JPS5813263B2 - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JPS5813263B2
JPS5813263B2 JP52002122A JP212277A JPS5813263B2 JP S5813263 B2 JPS5813263 B2 JP S5813263B2 JP 52002122 A JP52002122 A JP 52002122A JP 212277 A JP212277 A JP 212277A JP S5813263 B2 JPS5813263 B2 JP S5813263B2
Authority
JP
Japan
Prior art keywords
slab
continuous casting
unsolidified
stirring
unsolidified portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52002122A
Other languages
Japanese (ja)
Other versions
JPS5386634A (en
Inventor
姉崎正治
杉田宏
石村進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP52002122A priority Critical patent/JPS5813263B2/en
Publication of JPS5386634A publication Critical patent/JPS5386634A/en
Publication of JPS5813263B2 publication Critical patent/JPS5813263B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)

Description

【発明の詳細な説明】 この発明は、連続鋳造において永久磁石による磁力と電
流との相互作用により生ずる推力で鋳片の未凝固部分を
撹拌しながら凝固せしめる連続鋳造法の撹拌方法に特徴
を有する連続鋳造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is characterized by a stirring method for a continuous casting method in which the unsolidified portion of a slab is solidified while being stirred by the thrust generated by the interaction between the magnetic force of a permanent magnet and an electric current during continuous casting. Concerning continuous casting method.

連続鋳造により製造される鋳片の中心部には炭素、いお
う、りん等が富化した偏析部が発生し易い。
Segregation areas enriched with carbon, sulfur, phosphorus, etc. are likely to occur in the center of slabs manufactured by continuous casting.

この偏析部はマクロ組織で正常部と異なった色調を呈し
、この鋳片から作られる成品は機械的性質並に商品価値
が著しく低下する欠点がある。
The macrostructure of this segregated area exhibits a color tone different from that of the normal area, and products made from this slab have the disadvantage that their mechanical properties and commercial value are significantly reduced.

前記中心偏析は、鋳片中心部に等軸晶を多く生成させる
ことによって軽減できることが知られており、その方法
として鋳片の凝固途中で鋳片内部の未凝固溶融金属を撹
拌することが提案されている。
It is known that the above-mentioned center segregation can be reduced by producing a large number of equiaxed crystals in the center of the slab, and one proposed method for this is to stir the unsolidified molten metal inside the slab during solidification of the slab. has been done.

従来の未凝固溶融金属の撹拌方法は、凝固中の連続鋳造
鋳片に回転磁場あるいは移動磁場を作用させて、鋳片内
部の未凝固部分に磁場の移動方向の推力を与えて撹拌す
る方法が行われているが、その電磁撹拌は第1図に模式
的に示すように、いずれも鋳片の巾方向において一方向
の流れを基本としており、撹拌装置の設置位置を境にし
て鋳込方向の上下において円形状の流れで撹拌される場
合(第1図a)、鋳片横断面の凝固殼近傍の未凝固溶融
金属に互に逆向きの電磁力を加えた対向流により橢円状
に流動して撹拌される場合(第1図b)、及び鋳込方向
に複数の撹拌装置を並べて各撹拌装置の電磁力の方向を
互に逆向きとして鋳込方向でS形状に流動して撹拌させ
る場合(第1図C)の各方法である。
The conventional method of stirring unsolidified molten metal is to apply a rotating or moving magnetic field to the continuously cast slab during solidification, and apply a thrust in the moving direction of the magnetic field to the unsolidified portion inside the slab. However, as schematically shown in Figure 1, electromagnetic stirring is basically based on a unidirectional flow in the width direction of the slab. When stirring is carried out in a circular flow above and below the slab (Fig. 1a), the unsolidified molten metal near the solidified shell of the transverse cross section of the slab is stirred in a circular shape by countercurrents that apply electromagnetic forces in opposite directions. In the case of flowing and stirring (Fig. 1b), and in the case where multiple stirring devices are arranged in the casting direction and the direction of electromagnetic force of each stirring device is opposite to each other, the stirring is performed by flowing in an S shape in the casting direction. (Fig. 1C).

しかし、未凝固溶融金属を撹拌しつつ凝固させた場合、
撹拌下で凝固した領域では溶質成分はすべて負偏析して
おり、サルファプリントは白く見えるため、その領域を
一般にはホワイトバンドと称している。
However, when unsolidified molten metal is solidified while stirring,
In the region solidified under stirring, all solute components are negatively segregated and the sulfur print appears white, so this region is generally referred to as the white band.

このホワイトバンドは溶融金属の流速によって、その濃
度の程度が異なり、流速が速くなると白さが顕著になる
The concentration of this white band varies depending on the flow rate of the molten metal, and as the flow rate increases, the whiteness becomes more noticeable.

そのため流速にむらがある場合にはホワイトバンドの現
出が場所的に変化し、マクロパターンの点で好ましくな
い。
Therefore, if the flow velocity is uneven, the appearance of the white band will vary from place to place, which is unfavorable in terms of the macro pattern.

したがって、ホワイトバンドを一様にするため電磁撹拌
による溶融金属の流速を一定に保つ必要がある。
Therefore, in order to make the white band uniform, it is necessary to keep the flow rate of the molten metal constant by electromagnetic stirring.

しかるに、前記第1図a及びCに示す場合の撹拌による
流れは長い経路のループを形成するため、流速が場所に
よって大きく変化する。
However, in the cases shown in FIGS. 1A and 1C, the flow caused by stirring forms a loop with a long path, so the flow velocity varies greatly depending on the location.

そのためホワイトバンドは場所によって異なりマクロパ
ターンを著しく害する。
Therefore, the white band varies depending on the location and significantly impairs the macro pattern.

又第1図bに示す場合の撹拌による流れは橢円状をなし
、ホワイトバンドはほぼ均−に現われる。
Further, in the case shown in FIG. 1b, the flow due to stirring has a circular shape, and the white band appears almost uniformly.

しかし撹拌装置を対向させて逆向きに力を作用させるの
は、スラブの厚さ方向で磁場が部分的に相殺されるため
電磁気的な効率が悪くなり撹拌方法としては好ましくな
い。
However, placing the stirring devices facing each other and applying forces in opposite directions is not preferred as a stirring method because the magnetic fields are partially canceled out in the thickness direction of the slab, resulting in poor electromagnetic efficiency.

この発明は、従来法における前記欠点を除くた,め、撹
拌による未凝固溶融金属の流れを小さなループから形成
してホワイトバンドを均一になし、かつその程度を軽減
させ得る連続鋳造法を提案するものである。
In order to eliminate the above-mentioned drawbacks of the conventional method, the present invention proposes a continuous casting method in which a flow of unsolidified molten metal is formed through small loops by stirring to make the white band uniform and to reduce the degree of the white band. It is something.

次に、この発明の一実施例を図面について説明、する。Next, an embodiment of the present invention will be explained with reference to the drawings.

第2図は彎曲型連続鋳造機の要部を示すもので、1は鋳
型、2は鋳片、3はローラエプロンを形成するローラで
ある。
FIG. 2 shows the main parts of a curved continuous casting machine, in which 1 is a mold, 2 is a slab, and 3 is a roller forming a roller apron.

このローラ群の所要個所においてローラ間に永久磁石4
を設ける。
Permanent magnets 4 are placed between the rollers at required locations in this roller group.
will be established.

図には鋳込方向に4ケ所設置した場合を示したが、設置
数は任意に変えられる。
Although the figure shows a case where four locations are installed in the casting direction, the number of locations can be changed arbitrarily.

この永久磁石4は、第3図に示すように、推力により溶
融金属がループをえかいて撹拌される際、ループ巾Lが
400mm以下の小さなループが形成されるように、鋳
片2の巾方向全体にわたって複数の永久磁石を直列に配
設したもので、各永久磁石のN極及びS極がともに鋳片
表面と対向し、かつ近接して置かれ、さらに鋳片2を挟
んで両面に対向する永久磁石4の磁極が互に逆となるよ
うに設けられる。
As shown in FIG. 3, this permanent magnet 4 is designed to accommodate the width of the slab 2 so that a small loop with a loop width L of 400 mm or less is formed when the molten metal is stirred by thrust. A plurality of permanent magnets are arranged in series across the entire direction, with the N and S poles of each permanent magnet facing and close to the surface of the slab, and further placed on both sides with the slab 2 in between. The opposing permanent magnets 4 are provided so that their magnetic poles are opposite to each other.

ループ巾Lを400闘以下に限定したのは発明者らの多
くの実験の結果に基くものである。
The reason why the loop width L was limited to 400 strokes or less was based on the results of many experiments by the inventors.

すなわち、一般にループ径が大きくなるとホワイトバン
ドは不均一になることは前前のとおりであるが、このホ
ワイトバンドの巾方向での不均一さが商品として許容さ
れる限界を実験により求めたところ400mm以下であ
ることが判明した。
In other words, as mentioned above, generally speaking, as the loop diameter increases, the white band becomes uneven, but we determined through experiments that the limit of non-uniformity in the width direction of the white band that is acceptable as a product is 400 mm. It turned out that the following.

一方、前記のごとく配設された永久磁石群の最上部磁石
に相対する上側のローラ7,7、及び最下部磁石に相対
する下側のローラ8,8にはそれぞれブラシ6,6、9
,9を設け、各ブラシを直流電源回路10に接続し、第
4図に示すように通電の際、電流がブラシ6、ローラ7
から鋳片2の未凝固溶融金属中を通リローラ8、ブラシ
9へ流れるように構成する。
On the other hand, the upper rollers 7, 7 facing the uppermost magnet of the permanent magnet group arranged as described above and the lower rollers 8, 8 facing the lowermost magnet have brushes 6, 6, 9, respectively.
, 9 are provided, each brush is connected to a DC power supply circuit 10, and as shown in FIG.
The molten metal is configured to flow from the unsolidified molten metal of the slab 2 to the reroller 8 and the brush 9.

この直流回路は電流が他のローラから漏洩するのを防止
するため、各ローラは軸受部分で連続鋳造機本体から絶
縁される。
In order to prevent current from leaking from other rollers in this DC circuit, each roller is insulated from the continuous casting machine body at the bearing portion.

前記永久磁石は残留磁束密度Br5〜10KG、保持力
Hc5〜10KOeで、最大エネルギー積[BrHc]
maxが大きいものが適しており、YCo5、CeCo
5、SmCo5、SmPrCo5等の成分をもつ希土類
コバルトa石が最適である。
The permanent magnet has a residual magnetic flux density Br5~10KG, a coercive force Hc5~10KOe, and a maximum energy product [BrHc]
The one with larger max is suitable, YCo5, CeCo
5. Rare earth cobalt a-stone having components such as SmCo5 and SmPrCo5 is optimal.

この装置により連続鋳造すれば、鋳型1より引抜かれロ
ーラエプロン部分で凝固途中の鋳片2には、第3図に示
すように相対向する永久磁石4により主方向が引抜き方
向と直角の磁界5が作用する。
When continuous casting is performed using this device, the slab 2 that has been pulled out of the mold 1 and is in the process of solidifying at the roller apron is exposed to a magnetic field 5 whose main direction is perpendicular to the drawing direction by the opposing permanent magnets 4, as shown in FIG. acts.

一方前記直流回路への通電により鋳片内部には主方向が
鋳片の引抜き方向と同じ方向に直流電流が作用し、前記
磁界5との相乗作用、いわゆるフレミングの左手の法則
に従って、鋳片内部の未凝固溶融金属には鋳片巾方向の
電磁気力Fが作用する。
On the other hand, when the DC circuit is energized, a direct current acts inside the slab in the same direction as the direction in which the slab is pulled out, and a synergistic effect with the magnetic field 5, so-called Fleming's left-hand rule, causes a direct current to act inside the slab. An electromagnetic force F in the width direction of the slab acts on the unsolidified molten metal.

この場合、磁場5の方向が交互に逆向きになるよう複数
の永久磁石が配設されているため、電磁気力Fは鋳片巾
方向において交互に逆向きに作用する。
In this case, since the plurality of permanent magnets are arranged so that the directions of the magnetic fields 5 are alternately opposite, the electromagnetic force F acts alternately in opposite directions in the slab width direction.

したがって溶融金属は小さな流れのループを作って移動
する。
The molten metal therefore moves in small flow loops.

この流れのループは設置する永久磁石の磁極の数を増す
ことにより小さくできる。
This flow loop can be made smaller by increasing the number of magnetic poles of the permanent magnet installed.

又、第4図に示すように鋳片の引抜き方向の4個所に永
久磁石4を配設する場合、第5図に示すように、上下に
配設した2組の永久磁石の電磁気力F1 とF2が互に
逆向きに作用するように構成すれば、その間に部分的に
回動する推力fが生ずる。
In addition, when permanent magnets 4 are arranged at four locations in the drawing direction of the slab as shown in Fig. 4, as shown in Fig. 5, the electromagnetic force F1 of the two sets of permanent magnets arranged above and below is If F2 is configured to act in opposite directions, a thrust force f that partially rotates will be generated therebetween.

この推力fは第5図に実線矢印で示すように各部に生じ
るから未凝固溶融金属は引抜き方向において多数の小ル
ープを作り、部分的に対流しながら全体が撹拌され、鋳
片中心部の偏析は解消される。
Since this thrust force f is generated in each part as shown by the solid arrow in Fig. 5, the unsolidified molten metal forms many small loops in the drawing direction, and the whole is stirred while partially convecting, causing segregation in the center of the slab. will be resolved.

さらに、溶融金属を流動させる前記推力fは、直流電流
又は磁界の強さを変えることにより変化させることがで
きる。
Furthermore, the thrust f that causes the molten metal to flow can be changed by changing the strength of the direct current or magnetic field.

したがって、第4図の実施例において永久磁石4の強さ
を上から弱→強→弱→強の順に変化して配列ル、流動の
強さを変えると、ホワイトバンドの境界を不明瞭にする
と同時に等軸晶を増殖させることができる。
Therefore, in the embodiment shown in FIG. 4, if the strength of the permanent magnet 4 is changed in the order of weak → strong → weak → strong from above to change the arrangement and flow strength, the boundary of the white band will become unclear. At the same time, equiaxed crystals can be grown.

その理由は、磁界の強さが0. 6 K G以上になれ
ば等軸晶が急増するが、同時に負偏析度が徐々に著しく
なり好ましくない。
The reason is that the strength of the magnetic field is 0. When the temperature exceeds 6 KG, the number of equiaxed crystals increases rapidly, but at the same time, the degree of negative segregation gradually becomes significant, which is not preferable.

そのため磁界の強さを強弱交互に変えることにより前記
の欠陥を除くことができるためである。
This is because the above-mentioned defects can be removed by alternately changing the strength of the magnetic field.

実施例 1 160t転炉で連続して溶製した3チャージの低炭素ア
ルミーけい素キルド鋼(成分:炭素0.16%、けい素
0.3%、マンガン1.45%、りん0.018%、い
おう0.013覧鉄残り)を2ストランドの彎曲型スラ
ブ連続鋳造機にて連続して、鋳込温度1540℃、引抜
き速度0.8 m/minの条件で鋳込み、断面寸法が
190mm×1600mmの鋳片を各ストランド240
t製造した。
Example 1 3-charge low carbon aluminum silicon killed steel continuously melted in a 160t converter (components: 0.16% carbon, 0.3% silicon, 1.45% manganese, 0.018% phosphorus) , 0.013 iron remaining) was continuously cast in a two-strand curved slab continuous casting machine at a casting temperature of 1540°C and a drawing speed of 0.8 m/min, with cross-sectional dimensions of 190 mm x 1600 mm. Each strand is made of 240 pieces of slab.
t manufactured.

この際第1ストランドの鋳片は、この発明の実施により
、鋳片の厚さ方向中央での磁束密度が1. 0 K G
で、スラブ巾方向にN極、S極がそれぞれ2組交互にあ
るように配設した永久磁石(SmCo5)を鋳型上面よ
り450cm、475cm及び530cm、560cm
離れた4個所に、第3図、第4図に示した状態で配設し
、又ローラエプロンの上から10番目と15番目のロー
ラに通電用ブラシを設置し、引抜き方向に電圧20V、
電流5500Aの直流電流を流して未凝固部を撹拌しな
がら凝固させた。
At this time, by implementing the present invention, the first strand slab has a magnetic flux density of 1.0 at the center in the thickness direction of the slab. 0KG
Then, permanent magnets (SmCo5) arranged so that two sets of N poles and two S poles were arranged alternately in the width direction of the slab were placed at 450 cm, 475 cm, 530 cm, and 560 cm from the top of the mold.
They were placed in four separate locations as shown in Figures 3 and 4, and energizing brushes were installed on the 10th and 15th rollers from the top of the roller apron, with a voltage of 20 V in the pulling direction.
A direct current of 5500 A was applied to solidify the unsolidified portion while stirring.

他方の第2ストランドの鋳片は第6図aに示すようにス
ラブ表面に近接して、一表面にN極を、他表面にS極を
それぞれ対向して設けた撹拌装置を使い、前記と同じ条
件で鋳造した。
The slab of the other second strand is placed close to the slab surface as shown in Fig. 6a, using a stirring device with a north pole on one surface and a south pole on the other surface, as described above. It was cast under the same conditions.

そして、鋳込開始後2 0 m, 5 0 m,
8 0 mの個所より試験片を切出し、横断面のサルフ
ァプリントを行なうと共に鋳片巾方向における撹拌下で
凝固した領域(いわゆるホワイトバンド部)の成分分布
を調べてその領域の均一性を調査した。
After the start of casting, 20 m, 50 m,
A test piece was cut out from a 80 m point, and the cross section was sulfur printed, and the component distribution in the area solidified under stirring in the width direction of the slab (the so-called white band area) was investigated to investigate the uniformity of that area. .

その結果を第7図に示す。The results are shown in FIG.

この第7図はりんの分布状況を示したものであるが、曲
線Aはこの発明の実施による第1ストランド鋳片の試料
、曲線Bは1ループの流れにより撹拌した第2ストラン
ド鋳片の試料の分布曲線である。
This Figure 7 shows the distribution of phosphorus. Curve A is a sample of the first strand slab according to the present invention, and curve B is a sample of the second strand slab stirred by one loop of flow. is the distribution curve of

この図から明らかなように、1ループの流れにより撹拌
したものはりん含有量に大きな差があり、ホワイトバン
ド(りんが0.011%付近以下の含有で顕著)が存在
し明らかに負偏析が認められるに対し、この発明の実施
によるものはスラブ巾方向の全体にわたり含有量はほぼ
均一であり、かつサルファプリント上でホワイトバンド
はほとんど見えない程度に軽減している。
As is clear from this figure, there is a large difference in phosphorus content between the samples stirred by one-loop flow, and a white band (conspicuous when the phosphorus content is around 0.011% or less) is present, clearly indicating negative segregation. On the other hand, in the case of implementing the present invention, the content is almost uniform throughout the width direction of the slab, and the white band is reduced to the extent that it is almost invisible on the sulfur print.

実施例 2 実施例1と同じ連続鋳造機において、永久磁石の強さを
上から順に、鋳片の厚さ方向中央での磁束密度を0.2
KG,0.6KG,0.5KG,1.0KGとして、他
は同じ条件で鋳造した。
Example 2 In the same continuous casting machine as in Example 1, the strength of the permanent magnets was changed from top to bottom, and the magnetic flux density at the center in the thickness direction of the slab was 0.2.
KG, 0.6KG, 0.5KG, and 1.0KG were cast under the same conditions.

その結果負偏析度が減少しサルファプリント上でのホワ
イトバンドはほとんど見えない程度になっていることを
確認した。
As a result, it was confirmed that the degree of negative segregation decreased and the white band on the sulfur print was almost invisible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の連続鋳造鋳片の未凝固溶融金属の電磁撹
拌における溶融金属の流動を模式的に示した説明図、第
2図はこの発明の実施による彎曲型連続鋳造機の要部を
示す斜視図、第3図は同上磁石設置部の横断面図、第4
図は直流回路を示す説明図、第5図は鋳片内の未凝固溶
融金属の対流状況を示す説明図、第6図は従来法により
鋳片巾方向に1ループの流れを作って撹拌する場合の説
明図、第7図は鋳片のりん偏析状況を示す図表である。 図中、1……鋳型、2……鋳片、3……ローラ、4……
永久磁石、5……磁界、6,9……ブラシ、7,8……
ローラ、10……直流電源回路、A……この発明の実施
により撹拌した鋳片のりん含有量を示す分布曲線、B…
…同じく従来法による場合の分布曲線、F……電磁気力
、f……推力。
Fig. 1 is an explanatory diagram schematically showing the flow of molten metal during electromagnetic stirring of unsolidified molten metal of a conventional continuously cast slab, and Fig. 2 shows the main parts of a curved continuous casting machine according to the present invention. Figure 3 is a cross-sectional view of the same magnet installation part, Figure 4 is a perspective view.
The figure is an explanatory diagram showing a DC circuit, Figure 5 is an explanatory diagram showing the convection situation of unsolidified molten metal inside a slab, and Figure 6 is a stirring method using the conventional method to create one loop of flow in the width direction of the slab. FIG. 7 is a chart showing the phosphorus segregation situation in the slab. In the figure, 1...Mold, 2...Slab, 3...Roller, 4...
Permanent magnet, 5...Magnetic field, 6,9...Brush, 7,8...
Roller, 10...DC power supply circuit, A...Distribution curve showing the phosphorus content of the slab stirred by implementing the present invention, B...
...Similarly, the distribution curve in the case of the conventional method, F...Electromagnetic force, f...Thrust force.

Claims (1)

【特許請求の範囲】 1 連続鋳造において、鋳片の内部に未凝固部分が存在
する2次冷却帯で、該未凝固部分に永久磁石により磁場
を形成するとともに、鋳片に電流を通じ、これにより生
ずる推力で未凝固部分を撹拌しながら凝固せしめる連続
鋳造法の、鋳片巾方向にループ径Lが400期以下の小
さな流れのループを複数個形成せしめて未凝固部分の撹
拌を行い、鋳片巾方向での成分分布を均一にし、かつホ
ワイトバンドを軽減させることを特徴とする連続鋳造法
。 2 連続鋳造において、鋳片の内部に未凝固部分が存在
する2次冷却帯で、該未凝固部分に永久磁石により磁場
を形成するとともに、鋳片に電流を通じ、これにより生
ずる推力で未凝固部分を撹拌しながら凝固せしめる連続
鋳造法の、鋳型上面からの距離が異なる複数の位置で、
鋳片の未凝固部分を鋳片巾方向にループ径Lが400m
m以下の小さな流れのループを複数個形成し、かつ相互
に逆向きの対向流となるように流動せしめ、さらに上下
位置での流れ方向を互に逆向きとなすことにより、鋳片
の未凝固部分に縦向きの小さなループの流れを複数形成
して撹拌しながら凝固せしめ、ホワイトバンド部の鋳片
巾方向での成分分布を均一にし、かつホワイトバンド自
身を軽減させることを特徴とする連続鋳造法。
[Claims] 1. In continuous casting, in the secondary cooling zone where an unsolidified portion exists inside the slab, a magnetic field is formed in the unsolidified portion by a permanent magnet, and an electric current is passed through the slab, thereby The continuous casting method uses the generated thrust to solidify the unsolidified portion while agitating the unsolidified portion. A continuous casting method that makes the component distribution uniform in the width direction and reduces white bands. 2. In continuous casting, in the secondary cooling zone where an unsolidified portion exists inside the slab, a permanent magnet forms a magnetic field in the unsolidified portion, and an electric current is passed through the slab, and the thrust generated thereby cools the unsolidified portion. In the continuous casting method, which solidifies while stirring, at multiple positions at different distances from the top of the mold,
The loop diameter L of the unsolidified part of the slab in the width direction of the slab is 400 m.
By forming a plurality of small flow loops of less than m in diameter and making them flow in opposite directions, and by making the flow directions in the upper and lower positions opposite to each other, the unsolidified slab is Continuous casting characterized by forming a plurality of small vertical loops in a part and solidifying it while stirring, making the component distribution uniform in the width direction of the slab in the white band part, and reducing the white band itself. Law.
JP52002122A 1977-01-11 1977-01-11 Continuous casting method Expired JPS5813263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52002122A JPS5813263B2 (en) 1977-01-11 1977-01-11 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52002122A JPS5813263B2 (en) 1977-01-11 1977-01-11 Continuous casting method

Publications (2)

Publication Number Publication Date
JPS5386634A JPS5386634A (en) 1978-07-31
JPS5813263B2 true JPS5813263B2 (en) 1983-03-12

Family

ID=11520536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52002122A Expired JPS5813263B2 (en) 1977-01-11 1977-01-11 Continuous casting method

Country Status (1)

Country Link
JP (1) JPS5813263B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2861324B1 (en) 2003-10-27 2007-01-19 Rotelec Sa ELECTROMAGNETIC BREWING PROCESS FOR CONTINUOUS CASTING OF EXTENDED SECTION METAL PRODUCTS

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028430A (en) * 1973-07-16 1975-03-24
JPS51139527A (en) * 1975-05-29 1976-12-01 Sumitomo Metal Ind Method of stirring nonsolidified molten metal in continuous casting

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5028430A (en) * 1973-07-16 1975-03-24
JPS51139527A (en) * 1975-05-29 1976-12-01 Sumitomo Metal Ind Method of stirring nonsolidified molten metal in continuous casting

Also Published As

Publication number Publication date
JPS5386634A (en) 1978-07-31

Similar Documents

Publication Publication Date Title
US3656537A (en) Apparatus for producing continuously cast sections with agitation of the liquid core
EP1448329B1 (en) A device and a method for continuous casting
US4016926A (en) Electro-magnetic strirrer for continuous casting machine
US6712124B1 (en) Method and apparatus for continuous casting of metals
US4158380A (en) Continuously casting machine
CA2104375C (en) Process for producing thin sheet by continuous casting in twin-roll system
JPS5813263B2 (en) Continuous casting method
JPS63165052A (en) Method and device for agitating and braking molten metal
FI63682C (en) FOER FARING FOER GJUTNING AV EN METALLSTAONG
US4562879A (en) Electromagnetically stirring the melt in a continuous-casting mold
CA1144336A (en) Stirring process and device for improving the quality of a continuously cast metal
JP2004074233A (en) Method for reducing center segregation in continuously cast slab
JP3102967B2 (en) Method of braking molten metal in continuous casting mold and electromagnetic stirring device combined with brake
US4905756A (en) Electromagnetic confinement and movement of thin sheets of molten metal
US4562881A (en) Method for stirring in continuous casting
JPS63119962A (en) Rolling device for electromagnetic agitation
JPS5937713B2 (en) Stirring method for unsolidified molten metal in continuous casting
JPS5944944B2 (en) Stirring method for unsolidified molten metal in continuous casting
JP2003285142A (en) Method and device for electromagnetic stirring for continuous casting
EP3238856B1 (en) A method of controlling the solidification process of continuously cast metals and alloys and a device for implementing the method
JPH08155610A (en) Method for continuously casting molten metal
CA1148720A (en) Method of continuously casting metal
JPS5938065B2 (en) Electromagnetic stirring method for slabs in continuous casting
JPH0314541B2 (en)
US5222545A (en) Method and apparatus for casting a plurality of closely-spaced ingots in a static magnetic field