AT518681A1 - Verfahren zur Visualisierung und Validierung von Prozessereignissen und System zur Durchführung des Verfahrens - Google Patents

Verfahren zur Visualisierung und Validierung von Prozessereignissen und System zur Durchführung des Verfahrens Download PDF

Info

Publication number
AT518681A1
AT518681A1 ATA50468/2016A AT504682016A AT518681A1 AT 518681 A1 AT518681 A1 AT 518681A1 AT 504682016 A AT504682016 A AT 504682016A AT 518681 A1 AT518681 A1 AT 518681A1
Authority
AT
Austria
Prior art keywords
data acquisition
scada
process monitoring
monitoring system
visualization
Prior art date
Application number
ATA50468/2016A
Other languages
English (en)
Original Assignee
Siemens Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Ag filed Critical Siemens Ag
Priority to ATA50468/2016A priority Critical patent/AT518681A1/de
Priority to US16/301,941 priority patent/US10852715B2/en
Priority to EP17726889.3A priority patent/EP3420425A1/de
Priority to CA3022200A priority patent/CA3022200C/en
Priority to RU2018138574A priority patent/RU2746442C2/ru
Priority to PCT/EP2017/062216 priority patent/WO2017215885A1/de
Publication of AT518681A1 publication Critical patent/AT518681A1/de

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41875Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by quality surveillance of production
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4189Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the transport system
    • G05B19/41895Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the transport system using automatic guided vehicles [AGV]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4185Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • G05B23/0205Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
    • G05B23/0208Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the configuration of the monitoring system
    • G05B23/0216Human interface functionality, e.g. monitoring system providing help to the user in the selection of tests or in its configuration
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/32Operator till task planning
    • G05B2219/32404Scada supervisory control and data acquisition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/60Electric or hybrid propulsion means for production processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Human Computer Interaction (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Image Analysis (AREA)
  • Processing Or Creating Images (AREA)
  • Traffic Control Systems (AREA)

Abstract

Verfahren zur Visualisierung und Validierung von Prozessereignissen in Prozessüberwachungssystemen Die Erfindung betrifft ein Verfahren zur Visualisierung und Validierung von Prozessereignissen in Prozessüberwachungssys temen mit folgenden Merkmalen: - ein fest installiertes Sensorsystem meldet Zustände an ein Prozessüberwachungssystem, - bei Überschreitung von vorgegebenen Grenzwerten wird vom Prozessüberwachungssystem eine lokale Da tenerfassung mit einem mobilen Sensor ausgelöst, geplant, und ausgeführt (TR,AC), - das Ergebnis dieser Datenerfassung wird im Prozessüberwachungssystem analysiert (PR) visualisiert (VI) und in die Zustandsinformation über den Pro20 zess oder die Anlage integriert (PDE).

Description

Beschreibung / Description
Bezeichnung der Erfindung / Title of the invention
Verfahren zur Visualisierung und Validierung von Prozessereignissen und System zur Durchführung des Verfahrens.
Zur automatisierten Steuerung von Prozessen und Anlagen werden nach dem Stand der Technik sogenannte Supervisory Control and Data Acquisition (SCADA)- Systeme eingesetzt. Darunter versteht man Steuerungssysteme, welche die Überwachung, Steuerung und Visualisierung von industriellen Prozessen ermöglichen. Bestandteile dieser Steuerungssysteme sind einerseits Hardwarekomponenten wie Sensoren, PLCs oder RTUs zur Messung und Übertragung der Prozesswerte und andererseits Software wie beispielsweise SIMATIC WinCC OA als Benutzerschnittstelle, Alarmmanagement, Datenarchivierung und Prozessvisualisierung .
Ein bedeutsamer Anwendungsfall von SCADA Systemen betrifft die Überwachung und Steuerung von Versorgungsinfrastrukturen wie Öl- oder Gaspipelines, die sich typischerweise über weite geografische Bereiche erstrecken und aus verschiedenen Anlagenteilen bestehen. Deren sicherer und störungsfreier Betrieb ist nicht nur aus kommerzieller Sicht für den Betreiber und die zu versorgende Bevölkerung von größtem Interesse sondern auch aufgrund behördlicher Auflagen als betriebliche Voraussetzung zu jedem Zeitpunkt sicherzustellen. Während der Anlagenbetreiber im SCADA System durch stationäre Sensoren zu verschiedenen Kontrollpunkten typische Parameter wie den aktuellen Druck, Durchfluss oder Temperatur des in der Pipeline transportierten Mediums überwacht, hat er keine Möglichkeit aus demselben System komplexere und unstrukturierte Daten zu akquirieren. Dazu zählen Informationen und Erkenntnisse, die sich aus Aufnahmen bildgebender Sensorik (z.B. Farbkamera, NIR-Kamera, LiDAR) von Versorgungseinrichtungen ableiten lassen.
Der Erfindung liegt daher die Aufgabe zugrunde, den Stand der Technik weiterzuentwickeln und insbesondere Bilddaten zur Prozesssteuerung heranzuziehen
Erfindungsgemäß geschieht dies mit einem Verfahren zur Visualisierung und Validierung von Prozessereignissen in Prozessüberwachungssystemen bei dem ein fest installiertes Sensorsystem Zustände an ein Prozessüberwachungssystem meldet, bei Überschreitung von vorgegebenen Grenzwerten vom Prozessüberwachungssystem eine lokale Datenerfassung mit einem mobilen Sensor ausgelöst, geplant, und ausgeführt wird, und das Ergebnis dieser Datenerfassung im Prozessüberwachungssystem analysiert, visualisiert und in die Zustandsinformation über den Prozess oder die Anlage integriert wird.
Vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen .
Auf luftgestützten Plattformen (z.B. Drohnen, Helikopter, Flugzeuge) angebrachte mobile Sensoren können georeferenzier-ten Bilddaten liefern, welche durch Computer Vision-basierte Algorithmen analysiert werden können.
Erfindungsgemäß werden auch diese Datenquellen zur Beschreibung und Digitalisierung des Prozesszustandes herangezogen. Insbesondere die Verknüpfung numerisch verfügbarer Prozesswerte im SCADA System mit aus Bilddaten gewonnenen Informationen kann dem Betreiber zusätzliche wertvolle Erkenntnisse liefern.
Vorteilhafte Anwendungen bei der Überwachung von ober- bzw. unterirdische Pipelines, sind insbesondere die Erkennung der Unterschreitung der Pipelineaufschüttung unter einen vorgeschriebenen Wert, die Erkennung von Geländeveränderungen im Zeitverlauf und die Bewertung von Beschädigungen der Pipeline durch Bauarbeiten, Vandalismus, aber auch durch mechanische Abnützung.
Durch den Einsatz mobiler bildgebender Sensorik in Kombination mit Computer Vision-basierten Algorithmen kann der manuelle Aufwand minimiert und reproduzierbare Ergebnisse erzeugt werden und auch großflächige Areale und die daraus resultierenden großen Datenmengen verarbeitet werden.
Die Erfindung wird anhand von Figuren näher erläutert. Es zeigen beispielhaft:
Fig. 1 den schematischen Ablauf des erfindunsgemäßen Verfahrens
Fig. 2 die Architektur eines erfindungsgemäßen SCADA-Systems Fig.3 ein in die SCADA Software WinCC OA integriertes User Interface UI.
Das erfindungsgemäße Steuerungs- und Überwachungs-System nach Figur 1 beruht auf einem üblichen Supervisory Control and Data Acquisition (SCADA)- System wie es beispielsweise von der Siemens AG unter der Bezeichnung WinCC OA (Windows Control Center Open Architecture) vertrieben wird.
Kritische Prozesswerte und Fehlfunktionen der überwachten Anlage werden mittels Sensoren erfasst und als Alarme und/oder Meldungen im SCADA System dargestellt. Können diese kritischen Prozesswerte und Fehlfunktionen nicht durch Steuereingriffe behoben werden, so ist eine manuelle Kontrolle und visuelle Prüfung durch technisches Personal erforderlich . Für die Durchführung von Kontrollen und Wartungen gibt es unterstützende Software Tools wie beispielsweise AMS (Advanced Maintenance Suite) für WinCC OA.
Diese dienen der Verwaltung von Technikpersonal ausgelegt, ermöglichen allerdings keine automatisierte und ereignisge steuerte Bildakquisition beispielweise durch Befliegung von weitläufigen Infrastrukturanlagen mit Drohnen.
Eine Rückführung von Ergebnissen aus der Bildanalyse in das SCADA System ist nach dem Stand der Technik nicht vorgesehen Manuelle Überprüfungen ohne Digitalisierung der Beobachtungen liefern jedoch keine reproduzierbaren Ergebnisse und sind daher für Anwendungen wie die Change Detection ungeeignet, für die ein strukturierter und vergleichbarer Ablauf Voraussetzung ist.
In WinCC OA sind Videomanagementfunktionen enthalten, sodass stationäre Videohardware in das SCADA System integriert werden kann. Damit wird eine Überwachung von Anlagen wie beispielsweise Tunnelsystemen oder Verkehrseinrichtungen durch SCADA Benutzer erlaubt und eine Früherkennung von Problemsituationen gewährleistet.
Stationäre Kameras können jedoch nicht für großflächige Versorgungsinfrastrukturen wie Pipelines oder Stromleitungen eingesetzt werden, die sich über mehrere 1000 km erstrecken können und hochauflösende, georeferenzierte Bilddaten zur Fehlererkennung erfordern.
Um weitläufige Versorgungsanlagen wie Öl- oder Gaspipelines zu überprüfen ist es bekannt, in regelmäßigen Abständen Befliegungen beispielsweise mittels Helikopter durchzuführen. Dabei wird auf Auffälligkeiten geachtet und gegebenenfalls kritische Stellen näher inspiziert. Zusätzlich kann das während der Befliegung aufgenommene Videomaterial später offline analysiert werden. Mit dieser Methode lassen sich große Gebiete überwachen, doch ist der Nutzen der Befliegung von der Erfahrung des eingesetzten Personals abhängig. Dadurch kann keine Reproduzierbarkeit der Ergebnisse sichergestellt werden .
Die derzeit existierenden Lösungsansätze sind daher mit hohem Personalaufwand und mit hohen Kosten verbunden, die sich durch manuelle Überprüfungen und Analysen, sowie fehlende Digitalisierungen der Beobachtungen ergeben.
Erfindungsgemäß werden nun zur Visualisierung und Validierung von Prozessereignissen in SCADA-Systemen die von einem fest installierten Sensorsystem gemeldeten Zustände analysiert, und bei Überschreitung von vorgegebenen Grenzwerten wird eine lokale Datenerfassung mit einem mobilen Sensor geplant und ausgeführt. Das Ergebnis dieser Datenerfassung wird im SCADA-System visualisiert.
Vorzugsweise besteht die Datenerfassung in Aufnahmen bildgebender Sensorik wie Kameras, NIR-Kamera oder LiDAR.
Diese Aufnahmen werden analysiert und im SCADA System verwertet . Günstig ist es, wenn die bildgebende Sensorik auf luftgestützten Plattformen angeordnet ist. Darunter fallen sowohl UAVs (unmanned aerial vehicle) wie autark fliegende oder Pilotengesteuerte Drohnen, als auch bemannte Flugplattformen wie Helikopter oder Flugzeuge.
Aus den Aufnahmen der mobilen Sensorik können Informationen über die Beschaffenheit der Erdoberfläche oder für den Anlagenbetreiber relevante Objekte und Areale gewonnen werden.
Beispielhaft wird das erfindungsgemäße Verfahren als Taskorientierter Prozess verwirklicht, der von einer Task-Server Komponente des SCADA -Systems ausgeführt wird.
Anfragen an den Task-Server werden als Tasks bezeichnet, die sich durch ihren Typ, Eingabeparameter und Resultate wie Kennzahlen oder Layer definieren. Beispiele für Tasks sind „Import Reference Model" zur Importierung eines georeferen-zierten Modells, „Acquire Images" zur Durchführung einer Befliegung mit anschließendem Import der Aufnahmen oder anwendungsspezifische Aufgaben wie die Berechnung von Pipeline-
Aufschüttungen, Geländeveränderungen oder Erkennung von Anomalien .
Wie in Abbildung 1 dargestellt, kann die Abarbeitung eines Tasks in die Teilschritte Trigger TR, Acquisition AC, Processing PR und Visualization VI bzw. Process Data Enrichment PDE gegliedert werden. Der gesamte Prozess wird durch den Task-Server orchestriert und überwacht.
Der Ablauf des Tasks wird durch entsprechende asynchrone Aufrufe von Computer Vision-Services, Datenbankinteraktionen und Zugriffe auf das Dateisystem abgearbeitet und die Resultate in das SCADA System zurückgeführt.
Der erste Schritt des Triggers TR, d.h. der Auslösung des erfindungsgemäßen Verfahrens kann beispielsweise durch einen kritischen Prozesswert oder das Ergebnis einer Berechnung im SCADA-System erfolgen. So können z.B. untypische Druckunterschiede an einer bestimmten Position der Pipeline ein Hinweis auf eine Leckage in der Pipeline sein. Auch bestimmte Wetterbedingungen können diesen Trigger TR darstellen. Neben der Event-basierten Erstellung eines neuen Tasks können Bildakquisitionen auch zu festgelegten Zeitpunkten eingeplant werden. Der WinCC OA Operator kann dazu eine Region Of Interest (ROI) der Pipeline selektieren, die Basis für die spätere Flugplanung ist.
In WinCC OA wird durch eine als sogenannter Manager wirkende Komponente (Task Manager) die Anfrage mit verfügbaren Geo-Informationen an die Task-Server-Komponente übermittelt. Der Task-Server empfängt die Anfragen und bearbeitet sie abhängig von den übergebenen Parametern. Für den zweiten Schritt die Acquisition AC, d.h die Beschaffung der Bildinformation beispielsweise mittels Drohnen wird der Flugplan für die Befliegung vorzugsweise automatisch durch die Parameter des Tasks aus dem SCADA System generiert.
Voraussetzung dafür ist, dass Geoinformationen der stationären Sensoren verfügbar sind, sodass daraus eine gültige Route über Regionen mit verdächtigen oder kritischen Prozesswerten erstellt werden kann. Die Flugplanung kann auch manuell erstellt oder angepasst werden, indem Wegpunkte für die Befliegung definiert werden.
Die Befliegung selbst wird je nach technischen und rechtlichen Gegebenheiten autonom durch eine luftgestützte Plattform und deren Flugplanung durchgeführt oder manuell durch einen Piloten unterstützt.
Im dritten Schritt, dem sogenannten Processing PR, d.h. der Berechnung von Kennzahlen werden abhängig von Typ und Parametern des Tasks vom Task-Server Computer Vision-Module aufgerufen um beispielsweise Aufschüttungen entlang der Pipeline zu berechnen (Depth-of-Cover) oder Veränderungen im Zeitverlauf zu erkennen (Change Detection). Sämtliche Ergebnisse und Metadaten der Analyse werden im Zuge des Process Data Enrichment in einer Task-Server-Datenbank gespeichert, sodass eine Nachvollziehbarkeit der Prozesse gewährleistet ist und die Kennzahlen in das SCADA-Anlagenbild integriert werden können.
Bei den Ergebnissen der Bildanalyse kann es sich um Kennzahlen oder um Layer handeln, die in einem Map Server (z.B. Geo-Server) im räumlichen und zeitlichen Kontext visualisiert werden können.
Im vierten Schritt der Visualisierung VI in SCADA werden mittels Task-Manager-Komponente und die Schnittstelle zum Task-Server die Ergebnisse auch im SCADA System verfügbar gemacht. Somit können sie direkt im SCADA User Interface dargestellt werden oder gemeinsam mit bestehenden Prozessdaten betrachtet werden.
Zur Realisierung des erfindungsgemäßen Verfahrens als Taskorientierter Prozess ist nach dem Ausführungsbeispiel eine flexible Architektur gemäß Fig. 2 vorgesehen, welche einfach in ein bestehenden SCADA System wie WinCC OA integrierbar ist und durch einen modularen Aufbau gleichzeitig offen für verschiedene Industrien und Anwendungen ist.
Kernelement dieser Architektur ist dabei ein Task-Server, der Anfragen des SCADA Systems empfängt und sie entsprechend ihres Typs und ihrer Parameter abarbeitet.
Zusammengefasst übernimmt der Task-Server folgende Aufgaben: • Empfang unterschiedlicher Task-Requests wie Durchführung von Befliegungen über einem bestimmten Gebiet, Berechnungen basierend auf den akquirierten Aufnahmen oder vorheriger Ergebnisse • Verwaltung von Tasks und Projekten zur vollständigen Nachvollziehbarkeit von Berechnungen • Import von Aufnahmen nach Befliegungen und Metadaten in eine relationale Spatial-Datenbank • Aufruf von Computer Vision-Services abhängig von Parametern des Task-Requests zur Berechnung von Kennzahlen und Generierung von Layer • Erstellung von Layer-Objekten in einem Map Server (z.B. GeoServer) zur Visualisierung von Geodäten und Bereitstellung von ortsbezogenen Informationen über standardisierte Schnittstellen wie Web Map Service (WMS), Web Coverage Service (WCS), Web Feature Service (WFS) und Web Processing Service (WPS) • Schnittstelle zur bestehender SCADA Software zur Rückführung von Ergebnissen und Visualisierungen im SCADA User Interface
Die erfindungsgemäße Systemarchitektur gemäß Fig. 2 kann in die Schichten User Interface UI, Back-End BE, Storage ST und Computer Vision Services CVS untergliedert werden. Alle Ebenen sind in der Lage, Spatial Data zu verarbeiten, zu speichern oder zu visualisieren. Der modulare und serviceorientierte Aufbau ermöglicht die Umsetzung von neuen Anwendungsfällen und die Anbindung weiterer Computer Vision-Services.
Das User Interface UI des SCADA-Systems wird zur Visualisierung der Resultate aus Befliegungen eingesetzt. Dadurch kann der Anlagenbetreiber und SCADA -Nutzer diese wie übliche Prozesswerte betrachten und in deren Kontext analysieren. Zusätzlich können durch einen Map Server (z.B. GeoServer) und entsprechende Widgets im User Interface UI, Kartenmaterial und generierte Layer dargestellt werden. Da der Task-server TS als vom SCADA System unabhängige Komponente vorgesehen ist, ermöglicht eine über Websocket-Services angebotene Programmierschnittstelle auch die Anbindung weiterer User Interface -Implementierungen, wie etwa webbasierter Benutzeroberflächen .
Der Task-Server beinhaltet die Verarbeitungslogiken für die vom User Interface angefragten Tasks und stellt Schnittstellen zu den Clients bereit. Als Backend BE in der Gesamtarchitektur interagiert der Task-Server mit der SCADA Software, einer Bilddatenbank und der relationalen Spatial-Datenbank als Datenspeicher, sowie mit Computer Vision-Services, die zur Abarbeitung der Tasks benötigt werden. Zusätzlich wird ein Analytics Modul integriert, welches die Analyse von SCADA Prozesswerten mittels Data Mining Methoden unterstützt und somit zusätzliche Trigger generieren kann.
Es sind drei Datenspeicher vorgesehen, eine Archivdatenbank, ein Task Info-Datenspeicher, sowie eine Bilddatenbank.
Die Archivdatenbank ist Teil der SCADA Software und bietet die Möglichkeit alle durch Sensoren erfassten Prozesswerte zu historisieren. Dies ist auch eine Voraussetzung um Prozesswerte gemeinsam mit den Ergebnissen aus Bildanalysen im Zeitverlauf betrachten zu können.
Der Task Info-Datenspeicher ist Teil der Task-Server-Komponente und als relationale Spatial-Datenbank (z.B. Oracle Spatial) vorgesehen. Sämtliche Anfragen an den Task-Server werden in dieser Datenbank mit Parametern, Log-Daten und den Ergebnissen der Computer Vision-Algorithmen abgelegt um eine vollständige Nachvollziehbarkeit der Prozesse zu gewährleisten .
In der Datenbank werden auch georeferenzierte, räumliche Objekte wie Raster- und Vektorlayer gespeichert, die durch einen Map Server visualisiert werden.
Die Bilddatenbank ist als File Storage-Datenbank (NAS) realisiert und dient der Ablage der Ursprungsbilder der Bildakquisition. Diese werden in der Task Info-Datenbank referenziert und können Input für Computer Vision-Algorithmen sein.
Mittels Services (Websocket/REST) werden Computer Vision-Funktionen bereitgestellt, die der Task-Server zur Abarbeitung der Task-Workflows aufruft. Input für die Berechnung sind typischerweise die durch die Befliegung erstellten Aufnahmen oder in vergangenen Tasks erzeugte Layer.
Beispiele für Computer Vision-Services sind die Berechnung von „Core"-Objekten wie Color- und Height-Layer oder anwendungsspezifische Layer wie Depth-of-Cover zur Darstellung und Analyse der Aufschüttung oder Change zur Erkennung von Geländeveränderungen. Die eingesetzten Algorithmen sind zum Teil sehr rechenintensiv und bearbeiten große Datenmengen, weshalb spezielle Hardware wie CUDA zur parallelen Berechnung eingesetzt wird.
Neben dem Task-Server als Back-End BE in der Gesamtarchitektur, stellt das User Interface UI eine weitere wesentliche Komponente der erfindungsgemäßen Systemarchitektur dar. Der Anlagenbetreiber verwendet das User Interface UI seiner SCADA Software zur Überwachung und Steuerung von Prozessen und Zuständen, die derzeit durch Prozesswerte beschrieben werden.
Indem diese durch die automatisch generierten Resultate aus Befliegungen angereichert werden und gemeinsam im SCADA User Interface UI analysiert werden, erhält der Anwender eine erweiterte Sicht auf seine Anlage. Map-Widgets unterstützen die Anzeige von Kartenmaterial und Layer, die neben Kennzahlen vom Task-Server generiert werden. Dadurch kann der Anlagenbetreiber seine Versorgungsinfrastruktur im räumlichen Kontext überwachen.
Um den Nutzen des Task-Servers und der integrierten Darstellung der Ergebnisse im SCADA User Interface UI zu veranschaulichen, wird die Berechnung der Aufschüttung und eines „Depth-of-Cover"-Layers als ein möglicher Anwendungsfall beschrieben .
Fig. 3 zeigt beispielhaft ein in die SCADA Software WinCC OA integriertes User Interface UI zur Analyse der Aufschüttung entlang eines Pipelineabschnitts.
Der Depth of Cover-Layer wird mittels Computer Vision-Algorithmen berechnet und enthält die Aufschüttung der Pipeline, d.h. wie viel Material über der Pipeline vorhanden ist. Für den Anlagenbetreiber ist die Aufschüttung eine wesentliche Kennzahl, da ein Mindestwert garantiert werden muss und ein zu geringer Wert im Extremfall ein Freiliegen der Pipeline und somit hohes Risiko für Schäden bedeuten würde. Auch ein zu hoher Wert kann Hinweise auf einen Hangrutsch und Risikostellen liefern. Für diesen Anwendungsfall wird ein User Interface UI bereitgestellt, das die Pipeline und erzeugte Layer im geografischen Kontext visualisiert. Die numerisch errechneten Aufschüttungswerte werden auch in einem zweidimensionalen Diagramm dargestellt.
Durch eine „Find nearest Image"-Funktion kann auch Bezug zu den aufgenommenen Ursprungsbildern hergestellt werden.
Das beispielhafte User Interface UI bietet zwei unterschiedliche Sichtweisen, GisView oder ModelView. Im GisView Widget können verschiedene Layer ein- und ausgeblendet werden, die zuvor vom Task Server generiert wurden und von einem Map Server gerendert werden.
In einem Fenster wird Kartenmaterial beispielsweise von OSM (Open Street Map) eingeblendet und damit Geoinformationen wie Ortsnamen, Straßennamen und natürliche Gegebenheiten dem SCADA Benutzer zur Verfügung gestellt. Ein sogenannter Color Layer wird aus den aufgenommenen Bildern erstellt und zeigt das aufgenommene Gebiet aus der Vogelperspektive.
Kritische Aufschüttungswerte im Depth-of-Cover-Layer werden bereits in der Kartendarstellung farblich gekennzeichnet und können durch die Zoom In-Funktion des Widgets genauer betrachtet werden.
Das Höhen- und Aufschüttungsprofil „Height and Depth Profile" ist eine zweidimensionale Darstellung der Pipeline und visua-lisiert einerseits die absolute Höhe der Pipeline basierend auf ihrem Referenzmodell und andererseits die Aufschüttung relativ zur Pipelinehöhe. Die Einfärbung von kritischen Aufschüttungswerten erfolgt analog zur Darstellung im GisView Widget. Ein roter Punkt stellt den Bezug zwischen GisView und Height and Depth Profile her und kann durch den Benutzer gesetzt werden.
Wird die „Find nearest image"-Schaltfläche gedrückt, so wird durch Task Server-Funktionen im Image View-Widget das dem Kartenausschnitt nächste Ursprungsbild angezeigt. Durch diese Funktion kann der Anlagenbetreiber interaktiv kritische Stellen von weitläufigen Pipelines mit sehr hohem Detailgrad inspizieren .
Zusätzlich wird eine sogenannte Segmenttabelle in einem eigenen Fenster dargestellt. Dafür werden aneinander folgende kritische Werte der Bedeckung zu Segmenten zusammengefasst und durch ihren minimalen Aufschüttungswert repräsentiert. Eine Ampel-Logik zeigt dem Anlagenbetreiber längere Strecken mit hohem Risikopotential.
Bezugszeichenliste UI User Interface BE Back-End ST Storage CVS Computer Vision Services TR Trigger AC Acquisition PR Processing VI Visualization PDE Process Data Enrichment

Claims (4)

  1. Patentansprüche / Patent claims
    1. Verfahren zur Visualisierung und Validierung von Prozessereignissen in Prozessüberwachungssystemen mit folgenden Merkmalen: - ein fest installiertes Sensorsystem meldet Zustände an ein Prozessüberwachungssystem, - bei Überschreitung von vorgegebenen Grenzwerten wird vom Prozessüberwachungssystem eine lokale Datenerfassung mit einem mobilen Sensor ausgelöst, geplant, und ausgeführt (TR,AC), - das Ergebnis dieser Datenerfassung wird im Prozessüberwachungssystem analysiert (PR) visualisiert (VI) und in die Zustandsinformation über den Prozess oder die Anlage integriert (PDE).
  2. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der mobile Sensor auf einer luftgestützten Plattform wie einer Drohne, einem Helikopter oder einem Flugzeug angebracht ist.
  3. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als mobile Sensoren Kameras, NIR-Kameras oder LiDAR-Systeme vorgesehen sind.
  4. 4. System zum Steuern und Überwachen technischer Prozesse und Anlagen, welches Mittel zur Erfassung, Speicherung und Auswertung prozess- und anlagenrelevanter Daten, Mittel zur Visualisierung (UI), Steuerungsmittel und Mittel zur Auslösung von Alarmen bei Über- oder Unterschreiten von Grenzwerten vorgegebener Prozess- oder Anlagenparameter umfasst, dadurch gekennzeichnet, dass eine Task-Server-Komponente vorgesehen ist, welche nach Auslösung einer lokalen Datenerfassung mit einem mobilen Sensor den Ablauf der Datenerfassung plant und steuert und das Ergebnis der Datenerfassung analysiert.
ATA50468/2016A 2016-05-24 2016-05-24 Verfahren zur Visualisierung und Validierung von Prozessereignissen und System zur Durchführung des Verfahrens AT518681A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ATA50468/2016A AT518681A1 (de) 2016-05-24 2016-05-24 Verfahren zur Visualisierung und Validierung von Prozessereignissen und System zur Durchführung des Verfahrens
US16/301,941 US10852715B2 (en) 2016-05-24 2017-05-22 System and method for visualizing and validating process events
EP17726889.3A EP3420425A1 (de) 2016-05-24 2017-05-22 Verfahren zur visualisierung und validierung von prozessereignissen und system zur durchführung des verfahrens
CA3022200A CA3022200C (en) 2016-05-24 2017-05-22 System and method for visualizing and validating process events
RU2018138574A RU2746442C2 (ru) 2016-05-24 2017-05-22 Способ для визуализации и валидации событий процесса и система для осуществления способа
PCT/EP2017/062216 WO2017215885A1 (de) 2016-05-24 2017-05-22 Verfahren zur visualisierung und validierung von prozessereignissen und system zur durchführung des verfahrens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA50468/2016A AT518681A1 (de) 2016-05-24 2016-05-24 Verfahren zur Visualisierung und Validierung von Prozessereignissen und System zur Durchführung des Verfahrens

Publications (1)

Publication Number Publication Date
AT518681A1 true AT518681A1 (de) 2017-12-15

Family

ID=58873790

Family Applications (1)

Application Number Title Priority Date Filing Date
ATA50468/2016A AT518681A1 (de) 2016-05-24 2016-05-24 Verfahren zur Visualisierung und Validierung von Prozessereignissen und System zur Durchführung des Verfahrens

Country Status (6)

Country Link
US (1) US10852715B2 (de)
EP (1) EP3420425A1 (de)
AT (1) AT518681A1 (de)
CA (1) CA3022200C (de)
RU (1) RU2746442C2 (de)
WO (1) WO2017215885A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113485267A (zh) * 2021-07-12 2021-10-08 湖南先登智能科技有限公司 一种镍基靶材生产自动控制系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015224854A1 (de) * 2015-12-10 2017-06-14 Siemens Aktiengesellschaft Verfahren zur Erstellung einer Tiefenkarte
JP7375909B2 (ja) * 2020-03-03 2023-11-08 日本電気株式会社 設備診断システム、及び、設備診断方法
CN111857092B (zh) * 2020-06-22 2024-04-30 杭州群核信息技术有限公司 一种家居参数化模型的实时错误检测系统及方法
EP3968107B1 (de) * 2020-09-09 2022-12-14 Siemens Aktiengesellschaft Prozessüberwachungssystem und verfahren zum betrieb eines prozessüberwachungssystems
US11790312B1 (en) * 2023-03-23 2023-10-17 Project Canary, Pbc Supply-chain characteristic-vectors merchandising system and methods

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050033481A1 (en) * 2003-08-08 2005-02-10 Budhraja Vikram S. Real-time performance monitoring and management system
WO2008046367A1 (de) * 2006-10-18 2008-04-24 Siemens Aktiengesellschaft Verfahren und system zum steuern einer elektrischen anlage
DE102010048400A1 (de) * 2010-03-15 2011-09-15 Horst Zell Verfahren zur Überprüfung des baulichen Zustands von Windkraftanlagen

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5832187A (en) 1995-11-03 1998-11-03 Lemelson Medical, Education & Research Foundation, L.P. Fire detection systems and methods
US6426716B1 (en) 2001-02-27 2002-07-30 Mcewan Technologies, Llc Modulated pulse doppler sensor
DE602004024296D1 (de) 2003-04-14 2010-01-07 American Power Conv Corp Erweiterbare sensorüberwachung, warnungsverarbeitungs- und benachrichtigungssystem und verfahren
US8108795B2 (en) * 2006-09-07 2012-01-31 Yahoo! Inc. System and method for the visualization of sports information
US7865835B2 (en) * 2007-10-25 2011-01-04 Aquatic Informatics Inc. System and method for hydrological analysis
US8122050B2 (en) * 2008-04-16 2012-02-21 International Business Machines Corporation Query processing visualization system and method of visualizing query processing
BRPI1012177A2 (pt) * 2009-05-14 2016-04-05 Pioneer Hi Bred Int métodos e sistema para estimar uma característica de planta, métodos de predição de tolerância a seca em uma planta, de predição do teor de um analito-alvo em uma planta, de predição de um teor de introgressão do genoma de um experimento de retrocruzamento.
US8874526B2 (en) * 2010-03-31 2014-10-28 Cloudera, Inc. Dynamically processing an event using an extensible data model
EP2625606A4 (de) * 2010-10-08 2014-11-26 Irise System und verfahren zur erweiterung einer visualisierungsplattform
US8839133B2 (en) * 2010-12-02 2014-09-16 Microsoft Corporation Data visualizations including interactive time line representations
WO2014029431A1 (en) 2012-08-22 2014-02-27 Abb Research Ltd Unmanned vehicle for system supervision
US20140312165A1 (en) 2013-03-15 2014-10-23 Armen Mkrtchyan Methods, apparatus and systems for aerial assessment of ground surfaces
US20170193414A1 (en) * 2014-03-28 2017-07-06 Sicpa Holding Sa Global management for oil gas assets
MA39349B2 (fr) 2014-06-09 2023-09-27 Sicpa Holding Sa Système de gestion de l'intégrité permettant de gérer et de commander des données entre des entités dans une chaîne d'alimentation en pétrole et gaz
US9429945B2 (en) 2014-10-22 2016-08-30 Honeywell International Inc. Surveying areas using a radar system and an unmanned aerial vehicle
US9922282B2 (en) * 2015-07-21 2018-03-20 Limitless Computing, Inc. Automated readiness evaluation system (ARES) for use with an unmanned aircraft system (UAS)
US20190079996A1 (en) * 2017-09-08 2019-03-14 General Electric Company Collaborative analytic ecosystem
US10623832B2 (en) * 2017-11-10 2020-04-14 Sensia Llc Systems and methods for transferring data from remote sites

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050033481A1 (en) * 2003-08-08 2005-02-10 Budhraja Vikram S. Real-time performance monitoring and management system
WO2008046367A1 (de) * 2006-10-18 2008-04-24 Siemens Aktiengesellschaft Verfahren und system zum steuern einer elektrischen anlage
DE102010048400A1 (de) * 2010-03-15 2011-09-15 Horst Zell Verfahren zur Überprüfung des baulichen Zustands von Windkraftanlagen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113485267A (zh) * 2021-07-12 2021-10-08 湖南先登智能科技有限公司 一种镍基靶材生产自动控制系统

Also Published As

Publication number Publication date
CA3022200C (en) 2021-10-19
RU2018138574A3 (de) 2020-06-25
EP3420425A1 (de) 2019-01-02
WO2017215885A1 (de) 2017-12-21
CA3022200A1 (en) 2017-12-21
US20190204814A1 (en) 2019-07-04
RU2018138574A (ru) 2020-06-25
US10852715B2 (en) 2020-12-01
RU2746442C2 (ru) 2021-04-14

Similar Documents

Publication Publication Date Title
EP3420425A1 (de) Verfahren zur visualisierung und validierung von prozessereignissen und system zur durchführung des verfahrens
DE102006014634B4 (de) Mensch-Maschine-Schnittstelle für ein Kontroll- bzw. Steuerungs-System
US11237016B2 (en) Map-based trip trajectory and data integration system
US11926436B2 (en) Automated fusion and analysis of multiple sources of aircraft data
Ancel et al. Predictive safety analytics: inferring aviation accident shaping factors and causation
WO2018046492A1 (de) Verfahren zur steuerung unbemannter flugobjekte
Nwaogu et al. Application of drones in the architecture, engineering, and construction (AEC) industry
DE102010036757A1 (de) Grafische Randleiste für ein Prozesssteuerungssystem
Kim et al. Field test-based UAS operational procedures and considerations for construction safety management: a qualitative exploratory study
DE102019126463A1 (de) Drohnengestützte bedienerrunden
EP3623891A1 (de) Individualisierbare bildhierarchien für ein leitsystem einer technischen anlage
EP2813914A1 (de) Überwachung von technischen Anlagen mit einem unbemannten Flugobjekt
DE102015106537A1 (de) Visuelles Brennstoffprädiktionssystem
DE102015013550A1 (de) Entwicklung einer computerimplementierten Erfindung/integriertem Steuerungssystem zur Prozess-Steuerung und Verarbeitung aller Informationen aus der Inspektion von Objekten unter Nutzung von autonom fliegenden Drohnen (Multikoptern oder Unmanned Aerial Ve
DE112022001224T5 (de) Systeme und verfahren zur verwaltung einer roboterflotte
Shmelova et al. Automated Systems in the Aviation and Aerospace Industries
DE112016004038T5 (de) Referenzstundenüberwachung für maschinenwartung
DE102019134021A1 (de) Verfahren zum Überwachen einer Anlage der Automatisierungstechnik
Boy et al. Using cognitive function analysis to prevent controlled flight into terrain
EP3571121B1 (de) Verfahren und vorrichtung zur überwachung von umgebungsbedingungen innerhalb eines transportmittels
EP3572296A1 (de) Automatisiertes überwachen von schienennetz-inventar
Shmelova et al. Applications of Decision-Support Systems in Sociotechnical Systems
DE102017000783A1 (de) Entwicklung einer computerimplementierten Erfindung/integriertem Steuerungssystem zur Prozess-Steuerung und Verarbeitung aller lnformationen aus der lnspektion von Objekten unter Nutzung von autonom fliegenden Drohnen (Multikoptern, Flächenfliegern oder Unmanned Aerial Vehicles (UAV).
WO2022238496A1 (de) Leitsystem für eine technische anlage
Plos Metodology for Risk-based Indicators Impementation