AT516967A1 - Anlage sowie Verfahren zur Behandlung einer Kunststoffschmelze - Google Patents

Anlage sowie Verfahren zur Behandlung einer Kunststoffschmelze Download PDF

Info

Publication number
AT516967A1
AT516967A1 ATA50232/2015A AT502322015A AT516967A1 AT 516967 A1 AT516967 A1 AT 516967A1 AT 502322015 A AT502322015 A AT 502322015A AT 516967 A1 AT516967 A1 AT 516967A1
Authority
AT
Austria
Prior art keywords
reactor housing
housing part
melt
reactor
plastic melt
Prior art date
Application number
ATA50232/2015A
Other languages
English (en)
Other versions
AT516967B1 (de
Inventor
Helmut Behoun
Klaus Dipl Ing Brzezowsky
David Hehenberger
Bernhard Pichler
Thomas Ing Pichler
Original Assignee
Next Generation Recyclingmaschinen Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ATA50232/2015A priority Critical patent/AT516967B1/de
Application filed by Next Generation Recyclingmaschinen Gmbh filed Critical Next Generation Recyclingmaschinen Gmbh
Priority to MX2017012166A priority patent/MX2017012166A/es
Priority to EP16720987.3A priority patent/EP3274148B1/de
Priority to CA3170694A priority patent/CA3170694A1/en
Priority to PCT/AT2016/050074 priority patent/WO2016149725A1/de
Priority to ES16720987T priority patent/ES2721784T3/es
Priority to KR1020177030502A priority patent/KR102410352B1/ko
Priority to BR112017020333-2A priority patent/BR112017020333B1/pt
Priority to CN201680027867.3A priority patent/CN108349113B/zh
Priority to TR2019/03421T priority patent/TR201903421T4/tr
Priority to ES18167105T priority patent/ES2753765T3/es
Priority to EP18167105.8A priority patent/EP3363609B1/de
Priority to US15/560,798 priority patent/US10710036B2/en
Priority to CN201911078882.2A priority patent/CN110774472A/zh
Priority to RU2017134376A priority patent/RU2696456C2/ru
Priority to JP2017549683A priority patent/JP7246852B2/ja
Priority to CA2980600A priority patent/CA2980600C/en
Publication of AT516967A1 publication Critical patent/AT516967A1/de
Publication of AT516967B1 publication Critical patent/AT516967B1/de
Application granted granted Critical
Priority to IL254602A priority patent/IL254602A0/en
Priority to SA517390010A priority patent/SA517390010B1/ar
Priority to SA521421171A priority patent/SA521421171B1/ar
Priority to MX2020010854A priority patent/MX2020010854A/es
Priority to IL268096A priority patent/IL268096B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/9218Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92676Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/0861Other specified values, e.g. values or ranges
    • B29C2949/0872Weight

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

Die Erfindung betrifft eine Anlage (1) zur Behandlung einer Kunststoffschmelze mit einem Reaktor (2), der ein Reaktorgehäuse (3) aus ersten und zweiten Reaktor- gehäuseteilen (4, 5) umfasst. Ein Mischelement (12) ist im zweiten Reaktorgehäu- seteil (5) angeordnet und daran um eine Rotationsachse (13) drehbar gelagert. Der Reaktor (2) ist unter Zwischenschaltung zumindest einer Gewichtsermitt- lungsvorrichtung (21) an einer Aufstandsfläche abgestützt. Weiters betrifft die Er- findung auch noch ein Verfahren zur Behandlung einer Kunststoffschmelze.

Description

Die Erfindung betrifft eine Anlage sowie ein Verfahren zur Behandlung einer Kunststoffschmelze, insbesondere einer Polykondensatschmelze, und Einstellung von deren intrinsischen Viskosität, wie dies in den Ansprüchen 1 und 20 beschrieben ist.
Die WO 2014/040099 AI der gleichen Anmelderin beschreibt ein Verfahren sowie eine Vorrichtung zum Erhöhen der Grenzviskosität einer Polykondensatschmelze unter Unterdrück. Die Schmelze tritt durch eine Lochplatte oder ein Sieb mit mehreren Öffnungen in eine Kammer ein, in der ein Druck kleiner 20 mbar herrscht und passiert diese Kammer im freien Fall in dünnen Fäden und verweilt unterhalb der Kammer für wenigstens eine Minute in einem Sammelbehälter. Im Sammelbehälterwird die Schmelze von einem in horizontaler Lage in Bezug auf einen Boden des Sammelbehälters ausgerichteten Misch- und Austragsteil unter Vakuum ständig bewegt, wobei das Misch und Austrageteil nicht vollständig von der Schmelze bedeckt wird. Oberhalb der Schmelze verbleibt ein freier Raum, wobei die Oberfläche der Schmelze durch eine Drehbewegung des Misch- und Austragsteils immer wieder aufgerissen und mehrmalig erneuert wird. Durch das Verweilen und in Bewegung halten der Schmelze wird die bei den dünnen Fäden begonnene Polykondensation im Schmelzebad fortgesetzt. Schließlich wird die Schmelze vom gemeinsam ausgebildeten Misch- und Austragsteil aus dem Sammelbehälter ausgetragen.
Aus der EP 1 302 501 A2 ist ein Verfahren sowie eine Vorrichtung zum Fördern der Nachpolykondensation von Polymeren Produkten bekannt geworden. Die zuvor aufbereitete Schmelze wird durch eine Extrusionsplatte mit einer Vielzahl von Löchern hindurchgefördert, um der Schmelze eine Fadenform während des Hin- durchtretens in vertikaler Richtung innerhalb einer Vakuumkammer zu geben. Unterhalb der Kammer ist ein Sammelbehälter angeordnet, in welchem aus den einzelnen Schmelzefäden ein Schmelzebad gebildet wird. Aus diesem Schmelzebad wird eine Teilmenge entnommen und der Zuleitung des aufgeschmolzenen Rohprodukts als bereits behandelte Schmelze in einem bestimmten Mengenverhältnisses zugeführt. Dieses Gemisch zur Bildung der Schmelze aus dem Rohprodukt sowie dem zusätzlich zugeführten, bereits behandelten Schmelzeprodukt wird erneut durch die Extrusionsplatte mit einer Vielzahl von Löchern der Kammer mit dem reduzierten Druck zugeführt. Am unteren Ende des als Trichter ausgebildeten Sammelbehälters ist eine Ableitung hin zu einer Transferpumpe angeschlossen.
Die DE 2 243 024 A beschreibt eine Vorrichtung zur Herstellung von hochmolekularem PET. Die Vorrichtung besteht aus einem senkrecht angeordneten, zylinderförmigen Behälter mit einem Schmelzeeinlass an seinem oberen Ende und einem Schmelzeauslass am unteren Ende sowie Abzugsstutzen für flüchtige Stoffe. In der Mitte des Behälters ist eine Welle senkrecht angeordnet, um welche senkrechte, feststehende Stoffaustauschbleche angeordnet sind. Überden Stoffaustauschblechen ist jeweils ein Verteilerraum und unterhalb dieser ist ein Sammelraum vorhanden. Zwischen einem Verteilerraum und dem Sammelraum der darüber liegenden Stufe ist ein Verbindungsrohr angebracht, durch welches die Welle geführt ist. Die Welle ist an den durch das Verbindungsrohr ragenden Teilen jeweils als in den Verteilerraum fördernde Extruderwelle ausgebildet.
Die WO 2012/119165 AI beschreibt sowohl ein Verfahrens als auch eine Vorrichtung zum Entfernen von Verunreinigungen aus einer Kunststoffschmelze unter Unterdrück. Die Kunststoffschmelze wird dabei durch eine Lochplatte oder ein Sieb mit mehreren Öffnungen einer Kammer zugeführt, in der ein Druck kleiner 20 mbar herrscht. Die aus den Öffnungen austretende Schmelze bildet dabei dünne Fäden, die im freien Fall durch die Kammer hindurchtreten und unterhalb der Kammer in einem Sammelbehälter, welcher als Sammeltrichter ausgebildet ist, gesammelt wird und solange verweilt, bis dass die Schmelze an einem unteren Ende des Sammeltrichters durch eine Auslassöffnung aus dem Sammeltrichter abfließt bzw. entnommen wird. Erst an diese Auslassöffnung schließt eine
Schmelzepumpe oder eine Förderschnecke an, mit der die Kunststoffschmeize zu einer Verbindungsleitung oder einer Sammelleitung gepumpt werden kann.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, konstante Behandlungsbedingungen im laufenden Behandlungsprozess für die Kunststoffschmelze zu schaffen, um eine gleichmäßige Werkstoffqualität der behandelten Kunststoffschmelze zu erhalten.
Diese Aufgabe der Erfindung wird dadurch gelöst, dass der Reaktor unter Zwischenschaltung zumindest einer Gewichtsermittlungsvorrichtung an einer Aufstandsfläche abgestützt ist.
Der dadurch erzielte Vorteil liegt darin, dass so die Möglichkeit geschaffen wird, den Mengen- bzw. Gewichtshaushalt der Kunststoffschmelze während des laufenden Betriebs der Anlage in gewissen vorgegebenen Grenzen konstant halten zu können. Weiters kann damit aber auch die Qualität der Kunststoffschmelze und damit verbunden die intrinsische Viskosität in Abhängigkeit von der Entnahmemenge bzw. dem Entnahmegewicht eingestellt und relativ konstant beibehalten werden. So kann durch die laufende mögliche Überwachung des Gewichts stets ein ausgeglichenes Gleichgewicht an entnommenem Gewicht im Verhältnis zum zuzuführenden Gewicht an Kunststoffschmelze eingestellt werden. Damit kann aber auch das Niveau des Schmelzespiegels relativ konstant eingehalten werden, wodurch stets ein ausreichender Freiraum oberhalb des Schmelzespiegels verbleibt, und so die weitere Behandlung der Schmelze durch das Mischelement ungehindert auf die Schmelze einwirken kann.
Weiters ist es vorteilhaft, wenn die Anlage weiters zumindest ein Traggerüst umfasst und zumindest der Reaktor, insbesondere dessen Reaktorgehäuse, an dem zumindest einen Traggerüst gehalten ist. Dadurch kann eine gerichtete Abstützung und weiters exakt vordefinierte Abstützpunkte geschaffen werden.
Eine andere Ausführungsform zeichnet sich dadurch aus, dass das Traggerüst mitsamt dem daran gehaltenen Reaktor über mehrere der Gewichtsermittlungsvor- richtungen an der Aufstandsfläche abgestützt ist. So kann eine exakte Ermittlung des Gesamtgewichts erzielt werden.
Eine weitere mögliche Ausführungsform hat die Merkmale, dass die zumindest eine Gewichtsermittlungsvorrichtung bodennah bezüglich der Aufstandsfläche angeordnet ist.
Eine weitere Ausbildung sieht vor, dass die zumindest eine Gewichtsermittlungsvorrichtung an ihrer vom Reaktor oder vom Traggerüst abgewendeten und der Aufstandsfläche zugewendeten Seite an einem Grundrahmen abgestützt ist und der Grundrahmen über Räder an der Aufstandsfläche abgestützt ist. Damit kann einfach der Aufstellungsort des Reaktors verlagert werden. Darüber hinaus kann so aber auch eine individuelle Ausrichtung des Reaktors samt Traggerüst zu anderen Anlagenkomponenten erfolgen.
Eine andere Ausführungsform zeichnet sich dadurch aus, dass zumindest der Reaktor, insbesondere dessen Reaktorgehäuse, am Traggerüst über die zumindest eine Gewichtsermittlungsvorrichtung in einer hängenden Position am Traggerüst gehalten ist. So kann ebenfalls eine Gewichtsermittlung in allen Betriebszuständen einfach und sicher durchgeführt werden. Weiters können damit aber mögliche Schwingungen oder andere Störeinflüsse besser abgefangen und kompensiert werden.
Eine weitere bevorzugte Ausführungsform ist dadurch gekennzeichnet, dass die zumindest eine Gewichtsermittlungsvorrichtung durch eine Wiegezelle oder eine Zugwaage gebildet ist, wobei die zumindest eine Gewichtsermittlungsvorrichtung mit einer Steuervorrichtung in Kommunikationsverbindung steht. Damit kann ein gesteuerter und/oder geregelter Behandlungsvorgang erzielt werden, um so den einzustellenden iV-Wert der Schmelze exakter einhalten zu können.
Weiters ist es vorteilhaft, wenn der erste Reaktorgehäuseteil und/oder der zweite Reaktorgehäuseteil rohrförmig ausgebildet ist bzw. sind. So kann eine definierte Längserstreckung und eine damit verbundene Behandlungsstrecke für die Schmelze ausgebildet werden.
Eine andere Ausführungsform zeichnet sich dadurch aus, dass der zweite Reaktorgehäuseteil eine in etwa horizontal verlaufend ausgerichtete Längserstreckung mit voneinander distanzierten ersten und zweiten Endbereichen aufweist. Damit kann ein sich über die gesamte Längserstreckung des zweiten Reaktorgehäuseteils erstreckender Behandlungsraum geschaffen werden, um so eine optimale Behandlung der Schmelze erzielen zu können.
Eine weitere mögliche Ausführungsform hat die Merkmale, dass die Rotationsachse des Mischelements koaxial bezüglich des rohrförmig ausgebildeten zweiten Reaktorgehäuseteils angeordnet ist. Damit kann insbesondere bei Rohren bzw. Rohrstücken mit einem kreisrunden Innenquerschnitt in Abhängigkeit von der äußeren Querschnittsabmessung des Mischelements eine zu starke Anlagerung von Schmelze verhindert werden.
Eine weitere Ausbildung sieht vor, dass das Mischelement in einem Minimalabstand von kleiner 1,0 mm von einer Innenwand des zweiten Reaktorgehäuseteils angeordnet ist. Damit kann nicht nur eine gute und ausreichende Mischwirkung sondern auch noch ein gewisser Abstreifeffekt an der Behälterinnenwand erzielt werden.
Weiters ist es vorteilhaft, wenn das Mischelement in einem Minimalabstand von größer 1,0 mm, insbesondere größer 20 mm, von der Innenwand des zweiten Reaktorgehäuseteils angeordnet ist. Durch die Vergrößerung des Spaltabstandes kann so ein gewisser Rückfluss an Schmelze während des Misch- und Behandlungsvorganges ermöglicht werden, wodurch eine noch bessere Behandlungswirkung durch die innere Umwälzung der Schmelze erreicht werden kann.
Eine andere Ausführungsform zeichnet sich dadurch aus, dass sich das Mischelement über die Längserstreckung des zweiten Kammerteils zwischen den voneinander distanziert angeordneten ersten und zweiten Endbereichen des zweiten Reaktorgehäuseteils erstreckt und vollständig im zweiten Kammerteil angeordnet ist. Der dadurch erzielte Vorteil liegt darin, dass so innerhalb des zweiten Reaktorgehäuseteils die volle Länge für die Behandlung der Kunststoffschmelze durch das Mischelement zur Verfügung steht.
Eine weitere bevorzugte Ausführungsform ist dadurch gekennzeichnet, dass das Mischelement mit einer eigenen, unabhängigen ersten Antriebsvorrichtung in Antriebsverbindung steht. So wird ein von der Austragsmenge unabhängiger Mischvorgang zur Erzielung der gewünschten intrinsischen Viskosität ermöglicht. Durch die Trennung des Antriebs von Mischelement und Austragsvorrichtung kann die Intensität sowie die Dauer des Mischvorgangs so lange durchgeführt werden, bis erst die Entnahme der Schmelze durchgeführt werden muss.
Weiters ist es vorteilhaft, wenn anschließend an die Auslassöffnung des zweiten Reaktorgehäuseteils eine Austragsvorrichtung für die Kunststoffschmelze angeordnet ist, wobei auch die Austragsvorrichtung unter Zwischenschaltung zumindest einer Gewichtsermittlungsvorrichtung an der Aufstandsfläche abgestützt ist. Durch das Vorsehen einer eigenen Austragsvorrichtung kann so unabhängig vom Mischelement die Entnahme der behandelten Schmelze erfolgen. Durch diese Trennung können so die Intensität sowie die Dauer des Mischvorgangs unabhängig von der Entnahme so lange durchgeführt werden, bis die vorbestimmten Werte der zu behandelnden Schmelze erreicht worden sind. Durch die eigene Abstützung kann so aber auch jener Gewichtsanteil an Schmelze ermittelt werden, welcher sich noch im Bereich der Anlage befindet. Damit kann so ein noch besser abgestimmtes Behandlungsergebnis für die Schmelze erzielt werden.
Eine andere Ausführungsform zeichnet sich dadurch aus, dass die Austragsvorrichtung mit einer zweiten Antriebsvorrichtung in Antriebsverbindung steht, wobei die zweite Antriebsvorrichtung unabhängig von der ersten Antriebsvorrichtung des Mischelements angetriebenen ist. Damit kann die Entnahmemenge bzw. das Entnahmegewicht an Schmelze aus dem Reaktor unabhängig vom durchzuführenden Misch- und Behandlungsvorgang festgelegt werden.
Eine weitere mögliche Ausführungsform hat die Merkmale, dass beide miteinander in Strömungsverbindung stehenden Kammerteile der beiden Reaktorgehäuseteile über zumindest eine Anschlussöffnung und zumindest eine Absaugleitung mit einem Unterdruckerzeuger in Strömungsverbindung stehen. Damit können die aus dem laufenden Behandlungsvorgang entstehenden bzw. abzuleitenden und nicht zur Schmelze gehörenden Bestandteile aus dem Reaktorinnenraum abgeführt werden. Weiters kann damit aber auch der Polykondensationsvorgang innerhalb der Schmelze begonnen und weiter fortgesetzt werden.
Eine weitere Ausbildung sieht vor, dass die zumindest eine Absaugleitung zumindest bereichsweise mit einem Heizelement versehen ist. So kann innerhalb der Absaugleitungen ein Kondensieren von Bestandteilen, insbesondere von Wasser oder anderen abzuführenden Stoffen, verhindert werden.
Eine andere Ausführungsform zeichnet sich dadurch aus, dass die zumindest eine Auslassöffnung für die Kunststoffschmelze im Bereich des vom ersten Reaktorgehäuseteil distanziert angeordneten zweiten Endbereichs des zweiten Reaktorgehäuseteils sowie in einem Bodenbereich desselben angeordnet ist. Damit kann ein gerichteter Entnahmebereich für die Schmelze aus dem Reaktorgehäuseteil geschaffen werden.
Die Aufgabe der Erfindung wird aber unabhängig davon auch durch ein Verfahren zur Behandlung einer Kunststoffschmelze, insbesondere einer Polykondensatschmelze, und Einstellung von deren intrinsischen Viskosität, gemäß den im Anspruch 20 angegebenen Merkmalen gelöst. Die aus der Merkmalskombination dieses Anspruches erzielten Vorteile liegen darin, dass so die Möglichkeit geschaffen wird, den Mengen- bzw. Gewichtshaushalt der Kunststoffschmelze während des laufenden Betriebs der Anlage in gewissen vorgegebenen Grenzen konstant halten zu können. Weiters kann damit aber auch die Qualität der Kunststoffschmelze und damit verbunden die intrinsische Viskosität in Abhängigkeit von der Entnahmemenge bzw. dem Entnahmegewicht eingestellt und relativ konstant beibehalten werden. So kann durch die laufende mögliche Überwachung des Gewichts stets ein ausgeglichenes Gleichgewicht an entnommenem Gewicht im Verhältnis zum zuzuführenden Gewicht an Kunststoffschmelze eingestellt werden. Damit kann aber auch das Niveau des Schmelzespiegels relativ konstant eingehalten werden, wodurch stets ein ausreichender Freiraum oberhalb des Schmelzespiegels verbleibt, und so die weitere Behandlung der Schmelze durch das Mischelement ungehindert auf die Schmelze einwirken kann.
Eine andere Vorgehensweise zeichnet sich dadurch aus, wenn die dem Reaktor zugeführte und zu behandelnde Kunststoffschmelze im ersten Reaktorgehäuseteil in eine Vielzahl von dünnen Schmelzefäden aufgeteilt wird und die dünnen Schmelzefäden den ersten Kammerteil im freien Fall passieren. Damit kann durch die fadenförmige Aufteilung der Schmelze ein noch besserer Behandlungsvorgang derselben erzielt werden. Damit können abzuführende Bestandteile noch besser an die Oberfläche gelangen und so aus dem Reaktor abgeleitet werden.
Eine weitere vorteilhafte Vorgehensweise ist dadurch gekennzeichnet, dass das Mischelement von einer eigenen, unabhängigen ersten Antriebsvorrichtung angetrieben wird. So wird ein von der Austragsmenge unabhängiger Mischvorgang zur Erzielung der gewünschten intrinsischen Viskosität ermöglicht. Durch die Trennung des Antriebs von Mischelement und Austragsvorrichtung kann die Intensität sowie die Dauer des Mischvorgangs so lange durchgeführt werden, bis erst die Entnahme der Schmelze durchgeführt werden muss.
Vorteilhaft ist auch eine Verfahrensvariante, bei welcher die Kunststoffschmelze im zweiten Kammerteil des zweiten Reaktorgehäuseteils vom Mischelement ständig bewegt und durchmischt wird. Damit wird der im ersten Reaktorteil begonnene Behandlungsvorgang, insbesondere die Polykondensation, weiter fortgesetzt und so die intrinsische Viskosität weiter erhöht.
Eine weitere vorteilhafte Vorgehensweise ist dadurch gekennzeichnet, dass die von den beiden Reaktorgehäuseteilen umgrenzten Kammerteile auf einen Druck kleiner 100 mbar evakuiert werden. Damit kann ein noch besseres Behandlungsergebnis erzielt werden.
Vorteilhaft ist auch eine Verfahrensvariante, bei welcher der Schmelzespiegel des Schmelzebades im zweiten Kammerteil mit einer annähernd gleichen Längserstreckung wie das Mischelement ausgebildet wird und so auf den Schmelzespiegel des Schmelzebades während dessen Durchmischung der Druck kleiner 100 mbar einwirkt. Der dadurch erzielte Vorteil liegt darin, dass so innerhalb des zweiten Reaktorgehäuseteils die volle Länge für die Behandlung der Kunststoffschmelze durch das Mischelement zur Verfügung steht.
Weiters ist ein Vorgehen vorteilhaft, bei dem der Schmelzespiegel der Kunststoffschmelze beim vordefinierten Sollfüllstand im zweiten Kammerteil des zweiten Reaktorgehäuseteils in etwa in halber Höhe des zweiten Kammerteils liegt. Dadurch können in dem oberhalb des Schmelzespiegels verbleibenden Freiraum ein Aufreißen des Schmelzespiegels sowie dessen ständige Erneuerung erfolgen. Bei einem im Reaktorinnenraum herrschenden Unterdrück kann so aber auch dieser voll zur Wirkung auf die Schmelze gebracht werden.
Weiters ist ein Vorgehen vorteilhaft, bei dem die Entnahme der behandelten Kunststoffschmelze aus dem zweiten Kammerteil in einem Winkel von 30°, bevorzugt von 90°, bezüglich einer Längsachse des zweiten Reaktorgehäuseteils unterhalb des Schmelzespiegels durchgeführt wird.. So kann weiters verhindert werden, dass bei einem geringeren Füllstand sich der Schmelzespiegel in die Entnahmeöffnung hinein erstreckt und damit möglicherweise eine Unterbrechung der Entnahme von Kunststoffschmelze notwendig wird. Dies kann in weiterer Folge zu ungewollten Unterbrechungen des ansonsten kontinuierlichen Entnahmevorgangs führen.
Eine andere Vorgehensweise zeichnet sich dadurch aus, wenn eine anschließend an die im zweiten Reaktorgehäuseteil angeordnete Auslassöffnung angeordnete Austragsvorrichtung von einer zweiten Antriebsvorrichtung angetrieben wird, wobei die zweite Antriebsvorrichtung unabhängig von der ersten Antriebsvorrichtung des Mischelements angetrieben wird. Damit kann die Entnahmemenge bzw. das Entnahmegewicht an Schmelze aus dem Reaktor unabhängig vom durchzuführenden Misch- und Behandlungsvorgang festgelegt werden.
Weiters ist ein Vorgehen vorteilhaft, bei dem auch die Austragsvorrichtung unter Zwischenschaltung zumindest einer Gewichtsermittlungsvorrichtung an der Aufstandsfläche abgestützt wird. Durch die eigene Abstützung kann so aber auch jener Gewichtsanteil an Schmelze ermittelt werden, welcher sich noch im Bereich der Anlage befindet. Damit kann so ein noch besser abgestimmtes Behandlungsergebnis für die Schmelze erzielt werden.
Weiters ist ein Vorgehen vorteilhaft, bei dem von einer Messvorrichtung ein Messwert der intrinsischen Viskosität der behandelten Kunststoffschmelze im Bereich der Auslassöffnung oder einem unmittelbar daran anschließenden Austragsabschnitt der Kunststoffschmelze ermittelt wird. Damit kann im laufenden Behandlungsprozess stets eine unmittelbare Ermittlung der intrinsischen Viskosität erfolgen und so rasch auf den durchzuführenden Behandlungsvorgang eingewirkt werden, sodass kein oder nur eine geringe Menge Ausschussmaterial anfällt.
Zum besseren Verständnis der Erfindung wird diese anhand der nachfolgenden Figuren näher erläutert.
Es zeigen jeweils in stark vereinfachter, schematischer Darstellung:
Fig. 1 einen Teil einer Anlage mit einem Reaktor zur Behandlung der Kunststoffschmelze, im Schnitt:
Fig. 2 einen Teil des Reaktorgehäuses im Querschnitt, gemäß den Linien INI in Fig. 1;
Fig. 3 eine mögliche andere Anordnung der Abstützung des Reaktors an der Aufstandsfläche:
Fig. 4 eine weitere mögliche Ausführungsvariante eines Reaktors mit einer Mehrfachanordnung von Reaktorgehäuseteilen, in Ansicht.
Einführend sei festgehalten, dass in den unterschiedlich beschriebenen Ausführungsformen gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen versehen werden, wobei die in der gesamten Beschreibung enthaltenen Offenbarungen sinngemäß auf gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen übertragen werden können. Auch sind die in der Beschreibung gewählten Lageangaben, wie z.B. oben, unten, seitlich usw. auf die unmittelbar beschriebene sowie dargestellte Figur bezogen und sind diese Lageangaben bei einer Lageänderung sinngemäß auf die neue Lage zu übertragen.
Der Begriff „insbesondere“ wird nachfolgend so verstanden, dass es sich dabei um eine mögliche speziellere Ausbildung oder nähere Spezifizierung eines Gegen- stands oder eines Verfahrensschritts handeln kann, aber nicht unbedingt eine zwingende, bevorzugte Ausführungsform desselben oder eine Vorgehensweise darstellen muss.
In den Fig. 1 bis 3 ist vereinfacht ein Teil einer Anlage 1 zur Behandlung einer Kunststoffschmelze, insbesondere einer Polykondensatschmelze, gezeigt. Unter Behandlung wird insbesondere die Einstellung von deren intrinsischen Viskosität bzw. deren Grenzviskosität verstanden. Zumeist bzw. bevorzugt wird die Kunststoffschmelze entweder aus Neuware oder aber auch aus einer Recyclingware gebildet. Handelt es sich beispielsweise um Recyclingware, weist die Kunststoffschmelze einen geringen Wert an intrinsischer Viskosität aufgrund der bereits erfolgten Verarbeitung zu einem Gegenstand auf. Um den Wert der intrinsischen Viskosität der Kunststoffschmelze zu erhöhen, ist bei Polykondensaten ein Polykondensationsvorgang durchzuführen, bei welchem sich Monomere unter Abspaltung von Reaktionsprodukten, wie zum Beispiel Wasser, miteinander verknüpfen. Mit diesem Verknüpfungsprozess ist ein Kettenwachstum verbunden, wodurch sich auch die Molekülkettenlängen erhöhen, welche maßgeblich die mechanischen Eigenschaften von daraus hergestellten Produkten beeinflussen. Dieser Vorgang ist nicht nur bei der Herstellung von Neuware von Bedeutung, sondern spielt ganz besonders beim Recycling von derartigen Produkten eine wesentliche Rolle. Das zu verarbeitende Recyclingmaterial kann zunächst z.B. sortiert, zerkleinert, ggf. gereinigt, aufgeschmolzen, entgast und gefiltert werden. Diese so vorbereitete Kunststoffschmelze wird in der Anlage 1 behandelt, um diese nicht nur von ungewünschten Zusatzstoffen weiter zu reinigen sondern auch die intrinsische Viskosität auf den gewünschten Wert einzustellen. Dabei handelt es sich zumeist um eine Erhöhung der intrinsischen Viskosität, kann aber auch eine Senkung derselben beinhalten. Bei den Polykondensaten handelt es sich um Thermoplaste, wie zum Beispiel PET, PBT; PEN, PC, PA oder Werkstoffe aus Polyester oder dergleichen.
Die hier gezeigte Anlage 1 umfasst unter anderem einen Reaktor 2 mit einem vereinfacht dargestellten Reaktorgehäuse 3, welches seinerseits zumindest einen ersten Reaktorgehäuseteil 4 sowie zumindest ein unmittelbar daran anschließen des zweites Reaktorgehäuseteil 5 aufweist. Der erste Reaktorgehäuseteil 4 weist seinerseits einen oberen Endbereich 6 und einen davon distanziert angeordneten, unteren Endbereich 7 auf. Zwischen dem oberen Endbereich 6 und dem unteren Endbereich 7 erstreckt sich innerhalb des ersten Reaktorgehäuseteils 4 ein erster Kammerteil 8. Bevorzugt weist der erste Reaktorgehäuseteil 4 eine vertikale Ausrichtung zwischen seinem oberen Endbereich 6 und seinem unteren Endbereich 7 auf, wodurch auch der erste Kammerteil 8 eine vertikale Höhenerstreckung innerhalb desselben aufweist. Der erste Reaktorgehäuseteil 4 stellt somit eine in etwa turmförmige Ausbildung dar.
Der zumindest zweite Reaktorgehäuseteil 5 ist im vorliegenden Ausführungsbeispiel ebenfalls Bestandteil des Reaktorgehäuses 3 und im Bereich des unteren Endbereichs 7 des mindestens ersten Reaktorgehäuseteils 4 unmittelbar daran anschließend angeordnet. Der zweite Reaktorgehäuseteil 5 bildet bzw. umgrenzt einen zweiten Kammerteil 9. Die beiden Kammerteile 8, 9 stehen miteinander zumindest im unbefüllten Betriebszustand des Reaktors 2 in Strömungsverbindung und sind somit miteinander verbunden. Bevorzugt kann jeder der Reaktorgehäuseteile 4, 5 aus einem oder aber auch mehreren Bauteilen zusammengesetzt sein. Gleichfalls können auch unterschiedliche Längen bzw. Höhen der beiden Reaktorgehäuseteile 4, 5 gewählt werden. Um einen Zutritt von Umgebungsluft in die von den Reaktorgehäuseteilen 4, 5 umgrenzten Kammerteile 8, 9 verhindern zu können, können diese auch noch gegenüber der äußeren Umgebung abgedichtet ausgebildet sein.
Weiters ist hier noch dargestellt, dass im Bereich des oberen Endbereichs 6 des ersten Reaktorgehäuseteils 4 an zumindest einer Einlassöffnung zumindest eine Zufuhrleitung 10 für die Kunststoffschmelze in den ersten Reaktorgehäuseteil 4 einmündet. Damit kann die zu behandelnde Kunststoffschmelze in den ersten Reaktorgehäuseteil 4 zu deren Behandlung eingeleitet werden. Um die Kunststoffschmelze wieder aus dem Reaktor 2, insbesondere dessen Reaktorgehäuse 3 ableiten bzw. entnehmen zu können, ist dazu im zweiten Reaktorgehäuseteil 5 zumindest eine Auslassöffnung 11 für die Kunststoffschmelze angeordnet oder ausgebildet.
Zur weiteren Behandlung der im Reaktorgehäuse 3 befindlichen Kunststoffschmelze ist hier noch vorgesehen, dass im zweiten Reaktorgehäuseteil 5 zumindest ein darin aufgenommenes Mischelement 12 angeordnet sein kann. Das zumindest eine Mischelement 12 ist im zweiten Reaktorgehäuseteil 5 um eine Rotationsachse 13 drehbar gelagert. Dabei sei bemerkt, dass die Rotationsachse 13 nicht unbedingt eine körperliche durchgängige Achse darstellen muss, sondern auch nur eine fiktive Achse darstellen kann. Das Mischelement 12 kann unterschiedlichst ausgebildet sein. So wäre es beispielsweise möglich, mehrere scheibenförmige Elemente hintereinander zur Durchmischung der Kunststoffschmelze im zweiten Reaktorgehäuseteil 5 anzuordnen. Es wäre aber auch möglich, das Mischelement 12 durch einen oder auch mehrere helixförmige Stege oder dergleichen auszubilden. Das Mischelement 12 dient überwiegend dazu, den Schmelzespiegel bzw. die Oberfläche des Schmelzebades, welches im zweiten Kammerteil 9 des zweiten Reaktorgehäuseteiles 5 befindlich ist, in Bewegung zu halten und durch Aufreißen ständig zu erneuern. Durch diesen Behandlungsvorgang kann z.B. die im ersten Kammerteil 8 begonnene Polykondensation weiter fortgesetzt werden, wodurch eine weitere Erhöhung der intrinsischen Viskosität erzielbar ist. Das Mischelement 12 kann so ausgebildet sein, dass es nur einen Mischvorgang ohne jegliche Förderwirkung durchführt. Unabhängig davon kann aber vom Mischelement 12 auch eine gewisse Förderwirkung auf die Kunststoffschmelze ausgeübt werden, um so einen gerichteten Weitertransport zur Auslassöffnung 11 zu schaffen. Es können auch zueinander unterschiedliche Zonen hintereinander ausgebildet werden.
Die beiden Reaktorgehäuseteile 4, 5 können in ihrer Raumform unterschiedlichst ausgebildet sein, wobei bevorzugt der erste Reaktorgehäuseteil 4 und/oder der zweite Reaktorgehäuseteil 5 rohrförmig ausgebildet sein können. Unter rohrförmig wird bevorzugt ein kreisrunder Querschnitt verstanden. Eine Querschnittsabmessung kann z.B. einen Durchmesser von ca. 600 mm aufweisen. Es wären aber auch andere Querschnittsformen wie z.B. mehreckig, oval oder elliptisch denkbar. Ein Längenverhältnis der beiden Reaktorgehäuseteile 4, 5 zueinander kann basierend auf der Länge bzw. Höhe des ersten Reaktorgehäuseteils 4 zur Länge des zweiten Reaktorgehäuseteils 5 z.B. 1 : 0,5 bis 1 : 4, bevorzugt 1 : 1 bis 1 : 3, betragen.
Weiters kann im oberen Endbereich 6 des ersten Reaktorgehäuseteils 4 der über die Zufuhrleitung 10 zugeführte Schmelzestrom durch eine Lochplatte oder ein Sieb hindurchgeleitet, insbesondere mit einem auf die Schmelze einwirkenden Druck hindurchgedrückt werden, um so eine Vielzahl von dünnen Schmelzefäden zu erzeugen. Die dünnen Schmelzefäden passieren den ersten Kammerteil 8 im freien Fall. Dabei kann die Anzahl der Öffnungen bzw. Löcher an den Massedurchsatz in entsprechender Weise angepasst werden. Weiters kann durch die Höhe bzw. Länge des ersten Reaktorgehäuseteils 4 die Falldauer des Schmelzestroms bzw. der dünnen Schmelzefäden beeinflusst werden. Je höher bzw. länger der erste Reaktorgehäuseteil 4 ausgebildet wird, kann somit auch die Behandlungsdauer der Schmelze in diesem Abschnitt beeinflusst werden. Weiters kann durch die Schwerkraft auch noch ein Verdünnen der einzelnen Schmelzefäden mit einhergehen.
Der Reaktor 2, insbesondere dessen Reaktorgehäuse 3, kann in Abhängigkeit vom zu behandelnden Kunststoffmaterial auf einer entsprechenden Temperatur gehalten werden. Die dafür vorgesehenen Temperierelemente können mit den unterschiedlichsten Temperiermedien versorgt bzw. betrieben werden. So kann der Reaktor 2, insbesondere dessen Reaktorgehäuse 3, mit flüssigen und/oder gasförmigen Temperiermedien umspült sein. Es können aber auch andere Energieträger oder Energieformen, wie. z.B. elektrische Energie, eingesetzt werden
Wie bereits zuvor beschrieben, stehen die Kammerteile 8, 9 der Reaktorgehäuseteile 4, 5 miteinander in Strömungsverbindung und sind gegenüber der äußeren Umgebung abgedichtet. Des Weiteren ist es auch noch möglich, die Kammerteile 8, 9 gegenüber dem Umgebungsdruck auf einen dazu geringeren Druck abzusenken. Dazu können eine oder mehrere Anschlussöffnungen an zumindest einem der Reaktorgehäuseteile 4, 5 vorgesehen sein, welche ihrerseits über zumindest eine Absaugleitung 14 mit einem nicht näher dargestellten Unterdruckerzeuger in Strömungsverbindung stehen. Um z.B. einen gleichmäßigen, abgesenkten Druck innerhalb der Kammerteile 8, 9 zu erzielen, können auch mehrere Anschlussöff- nungen vorgesehen sein, wobei diese verteilt sowohl am ersten Reaktorgehäuseteil 4 und/oder am zweiten Reaktorgehäuseteil 5 angeordnet sein können. Bevorzugt sind die Anschlussöffnungen und die damit in Verbindung stehenden Absaugleitungen 14 im Bereich des zweiten Reaktorgehäuseteils 5 an dessen Oberseite angeordnet. Die von den beiden Reaktorgehäuseteilen 4, 5 umgrenzten Kammerteile 8 können auf einen Druck kleiner 100 mbar evakuiert werden. Bevorzugt wird ein Druck zwischen 0,5 mbar und 20 mbar gewählt. Je höher der Unterdrück und damit geringer der Absolutdruck in den Kammerteilen 8, 9 ist, desto rascher und besser ist das Behandlungsergebnis der Kunststoffschmelze. Dieses Ergebnis ist auch noch von der in den Kammerteilen 8, 9 herrschenden Temperatur abhängig, welche je nach dem zu behandelnden Kunststoffwerkstoff zu wählen ist.
Weiters wäre es auch noch möglich, dass innerhalb der der ersten Reaktorgehäuseteils 4 und/oder des zweiten Reaktorgehäuseteils 5 unterschiedliche Zonen mit einem zueinander unterschiedlichen Druck, nämlich einem unterschiedlich hohem Vakuum vorzusehen. Damit kann innerhalb der Kammerteile 8, 9 ein differentielles Vakuum in zumindest einem der Reaktorgehäuseteil 4 und/oder 5 realisiert werden. Dieses differentielle Vakuum bzw. der unterschiedliche Druck kann z.B. durch differentielles Pumpen erreicht werden. Die unterschiedlichen Zonen können durch Lochblenden, Siebe, einem Zwischenboden oder aber auch Verengungen im Reaktorgehäuseteil 4, 5 oder aber auch anderer Strömungshindernisse gebildet werden.
Weiters ist es auch möglich, dass die zumindest eine Absaugleitung 14 zumindest bereichsweise mit einem Heizelement versehen bzw. umgeben ist. Das Heizelement kann beispielsweise ein mit elektrischer Energie betriebenes Heizelement sein. Es wäre aber auch möglich, die Absaugleitung 14 an deren Außenseite mit einem im Abstand bzw. Distanz dazu angeordneten Umhüllungselement zu umgeben und in dem zwischen der Absaugleitung 14 und dem Umhüllungselement ausgebildeten Zwischenraum beispielsweise ein Temperiermedium, beispielsweise eine Flüssigkeit oder ein Gas, mit entsprechender Temperatur hindurchzuleiten. Damit kann ein Kondensieren von abzusaugenden Bestandteilen aus den Kammerteilen 8, 9 in den Absaugleitungen 14 vermieden werden.
Wie bereits zuvor beschrieben, weist der erste Reaktorgehäuseteil 4 eine bevorzugt vertikale Ausrichtung auf. Der zweite Reaktorgehäuseteil 5 weist im vorliegenden Ausführungsbeispiel eine in etwa horizontal verlaufend ausgerichtete Längserstreckung mit voneinander distanziert angeordneten ersten und zweiten Endbereichen 15,16 auf. Damit wird eine „L“-Form von beiden Reaktorgehäuseteilen 4, 5 ausgebildet. Das zumindest eine im zweiten Reaktorgehäuseteil 5 angeordnete Mischelement 12 weist bevorzugt bei einem kreisrund ausgebildeten Querschnitt des zweiten Reaktorgehäuseteils 5 eine koaxial dazu verlaufende Anordnung auf. Bei einem Rundrohr verläuft somit die Rotationsachse 13 im Zentrum des Reaktorgehäuseteils 5.
Aufgrund dieser zentrischen bzw. koaxialen Anordnung des Mischelements 12 kann dieses in einem Minimalabstand von kleiner 1,0 mm von einer Innenwand 17 des zweiten Reaktorgehäuseteils 5 angeordnet sein. Je geringer der Minimalabstand des Mischelements 12 von der Innenwand 17 gewählt wird, desto weniger an Kunststoffschmelze kann an der Innenwand 17 des zweiten Reaktorgehäuseteils 5 angelagert werden, da, je nach Ausbildung des Mischelements 12 dieses die abgelagerte Kunststoffschmelze von der Innenwand 17 zumindest bereichsweise abstreifen kann. So wäre es beispielsweise auch noch möglich, am äußeren Umfang des Mischelements 12 dieses mit einem zusätzlichen, nicht näher dargestellten Aufsatzelement zu versehen, welches dann in direktem Kontakt mit der Innenwand 17 stehen kann. Je nach Wahl und Härte des Aufsatzelements kann damit ein metaiiischer Kontakt zwischen dem Mischelement 12 und der Innenwand 17 des Reaktorgehäuseteils 5 vermieden werden. Des Weiteren ist auf wärmebedingte Längenänderungen zwischen dem Kaltzustand der Anlage 1 und deren Betriebszustand Bedacht zu nehmen.
Unabhängig davon wäre es aber auch möglich, das Mischelement 12 in einem Minimaiabstand von größer 1,0 mm, insbesondere größer von 50 mm, insbesondere größer 150 mm von der Innenwand 17 des zweiten Reaktorgehäuseteils 5 anzuordnen. Durch die Vergrößerung des Minimalabstandes kann so ein Rückströmen und damit ein mehrfaches Umwälzen der im zweiten Kammerteil 9 befind- lichen Kunststoffschmelze erzielt werden. Dadurch kann beispielsweise auch noch eine weitere Erhöhung der intrinsischen Viskosität erreicht werden.
Im vorliegenden Ausführungsbeispiel erstreckt sich das Mischelement 12 über die Längserstreckung des zweiten Kammerteils 9 zwischen den voneinander distanziert angeordneten ersten und zweiten Endbereichen 15,16 des zweiten Reaktorgehäuseteils 5. Damit ist weiters das Mischelement 12 vollständig im zweiten Kammerteil 9 angeordnet. Es erfolgt lediglich die Lagerung des Mischelements 12 beispielsweise an Endwänden des zweiten Reaktorgehäuseteils 5.
Da sich das Mischelement 12 über die innere Längserstreckung zwischen dem ersten Endbereich 15 und dem zweiten Endbereich 16 des zweiten Reaktorgehäuseteils 5 erstreckt, ist auch der Schmelzespiegel des Schmelzebades im zweiten Kammerteil 9 mit einer annähernd gleichen Längserstreckung wie das Mischelement 12 ausgebildet. Weiters kann damit so auf den Schmelzespiegel des Schmelzebades während dessen Durchmischung der gegenüber dem Umge-bungsdruck abgesenkte Druck, beispielsweise von kleiner 100 mbar darauf einwirken.
Weiters ist hier noch dargestellt, dass das Mischelement 12 mit einer eigenen, unabhängigen ersten Antriebsvorrichtung 18 in Antriebsverbindung steht. Damit wird es möglich, das oder die Mischelemente 12 mit einer eigenen Rotationsgeschwindigkeit betreiben zu können, welche unabhängig von anderen Antriebsorganen gewählt werden kann. So kann je nach einzustellender und/oder zu erhöhender intrinsischer Viskosität die Durchmischung der Kunststoffschmelze, insbesondere die Intensität der Durchmischung, frei gewählt werden. Damit kann die Kunststoffschmelze im zweiten Kammerteil 9 des zweiten Reaktorgehäuseteils 5 vom Mischelement 12 ständig bewegt und durchmischt werden.
Anschließend an die im zweiten Reaktorgehäuseteil 5 angeordnete Auslassöffnung 11 ist im vorliegenden Ausführungsbeispiel eine Austragsvorrichtung 19 für die Kunststoffschmelze angeordnet. Bei dieser Austragsvorrichtung 19 kann es sich beispielsweise um eine Schmelzepumpe, einen Extruder oder ähnliches handeln. Um eine unabhängige Entnahmemenge oderein unabhängiges Entnahme gewicht der Kunststoffschmelze aus dem zweiten Reaktorgehäuseteil 5 festlegen zu können, ist hier weiters vorgesehen, dass die Austragsvorrichtung 19 mit einer zweiten Antriebsvorrichtung 20 in Antriebsverbindung steht. Dabei kann die zweite Antriebsvorrichtung 20 unabhängig von der ersten Antriebsvorrichtung 18 des Mischelements 12 angetrieben sein. Durch diese Entkopplung der beiden Antriebsvorrichtungen 18, 20 kann eine individuellere Einstellung und Anpassung der intrinsischen Viskosität der zu behandelnden Kunststoffschmelze erzielt werden.
Die zumindest eine Auslassöffnung 11 für die Kunststoffschmelze ist hier im Bereich des vom ersten Reaktorgehäuseteil 4 distanziert angeordneten zweiten Endbereichs 16 des zweiten Reaktorgehäuseteils 5 sowie in einem Bodenbereich desselben angeordnet.
Um rasch ein Ergebnis des im Reaktor 2 durchgeführten Behandlungsergebnisses zu erhalten, ist es vorteilhaft, wenn von einer Messvorrichtung ein Messwert der intrinsischen Viskosität der behandelten Kunststoffschmelze im Bereich der Auslassöffnung 11 odereinem unmittelbar daran anschließenden Austragsabschnitt der Kunststoffschmelze ermittelt wird. Damit kann im unmittelbaren Anschluss an den Reaktor 2 eine Inlinemessung durchgeführt werden und so ohne verursachen eines hohen Ausschusses die Behandlungs- bzw. Verfahrensparameter nachjustiert bzw. eingestellt werden, um den vorgegebenen Wert der intrinsischen Viskosität zu erreichen.
Wie bereits zuvor beschrieben, ist im zweiten Reaktorgehäuseteil 5 zumindest eine Auslassöffnung 11 vorgesehen, welche im vorliegenden Ausführungsbeispiel in einem unteren Umfangsbereich des Bodenbereich des zweiten Reaktorgehäuseteils 5 angeordnet ist.
Weiters ist auch noch in der Fig. 1 vereinfacht dargestellt, dass der Reaktor 2 unter Zwischenschaltung zumindest einer Gewichtsermittlungsvorrichtung 21 an einer Aufstandsfläche, beispielsweise einem ebenen Hallenboden oder dergleichen abgestützt sein kann. Dadurch wird es möglich, das Gewicht des Reaktors 2 sowohl in seinem Leerzustand als auch im Betriebszustand mit der darin aufgenommenen und zu behandelnden Kunststoffschmelze ermitteln zu können.
Bevorzugt umfasst die Anlage 1 zumindest ein Traggerüst 22, wobei zumindest der Reaktor 2, insbesondere dessen Reaktorgehäuse 3, an dem zumindest einen Traggerüst 22 gehalten ist. Dadurch wird es in weiterer Folge möglich, dass dann das zumindest eine Traggerüst 22 mitsamt dem daran gehaltenen Reaktor 2 über mehrere der Gewichtsermittlungsvorrichtungen 21 an der Aufstandsfläche abgestützt ist. Weiters ist hier noch dargestellt, dass die zumindest eine Gewichtsermittlungsvorrichtung 21 bodennah bezüglich der Aufstandsfläche zwischen dieser und dem Traggerüst 22 angeordnet sein kann. Zusätzlich wäre es aber auch noch möglich, dass die zumindest eine Gewichtsermittlungsvorrichtung 21 an ihrer vom Reaktor 2 oder vom Traggerüst 22 abgewendeten und der Aufstandsfläche zugewendeten Seite an einem Grundrahmen 23 abgestützt ist.
Der Grundrahmen 23 kann weiters auch noch über Räder 24 an der Aufstandsfläche abgestützt sein. Damit wird es möglich, eine Ortsverlagerung des Reaktors 2 je nach Wahl und Ausbildung der Räder 24 durchführen zu können.
Unabhängig davon wäre es aber auch noch möglich, dass zumindest der Reaktor 2, insbesondere dessen Reaktorgehäuse 3 am Traggerüst 22 über die zumindest eine Gewichtsermittlungsvorrichtung 21 in einer hängenden Position am Traggerüst gehalten ist, wie dies aus der Fig. 3 näher dargestellt ist. Dabei sei erwähnt, dass diese Ausbildung der Abstützung für sich gegebenenfalls eine eigenständige Ausbildung darstellen kann.
Die zumindest eine Gewichtsermittlungsvorrichtung 21 kann beispielsweise durch eine Wiegezelle oder dergleichen gebildet sein. Ist der Reaktor 2, insbesondere dessen Reaktorgehäuse 3 am Traggerüst 22 in einer hängenden Position am Traggerüst 22 gehalten, kann die Gewichtsermittlungsvorrichtung 21 beispielsweise durch eine Zugwaage oder dergleichen gebildet sein. Weiters kann die zumindest eine Gewichtsermittlungsvorrichtung 21 mit einer Steuervorrichtung in Kommunikationsverbindung stehen. Damit wird es möglich, die von der oder von den Gewichtsermittlungsvorrichtungen 21 ermittelten Messwerte in der Steuervorrichtung zu verarbeiten und in weiterer Folge die für die Behandlung notwendigen Verfahrensparameter zu erstellen und an die Anlage 1 mit deren Anlagenkomponenten weiter zu leiten.
Weiters ist es aber auch noch möglich, dass auch die Austragsvorrichtung 19 unter Zwischenschaltung zumindest einer Gewichtsermittlungsvorrichtung 21 ebenfalls an der Aufstandsfläche abgestützt sein kann. Das Abstützen kann durch direktes Abstützen oder aber auch in einer hängenden Anordnung, wie bereits zuvor für den Reaktor 2 in der Fig. 3 beschrieben, erfolgen.
Der Betrieb einer derartigen Anlage 1 kann derart erfolgen, dass in einer nicht näher dargestellten und dem Reaktor 2 vorgeschalteten Aufbereitungsvorrichtung die zu behandelnde Kunststoffschmelze gebildet oder hergestellt wird. Wird die Kunststoffschmelze aus Recycelmaterialien gebildet, sind diese bevorzugt sortenrein zu trennen, um so eine Verunreinigung zu verhindern.
Die zu behandelnde Kunststoffschmelze wird dem Reaktor 2 über die zumindest eine im oberen Endbereich 6 des ersten Reaktorgehäuseteils 4 einmündende Zufuhrleitung 10 zugeführt. Anschließend passiert die Kunststoffschmelze den vom ersten Reaktorgehäuseteil 4 umgrenzten, ersten Kammerteil 8, welcher seinerseits eine vertikale Höhenerstreckung aufweist. Die Kunststoffschmelze wird anschließend in dem am unteren Endbereich 7 des ersten Reaktorgehäuseteils 4 anschließenden und vom zweiten Reaktorgehäuseteil 5 umgrenzt zweiten Kammerteil 9 gesammelt. Dabei wird von der gesammelten Kunststoffschmelze im zweiten Kammerteil 9 ein Schmelzebad mit einem Schmelzespiegel ausgebildet. Bei einem vordefinierten Soll-Füllstand der Kunststoffschmelze kann beispielsweise der Schmelzespiegel der Kunststoffschmelze im zweiten Kammerteil 9 des zweiten Reaktorgehäuseteils 5 in etwa in halber Höhe des zweiten Kammerteils 9 liegen. Diese Höhe bzw. das Niveau kann in etwa der Lage der Rotationsachse 13 entsprechen. Zur weiteren Behandlung wird das Schmelzebad im zweiten Reaktorgehäuseteil 5 vom Mischelement 12 bewegt und durchmischt wird. Dieser Mischvorgang kann bevorzugt ständig, gegebenenfalls auch mit zueinander unterschiedlicher Intensität durchgeführt werden. Anschließend an diesen Behandlungsvorgang der Kunststoffschmelze wird die behandelte Kunststoffschmelze durch zumindest die im zweiten Reaktorgehäuseteil 5 angeordnete Auslassöffnung 11 aus dem zweiten Kammerteil 9 entnommen bzw. abgeleitet.
Wie bereits zuvor beschrieben, biidet die Kunststoffschmelze im zweiten Kammerteil 9 je nach vordefiniertem bzw. vorgegebenem Soll-Füllstand den damit verbundenen Schmelzespiegel aus. Je nach Höhe des Schmelzespiegels im zweiten Kammerteil 9 kann die Entnahme der behandelten Kunststoffschmelze aus dem zweiten Kammerteil 9 in einem Winkel von 30°, bevorzugt von 90°, bezüglich einer Längsachse des zweiten Reaktorgehäuseteils unterhalb des Schmelzespiegels durchgeführt werden. Dadurch kann der Schmelzespiegel eine annähernd gleiche Längserstreckung wie das Mischelement aufweisen, wodurch so auf den Schmelzespiegel des Schmelzebades während der Durchmischung desselben der reduzierte Druck einwirken kann. Dazu ist je nach geometrischer Ausbildung des zweiten Reaktorgehäuseteils 5 die zumindest eine Auslassöffnung 11 in einem Winkel von 30°, bevorzugt von 90°, unterhalb bezüglich einer durch die Längsachse des zweiten Reaktorgehäuseteils 5 verlaufenden Horizontalebene anzuordnen.
Um den Massen- bzw. Gewichtshaushalt an der dem Reaktor 2 zugeführten und zu behandelnden Kunststoffschmelze in vorgegebenen Grenzen zur Masse bzw. dem Gewicht der Entnahme der behandelten Kunststoffschmelze beibehalten zu können, können die zuvor beschriebenen Gewichtsermittlungsvorrichtungen 21 angewendet werden. So kann beispieisweise vor der in Inbetriebnahme der Anlage 1 von der zumindest einen Gewichtsermittlungsvorrichtung 21 ein erster Messwert vom Eigengewicht des Reaktors 2 ohne die Kunststoffschmelze ermittelt werden. Dieser Messwert kann an eine Steuervorrichtung übertragen und gegebenenfalls in dieser abgespeichert werden. Anschließend daran wird die zu behandelnde Kunststoffschmelze dem Reaktor 2 zugeführt, wobei beim Erreichen eines Soll-Füllstandes der Kunststoffschmelze im zweiten Reaktorgehäuseteil 5 und der damit verbundenen Höhe des Schmelzespiegels im zweiten Kammerteil 9 ein zweiter Messwert von der zumindest einen Gewichtsermittlungsvorrichtung 21 ermittelt wird. Dabei ist es auch wieder möglich, diesen ermittelten, zweiten Messwert an die Steuervorrichtung zu übertragen und gegebenenfalls in dieser abzuspeichern. Der erste ermittelte Messwert entspricht dabei einem Netto-Gewicht des Reaktors 2. Dann kann von der Steuervorrichtung ein Differenzwert aus dem zweiten Messwert abzüglich des ersten Messwerts ermittelt werden. Durch die Steuervorrichtung kann dann in Abhängigkeit des aus dem zweiten Re aktorgehäuseteils 5 entnommenen Gewichts an behandelter Kunststoffschmelze das Gewicht an zugeführter und zu behandelnder Kunststoffschmelze im vorgegebenen Grenzen im Gleichgewicht bezüglich des zuvor ermittelten Differenzwertes gehalten werden. Mögliche Abweichungen des Gleichgewichts von den vorgegebenen Grenzen können beispielsweise +/- 50%, bevorzugt +/- 30%, besonders bevorzugt +/-15% betragen.
In der Fig. 4 ist eine weitere und gegebenenfalls für sich eigenständige Ausführungsform des Reaktors 2 zur Bildung der Anlage 1 gezeigt, wobei wiederum für gleiche Teile gleiche Bezugszeichen bzw. Bauteilbezeichnungen wie in den vorangegangenen Fig. 3 verwendet werden. Um unnötige Wiederholungen zu vermeiden, wird auf die detaillierte Beschreibung in den vorangegangenen Fig. 3 hingewiesen bzw. Bezug genommen. Dabei sei erwähnt, dass diese Ausbildung eine Variante zu den zuvor beschriebenen Ausführungen darstellt und lediglich eine Mehrfachanordnung von einzelnen Komponenten gewählt ist.
Das Reaktorgehäuse 3 umfasst hier jeweils zwei erste Reaktorgehäuseteile 4 und zwei zweite Reaktorgehäuseteile 5. Die beiden in etwa horizontal angeordneten Reaktorgehäuseteile 5 sin an ihren zweiten Endbereichen 16 einander zugewendet angeordnet und können dort miteinanderzu einer Einheit miteinander verbunden sein. Es wäre aber auch möglich, die zwei zweiten Reaktorgehäuseteile 5 aus einem einzigen durchgehenden Bauelement auszubilden. Weiters wäre es aber auch noch denkbar, dass die zweiten Reaktorgehäuseteile 5 aus mehreren Einzelkomponenten zusammengesetzt sind.
Innerhalb der beiden zweiten Kammerteile 9 ist auch wiederum das zumindest eine Mischelement 12 angeordnet. Um eine gerichtete Förderbewegung für die Kunststoffschmelze zu erzielen, kann bei den Mischelementen 12 eine gegenläufig ausgerichtete Steigung vorgesehen sein. Es ist auch hier denkbar, in jedem der zweiten Reaktorgehäuseteile 5 ein unabhängiges Mischelement 12 vorzusehen.
Es wäre aber auch möglich, die beiden Mischelemente 12 zu einem zusammengehörigen Bauteil zu verbinden oder überhaupt einstückig auszubilden. Bei dieser Ausführungsform kann dann mit einer einzigen ersten Antriebsvorrichtung 18 das Auslangen gefunden werden.
Gleichfalls ist auch hier zumindest eine Austragsvorrichtung 19 im Bereich der zumindest einen Auslassöffnung 11 vorgesehen. Die Kammerteile 8, 9 können gleichfalls über Absaugleitungen 14 auf einen gegenüber dem Umgebungsdruck abgesenkten Druck evakuiert werden.
Der gesamte Reaktor 2 kann wiederum über die zuvor beschriebenen Gewichtsermittlungsvorrichtungen 21, gegebenenfalls unter Zwischenschaltung des Traggerüsts 22 an der Aufstandsfläche abgestützt sein. Das oder die Gewichtsermittlungsvorrichtungen 21 können auf der vom Reaktor 2 abgewendeten Seite an einem Grundrahmen 23 abgestützt sein. Der Grundrahmen 23 kann dann wiederum über mehrere Räder 24 an der Aufstandsfläche abgestützt sein.
Die Ausführungsbeispiele zeigen mögliche Ausführungsvarianten der Anlage 1, Insbesondere deren Reaktor 2, wobei an dieser Stelle bemerkt sei, dass die Erfindung nicht auf die speziell dargestellten Ausführungsvarianten derselben eingeschränkt ist, sondern vielmehr auch diverse Kombinationen der einzelnen Ausführungsvarianten untereinander möglich sind und diese Variationsmöglichkeit aufgrund der Lehre zum technischen Handeln durch gegenständliche Erfindung im Können des auf diesem technischen Gebiet tätigen Fachmannes liegt.
Weiters können auch Einzelmerkmale oder Merkmalskombinationen aus den gezeigten und beschriebenen unterschiedlichen Ausführungsbeispielen für sich eigenständige, erfinderische oder erfindungsgemäße Lösungen darstellen.
Die den eigenständigen erfinderischen Lösungen zugrundeliegende Aufgabe kann der Beschreibung entnommen werden. Sämtliche Angaben zu Wertebereichen in gegenständlicher Beschreibung sind so zu verstehen, dass diese beliebige und alle Teilbereiche daraus mitumfassen, z.B. ist die Angabe 1 bis 10 so zu verstehen, dass sämtliche Teilbereiche, ausgehend von der unteren Grenze 1 und der oberen Grenze 10 mit umfasst sind, d.h. sämtliche Teilbereiche beginnen mit einer unteren Grenze von 1 oder größer und enden bei einer oberen Grenze von 10 oder weniger, z.B. 1 bis 1,7, oder 3,2 bis 8,1, oder 5,5 bis 10.
Vor allem können die einzelnen In den Flg. 1, 2; 3; 4 gezeigten Ausführungen den Gegenstand von eigenständigen, erfindungsgemäßen Lösungen bilden. Die diesbezüglichen, erfindungsgemäßen Aufgaben und Lösungen sind den Detailbeschreibungen dieser Figuren zu entnehmen.
Der Ordnung halber sei abschließend darauf hingewiesen, dass zum besseren Verständnis des Aufbaus der Anlage 1 diese bzw. deren Bestandteile teilweise unmaßstäblich und/oder vergrößert und/oder verkleinert dargestellt wurden.
Bezugszeichenliste 1 Anlage 2 Reaktor 3 Reaktorgehäuse 4 erster Reaktorgehäuseteil 5 zweiter Reaktorgehäuseteil 6 oberer Endbereich 7 unterer Endbereich 8 erster Kammerteil 9 zweiter Kammerteil 10 Zufuhrleitung 11 Auslassöffnung 12 Mischelement 13 Rotationsachse 14 Absaugleitung 15 erster Endbereich 16 zweiter Endbereich 17 Innenwand 18 erste Antriebsvorrichtung 19 Austragsvorrichtung 20 zweite Antriebsvorrichtung 21 Gewichtsermittlungsvorrichtung 22 Traggerüst 23 Grundrahmen 24 Rad

Claims (30)

  1. Patentansprüche
    1. Anlage (1) zur Behandlung einer Kunststoffschmelze, insbesondere einer Polykondensatschmelze, und Einstellung von deren intrinsischen Viskosität, mit einem Reaktor (2), der ein Reaktorgehäuse (3) mit zumindest einem ersten Reaktorgehäuseteil (4) mit einem oberen Endbereich (6) und einem unteren Endbereich (7) und einen sich zwischen dem oberen und unteren Endbereich (6, 7) erstreckenden ersten Kammerteil (8) aufweist, wobei der erste Kammerteil (8) eine vertikale Höhenerstreckung aufweist, und das Reaktorgehäuse (3) im Bereich des unteren Endbereichs (7) des mindestens ersten Reaktorgehäuseteils (4) ein unmittelbar daran anschließendes, zumindest zweites Reaktorgehäuseteil (5) mit einem zweiten Kammerteil (9) aufweist, wobei die beiden Kammerteile (8, 9) miteinander in Strömungsverbindung stehen und gegenüber der äußeren Umgebung abgedichtet ausgebildet sind, und im Bereich des oberen Endbereichs (6) des ersten Reaktorgehäuseteils (4) an zumindest einer Einlassöffnung zumindest eine Zufuhrleitung (10) für die Kunststoffschmelze in den ersten Reaktorgehäuseteil (4) einmündet und im zweiten Reaktorgehäuseteil (5) zumindest eine Auslassöffnung (11) für die Kunststoffschmelze angeordnet ist, und mit zumindest einem im zweiten Reaktorgehäuseteil (5) angeordneten Mischelement (12), welches Mischelement (12) im zweiten Reaktorgehäuseteil (5) um eine Rotationsachse (13) drehbar gelagert ist, dadurch gekennzeichnet, dass der Reaktor (2) unter Zwischenschaltung zumindest einer Gewichtsermittlungsvorrichtung (21) an einer Aufstandsfläche abgestützt ist.
  2. 2. Anlage (1) nach Anspruch 1, dadurch gekennzeichnet, dass diese weiters zumindest ein Traggerüst (22) umfasst und zumindest der Reaktor (2), insbesondere dessen Reaktorgehäuse (3), an dem zumindest einen Traggerüst (22) gehalten ist.
  3. 3. Anlage (1) nach Anspruch 2, dadurch gekennzeichnet, dass das Traggerüst (22) mitsamt dem daran gehaltenen Reaktor (2) über mehrere der Gewichtsermittlungsvorrichtungen (21) an der Aufstandsfläche abgestützt ist.
  4. 4. Anlage (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zumindest eine Gewichtsermittlungsvorrichtung (21) bodennah bezüglich der Aufstandsfläche angeordnet ist.
  5. 5. Anlage (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zumindest eine Gewichtsermittlungsvorrichtung (21) an ihrer vom Reaktor (2) oder vom Traggerüst (22) abgewendeten und der Aufstandsfläche zugewendeten Seite an einem Grundrahmen (23) abgestützt ist und der Grundrahmen (23) über Räder (24) an der Aufstandsfläche abgestützt ist.
  6. 6. Anlage (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass zumindest der Reaktor (2), insbesondere dessen Reaktorgehäuse (3), am Traggerüst (22) über die zumindest eine Gewichtsermittlungsvorrichtung (21) in einer hängenden Position am Traggerüst (22) gehalten ist.
  7. 7. Anlage (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zumindest eine Gewichtsermittlungsvorrichtung (21) durch eine Wiegezelle oder eine Zugwaage gebildet ist, wobei die zumindest eine Gewichtsermittlungsvorrichtung (21) mit einer Steuervorrichtung in Kommunikationsverbindung steht.
  8. 8. Anlage (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Reaktorgehäuseteil (4) und/oder der zweite Reaktorgehäuseteil (5) rohrförmig ausgebildet ist bzw. sind.
  9. 9. Anlage (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der zweite Reaktorgehäuseteil (5) eine in etwa horizontal verlaufend ausgerichtete Längserstreckung mit voneinander distanzierten ersten und zweiten Endbereichen (15, 16) aufweist.
  10. 10. Anlage (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rotationsachse (13) des Mischelements (12) koaxial bezüglich des rohrförmig ausgebildeten zweiten Reaktorgehäuseteils (5) angeordnet ist.
  11. 11. Anlage (1) nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass das Mischelement (12) in einem Minimalabstand von kleiner 1,0 mm von einer Innenwand (17) des zweiten Reaktorgehäuseteils (5) angeordnet ist.
  12. 12. Anlage (1) nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass das Mischelement (12) in einem Minimalabstand von größer 1,0 mm, insbesondere größer 20 mm, von der Innenwand (17) des zweiten Reaktorgehäuseteils angeordnet ist.
  13. 13. Anlage (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich das Mischelement (12) über die Längserstreckung des zweiten Kammerteils (9) zwischen den voneinander distanziert angeordneten ersten und zweiten Endbereichen (15,16) des zweiten Reaktorgehäuseteils (5) erstreckt und vollständig im zweiten Kammerteil (9) angeordnet ist.
  14. 14. Anlage (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Mischelement (12) mit einer eigenen, unabhängigen ersten Antriebsvorrichtung (18) in Antriebsverbindung steht.
  15. 15. Anlage (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass anschließend an die Auslassöffnung (11) des zweiten Reaktorgehäuseteils (5) eine Austragsvorrichtung (19) für die Kunststoffschmelze angeordnet ist, wobei auch die Austragsvorrichtung (19) unter Zwischenschaltung zumindest einer Gewichtsermittlungsvorrichtung (21) an der Aufstandsfläche abgestützt ist.
  16. 16. Anlage (1) nach Anspruch 15, dadurch gekennzeichnet, dass die Austragsvorrichtung (19) mit einer zweiten Antriebsvorrichtung (20) in Antriebsverbindung steht, wobei die zweite Antriebsvorrichtung (20) unabhängig von der ersten Antriebsvorrichtung (18) des Mischelements (12) angetriebenen ist.
  17. 17. Anlage (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass beide miteinander in Strömungsverbindung stehenden Kammerteile (8, 9) der beiden Reaktorgehäuseteile (4, 5) über zumindest eine Anschlussöffnung und zumindest eine Absaugleitung (14) mit einem Unterdruckerzeuger in Strömungsverbindung stehen.
  18. 18. Anlage (1) nach Anspruch 17, dadurch gekennzeichnet, dass die zumindest eine Absaugleitung (14) zumindest bereichsweise mit einem Heizelement versehen ist.
  19. 19. Anlage (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zumindest eine Auslassöffnung (11) für die Kunststoffschmelze im Bereich des vom ersten Reaktorgehäuseteil (4) distanziert angeordneten zweiten Endbereichs (16) des zweiten Reaktorgehäuseteils (5) sowie in einem Bodenbereich desselben angeordnet ist.
  20. 20. Verfahren zur Behandlung einer Kunststoffschmelze, insbesondere einer Polykondensatschmelze, und Einstellung von deren intrinsischen Viskosität, bei dem die zu behandelnde Kunststoffschmelze einem Reaktor (2) mit einem Reaktorgehäuse (3), umfassend zumindest ein erstes und zumindest ein zweites Reaktorgehäuseteil (5), über zumindest eine in einem oberen Endbereich (6) des ersten Reaktorgehäuseteils (4) einmündende Zufuhrleitung (10) zugeführt wird, anschließend die Kunststoffschmelze einen vom ersten Reaktorgehäuseteil (4) umgrenzten ersten Kammerteil (8) mit einer vertikalen Höhenerstreckung passiert, die Kunststoffschmelze in einer an einem unteren Endbereich (7) des ersten Reaktorgehäuseteils (4) anschließenden und vom zweiten Reaktorgehäuseteil (5) umgrenzten zweiten Kammerteil (9) gesammelt wird und dabei von der gesammel- ten Kunststoffschmelze im zweiten Kammerteil (9) ein Schmelzebad mit einem Schmelzespiegel ausgebildet wird, das Schmelzebad im zweiten Reaktorgehäuseteil (5) von einem Mischelement (12) bewegt und durchmischt wird, und die behandelte Kunststoffschmelze durch zumindest eine im zweiten Reaktorgehäuseteil (5) angeordnete Auslassöffnung (11) aus dem zweiten Kammerteil (9) entnommen wird, insbesondere unter Verwendung der Anlage (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zuerst von zumindest einer Gewichtsermittlungsvorrichtung (21) ein erster Messwert vom Eigengewicht des Reaktors (2) ohne der Kunststoffschmelze ermittelt und an eine Steuervorrichtung übertragen und gegebenenfalls in dieser abgespeichert wird, anschließend die zu behandelnde Kunststoffschmelze dem Reaktor (2) zugeführt und bei einer Erreichen eines Sollfüllstandes der Kunststoffschmelze und der damit verbundenen Höhe des Schmelzespiegels im zweiten Kammerteil (9) des zweiten Reaktorgehäuseteils (5) ein zweiter Messwert von der zumindest einen Gewichtsermittlungsvorrichtung (21) ermittelt und an die Steuervorrichtung übertragen und gegebenenfalls in dieser abgespeichert wird, dann von der Steuervorrichtung ein Differenzwert aus dem zweiten Messwert abzüglich des ersten Messwerts ermittelt wird und dass von der Steuervorrichtung in Abhängigkeit des aus dem zweiten Reaktorgehäuseteils (5) entnommenen Gewichts an behandelter Kunststoffschmelze das Gewicht an zugeführter, zu behandelnder Kunststoffschmelze in vorgegebenen Grenzen im Gleichgewicht bezüglich des zuvor ermittelten Differenzwertes gehalten wird.
  21. 21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, dass die dem Reaktor (2) zugeführte und zu behandelnde Kunststoffschmelze im ersten Reaktorgehäuseteil (4) in eine Vielzahl von dünnen Schmelzefäden aufgeteilt wird und die dünnen Schmelzefäden den ersten Kammerteil (8) im freien Fall passieren.
  22. 22. Verfahren nach Anspruch 20 oder 21, dadurch gekennzeichnet, dass das Mischelement (12) von einer eigenen, unabhängigen ersten Antriebsvorrichtung (18) angetrieben wird.
  23. 23. Verfahren nach einem der Ansprüche 20 bis 22, dadurch gekennzeichnet, dass die Kunststoffschmelze im zweiten Kammerteil (9) des zweiten Reaktorgehäuseteils (5) vom Mischelement (12) ständig bewegt und durchmischt wird.
  24. 24. Verfahren nach einem der Ansprüche 20 bis 23, dadurch gekennzeichnet, dass die von den beiden Reaktorgehäuseteilen (4, 5) umgrenzten Kammerteile (8) auf einen Druck kleiner 100 mbar evakuiert werden.
  25. 25. Verfahren nach Anspruch 24, dadurch gekennzeichnet, dass der Schmelzespiegel des Schmelzebades im zweiten Kammerteil (9) mit einer annähernd gleichen Längserstreckung wie das Mischelement (12) ausgebildet wird und so auf den Schmelzespiegel des Schmelzebades während dessen Durchmischung der Druck kleiner 100 mbar einwirkt.
  26. 26. Verfahren nach einem der Ansprüche 20 bis 25, dadurch gekennzeichnet, dass der Schmelzespiegel der Kunststoffschmelze beim vordefinierten Sollfüllstand im zweiten Kammerteil (9) des zweiten Reaktorgehäuseteils (5) in etwa in halber Höhe des zweiten Kammerteils (9) liegt.
  27. 27. Verfahren nach einem der Ansprüche 20 bis 26, dadurch gekennzeichnet, dass die Entnahme der behandelten Kunststoffschmelze aus dem zweiten Kammerteil (9) in einem Winkel von 30°, bevorzugt von 90°, bezüglich einer Längsachse des zweiten Reaktorgehäuseteils (5) unterhalb des Schmelzespiegels durchgeführt wird.
  28. 28. Verfahren nach einem der Ansprüche 20 bis 27, dadurch gekennzeichnet, dass eine anschließend an die im zweiten Reaktorgehäuseteil (5) angeordnete Auslassöffnung (11) angeordnete Austragsvorrichtung (19) von einer zweiten Antriebsvorrichtung (20) angetrieben wird, wobei die zweite Antriebsvorrichtung (20) unabhängig von der ersten Antriebsvorrichtung (18) des Mischelements (12) angetrieben wird.
  29. 29. Verfahren nach Anspruch 28, dadurch gekennzeichnet, dass auch die Austragsvorrichtung (19) unter Zwischenschaitung zumindest einer Gewichtser-mittiungsvorrichtung (21) an der Aufstandsfiäche abgestützt wird.
  30. 30. Verfahren nach einem der Ansprüche 20 bis 29, dadurch gekennzeichnet, dass von einer Messvorrichtung ein Messwert der intrinsischen Viskosität der behandeiten Kunststoffschmeize im Bereich der Ausiassöffnung (11) oder einem unmitteibar daran anschiießenden Austragsabschnitt der Kunststoffschmeize er-mitteit wird.
ATA50232/2015A 2015-03-23 2015-03-23 Anlage sowie Verfahren zur Behandlung einer Kunststoffschmelze AT516967B1 (de)

Priority Applications (22)

Application Number Priority Date Filing Date Title
ATA50232/2015A AT516967B1 (de) 2015-03-23 2015-03-23 Anlage sowie Verfahren zur Behandlung einer Kunststoffschmelze
US15/560,798 US10710036B2 (en) 2015-03-23 2016-03-23 Installation and method for treating a plastic melt
CA3170694A CA3170694A1 (en) 2015-03-23 2016-03-23 Installation and method for treating a plastic melt
PCT/AT2016/050074 WO2016149725A1 (de) 2015-03-23 2016-03-23 Anlage sowie verfahren zur behandlung einer kunststoffschmelze
ES16720987T ES2721784T3 (es) 2015-03-23 2016-03-23 Instalación así como procedimiento para el tratamiento de una masa fundida de plástico
KR1020177030502A KR102410352B1 (ko) 2015-03-23 2016-03-23 플라스틱 용융물을 처리하기 위한 장치 및 방법
BR112017020333-2A BR112017020333B1 (pt) 2015-03-23 2016-03-23 Instalação e método para o tratamento de uma massa fundida plástica
CN201680027867.3A CN108349113B (zh) 2015-03-23 2016-03-23 用于处理塑料熔体的设备以及方法
TR2019/03421T TR201903421T4 (tr) 2015-03-23 2016-03-23 Bir plastik eriyik işlemeye yönelik tertibat ve yöntem.
ES18167105T ES2753765T3 (es) 2015-03-23 2016-03-23 Instalación así como procedimiento para el tratamiento de una masa fundida de plástico
MX2017012166A MX2017012166A (es) 2015-03-23 2016-03-23 Instalacion asi como procedimiento para el tratamiento de una masa fundida de plastico.
EP18167105.8A EP3363609B1 (de) 2015-03-23 2016-03-23 Anlage sowie verfahren zur behandlung einer kunststoffschmelze
JP2017549683A JP7246852B2 (ja) 2015-03-23 2016-03-23 プラスチック溶融物を処理する設備と方法
RU2017134376A RU2696456C2 (ru) 2015-03-23 2016-03-23 Установка, а также способ для обработки полимерного расплава
CN201911078882.2A CN110774472A (zh) 2015-03-23 2016-03-23 用于处理塑料熔体的设备以及方法
CA2980600A CA2980600C (en) 2015-03-23 2016-03-23 Installation and method for treating a plastic melt
EP16720987.3A EP3274148B1 (de) 2015-03-23 2016-03-23 Anlage sowie verfahren zur behandlung einer kunststoffschmelze
IL254602A IL254602A0 (en) 2015-03-23 2017-09-19 Device and method for treating a plastic melt
SA517390010A SA517390010B1 (ar) 2015-03-23 2017-09-23 منشأة وطريقة لمعالجة مصهور لدائن
SA521421171A SA521421171B1 (ar) 2015-03-23 2017-09-23 منشأة وطريقة لمعالجة مصهور لدائن
MX2020010854A MX2020010854A (es) 2015-03-23 2017-09-25 Instalacion asi como procedimiento para el tratamiento de una masa fundida de plastico.
IL268096A IL268096B (en) 2015-03-23 2019-07-16 Device and method for handling plastic melt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
ATA50232/2015A AT516967B1 (de) 2015-03-23 2015-03-23 Anlage sowie Verfahren zur Behandlung einer Kunststoffschmelze

Publications (2)

Publication Number Publication Date
AT516967A1 true AT516967A1 (de) 2016-10-15
AT516967B1 AT516967B1 (de) 2017-07-15

Family

ID=57123332

Family Applications (1)

Application Number Title Priority Date Filing Date
ATA50232/2015A AT516967B1 (de) 2015-03-23 2015-03-23 Anlage sowie Verfahren zur Behandlung einer Kunststoffschmelze

Country Status (1)

Country Link
AT (1) AT516967B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4063091A1 (de) 2021-03-26 2022-09-28 Starlinger & Co Gesellschaft m.b.H. Vorrichtung und verfahren zur wärmebehandlung von thermoplastischen kunststoffschmelzen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4554103B2 (ja) * 2001-03-02 2010-09-29 株式会社日本製鋼所 重量式フィーダの間欠運転制御装置及び方法
JP2011131381A (ja) * 2009-12-22 2011-07-07 Japan Steel Works Ltd:The ロスインウェイト式フィーダ原料充填中の処理量変更方法
AT513443B1 (de) * 2012-09-12 2016-08-15 Next Generation Recyclingmaschinen Gmbh Verfahren und Vorrichtung zum Erhöhen der Grenzviskosität einer Polykondensatschmelze

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4063091A1 (de) 2021-03-26 2022-09-28 Starlinger & Co Gesellschaft m.b.H. Vorrichtung und verfahren zur wärmebehandlung von thermoplastischen kunststoffschmelzen
WO2022200051A2 (de) 2021-03-26 2022-09-29 Starlinger & Co Gesellschaft M.B.H. Vorrichtung und verfahren zur wärmebehandlung von thermoplastischen kunststoffschmelzen

Also Published As

Publication number Publication date
AT516967B1 (de) 2017-07-15

Similar Documents

Publication Publication Date Title
DE112013004438B4 (de) Verfahren zum Erhöhen der Grenzviskosität einer Polykondensatschmelze
EP3274148B1 (de) Anlage sowie verfahren zur behandlung einer kunststoffschmelze
AT511574B1 (de) Verfahren und vorrichtung zum entfernen von verunreinigungen aus einer kunststoffschmelze
EP3817904B1 (de) Verfahren zur herstellung einer polykondensatschmelze aus einem primärmaterial und einem sekundärmaterial
DE19927523A1 (de) Verfahren zur Trennung von polyolefinischen Kunststoffgemischen
WO2022056566A1 (de) Verfahren zur aufbereitung von kunststoffabfällen aus einem polymeren basismaterial
AT516967B1 (de) Anlage sowie Verfahren zur Behandlung einer Kunststoffschmelze
AT403800B (de) Vorrichtung zum kontinuierlichen fördern von schwerfliessenden materialien
AT516968B1 (de) Anlage sowie Verfahren zur Behandlung einer Kunststoffschmelze
WO2006060930A1 (de) Verfahren und vorrichtung zur herstellung von polyester-granulat und/oder -formteilen mit niedrigem acetaldehyd-gehalt
DE10042478B4 (de) Verfahren zum Aufschmelzen von Polymergranulat sowie Abschmelzelement
CH645034A5 (de) Verfahren zum kontinuierlichen herstellen von aus dem trockensubstanzgehalt einer loesung oder suspension gebildetem granulat.
EP2777806B1 (de) Vorrichtung zur herstellung von tropfen aus einem fliessfähigen material
DE3508439A1 (de) Verfahren und vorrichtung zum herstellen von kugeln
WO2000051741A1 (de) Anlage und verfahren zur trennung von stoffgemischen unterschiedlicher dichte
EP2611513B9 (de) Fluidentgasungs-vorrichtung und verfahren zur entgasung von fluiden
EP0279807B1 (de) Verfahren zur Herstellung von hochtemperaturbeständigen Polymerisaten in Pulverform sowie Anlage zur Durchführung des Verfahrens
AT504144A1 (de) Verfahren zur herstellung von zellulosefasern aus einer lösung von zellulose in einem tertiären aminoxid und vorrichtung zur durchführung des verfahrens
DE102015114519A1 (de) Tangential-Separator (TS)
DE1222200B (de) Vorrichtung zum Schmelzspinnen von Polyamiden
WO2019048364A1 (de) Verfahren und vorrichtung zum reinigen einer polymerschmelze
WO2024012631A1 (de) Vorrichtung und verfahren zur herstellung von polymerpartikeln und verwendung von polymerpartikeln als polymerpartikelstandard
DE202021107029U1 (de) Blasfolienanlage
WO2001007692A1 (de) Vorrichtung zur herstellung von viskosestapelfasern