AT503729B1 - Parallelkinematik, insbesondere hubroboter - Google Patents

Parallelkinematik, insbesondere hubroboter Download PDF

Info

Publication number
AT503729B1
AT503729B1 AT16952004A AT16952004A AT503729B1 AT 503729 B1 AT503729 B1 AT 503729B1 AT 16952004 A AT16952004 A AT 16952004A AT 16952004 A AT16952004 A AT 16952004A AT 503729 B1 AT503729 B1 AT 503729B1
Authority
AT
Austria
Prior art keywords
platform
rods
triple point
point
movable platform
Prior art date
Application number
AT16952004A
Other languages
English (en)
Other versions
AT503729A1 (de
Original Assignee
Ehrenleitner Franz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ehrenleitner Franz filed Critical Ehrenleitner Franz
Priority to AT16952004A priority Critical patent/AT503729B1/de
Priority to AT17022004A priority patent/AT502980B1/de
Priority to AT7012005A priority patent/AT503730A3/de
Priority to AT0086105A priority patent/AT502864A3/de
Priority to CN200580041752.1A priority patent/CN101072661B/zh
Priority to US11/665,139 priority patent/US20080093322A1/en
Priority to DE502005009571T priority patent/DE502005009571D1/de
Priority to EP08021274A priority patent/EP2055447B1/de
Priority to AT08021274T priority patent/ATE547212T1/de
Priority to AT05790667T priority patent/ATE467488T1/de
Priority to EP08021275A priority patent/EP2055448B1/de
Priority to AT08021275T priority patent/ATE503614T1/de
Priority to PCT/AT2005/000393 priority patent/WO2006039730A2/de
Priority to EP05790667A priority patent/EP1809447B1/de
Priority to DE502005011203T priority patent/DE502005011203D1/de
Priority to EP08021061A priority patent/EP2039481A1/de
Publication of AT503729A1 publication Critical patent/AT503729A1/de
Application granted granted Critical
Publication of AT503729B1 publication Critical patent/AT503729B1/de

Links

Landscapes

  • Transmission Devices (AREA)

Description

2 AT 503 729 B1
Die Erfindung betrifft einen Hubroboter, der gegebenenfalls entlang einer Bahn verfahrbar ist, bestehend aus einem Fahrwerk und einem mit ihm durch Verbindungselemente wie Stäbe veränderlicher Länge, sogenannte Aktuatoren, gegebenenfalls teilweise Stäbe konstanter Länge, sogenannte passive Stäbe, und gegebenenfalls Zugmittel, verbundenen, ihm gegenüber bis zu sechs Freiheitsgrade aufweisenden Objektträger.
Aus der W02003/004223 A und der W02003/059581A sind parallelkinematische Vorrichtungen für Industrieroboter bekannt, bei denen Fußpunkte von Stäben konstanter Länge einerseits entlang geradliniger Bahnen, andererseits auf zylindrischen Flächen einer festen Plattform verfahrbar sind. Auf diese Weise wird eine bewegliche Plattform, die beispielsweise ein Werkzeug trägt, im Raum geführt und orientiert.
Aus der JP 10207338 A ist es bekannt, Zuschauersitze eines Kinos mittels einer parallelkinematischen Vorrichtung passend zum Filmgeschehen zu bewegen. Dabei greifen die Aktuatoren an der beweglichen Plattform nahe aneinander an und bilden, ohne echten Tripelpunkt und ohne echten Doppelpunkt eine der sogenannten 3-2-1-Kinematik ähnliche Kinematik.
Auf Hubroboter wurden parallelkinematische Gebilde überhaupt noch nie angewandt und galten auch nicht als anwendbar. Die Erfindung hat das Ziel, die Vorteile der parallelkinematischen Vorrichtungen auch auf Hubroboter der eingangs definierten Art anwendbar zu machen.
Erfindungsgemäß erfolgt dies dadurch, dass die Verbindungsmittel eine Parallelkinematik ausbilden, bei der drei Verbindungselemente am Objektträger einen Tripelpunkt oder Pseudo-Tripelpunkt bilden. Unter Tripelpunkt versteht man, dass an einer Stelle des Objektträgers drei Stäbe mittelbar oder unmittelbar an einem Punkt, dem sogenannten Tripelpunkt, angreifen bzw. enden; beim Pseudo-Tripelpunkt liegen die Endpunkte (Angriffspunkte) geometrisch eng benachbart im Vergleich zur Länge der dort endenden Verbindungselemente. Damit erreicht man einen extrem leichten, dabei verwindungssteifen und auf leichte Weise genau zu positionierenden Objektträger, mit dem in vorteilhaften Ausgestaltungen der Erfindung auch Bewegungen auszuführen sind, die mit einer seriellen Kinematik praktisch undurchführbar sind.
Allgemein kann zu Parallelkinematischen Vorrichtungen ausgeführt werden: Die letzten Endes auf das Problem der ausreichend genauen und raschen Bewegung entlang mehrerer Freiheitsgrade zwischen einer Basis oder Grundplattform und einer Arbeitsplattform bzw. beweglichen Plattform oder auch Endplattform zurückzuführenden Detailprobleme werden seit langem mittels der sogenannten „seriellen Kinematik“ gelöst: Dabei wird auf der Grundplattform, die zumeist raumfest in einem Inertialsystem angeordnet ist, ein Gebilde entlang eines Freiheitsgrades bewegt, auf diesem Gebilde ein weiteres Gebilde um einen anderen Freiheitsgrad, usw., bis zum Schluss, je nach Anzahl der notwendigen Freiheitsgrade und entsprechend vielen Gebilden die Endplattform erreicht wird, die beispielsweise im Falle einer Werkzeugmaschine das gewünschte Werkzeug aufweist, im Falle eines Fördermittels das Fördergut trägt etc.. Diese serielle Kinematik hat sich vielfach bewährt, insbesondere weil es möglich ist, die aneinander gereihten Freiheitsgrade zu „orthogonalisieren“ d.h. dass eine Bewegung entlang eines Freiheitsgrades die Lage der Endplattform nur in dessen Richtung beeinflusst, die Lage bezüglich aller anderen Richtungen aber konstant bleiben. Dadurch wird ein einfacher und anschaulicher Steuer- und Regelmechanismus für die Bewegung ermöglicht.
Nachteilig aber sind die Additionen aller Toleranzen in allen jeweils anfallenden Richtungen, die hohen zu bewegenden toten Massen der verschiedenen Zwischenplattformen und die Notwendigkeit, speziell ausgestaltete Elemente für die einzelnen Freiheitsgrade vorzusehen. Man denke dabei nur an eine Fräsmaschine, bei der Support entlang einer Schiene mittels einer Spindel verfahren wird, worauf auf dem Support ein Schlitten mit einer passenden Stellvorrichtung normal zur Spindelachse verfahren wird etc..
Andere Lösungen dieses Grundproblems sind schon seit langem von Reifentestmaschinen, den 3 AT 503 729 B1 sogenannten Gough Plattformen, und bei Flugsimulatoren zur Bewegung der Kabine, die das Cockpit darstellt (Erfinder Stewart), bekannt. Diese alternative Kinematik erhielt die Bezeichnung „Parallelkinematik“, weil zur gezielten Bewegung der Endplattform eine parallele (eigentlich simultane) Betätigung aller Antriebe entlang aller Achsen notwendig ist. Damit ist die Problematik der Parallelkinematik schon im wesentlichen angedeutet, sie erfordert einen hohen Steuer- und Regelaufwand (damit auch Rechenaufwand) für die gewünschte Bewegung der beweglichen Plattform.
Der Rechenaufwand wird besonders dadurch in die Höhe getrieben, dass keine geschlossenen Lösungen für die Steuerung vorliegen und daher iterativ gerechnet werden muß. Dies führt insbesondere bei langen Wegen der beweglichen Plattform, seien es nun Winkel oder Längen, noch zum Problem der weit überlinear ansteigenden Rechenarbeit und dem Problem der nicht (leicht) zu erkennenden Verzweigung der Lösungen. Eine derartige Verzweigung kann dazu führen, dass die Aktuatoren (Aktuator, zumeist Stäbe, deren Länge veränderlich ist oder deren Fußpunkt, das ist der Anlenkpunkt an der festen Plattform, beweglich ist, aber aus der US 5,966,991 A ist auch eine rotatorische Parallelkinematik bekannt) falsch betätigt werden und es zur Kollision von Stäben kommt.
Wie man aus der Vorgabe, dass jeder Aktuator nur einen Freiheitsgrad festlegen soll, die anderen fünf aber nicht beeinträchtigen soll, leicht erkennen kann, sind extrem aufwendige, hochgenaue und damit teure Lager für jeden der Antriebe notwendig.
Um dies zu verdeutlichen Folgendes:
Bei einer Vorrichtung mit allen sechs Freiheitsgraden zwischen der festen und der bewegten Plattform benötigt man sechs Stäbe, von denen jeder in fünf Freiheitsgraden frei sein muss, somit sind dreißig Bewegungsrichtungen möglichst genau und somit vorgespannt zu verwirklichen, z.B. zwei Kardangelenke und ein Achsial-Radiallager pro Stab oder ein Kardangelenk und ein Kugelgelenk pro Stab. Damit einher geht die problematische Kalibrierung von Parallelkinematiken, darunter versteht man die Berücksichtigung mechanischer Ungenauigkeiten im Rechenmodell für die Ansteuerung der Bewegung der einzelnen Stäbe. Dies ist wohl der Hauptgrund dafür, dass der erste Prototyp einer Werkzeugmaschine mit Parallelkinematik erst 1994 auf der IMTS in Chicago vorgestellt wurde.
Bei näherer Betrachtung fällt auch auf, dass die Parallelkinematik unter dem Problem leidet, nur geringe Schwenkwinkel zuzulassen, da ansonsten die Stäbe einander ins Gehege kommen, und dass es Stellungen zwischen den beiden Plattformen gibt, bei denen die Parallelkinematik eine Position einnimmt, die einer sogenannten Singularität entspricht, aus der sie nicht mehr von sich aus gelöst werden kann. Auch der große Platzbedarf der Parallelkinematik gemäß dem Stand der Technik ist zu erwähnen, so benötigen noch im Jahr 2003 fertigt entwickelte und produzierte Werkzeugmaschinen die einen Arbeitsraum von 0,6 x 0,6 x 0,6 m aufweisen, eine Kubatur von 3,5 x 3,5 x 3,5 m.
Trotz dieser Nachteile kommt die Parallelkinematik für viele Anwendungsgebiete, insbesondere wenn hohe Bewegungsdynamik und hohe Wiederholgenauigkeiten der anzufahrenden Positionen bzw. der zu befahrenden Wege verlangt werden und ganz speziell, wenn diese Anforderungen mit der Notwendigkeit hoher Steifigkeit der Konstruktion einhergeht, mehr und mehr zur Anwendung. Dabei hat das hervorragende Verhältnis von bewegbarer Last zu Eigengewicht, das bis 2:1 reicht, während serielle Kinematik nur 1:20 erzielt, und so zu merklicher Energieersparnis führt, einen wesentlichen Anteil am Wunsch, die parallele Kinematik vermehrt einzusetzen.
Dazu kommt noch, dass die einzelnen Teile der Parallelkinematiken nur eine geringe mechanische Komplexität aufweisen und dass in vielen Fällen für alle oder zumindest eine Mehrzahl der abzudeckenden Freiheitsgrade identische Bauteile verwendet werden können, sodass der 4 AT 503 729 B1
Aufbau der Parallelkinematiken an sich einfach und kostengünstig ist.
Im Hinblick auf diesen einfachen und modularen Aufbau, aber auch für die anderen genannten Eigenschaften wird auf den sogenannten DELTA-Roboter, das Hexapod und den IRB 940 Tricept verwiesen.
Eine dem schon damals lange bekannten Hexapod kinematisch vollständig entsprechende Konstruktion, die dennoch patentiert wurde, ist aus der EP 1 095 549 B, entsprechend der DE 199 51 840 A, bekannt: Sie betrifft eine Dreipunkt-Anhängevorrichtung für ein Zugfahrzeug, die mittels sechs in ihrer Länge verstellbaren Stäben in sechs Freiheitsgraden bezüglich des Zugfahrzeuges bewegt werden kann. Im Sinne der Nomenklatur dieser Beschreibung entspricht das Zugfahrzeug der festen Plattform und die Anhängevorrichtung der beweglichen Plattform.
Eine Anwendung der Parallelkinematik auf sogenannte Mikromanipulatoren mit Bewegunsgbe-reichen von wenigen Millimetern oder noch darunter, dafür aber hoher Anfahrgenauigkeit, ist aus den aus einer Anmeldung hervorgegangenen US 6,671,975 B und US 6,769,194 B bekannt. Die Vorrichtung beruht auf dem Hexapod und verbessert die Präzision der Längenänderungen der Stäbe durch Einsatz von Piezoelementen.
Ausgehend von diesem Stand der Technik ist die erfindungsgemäße Parallelkinematik, die auf der Kombination von Aktuatoren (durch Fusspunktverschiebung wirkende oder längenveränderliche Stäbe) mit passiven Stäben beruht, in der Lage, insbesondere die Probleme der komplexen Steuerung und der Lagerung zu vermeiden oder zumindest deutlich zu reduzieren.
Da erfindungsgemäß in der kinematischen Kette zumindest an einer Stelle drei Stäbe mittelbar oder unmittelbar an einem Punkt, einem sogenannten Tripelpunkt, angreifen bzw. enden, sind die linearen Freiheitsgrade definiert, die mathematische Lösung der Steuerung wird geschlossen, damit die Berechnung der Bewegung gegenüber den offenen Lösungen gemäß dem Stand der Technik wesentlich, meist um den Faktor eintausend, vereinfacht und ist beispielsweise über die Winkelfunktionen darstellbar. Dies ermöglicht auch auf einfache Weise eine „Vorsteuerung“ der Bewegung. Darüber hinaus wird der Bewegungsablauf der kinematischen Ketten auch wesentlich anschaulicher und es können ohne komplexe Analysen die Fragen der Kollision der einzelnen Bauteile und des Auftretens von Singularitäten beurteilt werden.
Die Bezeichnung mittelbar oder unmittelbar wurde gewählt, da es für die praktische technische Ausführung völlig reicht, wenn einer der drei Stäbe knapp am Ende eines der anderen beiden Stäbe angreift. Dadurch wird zwar in diesem Stab ein Biegemoment induziert, doch vereinfacht sich die praktische Ausführung des Lagers und es werden dessen mögliche Schwenkwinkel deutlich erhöht, ohne der Vereinfachung der Rechenarbeit oder der Grundlage der Erfindung, nämlich der Definition der linearen Freiheitsgrade, großen Abbruch zu tun.
Wenn diese mittelbare Ausführung bei Tripelpunkten im Bereich der festen Plattform verwendet wird, so gehen die mathematischen Vorteile teilweise verloren, da die Lage des Fußpunktes des so angebundenen Stabes sich mit der Lage des Stabes, an dem er angelenkt ist, ändert. Die mechanischen Vorteile, insbesondere das Lager betreffend, bleiben aber voll erhalten. Es kann gegebenenfalls nach der geschlossenen Lösung für den Tripelpunkt eine iterative Berechnung der exakten Endlage der beweglichen Plattform als Ganzes erfolgen, doch betrifft dies ausschließlich kurze Wege und ist daher auch iterativ ohne großen Aufwand und jedenfalls ohne die oben genannten Probleme möglich. Aus mechanischen Gründen ist es bevorzugt, dass der auf Biegung belastete Stab derjenige sein sollte, der nach Analyse des zugrunde liegenden Problems sich als der am geringsten belastete der Kinematik herausstellt.
Eine vorteilhafte Weiterbildung der Erfindung besteht darin, eine sogenannte überdefinierte bzw. überbestimmte Kinematik zu verwenden. Damit erreicht man eine Erhöhung der Steifigkeit der Vorrichtung, kann die bewegliche Plattform, was oft günstig ist, leichter und damit weniger 5 AT 503 729 B1 steif bauen, weil sie durch die überbestimmte Fixierung stabilisiert wird und weil dies, zumindest in einem gewissem Ausmaß, notwendig ist, um die Toleranzen der überbestimmten Führung auszugleichen und so Beschädigungen der Lager bzw. der Aktuatoren (Antriebe, Getriebe und ausführende Organe in ihrer Gesamtheit) zu verhindern.
Eine weitere vorteilhafte Variante der Erfindung, die mit der vorstehend genannten nicht in Widerspruch steht, besteht darin, durch Lager für einzelne Stäbe, die keine allseitige Bewegung zulassen (Kardangelenk statt sphärischer Lagerung), Stäbe „einzusparen“ und dafür Biegebeanspruchungen in Kauf zu nehmen. Diese zusätzliche mechanische Beanspruchung ist bei vielen Anwendungsgebieten, bei denen keine großen Kräfte auftreten, z.B. bei der Führung eines Laserkopfes zum Schneiden von Material, leicht zu beherrschen und reduziert den Aufwand und Platzbedarf nochmals.
Eine weitere Ausgestaltung der Erfindung besteht darin, nach der Festlegung der drei in einem Tripelpunkt zusammenlaufenden Stäbe die anderen drei notwendigen Stäbe gemäß den speziellen Systemanforderungen anzuordnen und auszuwählen. Besonders günstig ist es hier, ein weiteres Zeigerpaar (zwei Stäbe, die in einem Punkt angreifen) und einen Einzelstab vorzusehen. Damit reduziert sich der für die Steuerung der Bewegung notwendige mathematische Aufwand nochmals dramatisch und in mechanischer Hinsicht erlaubt eine solche Anordnung den Einsatz von Gleichlaufelementen, Führungen etc.. In der folgenden Beschreibung und den Ansprüchen wird zur besseren Lesbarkeit immer von einem „Tripelpunkt“ gesprochen, es sei denn, es wird speziell die nahe des Punktes angreifenden Variante, der sogenannte „Pseudo-Tripelpunkt" erläutert oder wenn die Unterschiede zwischen Tripelpunkt und Pseudo-Tripelpunkt eine erwähnenswerte Rolle spielen.
In einer Anzahl von Fällen können einzelne oder mehrere passive Stäbe und/oder Aktuatoren durch Zugmittel wie Seile, Ketten, Bänder, etc. ersetzt werden, dies ändert nichts an der Erfindung an sich. Es spielt auch in zahlreichen Anwendungsfällen keine Rolle, ob einzelne oder mehrere Aktuatoren als längenveränderliche Stäbe oder als Stäbe konstanter Länge, aber mit Fußpunktverschiebung (Kopfpunktverschiebung) verwendet werden. Der Fachmann auf dem Gebiet der Parallelkinematik kann in Kenntnis der Erfindung die entsprechende Auswahl leicht vornehmen, in der Beschreibung und den Ansprüchen wird nicht darauf eingegangen.
Die Erfindung wird im folgenden anhand der Zeichnung näher erläutert. Dabei zeigt bzw. zeigen: die Fig. 1-7 rein schematisch verschiedene Grundausbildungen der Erfindung, die Fig. 8 einen Tripelpunkt, die Fig. 9 eine vergrößerte Ansicht eines Details des Tripelpunktes der Fig. 8, die Fig. 10 eine Variante eines indirekten Tripelpunktes in einer Ansicht entsprechend der Ansicht der Fig. 8, die Fig. 11 ein Detail der Fig. 10, die Fig. 12-17 eine erste Variante und die Fig. 18-21 eine zweite Variante eines Hubroboters.
In Fig. 1 ist eine rein schematische Darstellung einer erfindungsgemäßen Parallelkinematik dargestellt, die in ihrer Gesamtheit mit 1 bezeichnet wird. Wie eingangs der Beschreibung erläutert, verbindet eine solche Kinematik eine feste Plattform 2 mit einer beweglichen Plattform 3, wobei, im Gegensatz zur seriellen Kinematik, keine Zwischenplattformen vorgesehen sind. Die Bezeichnung „feste Plattform“ bedeutet nicht notwendigerweise, dass diese in einem Inertialsystem ruht, es wird durch diese Bezeichnung nur unterschieden, von welcher Plattform ausgehend die Bewegung innerhalb des betrachteten Systems erfolgt.
Auf diese Weise erreicht man es, dass die Gesamtkinematik bei der Parallelkinematik aus geschlossenen Ketten besteht, d.h. es gibt verschiedene geschlossene Systeme von Stäben, 6 AT 503 729 B1 die auf einem Weg von einer Plattform zur anderen und auf einem anderen Weg wieder zurück von dieser anderen Plattform zur einen gehen. Dies ist, man denke nur an die Werkzeugführung einer Drehbank, bei der seriellen Kinematik völlig ausgeschlossen und mit ein Grund für die höhere Steifigkeit aber auch die komplexere Bewegungsmathematik der Parallelkinemati-5 ken. Erfindungsgemäß wird nun diese Komplexität, ohne auf die Vorteile der Parallelkinematik zu verzichten, dadurch drastisch verringert, dass zumindest ein Anlenkpunkt vorgesehen wird, von dem drei Stäbe ausgehen.
In Fig. 1 ist eine Parallelkinematik 1 dargestellt, bei der eine feste Plattform 2 mittels sechs io Stäben S1 bis S6 mit einer beweglichen Plattform 3 verbunden ist. Diese Parallelkinematik 1 verfügt über einen sogenannten Tripelpunkt P3, er ist auf der beweglichen Plattform 3 vorgesehen. Durch das Ausbilden des dreifachen Punktes P3 wird aus den dort angelenkten Stäben S1, S2 und S5 ein Gebilde geschaffen das als „Zeigerpaar“ bezeichnet wird und über einen zusätzlichen Stab verfügt. De facto werden eigentlich drei Zeigerpaare gebildet, nämlich jeweils 15 die Kombination S1-S2, S1-S5 und S2-S5. Im dargestellten Ausführungsbeispiel ist ein weiteres Zeigerpaar vorgesehen, das von den Stäben S3 und S4 gebildet wird, die beide im Punkt P2, der, so wie der Punkt P3, auf der beweglichen Plattform 3 angeordnet ist.
Durch passende Anordnung der jeweils „anderen“ Enden der Stäbe S1, S4 bzw. S2, S3 bleiben 20 diese beiden Zeigerpaare bei einer ganzen Reihe von in der Technik üblichen Anwendungen und Bewegungen zueinander in paralleler Lage und können daher auch einer gemeinsamen Bewegungsbeschreibung und somit Regelung unterworfen werden.
Der letzte, einzeln, angeordnete Stab S6, der ohne Beschränkung der Allgemeinheit normal 25 zwischen den beiden Plattformen in der dargestellten Position verläuft, bestimmt nun den letzten Freiheitsgrad und definiert die Lage der beweglichen Plattform 3 gegenüber der festen Plattform 2 endgültig.
Wenn man das so aufgebaute Gebilde nun von seiner Kinematik her betrachtet, so ergibt sich 30 klar, dass durch die jeweilige Länge der Stäbe S1, S2 und S5 die Lage des Punkte P3 (immer, ohne dass es in der weiteren Beschreibung stets angeführt wird, gegenüber der festen Plattform 2) eindeutig definiert ist, und dass die jeweilige Länge der anderen drei Stäbe S3, S4 und S6 die Winkellage der beweglichen Plattform definiert. 35 Da die praktische Ausbildung eines Lagers, in dem drei Stäbe sphärisch fixiert sein sollen, aufwendig ist (Fig. 9) und durch die notwendigen Lagerflächen die zulässigen Schwenkwinkel der drei Stäbe stark eingegrenzt sind, ist es für die technische Anwendbarkeit ohne weiteres möglich und zulässig, und wird in der Erfindung als vollwertige Alternative angesehen, einen der drei Stäbe an einem anderen der drei Stäbe angreifen (Alternativpunkt A) zu lassen, wie dies in 40 Fig. 2 dargestellt ist.
Die mechanische Beanspruchung des Stabes, an dem der andere angreift, kann durch die in der Beschreibungseinleitung angegebenen Maßnahmen in zulässigen Grenzen gehalten werden, die mathematischen Vereinfachungen bleiben so gut wie zur Gänze erhalten und die Prob-45 lematik der Lagerung wird umgangen. In der Beschreibung und den Zeichnungen wird diese Ausbildung des Tripelpunktes P3 als P'3 bezeichnet, auf die Unterschiede wird nur dort eingegangen, wo sie von Bedeutung sind oder im einzelnen erläutert werden.
Die Fig. 3 zeigt eine weitergehende Ausgestaltung in der Richtung, wie sie zwischen der Fig. 1 so und Fig. 2 vorgenommen wurde. Es wird bei dieser Variante auch eine Entbündelung der Doppellager P2 auf völlig analoge Weise zur Entbündelung des Tripelpunktes P3 vorgenommen, der ja in der Variante der Fig. 2 zu einem Doppelpunkt P2 und einem Alternativpunkt A wurde. Dabei wurde auch der Doppelpunkt der Stäbe S4 und S5 an der festen Plattform 2 entbündelt, auf die dadurch entstehenden mathematischen Probleme wurde bereits oben hingewiesen. Es 55 besteht diese Konstruktion somit nur mehr aus den üblichen Befestigungspunkten, die an sich 7 AT 503 729 B1 kein Bezugszeichen tragen, und den Alternativpunkten A. Analog zur Bezeichnung des Tripelpunktes P3 wird eine Kombination eines solchen normalen Befestigungspunktes und eines Alternativpunktes als P'2 bezeichnet, eine Kombination eines Befestigungspunktes mit zwei Alternativpunkten als P'3.
Von der Vereinfachung gegenüber der Parallelkinematik gemäß dem Stand der Technik her gesehen ist die Variante der Fig. 4 mit der Variante der Fig. 3 völlig gleichwertig, vom mathematischen Standpunkt aber vorteilhafter, da auch der Stab S5 einen festen Fußpunkt auf der festen Plattform 2 aufweist und daher mathematisch leicht zu beschreiben ist. Dabei wird der Befestigungspunkt des Stabs S5 an der festen Plattform 2 nicht wie bei Fig. 3 auf den Stab S4 verlegt, sondern als eigener Befestigungspunkt in die unmittelbare Nachbarschaft des Befestigungspunktes des Stabes S4. Damit bleiben alle mechanischen Vorteile gegenüber dem Stand der Technik gewahrt, auch die mathematische Darstellung der Bewegung bleibt vereinfacht und voll erhalten, die Bezeichnung als P'2 trägt dem Rechnung.
Eine Ausgestaltung, bei der die oben erwähnte Überbestimmung bzw. Redundanz des Systems verwendet wird, ist in Fig. 5 dargestellt. Damit kann im Falle des Versagens eines Teils der Struktur ein Zusammenbruch verhindert werden, was insbesondere in der Fördertechnik von eminenter Bedeutung ist, weiters erlaubt, ja verlangt diese Überbestimmung sogar, dass die bewegliche Plattform 3 nicht steifer ist, als es die Toleranzen der einzelnen kinematischen Elemente zulassen, ohne dass die gesamte Steifigkeit darunter leidet. Hier wird aus Gründen der Übersichtlichkeit wieder auf die ursprüngliche Darstellung mit Tripelpunkten und zweifachen Punkten zurückgegangen, ohne darauf beschränkt zu sein. Wesentlich ist, dass der Stab S6 ersetzt worden ist durch zwei Stäbe S6', deren Längenänderung so synchronisiert sein muss, dass sie gemeinsam den einen Freiheitsgrad des ursprünglichen S6 nachbilden.
Die Fig. 6 zeigt eine ähnliche Situation wie die Fig. 1, nur dass die bewegliche Plattform 3' deutlich kleiner ausgebildet ist als die feste Plattform 2, wodurch die Lage der einzelnen Stäbe sich naturgemäß ebenfalls ändert. Selbstverständlich müssen die einzelnen Plattformen nicht viereckig und nicht einmal eben sein, wie aus Fig. 7 ersichtlich.
Die Fig. 7 zeigt in allgemeiner Darstellung eine Möglichkeit, durch eine Kombination längenveränderlicher Stäbe, angedeutet als hydraulische Zylinder-Kolben-Einheiten mit Stäben konstanter Länge, unter Heranziehung der erfindungsgemäßen Prinzipien eine erfindungsgemäße Parallelkinematik zu schaffen, bei der die Berechnung der Bewegungsgleichungen gegenüber dem Stand der Technik deutlich reduziert ist. Darüber hinaus ist es bei dieser Ausbildung der Kinematik möglich, die bewegliche Plattform 3 um 360° und darüber gegenüber der festen Plattform 2 (Summe aller Fußpunkte) zu drehen, was üblicherweise nicht möglich ist.
In Fig. 8 und 9 ist ein erfindungsgemäß ausgebildeter Tripelpunkt P3 zur näheren Erläuterung dieses erfindungswesentlichen Bauelementes in einer konstruktiven Ausgestaltung dargestellt. Die drei in ihm zusammenlaufenden Stäbe S1, S2, S5, analog zur Fig. 1 ausgewählt, sind auf die folgende Weise, die aus Fig. 9 deutlicher zu entnehmen ist, miteinander gekoppelt:
Die Stäbe S1 und S2 die, wie oben erläutert, ein sogenanntes Zeigerpaar mit der Zeigerachse A12 bilden, greifen, um diese Zeigerachse schwenkbar, zu beiden Seiten einer Hohlkugel 4 an. Der Stab S5 greift, über einen Bügel 5 an der Kugel 4 um eine zur Achse A12 normal angeordneten und sie schneidende Achse A5 an. Der Schnittpunkt der Achsen A12 und A5 liegt im Mittelpunkt der Hohlkugel 4 und damit auch im Mittelpunkt des sphärischen Teils eines in der Hohlkugel 4 sphärisch drehbar gelagerten Zapfens 6, der mit der beweglichen Plattform 3 (nicht dargestellt) fest verbunden ist.
Wie aus dieser Konstruktion ersichtlich ist, wird bei Änderung der Länge der Stäbe S1, S2 und S5 (oder bei Verschiebung von deren Fußpunkten [Fig. 8]) die räumliche Lage des Kugelmittelpunktes stets eindeutig definiert. Dabei ist der Bügel 5 um die Achse des Stabes S5 drehbar 8 AT 503 729 B1 und die entsprechenden Bügel der Stäbe S1 und S2 um diese (nur bei ganz speziellen Anordnungsfällen kann dies entfallen), um Verspannungen zu vermeiden.
Es ist leicht ersichtlich, dass die Ausbildung des Punktes P3 gemäß der Fig. 8 und 9 aufwendig ist und dabei doch den Nachteil aufweist, nur geringe Verschwenkungen um den Kugelmittelpunkt zuzulassen, ohne dass es zu Problemen mit aneinander schlagenden Bauteilen kommt.
Die Fig. 10 und 11, in ihren Ansichten im wesentlichen entsprechend den Fig. 8 und 9, stellen nun eine Lösung dieses Problems dar, die, wie bereits erwähnt, die Vorteile der Ausbildung von Tripelpunkten erhält, deren Nachteile aber vermeidet. Um dies zu erreichen, greift der Stab S5 nicht direkt im Bereich des Tripelpunktes an, sondern in kleinem Abstand von ihm, an einem der beiden anderen Stäbe, die am Tripelpunkt enden, im dargestellten Beispiel am Stab S1. Wie bereits erwähnt wird es bevorzugt, dass dieser alternative Angriffspunkt A an demjenigen der beiden zur Verfügung stehenden Stäbe liegt, der mechanisch weniger belastet wird. Dadurch kann dessen Mehrbelastung durch die Induzierung eines Biegemomentes am Angriffspunkt A leichter abgefangen und beherrscht werden, als bei einem Angriffspunkt auf einem schon an sich hoch belasteten Stab.
Aus Fig. 11 gut ersichtlich ist der einfache Aufbau des nunmehr in seinem Kern einen Doppelpunkt darstellenden Pseudo-Tripelpunktes, statt der komplexen und teuren sphärischen Geometrie kann eine einfache kardanische Aufhängung für den Zapfen 6, der auf die bewegliche Plattform 3 (nicht dargestellt) überleitet, gewählt werden.
Die bisher beschriebenen Ausführungsformen und Varianten der Erfindung sind nun für alle ihre Anwendungen einsetzbar, aber selbstverständlich ist die Erfindung nicht darauf beschränkt. Es kann die Ausbildung eines Angriffspunktes A anders ausgestaltet sein als in den Fig. 10 und 11 dargestellt, es muss bei einem Doppelpunkt, unabhängig davon ob es sich um einen Pseudo-Tripelpunkt oder um einen echten Doppelpunkt handelt, keine kardanische Aufhängung verwendet werden, sondern es kann auch hier eine sphärische Ausbildung vorgesehen sein, bei der dann nur die Anlenkung an die beiden angreifenden Stäbe einfacher als in Fig. 9 dargestellt ausfällt, etc..
Die Erfindung wird im folgenden anhand einiger Anwendungsbeispiele näher erläutert.
Die Fig. 12-16 zeigen einen fahrbaren Hubroboter, wie er beispielsweise beim Lackieren oder Verzinken oder bei sonstigen Oberflächenbehandlungen großformatiger und entsprechend massereicher Gegenstände, insbesondere von Fahrzeugkarosserien, verwendet wird. Derartige Vorrichtungen sind beispielsweise aus der DE 101 00 377 A, der DE 101 03 837 A und der DE 102 57 108 A bekannt. Die dort geoffenbarten Vorrichtungen bedienen sich serieller Kinematik bzw. einer Scharniermechanik und weisen die eingangs genannten Nachteile auf.
Zu den Hubrobotern, die hier in der Folge besprochen und näher erläutert werden sollen, ist noch folgendes auszuführen:
Beim Eintauchen und beim Abtropfen komplexer Gebilde bestehen immer wieder Probleme, die dadurch bedingt sind, dass Luftblasen beim Eintauchvorgang mitgeschleppt werden, die bei der Bewegung mittels einer herkömmlicher Kinematik mehr oder weniger statisch an der Oberfläche des Gegenstandes anliegen und so zu Fehlern in der Beschichtung führen. Es ist im Stand der Technik bekannt, den zu behandelnden Gegenstand während des Beschichtungsprozesses um eine Achse zu verschwenken, was aber nur in einem sehr kleinen Winkelbereich möglich ist, da es ansonsten zum Auftauchen bzw. Austauchen des Gegenstandes kommt. Man kann so zwar eine lückenlose Beschichtung erreichen, doch kann man nicht verhindern, dass diese Beschichtung im Bereich der Luftblasen stark ungleich ist von den anderen Gebieten. Genau genommen handelt es sich bei dem entstehenden Unterschied um eine Funktion der Einwirkzeit, der verwendeten Stromstärke, der Kippwinkel, der Größe der Luftblasen und, besonders komplex, der 9 AT 503 729 B1
Form der Oberfläche in dem Bereich, in dem Luftblasen mitgeschleppt werden.
Gleichermaßen ist es für das möglichst vollständige Abtropfen der Gegenstände zwischen zwei aufeinander folgenden Tauchbecken wichtig, dass nirgendwo Lacken in Vertiefungen oder Sacklöcher mit Flüssigkeit gefüllt verbleiben. Dies ist nicht nur wegen der Qualität der Beschichtungen wichtig, sondern auch deshalb, weil durch das Mitschleppen der Chemikalien von einem Tauchbecken zum anderen unangenehme und oft für die Qualität der gesamten Beschichtung nachteilige Mischungen entstehen, die darüber hinaus die Entsorgung der Bäder erschweren und so die Umwelt beeinträchtigen.
Diese Probleme kann man durch das Vorsehen einer zweiten Drehachse eliminieren oder zumindest stark verringern, doch war es mit der seriellen Kinematik gemäß dem Stand der Technik nicht auf vertretbare Weise möglich, eine zweite Kippachse vorzusehen.
Die Fig. 12-16 zeigen nun eine Ausführungsform einer erfindungsgemäßen parallelen Kinematik, die diese Ziele erreicht und somit die genannten Nachteile vermeidet:
Die Fig. 12 zeigt eine auf Rollen verfahrbare feste Plattform 2 (auf die Möglichkeit, dass auch die feste Plattform an sich verfahrbar ist, wurde weiter oben bereits ausführlich eingegangen) und eine mittels der erfindungsgemäßen Kinematik mit dieser festen Plattform 2 verbundene bewegliche Plattform 3, die als Objektträger dient und im gezeigten Ausführungsbeispiel mit einer Karosserie 14, die rein schematisch angedeutet ist, verbunden ist.
Die Verbindung zwischen der festen Plattform 2 und der beweglichen Plattform 3 erfolgt über zwei Gelenkvierecke 15, 16 und eine sogenannte Querstange 17. Den Gelenkvierecken 15, 16, die jeweils aus Aktuatoren gebildet sind, ist eine diagonal verlaufende passive Stange S15, S16 zugeordnet, durch die das Gelenkviereck in zwei Dreiecke, sogenannte Zeigerpaare, zerlegt wird, mit der Maßgabe, dass jeder passive Stab S15, S16 zwei Zeigerpaaren zugehörig ist.
Die Gelenkvierecke müssen nicht im mathematischen Sinn in einer Ebene liegen, es können die Fußpunkte bzw. Kopfpunkte der beteiligten Stäbe auch knapp versetzt zueinander liegen, doch ist es wesentlich, dass im technischen Sinn und im Vergleich zur Größe der Zeigerpaare die „Dicke“ eines solchen Gelenkviereckes klein ist gegenüber der Länge seiner Stäbe.
Die bewegliche Plattform 3 hat im dargestellten Beispiel die Besonderheit, dass die Gelenkvierecke 15, 16 an Stellen mit unterschiedlicher Winkellage an der beweglichen Plattform 3 angreifen, ähnlich wie dies in allgemeiner Lage in Fig. 7 angedeutet ist. Dies bedeutet, dass der in Fig. 12 sichtbare Hebel 13 der beweglichen Plattform 3 mit seinem hinter der Karosserie befindlichen und daher nicht sichtbaren Pendant nicht parallel verläuft sondern einen Winkel, bevorzugt von größer als 45° (in der Projektion) einschließt. Dadurch wird es möglich, die bewegliche Plattform 3 und damit die darauf befestigte Karosserie 14 „durchzudrehen“, soferne nur die Enden der Karosserie 14 nicht am Querbalken der festen Plattform 2 anstoßen.
Die Fig. 13 zeigt die Situation mit angehobener und um ca. 90° um die Querachse gedrehter beweglicher Plattform 3, die Fig. 14 zeigt das weitere Anheben der Plattform 3 mit unveränderter Winkellage, die Fig. 15 das Zurückdrehen der beweglichen Plattform 3 und die Fig. 16, in einer Seitenansicht bezüglich der festen Plattform 2 die Möglichkeit des Schrägstellens der beweglichen Plattform 3 und der darauf montierten Karosserie 14. In dieser Darstellung ist trotzt der verschiedenen Überschneidungen deutlich zu erkennen, dass die Gelenkvierecke 15, 16 nicht kongruent zueinander sind, sondern leicht unterschiedliche Winkel aufweisen, dadurch wird, weil ja die quer verlaufenden Elemente der beweglichen Plattform 3 nun schräg stehen, auch die Lage der Gelenkvierecke aus ihrer parallelen Lage zueinander leicht geändert, in der Beschreibung wird aber, wo es auf diese Änderungen nicht gerade ankommt, diese geringfügige Abweichung nicht gesondert beschrieben und erwähnt, um die Lesbarkeit nicht zu beeinträchtigen.

Claims (7)

10 AT 503 729 B1 Die Fig. 17, die eine Ansicht der Position gemäß Fig. 16 etwa in Richtung des Pfeiles XVII zeigt, demonstriert deutlich die unterschiedliche Winkellage der Abschnitte 13, 18 der beweglichen Plattform 3 zueinander. Durch diese unterschiedliche Winkellage (im Raum gesehen „windschief) werden Totpunkte und Singularitäten vermieden und es ist möglich, die Plattform 3 um die plattformseitigen Enden der Winkel 13, 18 in beliebiger Richtung und beliebig oft durchzudrehen, solange nur der mit der Plattform 3 verbundene Gegenstand nicht an der Plattform 2 (oder den einzelnen Stäben) anschlägt. In dieser Darstellung ist auch gut ersichtlich, dass die Gelenkvierecke nicht im mathematischen Sinn in einer Ebene liegen, sondern dass die Fußpunkte der Stäbe auf der festen Plattform 2 zueinander versetzt angeordnet sind, und darüber hinaus durch die Schrägstellung der beweglichen Plattform 3 bezüglich der festen Plattform 3 überhaupt leicht windschief zueinander verlaufen. In der Beschreibung und den Ansprüchen ist dies aus Gründen der leichteren Lesbarkeit nicht explizit angeführt, muß jedoch so verstanden werden. Die Fig. 18-21 zeigen eine weiter flexible Variante, bei der auch die im vorigen Beispiel durch passive Stäbe gebildeten, innerhalb der Gelenkvierecke diagonal verlaufende Stäbe als Aktuatoren ausgebildet sind und so weitere Freiheitsgrade, insgesamt alle sechs und, mit dem Verfahren der festen Plattform 2 entlang ihrer Laufbahn, sogar sieben Freiheitsgrade zugänglich werden. Der große Vorteil dieser Ausbildungsform, die auf den ersten Blick nicht viel zu bringen scheint, liegt darin, dass die Tauch-, Kipp- und Drehmanöver der beweglichen Plattform 3 und damit der Karosserie 14 auf wesentlich kürzerem Weg durchgeführt werden können als bei der oben dargestellten Ausführungsform und dass dadurch die Gefahr der Kollision von Karosserien, die auf benachbarten festen Plattform 2 montiert sind, viel leichter ausgeschlossen werden können. Besonders wichtig ist aber, dass auf diese Weise in der Länge der Behandlungsstraße erheblich Platz gespart werden kann, was bei den Beiz-, Grundier- und Lackiervorgängen sowie beim anschließenden Trocknen wegen der notwendigen Einhausungen und Abdichtungen gegenüber der Umgebung einen großen Vorteil mit sich bringt. Natürlich ist die Erfindung nicht auf die dargestellten Ausführungsbeispiele beschränkt. So kann bei entsprechenden Randbedingungen die dargestellte Kinematik auch ortsfest verwendet werden, es ist dann die feste Plattform 2 tatsächlich eine feste oder drehbare Plattform. Eine derartige Ausbildung der Erfindung kann beispielsweise zum Umsetzen von Werkstücken am Ende einer Fertigungsstraße verwendet werden, es muß dazu nur die bewegliche Plattform 3 passende Greiforgane bzw. Halteorgane besitzen. Die Schenkel 13, 18 der beweglichen Plattform 3 müssen nicht den dargestellten Winkel miteinander einschließen, die Fußpunkte der Stäbe auf der festen Plattform 2 müssen nicht die dargestellte fluchtende bzw. symmetrische Anordnung aufweisen, wesentlich ist, dass ein Tripelpunkt, sei er nun ein echter oder ein Pseudo-Tripelpunkt, ausgebildet ist, was bevorzugt auf der beweglichen Plattform 3 erfolgt, da dann die Gewinne bei der Rechenarbeit für die Bewegung der beweglichen Plattform gegenüber der festen Plattform im Vergleich zum Stand der Technik am Größten sind. Patentansprüche: 1. Hubroboter, der gegebenenfalls entlang einer Bahn verfahrbar ist, bestehend aus einem Fahrwerk (2) und einem mit ihm durch Verbindungselemente wie Stäbe veränderlicher Länge, sogenannte Aktuatoren, gegebenenfalls teilweise Stäbe konstanter Länge, sogenannte passive Stäbe, und gegebenenfalls Zugmittel, verbundenen, ihm gegenüber bis zu sechs Freiheitsgrade aufweisenden Objektträger (3), dadurch gekennzeichnet, dass die Verbindungsmittel eine Parallelkinematik ausbilden, bei der drei Verbindungselemente am Objektträger einen Tripelpunkt (P3) oder Pseudo-Tripelpunkt (P3‘) bilden. 1 1 AT 503 729 B1
2. Hubroboter nach Anspruch 1, dadurch gekennzeichnet, dass seine Kinematik zumindest ein im wesentlichen in einer Ebene liegendes Gelenkviereck (15, 16), dessen einer Schenkel (13, 18) am Objektträger (3) ausgebildet ist, mit einem im wesentlichen diagonal verlaufenden Stab aufweist und dass ein Querstab (17) am Objektträger (3) an einem bzw. nahe eines der Doppelpunkte des Gelenkviereckes angreift und den Tripelpunkt bzw. Pseudo-Tripelpunkt bildet.
3. Hubroboter nach Anspruch 2, dadurch gekennzeichnet, dass er zwei Gelenkvierecke (15, 16), die in zueinander parallelen Ebenen liegen, aufweist.
4. Hubroboter nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der diagonal verlaufende Stab ein passiver Stab ist. (Fig. 14)
5. Hubroboter nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass sowohl die Stäbe aller Gelenkvierecke (15, 16) als auch jeder diagonal verlaufende Stab als Aktuator ausgebildet sind.
6. Hubroboter nach Anspruch 5, dadurch gekennzeichnet, dass der Querstab (17) als Aktuator ausgebildet ist. (Fig. 18)
7. Hubroboter nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die am Objektträger (3) ausgebildeten Schenkel (13, 18) der Gelenkvierecke (15, 16) windschief zueinander angeordnet sind, das heißt in Draufsicht auf die Ebenen der Gelenkvierecke einen von Null und von 180° verschiedenen Winkel zueinander aufweisen. Hiezu 18 Blatt Zeichnungen
AT16952004A 2004-10-11 2004-10-11 Parallelkinematik, insbesondere hubroboter AT503729B1 (de)

Priority Applications (16)

Application Number Priority Date Filing Date Title
AT16952004A AT503729B1 (de) 2004-10-11 2004-10-11 Parallelkinematik, insbesondere hubroboter
AT17022004A AT502980B1 (de) 2004-10-11 2004-10-12 Parallelkinematik, insbesondere knickarm
AT7012005A AT503730A3 (de) 2004-10-11 2005-04-26 Parallelkinematik, insbesondere roboter
AT0086105A AT502864A3 (de) 2004-10-11 2005-05-19 Parallelkinematischer roboter
AT08021275T ATE503614T1 (de) 2004-10-11 2005-10-04 Parellelkinematische vorrichtung
DE502005009571T DE502005009571D1 (de) 2004-10-11 2005-10-04 Hubroboter mit parallelkinematischer vorrichtung
EP08021274A EP2055447B1 (de) 2004-10-11 2005-10-04 Parallelkinematische Vorrichtung
AT08021274T ATE547212T1 (de) 2004-10-11 2005-10-04 Parallelkinematische vorrichtung
CN200580041752.1A CN101072661B (zh) 2004-10-11 2005-10-04 并联运动装置
EP08021275A EP2055448B1 (de) 2004-10-11 2005-10-04 Parellelkinematische Vorrichtung
US11/665,139 US20080093322A1 (en) 2004-10-11 2005-10-04 Parallel Kinematic Mechanism
PCT/AT2005/000393 WO2006039730A2 (de) 2004-10-11 2005-10-04 Parallelkinematische vorrichtung
EP05790667A EP1809447B1 (de) 2004-10-11 2005-10-04 Hubroboter mit parallelkinematischer vorrichtung
DE502005011203T DE502005011203D1 (de) 2004-10-11 2005-10-04 Parellelkinematische Vorrichtung
EP08021061A EP2039481A1 (de) 2004-10-11 2005-10-04 Gelenkarm für Roboter, Hebezeuge, Kräne u.dgl.
AT05790667T ATE467488T1 (de) 2004-10-11 2005-10-04 Hubroboter mit parallelkinematischer vorrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT16952004A AT503729B1 (de) 2004-10-11 2004-10-11 Parallelkinematik, insbesondere hubroboter

Publications (2)

Publication Number Publication Date
AT503729A1 AT503729A1 (de) 2007-12-15
AT503729B1 true AT503729B1 (de) 2008-06-15

Family

ID=38777783

Family Applications (1)

Application Number Title Priority Date Filing Date
AT16952004A AT503729B1 (de) 2004-10-11 2004-10-11 Parallelkinematik, insbesondere hubroboter

Country Status (1)

Country Link
AT (1) AT503729B1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7971496B2 (en) 2005-03-09 2011-07-05 Franz Ehrenleitner Method for determining the elastic deformation of components

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10207338A (ja) * 1997-01-20 1998-08-07 Hitachi Ltd 疑似体験用搭乗者移動装置
US5966991A (en) * 1997-04-23 1999-10-19 Universite Laval Two degree-of-freedom spherical orienting device
DE19951840A1 (de) * 1999-10-28 2001-05-10 Deere & Co Anbauschnittstelle zur Kopplung von Arbeitsgeräten an ein Arbeitsfahrzeug
WO2003004223A2 (en) * 2001-07-05 2003-01-16 Microdexterity Systems, Inc. Parallel manipulator
WO2003059581A1 (en) * 2002-01-16 2003-07-24 Abb Ab Industrial robot
US6671975B2 (en) * 2001-12-10 2004-01-06 C. William Hennessey Parallel kinematic micromanipulator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10207338A (ja) * 1997-01-20 1998-08-07 Hitachi Ltd 疑似体験用搭乗者移動装置
US5966991A (en) * 1997-04-23 1999-10-19 Universite Laval Two degree-of-freedom spherical orienting device
DE19951840A1 (de) * 1999-10-28 2001-05-10 Deere & Co Anbauschnittstelle zur Kopplung von Arbeitsgeräten an ein Arbeitsfahrzeug
EP1095549B1 (de) * 1999-10-28 2004-05-26 Deere & Company Anbauschnittstelle zur Kopplung von Arbeitsgeräten an ein Arbeitsfahrzeug
WO2003004223A2 (en) * 2001-07-05 2003-01-16 Microdexterity Systems, Inc. Parallel manipulator
US6671975B2 (en) * 2001-12-10 2004-01-06 C. William Hennessey Parallel kinematic micromanipulator
US6769194B2 (en) * 2001-12-10 2004-08-03 C. William Hennessey Parallel kinematic micromanipulator
WO2003059581A1 (en) * 2002-01-16 2003-07-24 Abb Ab Industrial robot

Also Published As

Publication number Publication date
AT503729A1 (de) 2007-12-15

Similar Documents

Publication Publication Date Title
EP1809447B1 (de) Hubroboter mit parallelkinematischer vorrichtung
DE102009057585B4 (de) Verfahren zum Kalibrieren eines Roboters
DE602004013188T2 (de) Kinematischer parallelmanipulator für grossen arbeitsraum
EP0874715B1 (de) Einrichtung für numerisch gesteuerte fertigungs-, handhabungs- oder messeinrichtungen
DE60132604T2 (de) Manipulator zur bewegung eines gegenstandes im raum mit mindestens drei armen
EP0232548B1 (de) Bearbeitungsstation für grosse Werkstücke
DE19611130A1 (de) Vorrichtung zur Erzeugung einer definierten Positionierung und Orientierung mindestens einer Plattform
DE112016004041T5 (de) Eine verbindungsgliedbedienungsseinrichtung verwendende verbundarbeitseinrichtung
DE102012003271B4 (de) Tauchbehandlungsanlage
DE102012002402A1 (de) Manipulator
DE102013205008B4 (de) Vorrichtung zur Erzielung vorteilhafter kinematischer Eigenschaften bei der Verschwenkung programmgesteuert bewegter, rotationssymmetrisch wirkender Werkzeuge
DE10216571A1 (de) Vorrichtung zum Verfahren eines Arbeitskopfes im Raum
EP3287244A1 (de) Rastmomentkompensation bei einem industrieroboter
AT503729B1 (de) Parallelkinematik, insbesondere hubroboter
WO2019020228A1 (de) Bearbeitungsanlage für flugzeugstrukturbauteile
DE102017116716A1 (de) Bearbeitungsanlage für Flugzeugstrukturbauteile
DE19640769A1 (de) Einrichtung mit mindestens einer Bewegungseinheit
EP3589456B1 (de) Parallelkinematik
EP3064417A1 (de) Transportvorrichtung zum bewegen von werkstücken für den karosseriebau der kfz-industrie
AT508495B1 (de) Werkzeugmaschine
EP3658462A1 (de) Bearbeitungsanlage für flugzeugstrukturbauteile
AT502426B1 (de) Parallelkinematik, insbesondere hubtisch
AT502980B1 (de) Parallelkinematik, insbesondere knickarm
DE112019003058T5 (de) Apparat zum Bearbeiten eines Objekts
DE102018214549A1 (de) Hebeeinrichtung

Legal Events

Date Code Title Description
MM01 Lapse because of not paying annual fees

Effective date: 20131011