ATE300663T1 - Verfahren zur verbrennung in einer geschlossenen kammer - Google Patents
Verfahren zur verbrennung in einer geschlossenen kammerInfo
- Publication number
- ATE300663T1 ATE300663T1 AT00942670T AT00942670T ATE300663T1 AT E300663 T1 ATE300663 T1 AT E300663T1 AT 00942670 T AT00942670 T AT 00942670T AT 00942670 T AT00942670 T AT 00942670T AT E300663 T1 ATE300663 T1 AT E300663T1
- Authority
- AT
- Austria
- Prior art keywords
- combustion
- fuel
- air mixture
- reduce
- ignition
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
- F01C1/30—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F01C1/34—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
- F01C1/344—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
- F01C1/3448—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member with axially movable vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
- F01C1/30—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F01C1/40—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and having a hinged member
- F01C1/44—Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and having a hinged member with vanes hinged to the inner member
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B75/00—Other engines
- F02B75/02—Engines characterised by their cycles, e.g. six-stroke
- F02B2075/022—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
- F02B2075/027—Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B53/00—Internal-combustion aspects of rotary-piston or oscillating-piston engines
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/324,089 US6283087B1 (en) | 1999-06-01 | 1999-06-01 | Enhanced method of closed vessel combustion |
PCT/US2000/015304 WO2000073628A1 (en) | 1999-06-01 | 2000-05-31 | An enhanced method of closed vessel combustion |
Publications (1)
Publication Number | Publication Date |
---|---|
ATE300663T1 true ATE300663T1 (de) | 2005-08-15 |
Family
ID=23262025
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AT00942670T ATE300663T1 (de) | 1999-06-01 | 2000-05-31 | Verfahren zur verbrennung in einer geschlossenen kammer |
Country Status (7)
Country | Link |
---|---|
US (1) | US6283087B1 (de) |
EP (1) | EP1185763B1 (de) |
AT (1) | ATE300663T1 (de) |
AU (1) | AU5726300A (de) |
DE (1) | DE60021568T2 (de) |
TW (1) | TW467994B (de) |
WO (1) | WO2000073628A1 (de) |
Families Citing this family (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6564769B2 (en) * | 2001-09-04 | 2003-05-20 | Ford Global Technologies, Llc | Method and system for operating a direct injection spark internal combustion engine having variable compression ratio modes |
US7750654B2 (en) * | 2002-09-02 | 2010-07-06 | Octec Inc. | Probe method, prober, and electrode reducing/plasma-etching processing mechanism |
US6736118B1 (en) * | 2002-11-14 | 2004-05-18 | William H. Velke | Fuel density reduction method and device to improve the ratio of oxygen mass versus fuel mass during ignition in combustion mechanisms operating with fluid hydrocarbon fuels |
US8037863B2 (en) | 2007-03-05 | 2011-10-18 | Hartfield Jr Roy J | Positive displacement rotary vane engine |
US7753036B2 (en) * | 2007-07-02 | 2010-07-13 | United Technologies Corporation | Compound cycle rotary engine |
US20090087334A1 (en) * | 2007-09-28 | 2009-04-02 | Robert Whitesell | Sliding Vane Compression and Expansion Device |
CN101981162B (zh) | 2008-03-28 | 2014-07-02 | 埃克森美孚上游研究公司 | 低排放发电和烃采收系统及方法 |
CN101981272B (zh) | 2008-03-28 | 2014-06-11 | 埃克森美孚上游研究公司 | 低排放发电和烃采收系统及方法 |
JP5580320B2 (ja) | 2008-10-14 | 2014-08-27 | エクソンモービル アップストリーム リサーチ カンパニー | 燃焼生成物を制御するための方法およびシステム |
CN102597418A (zh) | 2009-11-12 | 2012-07-18 | 埃克森美孚上游研究公司 | 低排放发电和烃采收系统及方法 |
US9732675B2 (en) | 2010-07-02 | 2017-08-15 | Exxonmobil Upstream Research Company | Low emission power generation systems and methods |
JP5906555B2 (ja) | 2010-07-02 | 2016-04-20 | エクソンモービル アップストリーム リサーチ カンパニー | 排ガス再循環方式によるリッチエアの化学量論的燃焼 |
JP5759543B2 (ja) | 2010-07-02 | 2015-08-05 | エクソンモービル アップストリーム リサーチ カンパニー | 排ガス再循環方式及び直接接触型冷却器による化学量論的燃焼 |
BR112012031153A2 (pt) | 2010-07-02 | 2016-11-08 | Exxonmobil Upstream Res Co | sistemas e métodos de geração de energia de triplo-ciclo de baixa emissão |
TWI563166B (en) | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Integrated generation systems and methods for generating power |
TWI563165B (en) | 2011-03-22 | 2016-12-21 | Exxonmobil Upstream Res Co | Power generation system and method for generating power |
TWI593872B (zh) | 2011-03-22 | 2017-08-01 | 艾克頌美孚上游研究公司 | 整合系統及產生動力之方法 |
TWI564474B (zh) | 2011-03-22 | 2017-01-01 | 艾克頌美孚上游研究公司 | 於渦輪系統中控制化學計量燃燒的整合系統和使用彼之產生動力的方法 |
CN104428490B (zh) | 2011-12-20 | 2018-06-05 | 埃克森美孚上游研究公司 | 提高的煤层甲烷生产 |
US9353682B2 (en) | 2012-04-12 | 2016-05-31 | General Electric Company | Methods, systems and apparatus relating to combustion turbine power plants with exhaust gas recirculation |
US9784185B2 (en) | 2012-04-26 | 2017-10-10 | General Electric Company | System and method for cooling a gas turbine with an exhaust gas provided by the gas turbine |
US10273880B2 (en) | 2012-04-26 | 2019-04-30 | General Electric Company | System and method of recirculating exhaust gas for use in a plurality of flow paths in a gas turbine engine |
US9149776B2 (en) * | 2012-07-13 | 2015-10-06 | General Electric Company | Systems and methods for liquid fuel modeling |
US10107495B2 (en) | 2012-11-02 | 2018-10-23 | General Electric Company | Gas turbine combustor control system for stoichiometric combustion in the presence of a diluent |
US9708977B2 (en) | 2012-12-28 | 2017-07-18 | General Electric Company | System and method for reheat in gas turbine with exhaust gas recirculation |
US9599070B2 (en) | 2012-11-02 | 2017-03-21 | General Electric Company | System and method for oxidant compression in a stoichiometric exhaust gas recirculation gas turbine system |
US10215412B2 (en) | 2012-11-02 | 2019-02-26 | General Electric Company | System and method for load control with diffusion combustion in a stoichiometric exhaust gas recirculation gas turbine system |
US9869279B2 (en) | 2012-11-02 | 2018-01-16 | General Electric Company | System and method for a multi-wall turbine combustor |
US9631815B2 (en) | 2012-12-28 | 2017-04-25 | General Electric Company | System and method for a turbine combustor |
US9574496B2 (en) | 2012-12-28 | 2017-02-21 | General Electric Company | System and method for a turbine combustor |
US9803865B2 (en) | 2012-12-28 | 2017-10-31 | General Electric Company | System and method for a turbine combustor |
US9611756B2 (en) | 2012-11-02 | 2017-04-04 | General Electric Company | System and method for protecting components in a gas turbine engine with exhaust gas recirculation |
US10161312B2 (en) | 2012-11-02 | 2018-12-25 | General Electric Company | System and method for diffusion combustion with fuel-diluent mixing in a stoichiometric exhaust gas recirculation gas turbine system |
US10208677B2 (en) | 2012-12-31 | 2019-02-19 | General Electric Company | Gas turbine load control system |
US9581081B2 (en) | 2013-01-13 | 2017-02-28 | General Electric Company | System and method for protecting components in a gas turbine engine with exhaust gas recirculation |
US9512759B2 (en) | 2013-02-06 | 2016-12-06 | General Electric Company | System and method for catalyst heat utilization for gas turbine with exhaust gas recirculation |
TW201502356A (zh) | 2013-02-21 | 2015-01-16 | Exxonmobil Upstream Res Co | 氣渦輪機排氣中氧之減少 |
US9938861B2 (en) | 2013-02-21 | 2018-04-10 | Exxonmobil Upstream Research Company | Fuel combusting method |
RU2637609C2 (ru) | 2013-02-28 | 2017-12-05 | Эксонмобил Апстрим Рисерч Компани | Система и способ для камеры сгорания турбины |
TW201500635A (zh) | 2013-03-08 | 2015-01-01 | Exxonmobil Upstream Res Co | 處理廢氣以供用於提高油回收 |
US9618261B2 (en) | 2013-03-08 | 2017-04-11 | Exxonmobil Upstream Research Company | Power generation and LNG production |
US20140250945A1 (en) | 2013-03-08 | 2014-09-11 | Richard A. Huntington | Carbon Dioxide Recovery |
US9784182B2 (en) | 2013-03-08 | 2017-10-10 | Exxonmobil Upstream Research Company | Power generation and methane recovery from methane hydrates |
US9631542B2 (en) | 2013-06-28 | 2017-04-25 | General Electric Company | System and method for exhausting combustion gases from gas turbine engines |
US9617914B2 (en) | 2013-06-28 | 2017-04-11 | General Electric Company | Systems and methods for monitoring gas turbine systems having exhaust gas recirculation |
US9835089B2 (en) | 2013-06-28 | 2017-12-05 | General Electric Company | System and method for a fuel nozzle |
TWI654368B (zh) | 2013-06-28 | 2019-03-21 | 美商艾克頌美孚上游研究公司 | 用於控制在廢氣再循環氣渦輪機系統中的廢氣流之系統、方法與媒體 |
US9903588B2 (en) | 2013-07-30 | 2018-02-27 | General Electric Company | System and method for barrier in passage of combustor of gas turbine engine with exhaust gas recirculation |
US9587510B2 (en) | 2013-07-30 | 2017-03-07 | General Electric Company | System and method for a gas turbine engine sensor |
US9951658B2 (en) | 2013-07-31 | 2018-04-24 | General Electric Company | System and method for an oxidant heating system |
US10030588B2 (en) | 2013-12-04 | 2018-07-24 | General Electric Company | Gas turbine combustor diagnostic system and method |
US9752458B2 (en) | 2013-12-04 | 2017-09-05 | General Electric Company | System and method for a gas turbine engine |
US10227920B2 (en) | 2014-01-15 | 2019-03-12 | General Electric Company | Gas turbine oxidant separation system |
US9915200B2 (en) | 2014-01-21 | 2018-03-13 | General Electric Company | System and method for controlling the combustion process in a gas turbine operating with exhaust gas recirculation |
US9863267B2 (en) | 2014-01-21 | 2018-01-09 | General Electric Company | System and method of control for a gas turbine engine |
US10079564B2 (en) | 2014-01-27 | 2018-09-18 | General Electric Company | System and method for a stoichiometric exhaust gas recirculation gas turbine system |
US10047633B2 (en) | 2014-05-16 | 2018-08-14 | General Electric Company | Bearing housing |
US9885290B2 (en) | 2014-06-30 | 2018-02-06 | General Electric Company | Erosion suppression system and method in an exhaust gas recirculation gas turbine system |
US10655542B2 (en) | 2014-06-30 | 2020-05-19 | General Electric Company | Method and system for startup of gas turbine system drive trains with exhaust gas recirculation |
US10060359B2 (en) | 2014-06-30 | 2018-08-28 | General Electric Company | Method and system for combustion control for gas turbine system with exhaust gas recirculation |
US9869247B2 (en) | 2014-12-31 | 2018-01-16 | General Electric Company | Systems and methods of estimating a combustion equivalence ratio in a gas turbine with exhaust gas recirculation |
US9819292B2 (en) | 2014-12-31 | 2017-11-14 | General Electric Company | Systems and methods to respond to grid overfrequency events for a stoichiometric exhaust recirculation gas turbine |
US10788212B2 (en) | 2015-01-12 | 2020-09-29 | General Electric Company | System and method for an oxidant passageway in a gas turbine system with exhaust gas recirculation |
US10094566B2 (en) | 2015-02-04 | 2018-10-09 | General Electric Company | Systems and methods for high volumetric oxidant flow in gas turbine engine with exhaust gas recirculation |
US10316746B2 (en) | 2015-02-04 | 2019-06-11 | General Electric Company | Turbine system with exhaust gas recirculation, separation and extraction |
US10253690B2 (en) | 2015-02-04 | 2019-04-09 | General Electric Company | Turbine system with exhaust gas recirculation, separation and extraction |
US10267270B2 (en) | 2015-02-06 | 2019-04-23 | General Electric Company | Systems and methods for carbon black production with a gas turbine engine having exhaust gas recirculation |
US10145269B2 (en) | 2015-03-04 | 2018-12-04 | General Electric Company | System and method for cooling discharge flow |
US10480792B2 (en) | 2015-03-06 | 2019-11-19 | General Electric Company | Fuel staging in a gas turbine engine |
CN111022179A (zh) * | 2019-12-05 | 2020-04-17 | 曹玉玲 | 滑片式发动机 |
US11708811B2 (en) | 2021-03-09 | 2023-07-25 | Ford Global Technologies, Llc | Adjusted ignition timing for engine restart |
CN113484364B (zh) * | 2021-06-03 | 2022-05-06 | 中国科学技术大学 | 一种航空煤油可燃物组分的临界安全浓度预测方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1686767A (en) * | 1927-03-31 | 1928-10-09 | Saxon James Anglo | Rotary internal-combustion engine |
US2728330A (en) * | 1948-09-13 | 1955-12-27 | H M Petersen & Associates Inc | Rotary internal combustion engine |
US3762844A (en) | 1970-05-12 | 1973-10-02 | K Isaksen | Positive displacement rotary heat engine |
US3961483A (en) | 1975-07-03 | 1976-06-08 | The Boeing Company | Composite cycle engine |
US4653446A (en) | 1985-01-14 | 1987-03-31 | Frasca Joseph F | Rotary internal combustion engine |
US5429084A (en) | 1994-02-25 | 1995-07-04 | Sky Technologies, Inc. | Axial vane rotary device and sealing system therefor |
US5524586A (en) * | 1995-07-19 | 1996-06-11 | Mallen Research Ltd. Partnership | Method of reducing emissions in a sliding vane internal combustion engine |
US5836282A (en) * | 1996-12-27 | 1998-11-17 | Samsung Electronics Co., Ltd. | Method of reducing pollution emissions in a two-stroke sliding vane internal combustion engine |
-
1999
- 1999-06-01 US US09/324,089 patent/US6283087B1/en not_active Expired - Lifetime
-
2000
- 2000-05-31 DE DE60021568T patent/DE60021568T2/de not_active Expired - Lifetime
- 2000-05-31 EP EP00942670A patent/EP1185763B1/de not_active Expired - Lifetime
- 2000-05-31 AU AU57263/00A patent/AU5726300A/en not_active Abandoned
- 2000-05-31 AT AT00942670T patent/ATE300663T1/de not_active IP Right Cessation
- 2000-05-31 WO PCT/US2000/015304 patent/WO2000073628A1/en active IP Right Grant
- 2000-06-01 TW TW089110699A patent/TW467994B/zh not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
DE60021568T2 (de) | 2006-06-01 |
AU5726300A (en) | 2000-12-18 |
TW467994B (en) | 2001-12-11 |
WO2000073628A1 (en) | 2000-12-07 |
EP1185763B1 (de) | 2005-07-27 |
DE60021568D1 (de) | 2005-09-01 |
EP1185763A1 (de) | 2002-03-13 |
US6283087B1 (en) | 2001-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ATE300663T1 (de) | Verfahren zur verbrennung in einer geschlossenen kammer | |
US5178119A (en) | Combustion process and fuel supply system for engines | |
AU1342000A (en) | Plasma fuel processing for nox control of lean burn engines | |
DE69916178D1 (de) | Brennkraftmaschine für zwei Brennstoffe mit Zündung eines Homogengemisches bestehend aus Gas,Luft und Pilotbrennstoff | |
SE9700014D0 (sv) | Muffler for a two-stroke engine | |
CA2054482A1 (en) | Special purpose blends of hydrogen and natural gas | |
WO2006017085A3 (en) | Four stroke engine auto-ignition combustion | |
NO179717C (no) | Motor med indre forbrenning | |
DE502004006538D1 (de) | Verbrennungsmotor | |
MX9304161A (es) | Control de tiempos de ignicion. | |
CA2267267A1 (en) | Low emission power plant and method of making same | |
IT1227882B (it) | Carburante per riduzione della nocivita' dei gas di scarico particolarmente per motori a combustione interna | |
EP1028237A3 (de) | Gasturbinentriebwerk | |
CA2321453A1 (en) | Method of operating an engine with a mixture of gaseous fuel and emulsified pilot fuel to reduce nitrogen oxide emissions | |
GB1389383A (en) | Internal combustion engine having fuel injection into a premixed charge | |
CN214698052U (zh) | 一种小型单缸天然气发动机 | |
JPS5260317A (en) | Internal combustion engine | |
BREISACHER et al. | Exhaust emission reduction through two-stage combustion | |
SU889879A1 (ru) | Способ работы форкамерного двигател внутреннего сгорани | |
JPH0742564A (ja) | 空気供給強制燃焼式エンジン | |
Kapus et al. | New AVL gas engine combustion system. | |
Evans | Lean-burn natural gas engines for high efficiency and low emissions | |
Sasaki et al. | A new combustion system of a heat-insulated natural gas engine with a pre-chamber having a throat valve | |
SHAH et al. | Exhaust emissions from gas turbine engines(Gas turbine engine exhaust pollutants consisting of unburned hydrocarbons, nitric oxide, carbon dioxide, nitrogen dioxide and carbon monoxide) | |
Uddeen | Investigation of a multiple spark ignition approach to burn ammonia in a spark ignition engine: An optical study |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RER | Ceased as to paragraph 5 lit. 3 law introducing patent treaties |