at these points by travelling magnetic fields. The lines of force of these fields are orthogonal to the surface of the cast product, or at the least have a 15 predominantly orthogonal component, in order to maximize the electromagnetic coupling with the liquid metal. It is well known that such fields can be easily 20 produced by conventional multiphase linear inductors. Figure 7a illustrates a first implementation of the invention in which two identical linear inductors 12 and 13 are placed horizontally at the same vertical 25 level on the casting machine (collinear inductors) on either side of the casting axis and mounted in opposition so as to create collinear magnetic fields travelling transversely over the width of the cast product, from the small sides 18, 18' towards the 30 centre. These inductors are advantageously designed so as to each generate a travelling magnetic field, in an active convection branch (11a or l1b), having a length equal to slightly less than one half of the half-width of the cast slab 6. 35 In this case, the driving force for the stirring is given by the convergent transverse branches lla, llb of the stirring cross, and the longitudinal diverging flows 10a, 10b are then obtained after passing the - 19 point of confluence P. Figure 7b illustrates a second mode of implementation, equivalent to the previous one as regards the effects 5 obtained. According to this second implementation mode, the linear inductors 14 and 15, mounted collinearly but in opposition, are placed vertically along the casting axis. In this way, the longitudinal branches 10a and 10b (the presence of which within the secondary is at 10 the very basis of the invention) are this time activated directly, the upper inductor 14 then generating a magnetic field travelling towards the top of the casting machine in the direction of the mould, the lower inductor 15 producing a field that travels 15 downwards towards the bottom of the pool. Figure 8 illustrates a preferred embodiment of the invention. This consists in converting the upper edge of the upper recirculating lobes Ll and L4, which 20 reinforce the casting jets 7 and 7', into active convection zones. To do this, added to the pair of inductors already present in the secondary cooling zone, for creating the stirring cross 9, are two additional linear inductors 16, 17 generating 25 horizontally travelling fields, these two inductors being placed collinearly on either side of the nozzle 4 level with the jets of metal 7 and 7' discharging from the outlets 5 and 5' and travelling cocurrently with the said jets, from the nozzle towards the narrow faces 30 3, 3' of the mould 1. The effect of convergence between the jets and the central flow rising up from the bottom is thus further enhanced, and consequently the local in-mould "double roll" mode likewise. 35 Figure 9 is similar to Figure 5 but is distinguished therefrom however in an essential manner by the fact that the directions of circulation of the metal in each of the four branches of the cross 9 are reversed. This Figure 9 thus illustrates the second main - 20 implementation mode of the invention, which consists in creating opposing longitudinal collinear currents 20a, 20b in the middle part of the cast product 6, which this time converge on each other towards the point P so 5 as to provide an overall circulation of the liquid metal that is extended, in the mould 1, by currents rising along the small sides 18, 18' up to level with the jets of metal 7, 7' coming out from the discharge outlets 5, 5' in the nozzle, which they oppose as a 10 countercurrent in order to brake them. Overall there is again a stirring configuration in the secondary cooling zone consisting of four lobes Li to L4, the loops of which therefore rotate in opposite 15 directions to those of the first implementation mode. However, because of the opposing effect of the upper lobes L1 and L4 on the jets 7 and 7', the downward return flows of the metal in the middle part of the liquid pool are less channelled and confined, instead 20 much more diffuse and dispersed in that section of the product than in the said first implementation mode. It will be understood that these two main implementation modes are in fact only two different and 25 complementary facets of the same invention and may be jointly present when implementing the stirring method. It will in fact be easy to modify, in terms of dynamics, the directions of travel of the acting magnetic fields, for example by reversing the 30 polarities of the inductors that produces them, so as to be able, on demand, to brake or accelerate the running of the casting jets 7, 7' by acting on the stirring localized in the secondary, far away from these jets. 35 It will therefore be seen that a key advantage of the invention is that it ensures good top/bottom exchange in the liquid pool while still being able to act remotely on the casting jets in the mould, and to do so - 21 by a simple and unsophisticated arrangement of the electromagnetic stirring equipment, the components of which are widely available commercially. 5 As will have been understood, the invention consists, in summary, in judiciously using the electromagnetic stirring means currently available in order to make, in the secondary cooling zone, a cut in the long direction of the product into two juxtaposed strands and, in each 10 strand, to install a butterfly-wings-type stirring configuration. By doing this, an overall flow system is created in the secondary cooling zone consisting of four lobes, the core of which is the stirring cross 9 with its centre P. 15 Preferably, for obvious reasons of symmetry, this division into two strands will take place at mid-width of the cast product, that is to say along the longitudinal axis of the latter, as this axis generally 20 coincides with the casting axis. This said, it will be sufficient to unbalance the stirring forces between the two transverse branches 11a, 11b, for example by a differential adjustment of 25 the intensities of the electrical currents supplying the inductors 12, 13 in order for the central position of the centre P to be shifted laterally towards one narrow face, 5, or towards the other, 5', and thus to obtain a more selective effect on the in-mould 30 movements on one side of the nozzle than the other. Likewise, a similar imbalance in the longitudinal branches 10a, 10b will make it possible, using given stirring equipment, to cause an upward or downward 35 displacement from the centre P of the stirring cross without having to modify the position of this equipment on the casting machine. If it is desired to be able to use both these options of - 22 adjusting the position of the centre P of the stirring cross, it will admittedly be necessary to provide the secondary cooling zone with equipment consisting of four inductors so as to be able to electromagnetically 5 activate each of the four branches 10a, 10b, lla and llb. Whatever its mode of implementation, the invention provides overall stirring of the metal over the metallurgical length capable of ensuring both thermal 10 and chemical uniformity between the top and bottom of the liquid pool without correspondingly being deprived of the beneficial effects specific to stirring in the mould and stirring in the secondary cooling zone respectively, and without disturbing, indeed by 15 steadying, the local flow mode in the mould. It goes without saying that the invention is not limited to the examples described above, rather it extends to many implementation modes or equivalents 20 provided that its definition, given in the claims that follow, is respected. Thus, for example, although the linear inductors to be used conventionally have a plane structure, this 25 arrangement is only a preferred one. Also suitable may be inductors of curved shape in order to better match the shape of the surface of the slab at the point where they are placed along the metallurgical length.

Claims (10)

1. Method of electromagnetic stirring in the secondary cooling zone of a plant for the continuous 5 casting of metal products of elongate cross section, the mould of which is provided with a submerged casting nozzle having lateral discharge outlets directed towards the narrow faces, which stirring method is implemented by means of travelling magnetic fields 10 generated by multiphase inductors placed near the cast metal, characterized in that, for the purpose of promoting liquid metal exchange within the liquid pool (6) between the secondary cooling zone (2) and the mould (1), a longitudinal metal flow is forcibly 15 established in the said secondary cooling zone, the flow being localized in the middle region of the cast product, as two opposing collinear streams (10a, 10b or 20a, 20b) and providing circulation of the entire liquid metal as a "four-leaf clover" configuration 20 having two upper lobes and two lower lobes, said upper lobes (Ll, L4) extending into the mould right up to the level of the jets (7, 7') coming out from the discharge outlets (5, 5') of the submerged casting nozzle (4). 25
2. Stirring method according to Claim 1, characterized in that the said longitudinal opposing collinear streams (10a, 10b) in the middle part of the cast product move away from each other are created in such a way that the said two upper lobes (Ll, L4) which 30 extend into the mould right up to the level of the jets (7, 7') coming out from the discharge outlets (5, 5') of the casting nozzle merge concurrently with the said jets in order to reinforce them. 35
3. Stirring method according to Claim 1, characterized in that the said longitudinal opposing collinear streams (20a, 20b) in the middle part of the - 24 cast product converge on each other are created in such a way that the two upper lobes (Li, L4) that extend into the mould up to the level of the jets (7, 7' ) coming out from the discharge outlets (5, 5') of the 5 casting nozzle are superposed countercurrently on the said jets in order to slow them down.
4. Stirring method according to Claim 1, characterized in that the location of the central 10 longitudinal flow in the secondary cooling zone is shifted laterally towards one or other of the small sides of the cast product.
5. Stirring method according to either of Claims 2 15 and 3, characterized in that the longitudinal metal flow is created, in the middle region of the cast product, as two opposing collinear streams by means of collinear moving magnetic fields that travel longitudinally in the said middle region, either coming 20 closer together, or further apart.
6. Stirring method according to either of Claims 2 and 3, characterized in that the longitudinal metal flow is created, in the middle region of the cast 25 product, as two opposing collinear streams by means of collinear moving magnetic fields that travel transversely over the width of the cast product, either coming closer together from the edge towards the centre of the cast product, or moving further apart from the 30 centre towards the edge of the cast product.
7. Stirring method according to any one of the preceding claims, characterized in that the travelling magnetic fields are generated by means of multiphase 35 linear inductors that are placed facing the large faces of the cast product.
8. Method according to Claim 7, characterized in that the inductors are supplied with electric currents of - 25 different intensities.
9. Method according to one of the preceding claims, characterized in that travelling magnetic fields are 5 also used that act directly in the mould (1) on the jets (7, 7') of metal discharging from the outlets (5, 5') in the nozzle (4).
10. Flat metal product obtained from a continuous 10 casting plant, the secondary cooling zone of which being the location of an electromagnetic stirring operation according to that defined in Claim 1.
AU2004286877A 2003-10-27 2004-10-22 Electromagnetic agitation method for continuous casting of metal products having an elongate section Ceased AU2004286877B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0312555 2003-10-27
FR0312555A FR2861324B1 (en) 2003-10-27 2003-10-27 ELECTROMAGNETIC BREWING PROCESS FOR CONTINUOUS CASTING OF EXTENDED SECTION METAL PRODUCTS
PCT/FR2004/002728 WO2005044487A1 (en) 2003-10-27 2004-10-22 Electromagnetic agitation method for continuous casting of metal products having an elongate section

Publications (2)

Publication Number Publication Date
AU2004286877A1 true AU2004286877A1 (en) 2005-05-19
AU2004286877B2 AU2004286877B2 (en) 2009-09-10

Family

ID=34400826

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2004286877A Ceased AU2004286877B2 (en) 2003-10-27 2004-10-22 Electromagnetic agitation method for continuous casting of metal products having an elongate section

Country Status (16)

Country Link
US (1) US20070074845A1 (en)
EP (1) EP1677928B1 (en)
JP (1) JP4758903B2 (en)
KR (1) KR101089261B1 (en)
CN (1) CN100371108C (en)
AT (1) ATE359886T1 (en)
AU (1) AU2004286877B2 (en)
BR (1) BRPI0415903B1 (en)
CA (1) CA2543368A1 (en)
DE (1) DE602004006010T2 (en)
ES (1) ES2285558T3 (en)
FR (1) FR2861324B1 (en)
RU (1) RU2357833C2 (en)
TW (1) TWI324952B (en)
WO (1) WO2005044487A1 (en)
ZA (1) ZA200604177B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE498465T1 (en) * 2006-07-07 2011-03-15 Rotelec Sa METHOD FOR CONTINUOUS CASTING OF FLAT METAL PRODUCTS USING ELECTROMAGNETIC STIRRING AND SYSTEM FOR IMPLEMENTING IT
FR2957829B1 (en) 2010-03-23 2012-11-09 Rotelec Sa BRUSSE ROLLER FOR BRAMES CONTINUOUS CASTING MACHINE
RU2457064C1 (en) 2011-03-03 2012-07-27 Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" (Сфу) Method of continuous and semicontinuous casing of aluminium alloys and device to this end
RU2464123C1 (en) * 2011-11-25 2012-10-20 Открытое акционерное общество Акционерная холдинговая компания "Всероссийский научно-исследовательский и проектно-конструкторский институт металлургического машиностроения имени академика Целикова" (ОАО АХК "ВНИИМЕТМАШ") Method of adjusting conditions of electromagnetic mixing of ingot liquid phase in slab continuous casting machine and device to this end
WO2013143557A1 (en) * 2012-03-27 2013-10-03 Rotelec Stirring roller for a machine for the continuous casting of metallic products of broad cross section
JP6087155B2 (en) * 2013-01-23 2017-03-01 株式会社神戸製鋼所 Continuous casting method of slab made of titanium or titanium alloy
CA2949837C (en) * 2014-05-21 2021-07-13 Novelis Inc. Mixing eductor nozzle and flow control device
CN112687419B (en) * 2020-12-18 2022-04-12 岭东核电有限公司 Metal removing well for spent fuel and method for removing liquid metal on spent fuel
CN112876043B (en) * 2021-02-24 2022-08-02 成都贝施美生物科技有限公司 Glass ceramic preparation mould capable of realizing rapid demoulding

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2358223A1 (en) * 1976-07-13 1978-02-10 Siderurgie Fse Inst Rech PROCESS FOR ELECTROMAGNETIC BREWING OF MOLTEN METALS DURING CONTINUOUS CASTING OPERATIONS
FR2358222A1 (en) * 1976-07-13 1978-02-10 Siderurgie Fse Inst Rech NEW PROCESS AND DEVICE FOR THE ELECTROMAGNETIC BREWING OF CONTINUOUS FLOWING METAL PRODUCTS
JPS5813263B2 (en) 1977-01-11 1983-03-12 住友金属工業株式会社 Continuous casting method
US4158380A (en) * 1978-02-27 1979-06-19 Sumitomo Metal Industries Limited Continuously casting machine
FR2485411B1 (en) * 1980-06-27 1985-11-08 Siderurgie Fse Inst Rech ELECTROMAGNETIC CONTINUOUS CASTING LINGOTIERE OF METAL PRODUCTS WITH EXTENDED RECTANGULAR SECTION
JPS6037251A (en) * 1983-08-11 1985-02-26 Kawasaki Steel Corp Electromagnetic stirring method of molten steel for continuous casting mold
JPS6333160A (en) 1986-07-28 1988-02-12 Nippon Kokan Kk <Nkk> Continuous casting method
CA2059030C (en) * 1992-01-08 1998-11-17 Jun Kubota Method for continuous casting of slab
DE19542211B4 (en) * 1995-11-13 2005-09-01 Sms Demag Ag Electromagnetic stirring device for a slab casting mold
EP0909598A4 (en) * 1996-05-13 1999-07-14 Ebis Corp Method and apparatus for continuous casting
JPH11320051A (en) * 1998-05-20 1999-11-24 Nippon Steel Corp Continuous casting apparatus and continuous casting method
JPH11320054A (en) * 1998-05-20 1999-11-24 Nippon Steel Corp Continuous caster and continuous casting method
JP2000317593A (en) * 1999-05-12 2000-11-21 Nippon Steel Corp Method for continuously casting molten steel
CN1142045C (en) * 1999-09-22 2004-03-17 大连理工大学 Continuous metal casting method with applied composite electromagnetic field
EP1195211B1 (en) * 2000-03-09 2005-11-30 JFE Steel Corporation Production method for continuous casting cast billet
SE519840C2 (en) * 2000-06-27 2003-04-15 Abb Ab Method and apparatus for continuous casting of metals
JP4254576B2 (en) * 2004-02-27 2009-04-15 Jfeスチール株式会社 Steel continuous casting apparatus and continuous casting method

Also Published As

Publication number Publication date
CN100371108C (en) 2008-02-27
JP4758903B2 (en) 2011-08-31
TWI324952B (en) 2010-05-21
ATE359886T1 (en) 2007-05-15
EP1677928B1 (en) 2007-04-18
US20070074845A1 (en) 2007-04-05
ZA200604177B (en) 2007-12-27
DE602004006010D1 (en) 2007-05-31
TW200533437A (en) 2005-10-16
CN1863625A (en) 2006-11-15
RU2357833C2 (en) 2009-06-10
KR20060120054A (en) 2006-11-24
FR2861324A1 (en) 2005-04-29
AU2004286877B2 (en) 2009-09-10
BRPI0415903A (en) 2007-01-16
BRPI0415903B1 (en) 2012-08-07
DE602004006010T2 (en) 2007-12-13
EP1677928A1 (en) 2006-07-12
RU2006118350A (en) 2007-12-10
JP2007509752A (en) 2007-04-19
KR101089261B1 (en) 2011-12-02
CA2543368A1 (en) 2005-05-19
FR2861324B1 (en) 2007-01-19
WO2005044487A1 (en) 2005-05-19
ES2285558T3 (en) 2007-11-16

Similar Documents

Publication Publication Date Title
Tzavaras et al. Electromagnetic stirring and continuous casting—Achievements, problems, and goals
US4178979A (en) Method of and apparatus for electromagnetic mixing of metal during continuous casting
KR101396734B1 (en) Method and apparatus for controlling the flow of molten steel in a mould
CN102413963B (en) Method of continuous casting of steel
CN102413964B (en) Method of continuous casting of steel
RU2419509C2 (en) Method and device for continuous casting of steel preliminary sections, particularly, h-sections
AU2004286877B2 (en) Electromagnetic agitation method for continuous casting of metal products having an elongate section
CN108500227A (en) Crystallizer flow field Electromagnetic Control method for sheet billet continuous casting production
CN1325198C (en) Method and device for controlling flows in a continuous slab casting ingot mould
CN105935752A (en) Vertical electromagnetic stirring method for controlling casting blank center quality
EP1021262B1 (en) Method and device for control of metal flow during continuous casting using electromagnetic fields
WO2012118396A1 (en) Method and apparatus for the continuous casting of aluminium alloys
US3952791A (en) Method of continuous casting using linear magnetic field for core agitation
US6012508A (en) Strip casting
KR100618362B1 (en) Production method for continuous casting cast billet
JPH03142049A (en) Method and apparatus for continuously casting steel using static magnetic field
US4566526A (en) Method and apparatus for semi-horizontal continuous casting
EP0178695A1 (en) Continuous casting line with multiple-function stirrers and improved cooling system
US4562879A (en) Electromagnetically stirring the melt in a continuous-casting mold
CA1155630A (en) Apparatus and method for electromagnetic stirring in a continuous casting installation
JP3573096B2 (en) Manufacturing method of continuous cast slab
SU1683861A1 (en) Method of continuous casting of billets
JP3399627B2 (en) Flow control method of molten steel in mold by DC magnetic field
Koria et al. Residence time distribution of steel melt due to argon shrouded stream pouring in a tundish
RU2325970C1 (en) Method of electromagnetic mixing of continuously cast ingot liquid phase by inductors with travelling electromagnetic field

Legal Events

Date Code Title Description
FGA Letters patent sealed or granted (standard patent)
MK14 Patent ceased section 143(a) (annual fees not paid) or expired