AU2001280971A1 - Three-axes sensor and a method of making same - Google Patents

Three-axes sensor and a method of making same

Info

Publication number
AU2001280971A1
AU2001280971A1 AU2001280971A AU8097101A AU2001280971A1 AU 2001280971 A1 AU2001280971 A1 AU 2001280971A1 AU 2001280971 A AU2001280971 A AU 2001280971A AU 8097101 A AU8097101 A AU 8097101A AU 2001280971 A1 AU2001280971 A1 AU 2001280971A1
Authority
AU
Australia
Prior art keywords
making same
axes sensor
axes
sensor
making
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
AU2001280971A
Inventor
David T. Chang
Randall L. Kubena
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HRL Laboratories LLC
Original Assignee
HRL Laboratories LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HRL Laboratories LLC filed Critical HRL Laboratories LLC
Publication of AU2001280971A1 publication Critical patent/AU2001280971A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/002Aligning microparts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5642Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams
    • G01C19/5656Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using vibrating bars or beams the devices involving a micromechanical structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0894Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by non-contact electron transfer, i.e. electron tunneling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/0036Switches making use of microelectromechanical systems [MEMS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/0242Gyroscopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0228Inertial sensors
    • B81B2201/025Inertial sensors not provided for in B81B2201/0235 - B81B2201/0242
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/019Bonding or gluing multiple substrate layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/03Bonding two components
    • B81C2203/033Thermal bonding
    • B81C2203/036Fusion bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/05Aligning components to be assembled
    • B81C2203/058Aligning components using methods not provided for in B81C2203/051 - B81C2203/052
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass
    • G01P2015/0842Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass the mass being of clover leaf shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • H01H59/0009Electrostatic relays; Electro-adhesion relays making use of micromechanics

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Pressure Sensors (AREA)
  • Measuring Fluid Pressure (AREA)
  • Gyroscopes (AREA)
  • Micromachines (AREA)
AU2001280971A 2000-08-01 2001-07-30 Three-axes sensor and a method of making same Abandoned AU2001280971A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US09/629,683 US6674141B1 (en) 2000-08-01 2000-08-01 Single crystal, tunneling and capacitive, three-axes sensor using eutectic bonding and a method of making same
US09/629,683 2000-08-01
PCT/US2001/024200 WO2002010684A2 (en) 2000-08-01 2001-07-30 Three-axes sensor and a method of making same

Publications (1)

Publication Number Publication Date
AU2001280971A1 true AU2001280971A1 (en) 2002-02-13

Family

ID=24524048

Family Applications (1)

Application Number Title Priority Date Filing Date
AU2001280971A Abandoned AU2001280971A1 (en) 2000-08-01 2001-07-30 Three-axes sensor and a method of making same

Country Status (6)

Country Link
US (2) US6674141B1 (en)
EP (1) EP1305570A2 (en)
JP (1) JP2004505264A (en)
AU (1) AU2001280971A1 (en)
TW (1) TW529060B (en)
WO (1) WO2002010684A2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050048688A1 (en) * 2000-12-07 2005-03-03 Patel Satyadev R. Methods for depositing, releasing and packaging micro-electromechanical devices on wafer substrates
US6946314B2 (en) * 2001-01-02 2005-09-20 The Charles Stark Draper Laboratory, Inc. Method for microfabricating structures using silicon-on-insulator material
US7381630B2 (en) * 2001-01-02 2008-06-03 The Charles Stark Draper Laboratory, Inc. Method for integrating MEMS device and interposer
US6835589B2 (en) * 2002-11-14 2004-12-28 International Business Machines Corporation Three-dimensional integrated CMOS-MEMS device and process for making the same
AU2003901914A0 (en) * 2003-04-22 2003-05-08 Quantum Precision Instruments Pty Ltd Quantum tunnelling transducer device
US6949985B2 (en) * 2003-07-30 2005-09-27 Cindy Xing Qiu Electrostatically actuated microwave MEMS switch
US7030768B2 (en) * 2003-09-30 2006-04-18 Wanie Andrew J Water softener monitoring device
US7302858B2 (en) * 2004-09-24 2007-12-04 Kevin Walsh MEMS capacitive cantilever strain sensor, devices, and formation methods
US8916942B2 (en) * 2010-05-13 2014-12-23 Valtion Teknillinen Tutkimuskeskus Microelectromechanical resonator and a method for producing the same
US8635765B2 (en) * 2011-06-15 2014-01-28 International Business Machines Corporation Method of forming micro-electrical-mechanical structure (MEMS)
US8650955B2 (en) 2012-01-18 2014-02-18 The United States Of America As Represented By The Secretary Of The Navy Time domain switched gyroscope
US8957355B1 (en) * 2012-01-26 2015-02-17 The Boeing Company Inertial measurement unit apparatus for use with guidance systems
US8875576B2 (en) 2012-03-21 2014-11-04 The United States Of America As Represented By The Secretary Of The Navy Apparatus and method for providing an in-plane inertial device with integrated clock
US8991250B2 (en) 2012-09-11 2015-03-31 The United States Of America As Represented By Secretary Of The Navy Tuning fork gyroscope time domain inertial sensor

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5265470A (en) 1987-11-09 1993-11-30 California Institute Of Technology Tunnel effect measuring systems and particle detectors
US5210714A (en) 1988-10-14 1993-05-11 International Business Machines Corporation Distance-controlled tunneling transducer and direct access storage unit employing the transducer
US5015850A (en) 1989-06-20 1991-05-14 The Board Of Trustees Of The Leland Stanford Junior University Microfabricated microscope assembly
DE69102590T2 (en) 1990-05-18 1994-10-06 British Aerospace Inertial sensors.
JP3069923B2 (en) 1991-06-17 2000-07-24 キヤノン株式会社 Cantilever probe, atomic force microscope, information recording / reproducing device
US5313835A (en) 1991-12-19 1994-05-24 Motorola, Inc. Integrated monolithic gyroscopes/accelerometers with logic circuits
DE4305033A1 (en) 1992-02-21 1993-10-28 Siemens Ag Micro-mechanical relay with hybrid drive - has electrostatic drive combined with piezoelectric drive for high force operation and optimum response
JP3152005B2 (en) * 1993-03-17 2001-04-03 株式会社村田製作所 Manufacturing method of semiconductor acceleration sensor
EP0619495B1 (en) 1993-04-05 1997-05-21 Siemens Aktiengesellschaft Process for manufacturing tunnel effect sensors
US5354985A (en) 1993-06-03 1994-10-11 Stanford University Near field scanning optical and force microscope including cantilever and optical waveguide
US5475318A (en) 1993-10-29 1995-12-12 Robert B. Marcus Microprobe
US5729074A (en) * 1994-03-24 1998-03-17 Sumitomo Electric Industries, Ltd. Micro mechanical component and production process thereof
US5666190A (en) * 1994-04-12 1997-09-09 The Board Of Trustees Of The Leland Stanford, Jr. University Method of performing lithography using cantilever array
US6075585A (en) 1994-04-12 2000-06-13 The Board Of Trustees Of The Leland Stanford, Jr. University Vibrating probe for a scanning probe microscope
US5596194A (en) * 1994-08-19 1997-01-21 Hughes Aircraft Company Single-wafer tunneling sensor and low-cost IC manufacturing method
US5646348A (en) 1994-08-29 1997-07-08 The Charles Stark Draper Laboratory, Inc. Micromechanical sensor with a guard band electrode and fabrication technique therefor
JP3182301B2 (en) 1994-11-07 2001-07-03 キヤノン株式会社 Microstructure and method for forming the same
US5883387A (en) 1994-11-15 1999-03-16 Olympus Optical Co., Ltd. SPM cantilever and a method for manufacturing the same
JP2897671B2 (en) 1995-01-25 1999-05-31 日本電気株式会社 Field emission cold cathode
US5659195A (en) 1995-06-08 1997-08-19 The Regents Of The University Of California CMOS integrated microsensor with a precision measurement circuit
GB9524241D0 (en) * 1995-11-28 1996-01-31 Smiths Industries Plc Rate sensors
US5894090A (en) 1996-05-31 1999-04-13 California Institute Of Technology Silicon bulk micromachined, symmetric, degenerate vibratorygyroscope, accelerometer and sensor and method for using the same
US5992233A (en) * 1996-05-31 1999-11-30 The Regents Of The University Of California Micromachined Z-axis vibratory rate gyroscope
US5747804A (en) 1996-09-13 1998-05-05 Raytheon Company Method and apparatus for sensing infrared radiation utilizing a micro-electro-mechanical sensor
JP3639684B2 (en) 1997-01-13 2005-04-20 キヤノン株式会社 Evanescent wave detection microprobe and method for manufacturing the same, probe including the microprobe and method for manufacturing the same, evanescent wave detection device including the microprobe, near-field scanning optical microscope, and information reproducing device
JP3493974B2 (en) * 1997-10-01 2004-02-03 オムロン株式会社 Electrostatic micro relay
US5929497A (en) 1998-06-11 1999-07-27 Delco Electronics Corporation Batch processed multi-lead vacuum packaging for integrated sensors and circuits
US6126311A (en) * 1998-11-02 2000-10-03 Claud S. Gordon Company Dew point sensor using mems
US6091125A (en) 1998-12-02 2000-07-18 Northeastern University Micromechanical electronic device
US6229190B1 (en) 1998-12-18 2001-05-08 Maxim Integrated Products, Inc. Compensated semiconductor pressure sensor
US6174820B1 (en) * 1999-02-16 2001-01-16 Sandia Corporation Use of silicon oxynitride as a sacrificial material for microelectromechanical devices
US6337027B1 (en) * 1999-09-30 2002-01-08 Rockwell Science Center, Llc Microelectromechanical device manufacturing process
US6563184B1 (en) 2000-08-01 2003-05-13 Hrl Laboratories, Llc Single crystal tunneling sensor or switch with silicon beam structure and a method of making same
US6580138B1 (en) 2000-08-01 2003-06-17 Hrl Laboratories, Llc Single crystal, dual wafer, tunneling sensor or switch with silicon on insulator substrate and a method of making same
US6555404B1 (en) 2000-08-01 2003-04-29 Hrl Laboratories, Llc Method of manufacturing a dual wafer tunneling gyroscope

Also Published As

Publication number Publication date
WO2002010684A2 (en) 2002-02-07
US6674141B1 (en) 2004-01-06
JP2004505264A (en) 2004-02-19
WO2002010684A3 (en) 2002-04-25
US20040048403A1 (en) 2004-03-11
TW529060B (en) 2003-04-21
US6835587B2 (en) 2004-12-28
EP1305570A2 (en) 2003-05-02
WO2002010684A9 (en) 2003-03-27

Similar Documents

Publication Publication Date Title
AU2001278067A1 (en) A mem sensor and a method of making same
AU2001265390A1 (en) Method of making electronic materials
AU2002323514A1 (en) A method of fabrication of a sensor
AU2001279107A1 (en) A tunneling sensor or switch and a method of making same
EP1248369A3 (en) Proximity sensor and a method for operating same
AUPQ687600A0 (en) A method of detection
AU2001264668A1 (en) An aid for lifting and carrying a mass/object
AU2001224663A1 (en) Multiple array and method of making a multiple array
AU2002212258A1 (en) Assembly and method for the optical-tactile measurement of a structure
AU2002214042A1 (en) A supercapacitor and a method of manufacturing such a supercapacitor
AU6713800A (en) Gas sensor and its method of manufacture
AU2001294587A1 (en) Grip element and method of manufacture thereof
AU2001248395A1 (en) Method of manufacturing a membrane sensor
AU2001280109A1 (en) A method of producing fr901228
AU2001281493A1 (en) Method of preparing a polymerizate
AU2002217868A1 (en) A joint structure and method for making a joint structure
AU2001281078A1 (en) A mem gyroscope and a method of making same
AU2001236894A1 (en) Acceleration sensor and method of manufacture
AU6714100A (en) A gas sensor and its method of manufacture
AU2001271753A1 (en) Bat and method of manufacturing
AU2001280971A1 (en) Three-axes sensor and a method of making same
AU2001250526A1 (en) Gas sensor assembly and method
AU2001280646A1 (en) Display and method of manufacture
AU2001283023A1 (en) A tunneling sensor or switch and a method of making same
AU2001248676A1 (en) Sensor module and a method for the production of the same