AT506681B1 - Charakterisierung von physiko-chemischen eigenschaften eines feststoffes - Google Patents
Charakterisierung von physiko-chemischen eigenschaften eines feststoffes Download PDFInfo
- Publication number
- AT506681B1 AT506681B1 AT0076208A AT7622008A AT506681B1 AT 506681 B1 AT506681 B1 AT 506681B1 AT 0076208 A AT0076208 A AT 0076208A AT 7622008 A AT7622008 A AT 7622008A AT 506681 B1 AT506681 B1 AT 506681B1
- Authority
- AT
- Austria
- Prior art keywords
- amox
- solid
- calibration
- characterization
- sample
- Prior art date
Links
- 239000007787 solid Substances 0.000 title claims description 32
- 238000012512 characterization method Methods 0.000 title claims description 22
- 239000000126 substance Substances 0.000 title description 17
- 239000002245 particle Substances 0.000 claims description 28
- 238000004497 NIR spectroscopy Methods 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 22
- 238000005259 measurement Methods 0.000 claims description 21
- 239000008194 pharmaceutical composition Substances 0.000 claims description 9
- 239000008247 solid mixture Substances 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 3
- 239000000843 powder Substances 0.000 claims description 3
- 239000008187 granular material Substances 0.000 claims description 2
- 239000003826 tablet Substances 0.000 claims description 2
- 238000001228 spectrum Methods 0.000 description 19
- 230000009102 absorption Effects 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 7
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- LSQZJLSUYDQPKJ-NJBDSQKTSA-N amoxicillin Chemical group C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=C(O)C=C1 LSQZJLSUYDQPKJ-NJBDSQKTSA-N 0.000 description 6
- 229960004920 amoxicillin trihydrate Drugs 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000004480 active ingredient Substances 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 5
- 230000005855 radiation Effects 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 4
- 150000001408 amides Chemical class 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000010191 image analysis Methods 0.000 description 3
- 238000004445 quantitative analysis Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000000862 absorption spectrum Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004138 cluster model Methods 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 238000000513 principal component analysis Methods 0.000 description 2
- 238000004451 qualitative analysis Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000010200 validation analysis Methods 0.000 description 2
- 239000013543 active substance Substances 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- MQXQVCLAUDMCEF-CWLIKTDRSA-N amoxicillin trihydrate Chemical compound O.O.O.C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=C(O)C=C1 MQXQVCLAUDMCEF-CWLIKTDRSA-N 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000005274 electronic transitions Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000000491 multivariate analysis Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 238000005464 sample preparation method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 150000004684 trihydrates Chemical class 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/359—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3563—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/02—Investigating particle size or size distribution
- G01N15/0205—Investigating particle size or size distribution by optical means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N2021/3129—Determining multicomponents by multiwavelength light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/4738—Diffuse reflection, e.g. also for testing fluids, fibrous materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
- G01N21/9508—Capsules; Tablets
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/12—Circuits of general importance; Signal processing
- G01N2201/129—Using chemometrical methods
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
österreichisches Patentamt AT 506681 B1 2010-02-15
Beschreibung
CHARAKTERISIERUNG VON PHYSIKO-CHEMISCHEN EIGENSCHAFTEN EINES FESTSTOFFES
[0001] Die vorliegende Erfindung betrifft ein Verfahren zur Charakterisierung von physikochemischen Eigenschaften eines Feststoffes.
[0002] Die Charakterisierung (Bestimmung) von physiko-chemischen Eigenschaften eines Feststoffes, beispielsweise jene, einer festen pharmazeutischen Zusammensetzung, ist ein wichtiges Anliegen, beispielsweise um eine gleichbleibende Qualität bei der Herstellung des Feststoffes, und, im Pharmabereich, beispielsweise Bioäquivalenz bei der Verabreichung eines festen Wirkstoffes in einer pharmazeutischen Zusammensetzung zu gewährleisten.
[0003] Es ist bekannt, zur Charakterisierung einer chemischen Eigenschaft eines Feststoffes, beispielsweise einer festen pharmazeutischen Zusammensetzung, Nah-Infrarot-Spektroskopie einzusetzen und entsprechende Untersuchungsgeräte befinden sich auf dem Markt.
[0004] Es wurde nun überraschenderweise gefunden, dass mit Hilfe einer einzigen Messung gleichzeitige mehrere Charakterisierungsmerkmale eines Feststoffes ermittelt werden können.
[0005] In einem Aspekt stellt die vorliegende Erfindung ein Verfahren Bestimmung der Charakterisierungsmerkmale Partikelgröße, Porosität und/oder spezifischer Oberfläche einer festen, insbesondere pharmazeutischen, Zusammensetzung unter Verwendung naher Infrarot-Spektroskopie dar, das dadurch gekennzeichnet ist, dass [0006] i) ein Feststoff der Nah-Infrarot-Spektroskopie unterworfen wird, insbesondere dass die feste Zusammensetzung mit monochromatischem Licht bestrahlt und die Transmission, Diffuse Reflexion oder Transflexion, insbesondere die Diffuse Reflexion des Lichtes gemessen wird, [0007] ii) die gemessenen Daten mit Werten aus Kalibrationstabellen, die vor der Bestimmung für oben angegebenen Charakterisierungsmerkmale der festen Zusammensetzung erstellt wurden, verglichen werden, und [0008] iii) aus dem Vergleich die Charakterisierungsmerkmale der festen Zusammensetzung bestimmt werden, [0009] wobei gleichzeitig, insbesondere mit Hilfe einer einzigen Messung, zumindest zwei der oben angegebenen Charakterisierungsmerkmale des Feststoffes ermittelt werden.
[0010] Ein Feststoff gemäß vorliegender Erfindung schließt eine feste Zusammensetzung, beispielsweise eine feste pharmazeutische Zusammensetzung, die zumindest einen Wirkstoff neben zumindest einem Hilfsstoff enthält, ein wobei der Feststoff Tabletten, Pulver oder Granulate umfasst.
[0011] Die Grundlagen der Nah-Infrarot-Spektroskopie (NIRS) sind bekannt. Die Anregung der Moleküle erfolgt in der NIRS in einem Wellenlängenbereich zwischen 780 und 2500 nm bzw. einem Wellenzahlbereich von 4000 bis 12800 cm'1. Dieser Wellenlängenbereich, bzw. Wellenzahlbereich, ist gemäß vorliegender Erfindung bevorzugt.
[0012] So ist in EP 0 760 476 eine Methode für invasive Messungen mittels NIRS an einem tierischen oder menschlichen Gewebe beschrieben.
[0013] Die Energieintensität der Infrarotstrahlung ist zu gering, um die aus der ultravioletten und sichtbaren Strahlung bekannten Arten der elektronischen Übergänge hervorzurufen. Daher beschränkt sich die Absorption infraroter Strahlung weitestgehend auf Moleküle, deren verschiedene Schwingungs- und Rotationszustände nur geringe Energiedifferenzen aufweisen. Voraussetzung für die Absorption von Infrarotstrahlung ist eine Gesamtänderung des Dipolmomentes infolge seiner Schwingungs- oder Rotationsenergie, wodurch es möglich ist, dass das alternierende elektrische Feld der Strahlung mit dem Molekül in Wechselwirkung tritt und eine Veränderung der Amplitude seiner Bewegung hervorruft. Bei geringerer Energiezufuhr als jene, 1/20 österreichisches Patentamt AT506 681 B1 2010-02-15 die für die Schwingungsanregung notwendig ist, können die Moleküle lediglich zur Rotation angeregt werden, d.h. im Bereich des mittleren und nahen Infrarots werden Molekülschwingungen und im fernen Infrarot Molekülrotationen angeregt. Die Absorptionsbanden im Nah-Infrarot (4000 - 12800 cm"1) setzen sich aus Oberschwingungen und Kombinationen von Schwingungszuständen (Grundschwingungen), die im mittleren Infrarot-Bereich angeregt werden, zusammen. Daher sind die entsprechenden Absorptionskoeffizienten von Substanzen im Nah-Infrarot im Allgemeinen um einige Größenordnungen kleiner als die auftretenden Banden im mittleren Infrarot.
[0014] Das Messprinzip in der NIRS ist, dass das, von der Lichtquelle ausgesandte, Licht mit Hilfe eines Monochromators auf die bestimmte Wellenlänge eingestellt wird und die Probe, z.B. ein Feststoff, mit diesem Licht bestrahlt wird, wobei eine Wechselwirkung des Lichtes mit der Probe erfolgt.
[0015] Die Messung kann auf verschiedene Arten erfolgen, sodass es sinnvoll ist, in einem Vorexperiment den besten Meßmodus zu bestimmen.
[0016] -> Meßmodus 1 - Lichtleiter: Der Lichtleiter ist sehr flexibel anwendbar und sowohl für Flüssigkeits- sowie auch für Feststoffbestimmungen einsetzbar.
[0017] -► Meßmodus 2 - Küvette: Mit Hilfe einer Küvette, welche in einen Küvettenkanal eingeführt wird, können nur flüssige Stoffe gemessen werden. Ein Vorteil der Küvette besteht allerdings darin, dass auch relativ kleine Probenvolumina gemessen werden können.
[0018] Zur NIRS Messung können verschiedenen Messtechniken, wie Transmission, diffuse Reflexion, Transflexion angewendet werden.
[0019] Bei der Transmission durchdringt der Lichtstrahl die Probe und wird dabei abgeschwächt. Nach dem Austreten aus der Probe wird der Lichtstrahl detektiert. Diese Technik wird vorwiegend bei Messungen mit einer Küvette angewendet.
[0020] Diffuse Reflexion kommt hauptsächlich bei Pulvern und Feststoffen mit rauer Oberfläche zum Einsatz. Durch diese Art der Reflexion wird ein Teil des einfallenden Lichtes über Oberflächenunebenheiten und aufgrund physikalischer Probeneigenschaften reflektiert. Ein Teil dringt in die Probe ein, wird dort teilweise absorbiert und anschließend durch Streuprozesse im Inneren wieder an die Oberfläche reflektiert.
[0021] Als Transflexion bezeichnet man eine Kombination aus Transmission und diffuser Reflexion. Die Probe wird vom Lichtstrahl durchdrungen und anschließend diffus reflektiert. Der abgeschwächte Lichtstrahl durchdringt die Probe erneut und gelangt so wieder durch den Lichtleiter zum Detektor.
[0022] Gemäß vorliegender Erfindung wird bevorzugt die Transmission, Diffuse Reflexion oder Transflexion, insbesondere die Diffuse Reflexion des Lichtes gemessen.
[0023] Vor der eigentlichen NIRS Messung ist es empfehlenswert, eine geeignete Probenvorbereitungsmethode auszuarbeiten, um maximale Präzision und Reproduzierbarkeit der darauffolgenden spektroskopischen Messung zu ermöglichen.
[0024] Beispielsweise bei der NIRS Messung verschiedener fester Zusammensetzungen von Amoxicillin Trihydrat, wie sie als Arzneimittel angewendet werden, wurde gefunden, dass Parti-kelagglomerate vorliegen können, was Messfehler bzw. Fehlinterpretationen bezüglich der zu bestimmenden Parameter, zur Folge haben kann.
[0025] In einem solchen Fall empfiehlt es sich daher, die festen Zusammensetzungen in einem Nicht-Lösungsmittel zu suspendieren. Im Falle von Amoxicillin Trihydrat hat sich als Nicht-Lösungsmittel Chloroform, das im Nah-Infrarotbereich nur geringe Eigenabsorptionen aufweist als besonders geeignet herausgestellt, wobei die Messung in diffuser Reflexion erfolgte.
[0026] Gemäß vorliegender Erfindung wird die durch die NIRS erhaltene Information verwendet, um mit Hilfe mathematischer, statistischer, multivariater Methoden und der Chemometrie (chemometrische Softwaretools) ein qualitatives und quantitatives Modell des Feststoffes zu 2/20 österreichisches Patentamt AT506 681 B1 2010-02-15 erstellen.
[0027] Gemäß vorliegender Erfindung werden gleichzeitig zumindest zwei, beispielsweise drei oder mehr Charakterisierungsmerkmale des Feststoffes ermittelt, wobei physiko-chemische Eigenschaften von Feststoffen chemische und physikalische Charakterisierungsmerkmale umfassen beispielsweise physikalische Charakterisierungsmerkmale, beispielsweise zwei, insbesondere drei, physikalische Charakterisierungsmerkmale, wie Partikelgrösse, spezifische Oberfläche und Porosität. Die Bestimmung physikalischer Charakterisierungsmerkmale gemäß vorliegender Erfindung kann nach geeigneten, z.B. bekannten Methoden erfolgen, oder wie hierin beschrieben, wobei vorzugsweise aber mindestens zwei, insbesondere drei, physikalische Charakterisierungsmerkmale gleichzeitig bei einer einzigen NIRS-Messung ermittelt werden.
[0028] Gemäss vorliegender Erfindung umfasst ein chemisches Charakterisierungsmerkmal des Feststoffes eine qualitative und quantitative Bestimmung des Wirkstoffes, eine qualitative und quantitative Bestimmung des Restlösungsmittelgehaltes, insbesondere des Wassergehaltes und, im Falle einer festen pharmazeutischen Zusammensetzung zusätzlich eine qualitative und quantitative Bestimmung deren Gesamtzusammensetzung.
[0029] Die Bestimmung solcher chemischer Charakterisierungsmerkmale gemäß vorliegender Erfindung kann mit Hilfe geeigneter Methoden, beispielsweise gemäß bekannter Methoden erfolgen, wobei in einer Ausführungsform der Erfindung mindestens zwei chemische Charakterisierungsmerkmale gleichzeitig bei einer einzigen NIRS-Messung ermittelt werden.
[0030] In einer andern Ausführungsform der vorliegenden Erfindung werden zumindest ein chemisches und zumindest ein physikalisches Charakterisierungsmerkmal mit Hilfe einer einzigen Messung ermittelt (bestimmt).
[0031] Gemäß vorliegender Erfindung werden neben der Nah-Infrarot-Spektroskopie mathematische, statistische und multivariate Methoden und chemometrische Softwaretools zur Bestimmung der Charakterisierungsmerkmale eingesetzt.
[0032] Die Kombination von NIRS mit mathematischen, statistischen und multivariaten Methoden und chemometrischer Softwaretools kann nach geeigneten Methoden erfolgen, z.B. computertechnisch. Dazu können anhand bekannter und gemessener Werte erst Kalibrationstabellen, qualitative und quantitative, die den verschiedenen Charakterisierungsmerkmalen des Feststoffes entsprechen, erstellt werden, die dann als Grundlage für die Bestimmung unbekannter Proben mittels Vergleichs der jeweils gemessenen Werte dienen.
[0033] Die NIRS einer Probe und deren Auswertung gemäß einer Ausführungsform der vorliegenden Erfindung ist beispielsweise in Fig. 1 schematisch dargestellt.
[0034] Dabei wird von der Lichtquelle (Light Source) ausgesandtes Licht, mit Hilfe eines Monochromators auf die bestimmte Wellenlänge eingestellt und es erfolgt die Bestrahlung und Wechselwirkung mit der Probe (Sample). Es erfolgt die Messung sowohl des durchgestrahlten, als auch des diffus reflektierten Lichtes mit Hilfe entsprechender Detektoren (Detector Transmit-tance, Detector Diffuse Reflectance). Die im durchgestrahlten bzw. reflektierten Licht enthaltene physiko-chemische Information wird verwendet, um mit Hilfe mathematischer, statistischer, multivariater Methoden (Multivariate Data Analysis) und der Chemometrie (Chemometrics) (Determination of Physico-chemical Parameters) qualitative und quantitative Angaben über physikalische und chemische Eigenschaften (Physical, Chemical Properties) der Probe (Sample) zu bestimmen.
[0035] Ein Verfahren gemäß vorliegender Erfindung wird außerhalb eines lebenden Organismus (nicht invasiv) durchgeführt.
[0036] Gemäss vorliegender Erfindung kann man im Rahmen der quantitativen Analyse neben der Partikelgröße auch noch die spezifische Oberfläche simultan bestimmen, was mit der Bildanalyse nicht möglich ist. Weiters kann man, falls gewünscht, gemäss vorliegender Erfindung noch andere Parameter simultan bestimmen. 3/20 österreichisches Patentamt AT506 681 B1 2010-02-15 [0037] Ein weiterer Vorteil der erfindungsgemäßen Methode stellt die Möglichkeit dar, in Rahmen einer einzigen durchgeführten Messung gleichzeitig auch eine qualitative Analyse durchzuführen.
[0038] Außerdem kann mit Hilfe eines Verfahrens gemäß vorliegender Erfindung im Routinebetrieb durch die Verkürzung des Arbeitsaufwandes eine drastische Kostensenkung erreicht werden.
ABBILDUNGEN
[0039] Fig. 1 zeigt die NIRS einer Probe und deren Auswertung gemäß einer Ausführungsform der vorliegenden vorliegender Erfindung.
[0040] Fig. 2 zeigt ein Nah-Infrarot Absorptionsspektrum des Amoxicillin Trihydrat (Wellenzahl in cm"1 gegen Absorption).
[0041] In Fig. 2 bedeuten
[0042] 1:: Chemische Formel Ci6H19N305S
HO
[0043] 2: v aromatisches CH sym. + asym. + v aromatisches C-C
[0044] 3: v aromatisches CH + δ aromatisches CH
[0045] 4: v NH + δ CH
[0046] 5: v OH + v aromatisches C-C
[0047] 6: v CH + v CO
[0048] 7: 2x Amid I + Amid III
[0049] 8: v NH sym. + Amid III
[0050] 9: v OH + δ OH
[0051] 10: v OH + δ CH
[0052] 11: CH Dehnung erste Oberschwingung [0053] 12. NH Dehnung erste Oberschwingung [0054] 13. CH Dehnung zweite Oberschwingung [0055] Fig. 3 zeigt in einem zweidimensionalen Faktorplot die ersten beiden Hauptkomponenten (PC 1, PC 2) welche die 2 einflussreichsten Unterscheidungsmerkmale der Proben gemäß Tabelle 1 im Beispiel widerspiegeln.
[0056] In Fig. 3 bedeuten [0057] 14:: AMOX-Ill (Amox. TH, Spez, O.: 2,0 m2/g, x(50,3) =17,1 pm) [0058] 15: AMOX-II (Amox. TH, Pulv., Spez, O.: 2,7 m2/g, x(50,3) = 16,1 pm) [0059] 16: AMOX-V (Amox. TH, Antibioticos., Spez, O.: 1,8 m2/g, x(50,3) = 29,0 pm) [0060] 17: AMOX-IV (Amox. TH, Antobioticos gemahlen, Spez. O: 2,4 m2/g, x(50,3) = 19,5 pm) 4/20 österreichisches Patentamt AT506 681 B1 2010-02-15 [0061] 18: AMOX-I (Amox. TH (Oman), Spez. 0: 2,8 m2/g, x(50,3) = 8,7 pm) [0062] Fig. 4 zeigt einen 2D-Faktor Plot jede Probe gemäß Tabelle 1 im Beispiel (Darstellung in einem unabhängigen Cluster) [0063] Fig. 5 zeigt ein Regressionsmodell zur Bestimmung der Partikelgröße und zeigt die geringe Abweichung von der gemäß der Kalibravorhergesagten Partikelgröße zur, gemäß vorliegender Erfindung ermittelten Partikelgröße.
[0064] Fig. 6 zeigt ein Regressionsmodell zur Bestimmung der spezifischen Oberfläche und zeigt eine Abweichung von der vorhergesagten spezifischen Oberfläche zur, gemäß vorliegender Erfindung ermittelten spezifischen Oberfläche.
[0065] Fig. 7 zeigt ein erstelltes Kalibrationsmodell anhand der ermittelten x(50,3) Partikelgrößen von 3 Fraktionen (sehr fein, fein und grob) des AMOXI-Ill.
[0066] Fig. 8 zeigt das Einmessen 6 unbekannter Proben in ein Kalibrationsmodell gemäß Fig. 7.
[0067] Im folgenden Beispiel wird die vorliegende Erfindung anhand des Wirkstoffes Amoxicllin Trihydrat, das in verschiedenen festen, pharmazeutischen Zusammensetzung vorliegt, wobei die Partikelgrösse und die spezifische Oberfläche der Partikel anhand einer einzigen NIRS Messung bestimmt wird, erläutert.
BEISPIEL
1. PROBEN
[0068] Fünf verschiedene, feste pharmazeutische Zusammensetzungen, die als Wirkstoff Amoxicillin Trihydrat (AMOX-I bis AMOX-V) enthalten, werden der Nah-Infrarot-Spektroskopie unterworfen.
[0069] Die Proben weisen die in Tabelle 1 angegebenen, Referenzwerte auf.
[0070] In Tabelle 1 ist „x(5o,3) pm" (in den Abbildungen auch als "x(50,3)" bezeichnet) ein Maß für die Partikelgrösse in pm, in der 80 % der Partikel die Partikelgrössenverteilung aufweisen, die unter „80 % pm" und 68 % der Partikel die Partikelgrössenverteilung aufweisen, die unter „68 % pm" in Tabelle 1 angeführt ist; und [0071] "Spez. OF m2/g" ist die spezifische Oberfläche der Partikel in m2 pro g. TABELLE 1
Probe Xso,3 pm 80 % pm 68 % pm Spez. OF m2/g AMOX-I 8,7 5,6-11,9 6,3-11,2 2,871 AMOX-II 16,1 9,5-22,8 11,0-21,3 2,491 AMOX-I II 17,1 9,7 - 24,4 11,3-22,8 2,409 AMOX-IV 29,0 17,5-40,5 20,1 -37,9 1,792 AMOX-V 19,6 8,4-30,7 10,9-28,2 [0072] Die Proben werden in Chloroform suspendiert, die erhaltenen Suspensionen werden jeweils über einen definierten Zeitraum getrocknet und mit monochromatischem Licht einer Wellenlänge, die dem Nah-Infrarot entsprucht, bestrahlt. Die Messung wird mittels eines horizontalen Probenmesstisches in Diffuser Reflexion durchgeführt.
2. AUSWERTUNG DER ERHALTENEN MESSWERTE
[0073] Es wird sowohl ein qualitatives als auch ein quantitatives Modell erstellt. Dabei soll das qualitative Modell eine Bestätigung dafür liefern, dass das ausgewählte und etablierte Analy- 5/20 österreichisches Patentamt AT506 681 B1 2010-02-15 sensystem eine exakte Differenzierung verschiedener Partikelgrößen ermöglicht. Die präzise Bestimmung der Partikelgrössen erfolgt schließlich anhand des quantitativen Modells.
2.A QUALITATIVES MODELL UND QUALITATIVE ANALYSE
[0074] Qualitative Untersuchungen werden verwendet, um die vorhandenen physikalischen Unterschiede der Proben zu ermitteln und die Charakteristika der Nah-Infrarot Spektren durch Zuordnung der auftretenden Absorptionsbanden zu interpretieren. Fig. 2 zeigt ein Infrarot Absorptionsspektrum des Amoxicillin Trihydrat.
[0075] Es wird mit Hilfe chemometrischer Software ein Clustermodell, welches auf Hauptkomponentenanalyse (PCA) basiert, erstellt. Dieses Modell ermöglicht eine Differenzierung und Klassifizierung der Proben. Bevor Proben quantifiziert werden, wird festgestellt, ob und in welcher Weise sich die Proben voneinander unterscheiden bzw. ein Zusammenhang sichtbar ist.
[0076] Der zweidimensionale Faktorplot in Fig. 3 zeigt die ersten beiden Hauptkomponenten (PC 1, PC 2) welche die 2 einflussreichsten Unterscheidungsmerkmale der Proben widerspiegeln. Anhand PC 1 kann eine Aussage bezüglich der spezifischen Oberflächen gemacht werden, d.h. von links nach rechts nimmt die spezifische. Oberfläche (Spez. OF m2/g) der einzelnen Proben zu.
[0077] Weiters kann jede Probe in einem unabhängigen Cluster dargestellt werden (Fig. 4), was wiederum zeigt, dass ausreichende spektrale Unterschiede der gemessenen Proben auftreten.
[0078] Daraus resultiert, dass jede Probe ein charakteristisches Spektrum aufweist. Anhand dieses Modells könnten nun unbekannte Proben klassifiziert werden. Der Q-Wert gibt die Güte der Kalibration an, d.h. wenn Q = 1 kann man davon ausgehen dass das Modell sehr präzise und robust ist. Für das im vorliegenden Fall berechnete Clustermodell wurde ein Q-Wert von 0.955664 erreicht, was für die hohe Güte des Modells steht.
[0079] Die Kalibrierparameter für die qualitative Analyse sind wie folgt: [0080] Spectra Resolution [0081] Spectra y-Unit [0082] Wavelengths Project Set [0083] Wavelengths Calibration Set [0084] Number of Data Pretreatments [0085] Data Pretreatment Sequence [0086] Method [0087] Max Iterations [0088] Mean Centering [0089] Number of Primary Factors [0090] Secondary/Calibration Factors [0091] Residual Blow Up [0092] Loading Blow Up [0093] Radii Blow Up [0094] Radii Formula [0095] Max C-Set Spectra Residual [0096] Min C-Set Spectra Residual 12 1/cm Reflectance 4008-9996. (total 500/500) 4008-9996 [1/cm] (total 500/500) 1 1. Normalization by Closure*, 4008-9996
Cluster 3000 yes 2 1-2. (total 2/2) 2 1 2 2 0.00252629 0.000922151 [0097] Validation Parameter Residual Blow Up 2 6/20 österreichisches Patentamt AT506 681 B1 2010-02-15 [0098] Max Allowed Residual for Calibration 0.00505259 [0099] Min Allowed Residual for Calibration 0.000461075 [00100] Q-Value 0.955664 [00101] und weiterhin in Tabelle 2 angeführt. TABELLE 2
Property OverView Num Cluster C num Spec V num Spec U num Spec Total Sum 5 32 16 2 AMOX-I 1 6 4 0 AMOX-V 1 7 3 0 AMOX-IV 1 6 3 1 AMOX-II 1 7 3 0 AMOX-I II 1 6 3 1
2.B QUANTITATIVES MODELL UND QUANTITATIVE ANALYSE
[00102] Mit den vorhandenen Referenzwerten werden quantitative Kalibrationsmodelle erstellt, jedes Spektrum wird also mit den dazugehörigen Referenzwerten „verknüpft". Das sogenannte Kalibrationsset (Spektren, welche für die Kalibrierung verwendet werden) wird durch ein unabhängiges zweites Testset (Spektren welche zum Testen der Kalibrierung verwendet werden) validiert, um die Güte (Genauigkeit, Robustheit) des Modells zu prüfen. Für die Partikelgrössenkalibrierung wird der x50,3 Wert herangezogen, da die Partikelgrössen in einem relativ großen Bereich streuen. Für die Kalibrierung kann nur ein Wert herangezogen werden. Für die Partikelgrössenbestimmung wurde ein geringer Vorhersagefehler (SEP) von 0.597033 pm [siehe Fig. 5) erzielt und für die Bestimmung der spez. Oberfläche ein SEP von 0.0131379 nrr/g (siehe Abb. 6).
[00103] Die Kalibrierparameter für die quantitative Analyse sind in Tabelle 3 angegeben. TABELLE 3
Spectra Resolution 12 1/cm Spectra y-Unit Reflectance Wavelengths Project Set 4008-9996. (total 500/500) Wavelengths Calibration Set 4440-9000. [1/cm] (total 381/500) Number of Data Pretreatments 1 Data Pretreatment Sequence 1. Normalization by Closure*. 4440-9000 Method PCR Max Iteractions 3000 Mean Centering yes Number of Primarv Factors 13 Secondary/Calibration Factors 1-5 (total 5/13) Blow Up Parameter Residual Blow Up 2 7/20 AT506 681 B1 2010-02-15 österreichisches
Patentamt
Loading Blow Up 1 Max C-Set Spectra Residual 0.000488967 Min C-Set Spectra Residual 0.000231276 Validation Parameter Residual Blow Up 2 Max Allowed Residual of Claibration 0.000977934 Min Allowed Residual of Calibration 0.000115638 Q-Value 0.91736 x(50,3) Spez. Oberfläche C-Set Bl AS -7.35E-14 4.02E-16 V-Set Bl AS -0.281336 0.00474587 C-Set SEE 0.595439 0.00868188 V-Set SEE (SEP) 0.597033 0.0131379 Consistency 99.7329 66.0827 C-Set Regression Coefficient 0.995733 0.999748 V-Set Regression Coefficient 0.996558 0.999481 C-Set Regression Intercept 0.153812 0.00118507 V-Set Regression Intercept 0.792677 -0.0118856 C-Set Regression Slope 0.991484 0.999496 V-Set Regression Slope 0.97077 1.00301 [00104] Im Falle der spez. Oberfläche konnte ein präzises, lineares Modell berechnet werden, im Gegensatz dazu lässt ein relativ hoher SEP viel Spielraum bezüglich präziser Partikelgrössenvorhersagen aufgrund eines sehr weiten Streubereichs der Referenzwerte. Von den jeweiligen Proben wurden nach Erstellung der Kalibrationsmodelle nochmals Suspensionen angefertigt und in die Modelle „eingemessen“, um die Vorhersagegenauigkeit bezüglich Partikelgrössenvorhersagen zu prüfen; Ergebnisse für die Kalibrationsspektren siehe Tabelle 4. Ergebnisse für Testspektren siehe Tabelle 5. TABELLE 4
Spectra name Predicted Oric inal No. Residual x(50,3) Spez. OF x(50,3) Spez. OF AMOX-V 1 0.0004327 19.0577 2.389 19.5 2.4 AMOX-V 2 0.0004014 19.6101 2.3878 19.5 2.4 AMOX-V 3 0.0004379 19.3625 2.3966 19.5 2.4 AMOX-V 4 0.0007138 19.1877 2.3928 19.5 2.4 AMOX-V 5 0.0004694 19.9505 2.3985 19.5 2.4 AMOX-V 6 0.0003877 19.2335 2.4028 19.5 2.4 AMOX-V 7 0.0007579 18.6182 2.4072 19.5 2.4 AMOX-V 8 0.000412 19.5954 2.4034 19.5 2.4 AMOX-V 9 0.0003869 18.5579 2.4189 19.5 2.4 AMOX-V 10 0.0007138 19.1412 2.4156 19.5 2.4 8/20 österreichisches Patentamt AT506 681 B1 2010-02-15
Spectra name Predicted Oric inal No. Residual x(50,3) Spez. OF x(50,3) Spez. OF AMOX-IV 11 0.0009231 25.1817 1.7961 29 1.8 AMOX-IV 12 0.0002313 27.1728 1.7997 29 1.8 AMOX-IV 13 0.0007996 29.2928 1.7856 29 1.8 AMOX-IV 14 0.0002968 28.3608 1.8037 29 1.8 AMOX-IV 15 0.0002672 29.9933 1.7918 29 1.8 AMOX-IV 16 0.0008211 29.1793 1.8107 29 1.8 AMOX-IV 17 0.0003861 29.3019 1.8033 29 1.8 AMOX-IV 18 0.0003049 29.6043 1.8039 29 1.8 AMOX-IV 19 0.0007938 29.4378 1.8025 29 1.8 AMOX-IV 20 0.0003865 29.5728 1.8028 29 1.8 AMOX-Ill 21 0.0007949 18.6243 1.9412 17.1 2 AMOX-Ill 22 0.0007228 17.9997 1.9656 17.1 2 AMOX-Ill 23 0.0003941 18.0071 1.9775 17.1 2 AMOX-Ill 24 0.0004826 17.2519 1.9891 17.1 2 AMOX-Ill 25 0.0007027 17.789 1.9846 17.1 2 AMOX-Ill 2.60E+01 4.88E-04 16.858 2.0094 17.1 2 AMOX-Ill 27 0.0004127 17.1729 2.0014 17.1 2 AMOX-Ill 28 0.0006583 18.1145 1.9925 17.1 2 AMOX-Ill 29 0.0004589 16.7933 2.0102 17.1 2 AMOX-Ill 30 0.0004542 17.0256 2.0098 17.1 2 AMOX-I 31 0.0006506 9.4331 2.7775 8.7 2.8 AMOX-I 32 0.000489 8.4475 2.7973 8.7 2.8 AMOX-I 33 0.0004644 8.2963 2.8042 8.7 2.8 AMOX-I 34 0.0006379 9.4711 2.792 8.7 2.8 AMOX-I 35 0.0004736 8.324 2.8095 8.7 2.8 AMOX-I 36 0.0003338 9.6727 2.7908 8.7 2.8 AMOX-I 37 0.000601 9.6265 2.795 8.7 2.8 AMOX-I 38 0.000392 9.0399 2.8018 8.7 2.8 AMOX-I 39 0.0004578 9.4636 2.7925 8.7 2.8 AMOX-I 40 0.0006073 9.5093 2.795 8.7 2.8 AMOX-I I 41 0.0004849 16.091 2.6973 16.1 2.7 AMOX-I I 42 0.000393 15.7236 2.6988 16.1 2.7 AMOX-I I 43 0.0005896 16.1334 2.6943 16.1 2.7 AMOX-I I 44 0.0004064 16.848 2.6869 16.1 2.7 9/20 AT506681 B1 2010-02-15 österreichisches
Patentamt
Spectra name Predicted Oric inal No. Residual x(50,3) Spez. OF x(50,3) Spez. OF AMOX-II 45 0.0004353 16.2314 2.7001 16.1 2.7 AMOX-II 46 0.0005588 15.9229 2.7015 16.1 2.7 AMOX-II 47 0.0003961 15.6978 2.7022 16.1 2.7 AMOX-II 48 0.0004208 15.9795 2.7062 16.1 2.7 AMOX-II 49 0.0005603 15.5448 2.7118 16.1 2.7 AMOX-II 50 0.0004833 15.7022 2.7129 16.1 2.7 TABELLE 5
Spectra name Predicted Original No. Residual x(50,3) Spez. OF x(50,3) Spez. OF AMOX-V 51 0.0010663 16.732 2.4108 0 0 AMOX-V 52 0.0011755 16.7647 2.4052 0 0 AMOX-V 53 0.0010522 17.2179 2.396 0 0 AMOX-II. 54 0.0010074 19.0514 2.6152 0 0 AMOX-II. 55 0.0009163 19.0026 2.6176 0 0 AMOX-II 56 0.0010531 19.4773 2.6073 0 0 AMOX-Ill 57 0.0009268 13.9986 2.1036 0 0 AMOX-Ill 58 0.0010453 14.7551 2.1031 0 0 AMOX-Ill 59 0.0011162 13.7514 2.1219 0 0 AMOX-IV 60 0.0013135 20.8677 2.0082 0 0 AMOX-IV 61 0.0012667 21.7486 2.0142 0 0 AMOX-IV 62 0.0012254 20.8216 2.0248 0 0
2.C VERGLEICH DER QUANTITATIVEN NIRS-ANALYSE MIT DEN ERGEBNISSEN DER BILDANALYSE
[00105] Vergleicht man die erhaltenen NIRS Ergebnisse von anderen Amoxycillin Trihydrat Proben mit jenen Ergebnissen, die aus der bildgebenden Analyse gemäß dem Stand der Technik erhalten werden, stellt man fest, dass die x(50,3)-Werte sehr gut übereinstimmen, wie aus Tabelle 6 ersichtlich ist. TABELLE 6
Probennummer NIRS-Werte Bildanalyse x(50,3) x(50,3) 80% von bis AMOX-VI 15.8 11.7 5 18.4 AMOX-VII 9.7 9.2 3.1 15.2 AMOX-VI II 17.2 10.9 4.7 17.2 AMOX-IX 6.5 11.7 5 18.4 AMOX-X 22.7 21.0 10.5 31.4 AMOX-XI 21.5 26.3 12.1 40.4 10/20 österreichisches Patentamt AT506 681 B1 2010-02-15
2.D WEITERE UNTERSUCHUNGEN BETREFFEND DIE PARTIKELGRÖSSE
[00106] Aufgrund der zu ungenauen Partikelgrössenreferenzwerte werden für diese Untersuchungen verschiedene erhaltene Partikelgössenfraktionen einkalibriert. Dies hat den Vorteil, dass genauere Referenzwerte zur Verfügung stehen und somit auch ein präziseres Kalibrationsmodell entwickelt werden kann.
[00107] Für die Kalibrierung verwendete Proben: [00108] AMOX-III -> Fraktion sehr fein [00109] AMOX-III -» Fraktion fein [00110] AMOX-III -»· Fraktion grob [00111] Die jeweiligen Fraktionen werden in CHCI3 suspendiert, anschließend wird die Suspension getrocknet und analysiert. Es kann dabei eine sehr präzise Kalibrierung erstellt werden, siehe z.B. Fig. 7.
[00112] Mit Hilfe der Kalibrierung gelingt in weiterer Folge die Bestimmung unbekannter Proben (AMOX-VI bis AMOX-XI), die verschiedene feste pharmazeutische Zusammensetzungen mit Amoxicillikn Trihydrat als Wirkstoff darstellen. Ergebnisse siehe Fig. 8 und Tabelle 7. TABELLE 7
Spectra Name Outlier Outlier Outlier Predicted No Residual Residual Loading Property Partikelgröße [pml AMOX-VI 1 0.1575873 X X 15.7941 AMOX-VI I 2 0.1820489 X X 9.7166 AMOX-VI II 3 0.4071692 X X 17.2138 AMOX-IX 4 0.0681675 X X X 6.4518 AMOX-X 5 0.153371 X X 22.6597 AMOX-XI 6 0.1141766 X X 21.4794 [00113] Gemäß Fig. 7 konnte somit ein sehr präzises Vorhersagemodell berechnet werden. Um das Modell unter realen Bedingungen zu testen wurden 6 unbekannte Proben in das Modell eingemessen. Ein Vorhersagefehler (SEP) von nur 0.174401 pm zeigt die Vorhersagegenauigkeit des Modells bezüglich unbekannter Proben. Durch genauere Angaben der Partikelgrössenreferenzwerte konnte in diesen Untersuchungen der SEP im Vergleich zu den vorherigen Untersuchungen von 0.597033 pm auf 0.174401 pm verringert werden. 11 /20
Claims (4)
- österreichisches Patentamt AT506 681 B1 2010-02-15 Patentansprüche 1. Verfahren zur Bestimmung der Charakterisierungsmerkmale Partikelgröße, Porosität und/oder spezifischer Oberfläche einer festen, insbesondere pharmazeutischen, Zusammensetzung unter Verwendung naher Infrarot-Spektroskopie, dadurch gekennzeichnet, dass i) ein Feststoff der Nah-Infrarot-Spektroskopie unterworfen wird, insbesondere dass die feste Zusammensetzung mit monochromatischem Licht bestrahlt und die Transmission, Diffuse Reflexion oder Transflexion, insbesondere die Diffuse Reflexion des Lichtes gemessen wird, ii) die gemessenen Daten mit Werten aus Kalibrationstabellen, die vor der Bestimmung für oben angegebenen Charakterisierungsmerkmale der festen Zusammensetzung erstellt wurden, verglichen werden, und iii) aus dem Vergleich die Charakterisierungsmerkmale der festen Zusammensetzung bestimmt werden, wobei gleichzeitig, insbesondere mit Hilfe einer einzigen Messung, zumindest zwei der oben angegebenen Charakterisierungsmerkmale des Feststoffes ermittelt werden.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine feste, pharmazeutische Zusammensetzung Tabletten, Pulver und Granulate umfasst.
- 3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass in einem Wellenlängenbereich von 780 nm bis 2500 nm gemessen wird.
- 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Verfahren außerhalb eines lebenden Organismus (nicht invasiv) durchgeführt wird. Hierzu 8 Blatt Zeichnungen 12/20
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT0076208A AT506681B1 (de) | 2008-05-13 | 2008-05-13 | Charakterisierung von physiko-chemischen eigenschaften eines feststoffes |
US12/992,561 US20110260063A1 (en) | 2008-05-13 | 2009-05-13 | Characterization of physicochemical properties of a solid |
PCT/AT2009/000195 WO2009137855A1 (de) | 2008-05-13 | 2009-05-13 | Charakterisierung von physiko-chemischen eigenschaften eines feststoffes |
EP09745277A EP2281184A1 (de) | 2008-05-13 | 2009-05-13 | Charakterisierung von physiko-chemischen eigenschaften eines feststoffes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT0076208A AT506681B1 (de) | 2008-05-13 | 2008-05-13 | Charakterisierung von physiko-chemischen eigenschaften eines feststoffes |
Publications (2)
Publication Number | Publication Date |
---|---|
AT506681A1 AT506681A1 (de) | 2009-11-15 |
AT506681B1 true AT506681B1 (de) | 2010-02-15 |
Family
ID=40912298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AT0076208A AT506681B1 (de) | 2008-05-13 | 2008-05-13 | Charakterisierung von physiko-chemischen eigenschaften eines feststoffes |
Country Status (4)
Country | Link |
---|---|
US (1) | US20110260063A1 (de) |
EP (1) | EP2281184A1 (de) |
AT (1) | AT506681B1 (de) |
WO (1) | WO2009137855A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101957311A (zh) * | 2010-09-13 | 2011-01-26 | 北京中医药大学 | 一种素片干燥过程的定性分析方法 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013150290A1 (en) * | 2012-04-05 | 2013-10-10 | Renishaw Diagnostics Limited | A method for calibrating spectroscopy apparatus and equipment for use in the method |
US9820943B2 (en) * | 2013-09-03 | 2017-11-21 | Dsm Sinochem Pharmaceuticals Netherlands B.V. | Micronized amoxicillin |
DE102015109263A1 (de) * | 2015-06-11 | 2016-12-15 | Thilo Kraemer | Messsystem zur Qualitätsüberwachung von Prüflingen |
CN109738342B (zh) * | 2019-03-18 | 2022-02-18 | 山东金璋隆祥智能科技有限责任公司 | 一种基于近红外光谱技术检测粒度分布的方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2150917B (en) * | 1983-12-07 | 1986-08-28 | Ranks Hovis Mcdougall Plc | Sampling and testing particulate material |
JPS6311841A (ja) * | 1986-03-20 | 1988-01-19 | Satake Eng Co Ltd | 米の食味評価装置 |
IE65900B1 (en) * | 1988-10-15 | 1995-11-29 | Satake Eng Co Ltd | Apparatus for evaluating quality of raw coffee beans |
DE102004008321B3 (de) * | 2004-02-20 | 2005-11-17 | Fette Gmbh | Verfahren und Vorrichtung zur Qualitätsüberwachung bei der Herstellung von Tabletten |
-
2008
- 2008-05-13 AT AT0076208A patent/AT506681B1/de not_active IP Right Cessation
-
2009
- 2009-05-13 WO PCT/AT2009/000195 patent/WO2009137855A1/de active Application Filing
- 2009-05-13 EP EP09745277A patent/EP2281184A1/de not_active Withdrawn
- 2009-05-13 US US12/992,561 patent/US20110260063A1/en not_active Abandoned
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101957311A (zh) * | 2010-09-13 | 2011-01-26 | 北京中医药大学 | 一种素片干燥过程的定性分析方法 |
Also Published As
Publication number | Publication date |
---|---|
AT506681A1 (de) | 2009-11-15 |
WO2009137855A1 (de) | 2009-11-19 |
EP2281184A1 (de) | 2011-02-09 |
US20110260063A1 (en) | 2011-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE602005003592T2 (de) | Vorrichtung und Verfahren für spektrophotometrische Analyse | |
EP0800074B1 (de) | Vorrichtung und Verwendung einer Vorrichtung zur Bestimmung der Konzentration von Hämoglobinderivaten in einer unverdünnten, unhämolysierten Vollblutprobe | |
DE69129751T2 (de) | Messung von spektraldaten und korrektion | |
DE60037437T2 (de) | Optimierung einer lichtleitersonde für spektroskopische messungen | |
EP1982159B1 (de) | Messvorrichtung zur bestimmung der grösse, grössenverteilung und menge von partikeln im nanoskopischen bereich | |
EP3481275B1 (de) | Verfahren und vorrichtung zum ermitteln eines schädigungsgrads von haar und verfahren zum ermitteln eines nutzerspezifischen mittels zur haarbehandlung | |
EP3051272B1 (de) | Verfahren und automatisches analysegerät zur bestimmung von lipiden und anderen störsubstanzen in körperflüssigkeitsproben | |
EP1965193B1 (de) | Verfahren und Vorrichtung zur Ermittlung des Alkoholgehaltes von Flüssigkeiten | |
AT506681B1 (de) | Charakterisierung von physiko-chemischen eigenschaften eines feststoffes | |
DE60029343T2 (de) | Verfahren und vorrichtung zum kontrollieren der herstellungsqualität einer bewegten bahn | |
DE69505141T2 (de) | Verfahren zur kontrolle der konzentration einer lösung aus einem lösungsmittel und einem polymer | |
WO2005068953A1 (de) | Verfahren zur bestimmung der farbwahrnehmung bei mehrschichtsystemen | |
EP1635698B1 (de) | Verfahren zur quantitativen Analyse von Lösungen und Dispersionen mittels Nahinfrarot-Spektroskopie | |
DE69630369T2 (de) | Verfahren zur eichung eines oximeters und zur meldung der ergebnisse | |
DE3938142C2 (de) | ||
EP2635882B1 (de) | Verfahren zur bestimmung von chemischen bestandteilen von festen oder flüssigen stoffen mithilfe von thz-spektroskopie | |
DE102008039836B4 (de) | Vorrichtung und Verfahren zur Bestimmung des Säuregehalts | |
DE102013217157A1 (de) | Analyseverfahren zur Ermittlung der Typen und Konzentrationen biologischer Partikel | |
DE69529164T2 (de) | Verfahren zur neutralisation von säuren in einer polymerlösung | |
DE19960586B4 (de) | Verfahren und Einrichtung zur Messung von Kenngrössen einer Probe durch Spektralanalyse | |
DE102012007190B4 (de) | Verfahren und Vorrichtung zur Bestimmung der Konzentrationsverteilung von einer oder mehreren Substanzen in einer Probe | |
DE19831424C2 (de) | Spektroskopisches Verfahren zur Bestimmung der Konzentration eines in einem streuenden Medium verteilten Stoffes | |
DE102019105668B4 (de) | Verfahren und messgerät zum messen einer suspension | |
DE102013219932B4 (de) | Optische Messvorrichtung und Messverfahren | |
WO2024068791A1 (de) | Verfahren zur bestimmung eines schutzfaktors eines hautschutzmittels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM01 | Lapse because of not paying annual fees |
Effective date: 20130531 |