US20150314581A1 - Impact resistant material - Google Patents

Impact resistant material Download PDF

Info

Publication number
US20150314581A1
US20150314581A1 US14/508,968 US201414508968A US2015314581A1 US 20150314581 A1 US20150314581 A1 US 20150314581A1 US 201414508968 A US201414508968 A US 201414508968A US 2015314581 A1 US2015314581 A1 US 2015314581A1
Authority
US
United States
Prior art keywords
particles
tile
coater
coatee
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/508,968
Inventor
Maximilian A. Biberger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SDC Materials Inc
Original Assignee
SDC Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SDC Materials Inc filed Critical SDC Materials Inc
Priority to US14/508,968 priority Critical patent/US20150314581A1/en
Assigned to SDCmaterials, Inc. reassignment SDCmaterials, Inc. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BIBERGER, MAXIMILIAN A.
Publication of US20150314581A1 publication Critical patent/US20150314581A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/02Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
    • B28B3/025Hot pressing, e.g. of ceramic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8926Copper and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/0081Embedding aggregates to obtain particular properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/0081Embedding aggregates to obtain particular properties
    • B28B23/0087Lightweight aggregates for making lightweight articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/30Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being formed of particles, e.g. chips, granules, powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C23C4/127
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H1/00Personal protection gear
    • F41H1/02Armoured or projectile- or missile-resistant garments; Composite protection fabrics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0471Layered armour containing fibre- or fabric-reinforced layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H5/00Armour; Armour plates
    • F41H5/02Plate construction
    • F41H5/04Plate construction composed of more than one layer
    • F41H5/0492Layered armour containing hard elements, e.g. plates, spheres, rods, separated from each other, the elements being connected to a further flexible layer or being embedded in a plastics or an elastomer matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • B22F1/147Making a dispersion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B2037/1253Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives curable adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0253Polyolefin fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/104Oxysalt, e.g. carbonate, sulfate, phosphate or nitrate particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/107Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/558Impact strength, toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2571/00Protective equipment
    • B32B2571/02Protective equipment defensive, e.g. armour plates, anti-ballistic clothing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12576Boride, carbide or nitride component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/24983Hardness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/252Glass or ceramic [i.e., fired or glazed clay, cement, etc.] [porcelain, quartz, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2916Rod, strand, filament or fiber including boron or compound thereof [not as steel]

Definitions

  • the present invention relates to the field of composite materials. More specifically, the present invention relates to the formation of composite materials using a novel ceramic-metallic tile.
  • composite materials have a variety of different applications, all of which are within the scope of the present invention, they may be particularly useful in the production of body armor, such as bullet-proof vests.
  • body armor is formed by bonding two types of armor together.
  • a meltable plate is bonded to a hard plate via melting in an autoclave.
  • the resulting armor is limited in both its hardness and its ductility.
  • a method of making a tile comprises providing a plurality of particles, wherein each one of the particles comprises a ceramic core and a metallic outer layer surrounding the core, and forming a tile from the plurality of particles by performing a bonding process on the plurality of particles.
  • the ceramic core comprises boron carbide.
  • the metallic outer layer comprises at least one of copper, tantalum, titanium, molybdenum, and aluminum.
  • the step of providing the plurality of particles comprises forming a plasma within a plasma production chamber and vaporizing a metallic material with the plasma, thereby forming a coater-plasma mixture comprising the vaporized metallic material.
  • a mixture stream comprising the coater-plasma mixture flows through a coating chamber towards an outlet of the coating chamber, wherein the mixture stream reaches a maximum enthalpy at a location within the coating chamber, then decreases in enthalpy as it proceeds toward the outlet.
  • a ceramic coatee powder is delivered into the mixture stream at a location between the location of maximum enthalpy and the chamber outlet, wherein the enthalpy of the mixture stream at the location of delivery is less than the maximum enthalpy and the ceramic coatee powder becomes entrained in the mixture stream.
  • the vaporized metallic material is at least partially condensed onto the ceramic coatee powder, thereby coating individual particles of the ceramic coatee powder with the metallic material to form the plurality of particles entrained within the mixture stream.
  • the bonding process is a sintering process. In some embodiments, the sintering process is a spark plasma sintering process.
  • a method of making a composite material comprises providing up lurality of particles, wherein each one of the particles comprises a ceramic core and a metallic outer layer surrounding the core, and forming a tile from the plurality of particles by performing a bonding process on the plurality of particles. The tile is then bonded to a ductile backing material.
  • the ceramic core comprises boron carbide.
  • the metallic outer layer comprises at least one of copper, tantalum, titanium, molybdenum, and aluminum.
  • the step of providing the plurality of particles comprises forming plasma within a plasma production chamber and vaporizing a metallic material with the plasma, thereby forming a coater-plasma mixture comprising the vaporized metallic material.
  • a mixture stream comprising the coater-plasma mixture flows through a coating chamber towards an outlet of the coating chamber, wherein the mixture stream reaches a maximum enthalpy at a location within the coating chamber, then decreases in enthalpy as it proceeds toward the outlet.
  • a ceramic coatee powder is delivered into the mixture stream at a location between the location of maximum enthalpy and the chamber outlet, wherein the enthalpy of the mixture stream at the location of delivery is less than the maximum enthalpy and the ceramic coatee powder becomes entrained in the mixture stream.
  • the vaporized metallic material is at least partially condensed onto the ceramic coatee powder, thereby coating individual particles of the ceramic coatee powder with the metallic material to form the plurality of particles entrained within the mixture stream.
  • the bonding process is a sintering process. In some embodiments, the sintering process is a spark plasma sintering process.
  • the ductile backing material comprises a plurality of fibers. In some embodiments, the ductile backing material comprises a plurality of polyethylene fibers.
  • the tile is bonded to the ductile backing material using an autoclave process. In some embodiments, the tile is bonded to the ductile backing material using heat-curable adhering material and catalyzed foamable exothermic material between the tile and the ductile backing material, wherein heat generated from the use of the catalyzed foamable exothermic material cures the heat-curable adhering material. In some embodiments, the adhering material is resin.
  • a tile comprising a plurality of particles bonded together, wherein each one of the particles comprises a ceramic core and a metallic outer layer surrounding the core.
  • the ceramic core comprises boron carbide.
  • the metallic outer layer comprises at least one of copper, tantalum, titanium, molybdenum, and aluminum.
  • a composite material comprising a tile comprising a plurality of particles bonded together, wherein each one of the particles comprises a ceramic core and a metallic outer layer surrounding the core, and a ductile backing material bonded to the tile.
  • the ceramic core comprises boron carbide.
  • the metallic outer layer comprises at least one of copper, tantalum, titanium, molybdenum, and aluminum.
  • the ductile backing material comprises a plurality of fibers. In some embodiments, the ductile backing material comprises a plurality of polyethylene fibers.
  • the composite material further comprises an adhering material disposed between the tile and the ductile backing material, wherein the adhering material bonds the tile and the ductile backing material together.
  • the composite material further comprises a cured adhering material and a foam material disposed between the tile and the ductile backing material, wherein the cured adhering material and the foam material bond the tile and the ductile backing material together.
  • FIG. 1 is a flowchart illustrating one embodiment of a method of making a composite material in accordance with the principles of the present invention.
  • FIG. 2 illustrates one embodiment of a plurality of particles having a ceramic core and a metallic outer layer in accordance with the principles of the present invention.
  • FIG. 3 illustrates one embodiment of a particle production system that synthesizes coated powders in accordance with the principles of the present invention.
  • FIG. 4 is a flowchart illustrating one embodiment of a method of providing a plurality of particles having a ceramic core and a metallic outer layer in accordance with the principles of the present invention.
  • FIG. 5A illustrates one embodiment of a tile and a ductile backing material before insertion of catalyzed foamable exothermic material within the interior volume between them.
  • FIG. 5B illustrates one embodiment of a tile and a ductile backing material after insertion of catalyzed foamable exothermic material within the interior volume between them in accordance with the principles of the present invention.
  • Powders that fall within the scope of the present invention may include, but are not limited to, any of the following: (a) nano-structured powders(nano-powders), having an average grain size less than 250 nanometers and an aspect ratio between one and one million; (b) submicron powders, having an average grain size less than 1 micron and an aspect ratio between one and one million; (c) ultra-fine powders, having an average grain size less than 100 microns and an aspect ratio between one and one million; and (d) fine powders, having an average grain size less than 500 microns and an aspect ratio between one and one million.
  • FIG. 1 is a flowchart illustrating one embodiment of a method 100 of making a composite material in accordance with the principles of the present invention.
  • the method of the present invention is used in forming body armor. However, it is contemplated that it has a variety of other applications as well, all of which are within the scope of the present invention.
  • a plurality of particles are provided.
  • Each particle comprises a ceramic core and a metallic outer layer.
  • FIG. 2 illustrates one embodiment of a plurality of particles 200 , with each particle having a ceramic core 210 and a metallic outer layer 220 . While FIG. 2 shows the particles being uniformly sized and shaped, it is contemplated that the particles can also vary in size and shape.
  • the ceramic cores 210 in the plurality of particles are each micron-sized, having an average grain size greater than or equal to 1 micron.
  • the thickness of the metallic outer layer 220 is substantially uniform around the entire ceramic core 210 , while in other embodiments, the thickness of the metallic outer layer 220 is not uniform around the entire ceramic core 210 .
  • the ceramic core 210 comprises boron carbide. However, it is contemplated that other ceramic materials can be used in addition to or as an alternative to boron carbide. In some embodiments, the ceramic core 210 consists of only one ceramic material. For example, in some embodiments, the ceramic core 210 consists only of boron carbide. In other embodiments, the ceramic core 210 comprises a combination of ceramic materials. It is contemplated that any metallic material can be used for the metallic outer layer 220 . However, certain metals have been found to be particularly advantageous. Such metals include copper, tantalum, titanium, molybdenum, and aluminum. In some embodiments, the metallic outer layer 220 consists of only one type of metal. For example, in some embodiments, the metallic outer layer 220 consists only of copper. In other embodiments, the metallic outer layer 220 comprises a combination of different metals.
  • the plurality of particles having a ceramic more and a metallic outer layer can be produced and provided in a variety of different ways, using a variety of different systems.
  • the present invention considers a wide variety of gas phase particle production systems including combustion based systems, plasma based systems, laser ablation systems and vapor deposition systems.
  • the preferred systems take material inputs in a broad range of forms, including solid phase inputs, and provide product in high surface area forms, including powders ranging in grain size from nano-structured to fine.
  • the process controls preferably provide a fine degree over a plurality of reaction parameters, permitting fine gradients of product composition ratios to be produced.
  • An exemplary particle production system that can be used for the present invention is a plasma powder production reactor.
  • the plasma powder production reactor produces an output comprising particles entrained within a gas stream.
  • Particle production preferably includes the steps of combination, reaction, and conditioning.
  • the present invention can employ concepts similar to those used in the nano-powder production systems disclosed in related U.S. patent application Ser. No. 11/110,341, filed on Apr. 19, 2005 and entitled, “HIGH THROUGHPUT DISCOVERY OF MATERIALS THROUGH VAPOR PHASE SYNTHESIS”, which is currently published as U.S. Publication No. 2005-0233380-A.
  • working gas is supplied from a gas source to a plasma reactor.
  • One or more material dispensing devices introduce at least one material, preferably in powder form, into the plasma reactor.
  • the combination within the plasma reactor of the plasma and the material(s) introduced by the material dispensing device(s) forms a highly reactive and energetic mixture, wherein the powder can be vaporized.
  • This mixture of vaporized powder moves through the plasma reactor in the flow direction of the working gas. As it moves, tire mixture cools and particles are formed therein.
  • the still-energetic output mixture comprising hot gas and energetic particles, is emitted from the plasma reactor.
  • FIG. 3 illustrates one embodiment. of a particle production system 300 that synthesizes coated powders in accordance with the principles of the present invention.
  • System 300 is disclosed in U.S. patent application Ser. No. 12/152,111, filed on May 9, 2008 and entitled, “POWDER COATING SYSTEM AND METHOD INCLUDING GUN EXTENSION”, the entirety of which is hereby incorporated by reference as if set forth herein,
  • the system 300 comprises a plasma production chamber 320 , a coating chamber 330 , a cooling conduit 370 , a sampling system 380 , and a motive pump 390 .
  • the plasma production chamber 320 and coating chamber 330 are preferably enclosed in a motive gas supply chamber 310 .
  • the motive gas supply chamber 310 is fluidly coupled to a motive gas supply system 315 , which is configured to supply a motive gas.
  • the motive gas is an inert gas, such as argon.
  • the chamber 310 preferably include airtight inlets and outlets configured to permit conduits to pass through to supply the plasma production chamber 320 and coating chamber 330 .
  • the motive gas supply chamber 310 can include airtight couplings that permit these conduits to pass through while preventing leakage either into or out of the chambers.
  • output from the coating chamber 330 can flow into the cooling conduit 370 , which can also pass through a wall of the motive gas supply chamber 310 .
  • the cooling conduit 370 also exits the motive gas supply chamber through an airtight coupling.
  • the plasma production chamber 320 preferably includes several types of inputs for receiving power, gas, and target materials. Inputs are provided to the chamber 320 by a variety of supply systems through means described below. Functional aspects of these supply systems are also described below.
  • Various input conduits fluidly couple the plasma gas supply mixer 340 with a first gas supply vessel 342 and a second gas supply vessel 344 .
  • the plasma gas supply system 340 includes an outlet fluidly coupled with an inlet of the plasma production chamber 320 .
  • the gas supply system 340 and the production chamber 320 are coupled by a conduit that passes through the motive gas supply chamber 310 .
  • an overall system controller provides control signals to the plasma gas supply system 340 .
  • the power supply system 325 is also coupled to the plasma production chamber 320 through conduits that pass through the motive gas supply chamber 310 .
  • an overall system controller provides control signals to the power supply system 325 .
  • the coater supply system 352 houses precursor material (e.g., metallic powder) and includes an externally controllable delivery system fluidly coupled to a materials inlet of the plasma production chamber 320 .
  • the supply system 352 is coupled with the production chamber 320 by a conduit that passes through the motive gas supply chamber 310 .
  • an overall system controller provides control signals to the supply system 352 .
  • the conduits that run between the plasma gas supply system 340 and the production chamber 320 , the coater supply system 352 and the plasma production chamber 320 , and the power supply system 325 and the plasma production chamber 320 all enter the motive gas supply chamber 310 through air-tight seals.
  • the conduits of the various supply systems all have dedicated airtight entrances to the motive gas supply chamber 310 .
  • a single airtight entrance accommodates multiple conduits.
  • the coating chamber 330 preferably includes inlets for motive gas, coater material plasma mixture, and coatee material, as well as an outlet to provide an output to the cooling conduit 370 .
  • the inlets for motive gas couple the motive gas supply chamber 310 to the interior of the coating chamber 330 .
  • these inlets are channels of adjustable size that directly coupled the two chambers, yet permit for controlled flow from the supply chamber 310 into the coating chamber 330 .
  • Coatee material (e.g., ceramic powder) is stored within the coatee material supply system 354 , which preferably sits outside the motive gas supply chamber 310 .
  • a conduit passes from the supply system 354 through the motive gas supply chamber 310 and also through a wall of the coating chamber 330 .
  • the coatee material supply system 354 includes a controllable delivery system that provides coatee material to the conduit.
  • the conduit enters both chambers though airtight seals.
  • the conduit terminates within the coating chamber at a selected location.
  • the location of the terminus is selected based on parameters of operation.
  • an overall system controller is configured to supply control signals to the supply system 354 .
  • the cooling conduit 370 connects the coating chamber 330 with the sampling system 380 .
  • the conduit 370 exits the motive gas supply chamber 310 through airtight means.
  • the cooling conduit 370 includes a first section 372 , a second section 374 , third section 376 , and fourth section 378 .
  • the sections are joined by gas input couplings that contain gas input features.
  • the first section 372 is joined to the second section 374 by the gas input coupling 362 .
  • the second section 374 is joined to the third section 376 by the gas input coupling 364 .
  • the gas input coupling 366 joins the third section 376 to the fourth section 378 .
  • gas input couplings 362 , 364 , 366 for input into the cooling conduit 370 .
  • gas can be supplied through one or more of the gas input couplings.
  • the sampling system 380 is fluidly coupled between the cooling conduit 370 and the motive pump 390 .
  • the sampling system 380 is configured to receive output from the cooling conduit 370 , sample material having appropriate characteristics from the output, and permit remains of the output to flow to the motive pump 390 , which is fluidly coupled through a conduit to the sampling system 380 .
  • the supply systems 340 , 352 , and 325 provide plasma gas, coater material, and power, respectively, to the plasma production chamber 320 .
  • Power from the deliver system 325 is used to energize gas from the supply system 340 to produce a plasma within the production chamber 320 .
  • the coater material supply system 352 provides coater material (e.g., metallic powder) in metered amounts into the plasma production chamber 320 , exposing the coater material to plasma formed therein.
  • the overall control system sends signals to the plasma gas supply system 340 , coater material supply system 352 , and power supply system 325 to set operational parameters.
  • the plasma gas supply system 340 determines the ratio of mixing for the first and second gasses to produce plasma gas, as well as the rate at which the plasma gas feeds into the plasma production chamber 320 .
  • the first gas is hydrogen and the second gas is an inert gas, such as argon.
  • the coater material supply system 352 determines the rate at which the coater material is supplied into the plasma production chamber 320 .
  • the power supply system 325 determines the voltage and amperage at which power is supplied to the plasma production chamber.
  • these parameters determine the characteristics of the plasma produced within the plasma production chamber 320 , as well as the characteristics of the plasma-coatee material mixture also produced within the chamber 320 .
  • the coater supply system is described as providing only a single coater material into the plasma production chamber 320 at a single location, in some embodiments of the present invention, the coater supply system 352 supplies a plurality of materials into the plasma production chamber 320 at one or more locations.
  • the motive gas supply chamber 310 receives motive gas, typically an inert gas such as argon, from a preferably dedicated motive gas supply system 315 .
  • the motive gas supply chamber 310 provides an airtight enclosure around the plasma production chamber 320 and coating chamber 330 .
  • the motive gas supply system 315 preferably maintains a pressure within the motive gas supply chamber 310 that slightly exceeds the ambient pressure of the environment in which the system 300 is housed, regardless of any variation in suction force generated by the motive pump 390 .
  • the coating chamber 330 receives a coater material and plasma mixture from the plasma production chamber 320 .
  • the coating chamber 330 also receives motive gas through input features.
  • these input features provide for an adjustable flow rate of motive gas into the coating chamber 330 .
  • Motive gas flow is preferably motivated by the motive pump 390 by pulling a negative pressure on the conduit 370 , motivating mass flow through the outlet of the coating chamber 370 .
  • the flow rate of the motive gas into the coating chamber 330 is preferably controlled by the overall control system.
  • the coatee material supply system 354 provides a metered stream of coater material through the coatee material conduit to the conduit's terminus location within the coating chamber 330 .
  • the rate at which coatee material is provided into the chamber 330 preferably is determined by the overall control system.
  • the terminus of the coatee material supply conduit is shown to deposit material only at one location within the coating chamber 330 , in some embodiments of the present invention, the terminus deposits coatee material at a plurality of locations within the conduit (e.g., in an annular configuration surrounding output of the plasma production chamber 320 ).
  • coating chamber 330 is shaped and the operational parameters of the apparatus 300 are controlled so that the coater material and plasma mixture enters the coating chamber and reaches a maximum enthalpy shortly thereafter.
  • this maximum of enthalpy occurs within a defined region of the coating chamber 330 , with the average enthalpy of the mixture falling as it moves away from that region with its minimum (within the coating chamber 330 ) coming at the outlet to the cooling conduit 370 .
  • the maximum enthalpy occurs in region 301 .
  • the location of the terminus for delivery of the coatee material is chosen to be outside the maximum region and between the maximum region and the outlet.
  • the coating chamber 330 is shaped and the operational parameters of the apparatus 300 are chosen so that the coater material begins to condense from the coater material and gas mixture within a defined region of the coating chamber 330 .
  • the region 302 is such an initial condensation region, Typically, the initial condensation region lies between the maximum enthalpy region and the outlet of the coating chamber 330 .
  • the coatee material is delivered into the initial condensation region. Preferably in these embodiments, sufficient enthalpy remains in the condensing mixture to vaporize the coatee material.
  • the coatee material is vaporized mixed with the condensing particles.
  • the coater material gas particle mixture mixes with the vaporized coatee material and moves towards the outlet, the coater condenses on the coatee particles, forming a plurality of coated particles.
  • the cooling conduit 370 receives the coated particle and gas mixture from the coating chamber 330 .
  • the mixture is pulled into the cooling conduit by the motive pump 390 ,
  • a motive pump or other system within the sampling system 380 provides some motive force to pull the mixture.
  • pressure provided by the plasma production chamber 320 and the motive as supply 315 motivate the movement of the mixture into the cooling conduit 370 .
  • the cooling conduit 370 is equipped with an active cooling system.
  • a gas is supplied into the gas input couplings 362 , 364 , or 366 .
  • the gas is a cooling and entraining gas.
  • the gas is a passivating gas configured to reduce the reactivity of the condensed particles within the mixture.
  • the sampling system 380 preferably permits the motive pump 390 to provide a motive force therethrough. However, in some embodiments the sampling system 380 provides additional motive force. In some embodiments the sampling system 380 supplants the motive force provided by the motive pump 390 and provides a substitute motive force to the cooling conduit 370 .
  • the sampling system 380 can be configured in a variety of ways.
  • the sampling system 380 comprises a sampling structure, at least one filled aperture formed in the sampling structure, and at least one unfilled aperture formed in the sampling structure.
  • Each filled aperture is configured to collect particles from the mixture stream, such as by using a filter.
  • the sampling structure is configured to be adjusted between a pass-through configuration and a collection configuration.
  • the pass-through configuration comprises an unfilled aperture being fluidly aligned with a conduit, such as conduit 140 , thereby allowing the unfilled aperture to receive the mixture stream from the conduit and the mixture stream to flow through the sampling structure without substantially altering the particle content of the mixture stream.
  • the collection configuration comprises a filled aperture being fluidly aligned with the conduit, thereby allowing the filled aperture to receive the mixture stream and collect particles while the mixture stream is being flown through the filled aperture.
  • the sampling structure can be adjusted between the pass-through configuration and the collection configuration in a variety of ways.
  • the sampling structure is a disk-shaped structure including an annular array of apertures, wherein the annular array comprises a plurality of the filled apertures and a plurality of the unfilled apertures.
  • the sampling structure is rotatably mounted to a base, wherein rotational movement of the sampling structure results in the adjustment of the sampling structure between the pass-through configuration and the collection configuration.
  • the sampling structure is a rectangular-shaped structure including a linear array of apertures, wherein the linear array comprises a plurality of the filled apertures and a plurality of the unfilled apertures.
  • the sampling structure is slideably mounted to a base, wherein sliding of the sampling structure results in the adjustment of the sampling structure between the pass-through configuration and the collection configuration.
  • FIG. 4 is a flowchart illustrating one embodiment of a method of providing a plurality of particles having a ceramic core and a metallic outer layer in accordance with the principles of the present. invention.
  • a plasma is formed. It is contemplated that the plasma can be formed in a variety of ways. However, in a preferred embodiment, a working gas is supplied to a plasma production chamber, where the working gas is energized to form the plasma.
  • a plasma is formed from hydrogen and an inert gas, such as argon. Hydrogen is used to provide high heat conductivity within the plasma. By having a highly heat conductive plasma, higher vapor point coater materials can be used.
  • a metallic coater powder e.g., copper, tantalum, titanium, molybdenum, aluminum, etc.
  • a metallic coater powder is vaporized within the plasma to form a coater-plasma mixture.
  • energy is delivered to the gas stream to form the plasma, then later in a ‘downstream’ area of the plasma production chamber, a water material is introduced into the resulting stream of plasma.
  • a water material is introduced into the resulting stream of plasma.
  • other configuration can be used as well. The material is vaporized and results in a stream of coater-plasma mixture.
  • a stream of the coater-plasma mixture is delivered into a coating chamber.
  • the coating chamber is configured so that the mixture stream reaches a maximum enthalpy at a location within the chamber and then decreases in enthalpy as it proceeds toward a chamber outlet.
  • a ceramic coatee powder (e.g., boron carbide) is delivered into the mixture stream between the location of maximum enthalpy and the chamber outlet. It is possible for such delivery to take place at a location where the stream has sufficient enthalpy to vaporize the coatee material. Furthermore, the method optionally includes additional steps, such as maintaining the mixture at a selected enthalpy below the maximum enthalpy to vaporize the ceramic Goatee material.
  • the vaporized metallic material is partially or completely condensed onto the ceramic coatee powder, thereby coating the individual ceramic particles with the metallic material and forming a plurality of particles, each having a ceramic core with a metallic outer layer.
  • a tile is formed from the plurality of particles. It is noted that these particular particles, each having a ceramic core surrounded by a metallic outer layer, help form a novel tile that provides significant advantages over the prior art.
  • the ceramic core maintains the toughness of the resulting tile, while the metallic outer layer makes the tile more ductile, thereby reducing the likelihood of fracture.
  • the tile is formed by performing a sintering process on the plurality of particles.
  • a sintering process When using nano-particles to form the tile, maintaining the nano-scale properties of the particles during formation may be difficult.
  • performing a standard sintering process on a plurality of nano-particles will typically result in an undesirable amount of melting of the nano-particles due to the high-temperature of the standard sintering process, thereby leading to nano-particles uniting with nearby nano-particles to a degree that they form particles that are larger than nano-particles.
  • some embodiments employ spark plasma sintering (also known as field assisted sintering technique) on the plurality of particles to form the tile.
  • Spark plasma sintering uses axial pressure and elevated temperature that are generated by a current flow. The energy released by the current raises the temperature in the graphite dies enclosing the powder and within powders that have some electrical conductivity. The heat is generated internally, in contrast to conventional hot pressing, where the heat is provided by external heating elements.
  • the spark plasma sintering process is very fast, thereby ensuring it has the potential of densifying powders with nanosize or nanostructure, while avoiding coarsening which accompanies standard densification routes.
  • Spark plasma sintering provides significant advantages by lowering the required sintering temperature and shortening its duration. It is contemplated that the spark plasma sintering can also be advantageously used when forming a tile from particles other than nano-particles, such as micron-sized particles.
  • the tile is bonded to a ductile backing material using heat-curable adhering material and catalyzed foamable exothermic material between the tile and the ductile backing material.
  • a bonding process is described in U.S. Pat. No. 6,117,376 to Merkel, entitled “Method of Making Foam-Filled Composite Products,” the entirety of which is hereby incorporated by reference as if set forth herein. Merkel discloses a method for making foam-filled parts having fiber-reinforced skins or surfaces.
  • Mold halves of pressure-resisting thermally insulative material are covered with a release material, which is then covered with the fiber skins, The fiber skins are coated with heat-curable resin, and the mold halves are then clamped together to form a cavity.
  • a catalyzed foam-forming mixture is poured into the cavity. The mixture foams and expands to the full volume of the cavity. While the mixture hardens, it generates heat sufficient to cure the resin.
  • the concave inner surfaces of the mold halves are covered with a commercial TeflonTM sheet having an adhesive backing.
  • This material adheres to the mold face through numerous replications of parts and freely releases from polymers that are cured in direct contact with its surface, This approach also has the advantage of avoiding contamination of the resin surface with the release agent, such as wax-based materials.
  • Dry (i.e., unimpregnated) fiber-reinforced skin material is laid in to cover the inner surfaces of the mold halves.
  • the fiber skins can be in loosely woven sheet or strip form, having sufficient cross weave fibers to permit easy handling without separating.
  • the fibers are then thoroughly wetted or impregnated in place with an uncured resin, such as an epoxy resin from West, sold as system resin with 205 or 206 hardener.
  • the hardener is a thermally activated catalyst that requires a long term curing at ambient temperature, although it acts quickly above a threshold, so that it remains wet until the proper time in the ensuing process.
  • the resin system causes the fiber reinforcement to adhere tightly to the inner surfaces of the mold halves, despite the TeflonTM covering. With the two mold halves prepared in this manner, they can be placed together.
  • the mold cavity is thus sealed on three sides, and can be placed in a substantially vertical position so that a premixed foamable liquid can be poured in immediately after preparation.
  • This mix may be of the type such as Polytech 20/08-, and will include the proper amount of catalyst for the volume of resin and the cavity. This material expands to about 40 times its original volume.
  • the foamable liquid mix rapidly begins to expand and build up interior pressure within the mold cavity after being poured. The reaction is strongly exothermic, and heats the foam to in excess of 300 degrees F. as it expands under significant local pressure everywhere in the mold cavity.
  • the heat is conducted into the skin layers throughout.
  • a property of this mixture is that the expansion is self-limiting, in that while significant pressure is generated during expansion, total expansion is limited by the rapid hardening characteristic of the material. Consequently, while the predetermined volume of mix is such that material foams out of the top of the mold cavity, and may even leak through the malleable seal to a limited extent, the interior of the mold cavity is uniformly pressurized and there are no voids.
  • the heat generated by the exotherm raises the temperature of the wet resin matrix at the skin above the curing level. A high temperature level is also maintained for many more minutes by the insulative characteristic of the mold halves.
  • the close physical, pressurized contact between the foam and the skin resin system not only cures the skins into true fiber-reinforced composites, but assures chemical adherence at the interface between the foam and the skin on all surfaces. Typically, after one to two hours, the C-clamps are released and the mold halves are readily separated from the formed composite.
  • all that is required is that an interior volume between the tile and the ductile backing material be sealed to a degree sufficient to allow the catalyzed foamable exothermic material to expand and build up interior pressure within the interior volume, thereby creating physical pressurized contact between the catalyzed foamable exothermic material and the heat-curable adhering material of each of the tile and the ductile backing material.
  • an interior volume between the tile and the ductile backing material be sealed to a degree sufficient to allow the catalyzed foamable exothermic material to expand and build up interior pressure within the interior volume, thereby creating physical pressurized contact between the catalyzed foamable exothermic material and the heat-curable adhering material of each of the tile and the ductile backing material.
  • FIG. 5A illustrates one embodiment 500 of a tile 510 and a ductile backing material 520 before insertion of catalyzed formable exothermic material within the interior volume 530 between them.
  • the tile 510 is formed from the plurality of particles previously discussed.
  • the ductile backing material 520 is formed from organic material, In some embodiments, the ductile backing material 520 is formed from a plurality of fibers. In some embodiments, the ductile backing material 520 is formed from a plurality of polyethylene fibers. In some embodiments, the ductile backing material 520 is Dyneerna® or Kevlar®.
  • the interior surface of the tile 510 is wetted with a heat-curable adhering material 515 .
  • the interior surface of the ductile backing material 520 is also wetted with a heat-curable adhering material 525 .
  • heat-curable adhering material 515 and heat-curable adhering material 525 are the same material.
  • the adhering material is resin.
  • An interior volume 530 is formed between the tile 510 and the ductile backing material 520 , with the interior surface of the tile 510 and the interior surface of the ductile backing material 520 facing one another.
  • the interior surface of the tile 510 and the interior surface of the ductile backing material 520 each form a boundary of the interior volume 530 .
  • the tile 510 and the ductile backing material 520 can be secured in this position using mold halves and/or clamps, and/or other securing and sealing means.
  • the interior volume 530 does not extend into any area that is not disposed between the tile 510 and the ductile backing material 520 .
  • a catalyzed foamable exothermic material such as that used in U.S. Pat. No. 6,117,376 to Merkel, is inserted into the interior volume after wetting the interior surfaces of the tile 510 and the ductile backing material 520 with the heat-curable adhering material.
  • An amount of catalyzed foamable exothermic material is used that is sufficient to fill (in some cases, overfill) the entire interior volume when foamed and form a solid foam body between the tile 510 and the ductile backing material 520 .
  • the exotherm from the foaming is allowed to activate and cure the heat-curable adhering material 515 , 525 for a time sufficient to unite the solid foam body to the heat-curable adhering material 515 , 525 of the tile 510 and the ductile backing material 520 .
  • FIG. 5B illustrates one embodiment 500 ′ of the tile 510 and the ductile backing material 520 after insertion of catalyzed foamable exothermic material within the interior volume between them in accordance with the principles of the present invention.
  • the catalyzed foamable exothermic material has expanded to form a solid foam body 535 that fills the entire interior volume 530 .
  • the heat-curable adhering material 515 and 525 has been cured by the exotherm from the foaming to form cured adhering material 515 ′ and 525 ′.
  • the use of the catalyzed foamable exothermic material and heat-curable adhering material provides a significant advantage over the use of an autoclave, which is the standard way of bonding a meltable plate to a hard plate.
  • An autoclave process is too hot, resulting in the loss of certain advantageous properties (e.g., nano-scale properties) of the tile 510 .
  • the maximum temperature of the bonding process is half the melting point temperature of the particles of the tile 510 .
  • the maximum temperature of the bonding process is preferably one-quarter of the melting point temperature of the particles of the tile 510 .
  • FIGS. 5A-B show certain shapes and sizes of the components, other shapes and sizes, as well as other configurations, are also within the scope of the present invention.
  • the tile 510 , ductile backing material 520 , and the interior volume 530 are shown as having substantially rectangular features. However, it is contemplated that these components can be shaped in other ways, such as with curves.
  • the tile 510 and the ductile backing material 520 are shown having substantially the same thickness, it is contemplated that one can be substantially thicker than the other.
  • the heat-curable adhering material 525 may extend into the ductile backing material 520 .
  • the ductile backing material 520 comprises fibers
  • the fibers may be held together and/or in position by the heat-curable adhering material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Powder Metallurgy (AREA)
  • Ceramic Products (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Silicon Compounds (AREA)
  • Glass Compositions (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Laminated Bodies (AREA)

Abstract

A method of making a composite material. The method comprises: providing a plurality of particles, wherein each one of the particles comprises a ceramic core and a metallic outer layer surrounding the core; forming a tile from the plurality of particles by performing a bonding process on the plurality of particles; and bonding the tile to a ductile backing material. In some embodiments, the ceramic core comprises boron carbide. In some embodiments, the metallic outer layer comprises at least one of copper, tantalum, titanium, molybdenum, and aluminum.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Patent Application Ser. No. 61/284,329, filed Dec. 15, 2009 and entitled “MATERIALS PROCESSING,” which is hereby incorporated herein by reference in its entirety as if set forth herein.
  • FIELD OF THE INVENTION
  • The present invention relates to the field of composite materials. More specifically, the present invention relates to the formation of composite materials using a novel ceramic-metallic tile.
  • BACKGROUND OF THE INVENTION
  • While composite materials have a variety of different applications, all of which are within the scope of the present invention, they may be particularly useful in the production of body armor, such as bullet-proof vests.
  • Currently, body armor is formed by bonding two types of armor together. A meltable plate is bonded to a hard plate via melting in an autoclave. However, the resulting armor is limited in both its hardness and its ductility.
  • What is needed in the art is a way to improve the hardness and the ductility of body armor and other composite materials.
  • SUMMARY OF THE INVENTION
  • While the present invention is particularly useful in forming body armor, it is contemplated that it may have a variety of other applications as well, all of which are within the scope of the present invention.
  • In one aspect of the present invention, a method of making a tile is provided. The method comprises providing a plurality of particles, wherein each one of the particles comprises a ceramic core and a metallic outer layer surrounding the core, and forming a tile from the plurality of particles by performing a bonding process on the plurality of particles.
  • In some embodiments, the ceramic core comprises boron carbide. In some embodiments, the metallic outer layer comprises at least one of copper, tantalum, titanium, molybdenum, and aluminum.
  • In some embodiments, the step of providing the plurality of particles comprises forming a plasma within a plasma production chamber and vaporizing a metallic material with the plasma, thereby forming a coater-plasma mixture comprising the vaporized metallic material. A mixture stream comprising the coater-plasma mixture flows through a coating chamber towards an outlet of the coating chamber, wherein the mixture stream reaches a maximum enthalpy at a location within the coating chamber, then decreases in enthalpy as it proceeds toward the outlet. A ceramic coatee powder is delivered into the mixture stream at a location between the location of maximum enthalpy and the chamber outlet, wherein the enthalpy of the mixture stream at the location of delivery is less than the maximum enthalpy and the ceramic coatee powder becomes entrained in the mixture stream. The vaporized metallic material is at least partially condensed onto the ceramic coatee powder, thereby coating individual particles of the ceramic coatee powder with the metallic material to form the plurality of particles entrained within the mixture stream.
  • In some embodiments, the bonding process is a sintering process. In some embodiments, the sintering process is a spark plasma sintering process.
  • In another aspect of the present invention, a method of making a composite material is provided. The method comprises providing up lurality of particles, wherein each one of the particles comprises a ceramic core and a metallic outer layer surrounding the core, and forming a tile from the plurality of particles by performing a bonding process on the plurality of particles. The tile is then bonded to a ductile backing material.
  • In some embodiments, the ceramic core comprises boron carbide. In some embodiments, the metallic outer layer comprises at least one of copper, tantalum, titanium, molybdenum, and aluminum.
  • In some embodiments, the step of providing the plurality of particles comprises forming plasma within a plasma production chamber and vaporizing a metallic material with the plasma, thereby forming a coater-plasma mixture comprising the vaporized metallic material. A mixture stream comprising the coater-plasma mixture flows through a coating chamber towards an outlet of the coating chamber, wherein the mixture stream reaches a maximum enthalpy at a location within the coating chamber, then decreases in enthalpy as it proceeds toward the outlet. A ceramic coatee powder is delivered into the mixture stream at a location between the location of maximum enthalpy and the chamber outlet, wherein the enthalpy of the mixture stream at the location of delivery is less than the maximum enthalpy and the ceramic coatee powder becomes entrained in the mixture stream. The vaporized metallic material is at least partially condensed onto the ceramic coatee powder, thereby coating individual particles of the ceramic coatee powder with the metallic material to form the plurality of particles entrained within the mixture stream.
  • In some embodiments, the bonding process is a sintering process. In some embodiments, the sintering process is a spark plasma sintering process.
  • In some embodiments, the ductile backing material comprises a plurality of fibers. In some embodiments, the ductile backing material comprises a plurality of polyethylene fibers.
  • In some embodiments, the tile is bonded to the ductile backing material using an autoclave process. In some embodiments, the tile is bonded to the ductile backing material using heat-curable adhering material and catalyzed foamable exothermic material between the tile and the ductile backing material, wherein heat generated from the use of the catalyzed foamable exothermic material cures the heat-curable adhering material. In some embodiments, the adhering material is resin.
  • In yet another aspect of the present invention, a tile is provided comprising a plurality of particles bonded together, wherein each one of the particles comprises a ceramic core and a metallic outer layer surrounding the core.
  • In some embodiments, the ceramic core comprises boron carbide. In some embodiments, the metallic outer layer comprises at least one of copper, tantalum, titanium, molybdenum, and aluminum.
  • In yet another aspect of the present invention, a composite material is provided comprising a tile comprising a plurality of particles bonded together, wherein each one of the particles comprises a ceramic core and a metallic outer layer surrounding the core, and a ductile backing material bonded to the tile.
  • In some embodiments, the ceramic core comprises boron carbide. In some embodiments, the metallic outer layer comprises at least one of copper, tantalum, titanium, molybdenum, and aluminum.
  • In some embodiments, the ductile backing material comprises a plurality of fibers. In some embodiments, the ductile backing material comprises a plurality of polyethylene fibers.
  • In some embodiments, the composite material further comprises an adhering material disposed between the tile and the ductile backing material, wherein the adhering material bonds the tile and the ductile backing material together. In some embodiments, the composite material further comprises a cured adhering material and a foam material disposed between the tile and the ductile backing material, wherein the cured adhering material and the foam material bond the tile and the ductile backing material together.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a flowchart illustrating one embodiment of a method of making a composite material in accordance with the principles of the present invention.
  • FIG. 2 illustrates one embodiment of a plurality of particles having a ceramic core and a metallic outer layer in accordance with the principles of the present invention.
  • FIG. 3 illustrates one embodiment of a particle production system that synthesizes coated powders in accordance with the principles of the present invention.
  • FIG. 4 is a flowchart illustrating one embodiment of a method of providing a plurality of particles having a ceramic core and a metallic outer layer in accordance with the principles of the present invention.
  • FIG. 5A illustrates one embodiment of a tile and a ductile backing material before insertion of catalyzed foamable exothermic material within the interior volume between them.
  • FIG. 5B illustrates one embodiment of a tile and a ductile backing material after insertion of catalyzed foamable exothermic material within the interior volume between them in accordance with the principles of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the described embodiments will be readily apparent to those skilled in the art and the generic principles herein may be applied to other embodiments. Thus, the present invention is not intended to be limited to the embodiment shown but is to be accorded the widest scope consistent with the principles and features described herein.
  • This disclosure refers to both particles and powders. These two terms are equivalent, except for the caveat that a singular “powder” refers to a collection of particles. The present invention may apply to a wide variety of powders and particles. Powders that fall within the scope of the present invention may include, but are not limited to, any of the following: (a) nano-structured powders(nano-powders), having an average grain size less than 250 nanometers and an aspect ratio between one and one million; (b) submicron powders, having an average grain size less than 1 micron and an aspect ratio between one and one million; (c) ultra-fine powders, having an average grain size less than 100 microns and an aspect ratio between one and one million; and (d) fine powders, having an average grain size less than 500 microns and an aspect ratio between one and one million.
  • FIG. 1 is a flowchart illustrating one embodiment of a method 100 of making a composite material in accordance with the principles of the present invention. As mentioned above, in some embodiments, the method of the present invention is used in forming body armor. However, it is contemplated that it has a variety of other applications as well, all of which are within the scope of the present invention.
  • At step 110, a plurality of particles are provided. Each particle comprises a ceramic core and a metallic outer layer. FIG. 2 illustrates one embodiment of a plurality of particles 200, with each particle having a ceramic core 210 and a metallic outer layer 220. While FIG. 2 shows the particles being uniformly sized and shaped, it is contemplated that the particles can also vary in size and shape. In some embodiments, the ceramic cores 210 in the plurality of particles are each micron-sized, having an average grain size greater than or equal to 1 micron. In some embodiments, the thickness of the metallic outer layer 220 is substantially uniform around the entire ceramic core 210, while in other embodiments, the thickness of the metallic outer layer 220 is not uniform around the entire ceramic core 210.
  • In some embodiments, the ceramic core 210 comprises boron carbide. However, it is contemplated that other ceramic materials can be used in addition to or as an alternative to boron carbide. In some embodiments, the ceramic core 210 consists of only one ceramic material. For example, in some embodiments, the ceramic core 210 consists only of boron carbide. In other embodiments, the ceramic core 210 comprises a combination of ceramic materials. It is contemplated that any metallic material can be used for the metallic outer layer 220. However, certain metals have been found to be particularly advantageous. Such metals include copper, tantalum, titanium, molybdenum, and aluminum. In some embodiments, the metallic outer layer 220 consists of only one type of metal. For example, in some embodiments, the metallic outer layer 220 consists only of copper. In other embodiments, the metallic outer layer 220 comprises a combination of different metals.
  • It is contemplated that the plurality of particles having a ceramic more and a metallic outer layer can be produced and provided in a variety of different ways, using a variety of different systems. The present invention considers a wide variety of gas phase particle production systems including combustion based systems, plasma based systems, laser ablation systems and vapor deposition systems. The preferred systems take material inputs in a broad range of forms, including solid phase inputs, and provide product in high surface area forms, including powders ranging in grain size from nano-structured to fine. In addition, the process controls preferably provide a fine degree over a plurality of reaction parameters, permitting fine gradients of product composition ratios to be produced.
  • An exemplary particle production system that can be used for the present invention is a plasma powder production reactor. Generally, the plasma powder production reactor produces an output comprising particles entrained within a gas stream. Particle production preferably includes the steps of combination, reaction, and conditioning. The present invention can employ concepts similar to those used in the nano-powder production systems disclosed in related U.S. patent application Ser. No. 11/110,341, filed on Apr. 19, 2005 and entitled, “HIGH THROUGHPUT DISCOVERY OF MATERIALS THROUGH VAPOR PHASE SYNTHESIS”, which is currently published as U.S. Publication No. 2005-0233380-A. In such nano-powder production systems, working gas is supplied from a gas source to a plasma reactor. Within the plasma reactor, energy is delivered to the working gas, thereby creating a plasma. A variety of different means can be employed to deliver this energy, including, but not limited to, DC coupling, capacitive coupling, inductive coupling, and resonant coupling, One or more material dispensing devices introduce at least one material, preferably in powder form, into the plasma reactor. The combination within the plasma reactor of the plasma and the material(s) introduced by the material dispensing device(s) forms a highly reactive and energetic mixture, wherein the powder can be vaporized. This mixture of vaporized powder moves through the plasma reactor in the flow direction of the working gas. As it moves, tire mixture cools and particles are formed therein. The still-energetic output mixture, comprising hot gas and energetic particles, is emitted from the plasma reactor.
  • A wide variety of material types and forms can be processed in preferable particle production reactors used in the present invention. Without prejudice, the present invention specifically considers the provision of materials in the following forms: solid, liquid and gas.
  • FIG. 3 illustrates one embodiment. of a particle production system 300 that synthesizes coated powders in accordance with the principles of the present invention. System 300 is disclosed in U.S. patent application Ser. No. 12/152,111, filed on May 9, 2008 and entitled, “POWDER COATING SYSTEM AND METHOD INCLUDING GUN EXTENSION”, the entirety of which is hereby incorporated by reference as if set forth herein, The system 300 comprises a plasma production chamber 320, a coating chamber 330, a cooling conduit 370, a sampling system 380, and a motive pump 390. The plasma production chamber 320 and coating chamber 330 are preferably enclosed in a motive gas supply chamber 310.
  • The motive gas supply chamber 310 is fluidly coupled to a motive gas supply system 315, which is configured to supply a motive gas. Preferably, the motive gas is an inert gas, such as argon. Furthermore, the chamber 310 preferably include airtight inlets and outlets configured to permit conduits to pass through to supply the plasma production chamber 320 and coating chamber 330. The motive gas supply chamber 310 can include airtight couplings that permit these conduits to pass through while preventing leakage either into or out of the chambers.
  • Furthermore, output from the coating chamber 330 can flow into the cooling conduit 370, which can also pass through a wall of the motive gas supply chamber 310. Preferably, the cooling conduit 370 also exits the motive gas supply chamber through an airtight coupling.
  • The plasma production chamber 320 preferably includes several types of inputs for receiving power, gas, and target materials. Inputs are provided to the chamber 320 by a variety of supply systems through means described below. Functional aspects of these supply systems are also described below.
  • Various input conduits fluidly couple the plasma gas supply mixer 340 with a first gas supply vessel 342 and a second gas supply vessel 344. The plasma gas supply system 340 includes an outlet fluidly coupled with an inlet of the plasma production chamber 320. The gas supply system 340 and the production chamber 320 are coupled by a conduit that passes through the motive gas supply chamber 310. Preferably, but not shown in the figure, an overall system controller provides control signals to the plasma gas supply system 340.
  • The power supply system 325 is also coupled to the plasma production chamber 320 through conduits that pass through the motive gas supply chamber 310. Preferably, but not shown in the figure, an overall system controller provides control signals to the power supply system 325.
  • The coater supply system 352 houses precursor material (e.g., metallic powder) and includes an externally controllable delivery system fluidly coupled to a materials inlet of the plasma production chamber 320. The supply system 352 is coupled with the production chamber 320 by a conduit that passes through the motive gas supply chamber 310. Preferably, but not shown in the figure, an overall system controller provides control signals to the supply system 352.
  • Preferably, the conduits that run between the plasma gas supply system 340 and the production chamber 320, the coater supply system 352 and the plasma production chamber 320, and the power supply system 325 and the plasma production chamber 320, all enter the motive gas supply chamber 310 through air-tight seals. In some embodiments, the conduits of the various supply systems all have dedicated airtight entrances to the motive gas supply chamber 310. In some embodiments, a single airtight entrance accommodates multiple conduits.
  • The coating chamber 330 preferably includes inlets for motive gas, coater material plasma mixture, and coatee material, as well as an outlet to provide an output to the cooling conduit 370. The inlets for motive gas couple the motive gas supply chamber 310 to the interior of the coating chamber 330. Preferably, these inlets are channels of adjustable size that directly coupled the two chambers, yet permit for controlled flow from the supply chamber 310 into the coating chamber 330.
  • Coatee material (e.g., ceramic powder) is stored within the coatee material supply system 354, which preferably sits outside the motive gas supply chamber 310. A conduit passes from the supply system 354 through the motive gas supply chamber 310 and also through a wall of the coating chamber 330. The coatee material supply system 354 includes a controllable delivery system that provides coatee material to the conduit. Preferably, the conduit enters both chambers though airtight seals. The conduit terminates within the coating chamber at a selected location. Preferably, the location of the terminus is selected based on parameters of operation. Also preferably, but not shown, an overall system controller is configured to supply control signals to the supply system 354.
  • The cooling conduit 370 connects the coating chamber 330 with the sampling system 380. The conduit 370 exits the motive gas supply chamber 310 through airtight means. The cooling conduit 370 includes a first section 372, a second section 374, third section 376, and fourth section 378. The sections are joined by gas input couplings that contain gas input features. The first section 372 is joined to the second section 374 by the gas input coupling 362. In turn, the second section 374 is joined to the third section 376 by the gas input coupling 364. The gas input coupling 366 joins the third section 376 to the fourth section 378.
  • In the illustrated embodiment, no gas is shown being supplied to the gas input couplings 362, 364, 366 for input into the cooling conduit 370. However, gas can be supplied through one or more of the gas input couplings.
  • The sampling system 380 is fluidly coupled between the cooling conduit 370 and the motive pump 390. The sampling system 380 is configured to receive output from the cooling conduit 370, sample material having appropriate characteristics from the output, and permit remains of the output to flow to the motive pump 390, which is fluidly coupled through a conduit to the sampling system 380.
  • During operation, the supply systems 340, 352, and 325 provide plasma gas, coater material, and power, respectively, to the plasma production chamber 320. Power from the deliver system 325 is used to energize gas from the supply system 340 to produce a plasma within the production chamber 320. The coater material supply system 352 provides coater material (e.g., metallic powder) in metered amounts into the plasma production chamber 320, exposing the coater material to plasma formed therein.
  • The overall control system (not shown) sends signals to the plasma gas supply system 340, coater material supply system 352, and power supply system 325 to set operational parameters. The plasma gas supply system 340 determines the ratio of mixing for the first and second gasses to produce plasma gas, as well as the rate at which the plasma gas feeds into the plasma production chamber 320. In a preferred embodiment, the first gas is hydrogen and the second gas is an inert gas, such as argon. The coater material supply system 352 determines the rate at which the coater material is supplied into the plasma production chamber 320. The power supply system 325 determines the voltage and amperage at which power is supplied to the plasma production chamber. In combination, these parameters determine the characteristics of the plasma produced within the plasma production chamber 320, as well as the characteristics of the plasma-coatee material mixture also produced within the chamber 320. Furthermore, although the coater supply system is described as providing only a single coater material into the plasma production chamber 320 at a single location, in some embodiments of the present invention, the coater supply system 352 supplies a plurality of materials into the plasma production chamber 320 at one or more locations.
  • The motive gas supply chamber 310 receives motive gas, typically an inert gas such as argon, from a preferably dedicated motive gas supply system 315. The motive gas supply chamber 310 provides an airtight enclosure around the plasma production chamber 320 and coating chamber 330. The motive gas supply system 315 preferably maintains a pressure within the motive gas supply chamber 310 that slightly exceeds the ambient pressure of the environment in which the system 300 is housed, regardless of any variation in suction force generated by the motive pump 390.
  • The coating chamber 330 receives a coater material and plasma mixture from the plasma production chamber 320. The coating chamber 330 also receives motive gas through input features. Preferably, these input features provide for an adjustable flow rate of motive gas into the coating chamber 330. Motive gas flow is preferably motivated by the motive pump 390 by pulling a negative pressure on the conduit 370, motivating mass flow through the outlet of the coating chamber 370. However, the flow rate of the motive gas into the coating chamber 330 is preferably controlled by the overall control system.
  • Furthermore, the coatee material supply system 354 provides a metered stream of coater material through the coatee material conduit to the conduit's terminus location within the coating chamber 330. The rate at which coatee material is provided into the chamber 330 preferably is determined by the overall control system. Furthermore, although the terminus of the coatee material supply conduit is shown to deposit material only at one location within the coating chamber 330, in some embodiments of the present invention, the terminus deposits coatee material at a plurality of locations within the conduit (e.g., in an annular configuration surrounding output of the plasma production chamber 320).
  • Preferably, coating chamber 330 is shaped and the operational parameters of the apparatus 300 are controlled so that the coater material and plasma mixture enters the coating chamber and reaches a maximum enthalpy shortly thereafter. Most preferably, this maximum of enthalpy occurs within a defined region of the coating chamber 330, with the average enthalpy of the mixture falling as it moves away from that region with its minimum (within the coating chamber 330) coming at the outlet to the cooling conduit 370. For example, as illustrated in FIG. 3, the maximum enthalpy occurs in region 301. In these embodiments, the location of the terminus for delivery of the coatee material is chosen to be outside the maximum region and between the maximum region and the outlet.
  • Furthermore, in certain embodiments of the present invention, the coating chamber 330 is shaped and the operational parameters of the apparatus 300 are chosen so that the coater material begins to condense from the coater material and gas mixture within a defined region of the coating chamber 330. For example, in FIG. 3, the region 302 is such an initial condensation region, Typically, the initial condensation region lies between the maximum enthalpy region and the outlet of the coating chamber 330. In some embodiments, the coatee material is delivered into the initial condensation region. Preferably in these embodiments, sufficient enthalpy remains in the condensing mixture to vaporize the coatee material. Thus, as the coater material is condensing to form particles, the coatee material is vaporized mixed with the condensing particles. As the coater material gas particle mixture mixes with the vaporized coatee material and moves towards the outlet, the coater condenses on the coatee particles, forming a plurality of coated particles.
  • The cooling conduit 370 receives the coated particle and gas mixture from the coating chamber 330. Preferably, the mixture is pulled into the cooling conduit by the motive pump 390,
  • However, in some embodiments, a motive pump or other system within the sampling system 380 provides some motive force to pull the mixture. Of course, to some extent, pressure provided by the plasma production chamber 320 and the motive as supply 315 motivate the movement of the mixture into the cooling conduit 370.
  • In some embodiments, the cooling conduit 370 is equipped with an active cooling system. In some embodiments, a gas is supplied into the gas input couplings 362, 364, or 366. In some of these embodiments, the gas is a cooling and entraining gas. In some of these embodiments, the gas is a passivating gas configured to reduce the reactivity of the condensed particles within the mixture.
  • As mentioned above, the sampling system 380 preferably permits the motive pump 390 to provide a motive force therethrough. However, in some embodiments the sampling system 380 provides additional motive force. In some embodiments the sampling system 380 supplants the motive force provided by the motive pump 390 and provides a substitute motive force to the cooling conduit 370.
  • It is contemplated that the sampling system 380 can be configured in a variety of ways. In one embodiment, the sampling system 380 comprises a sampling structure, at least one filled aperture formed in the sampling structure, and at least one unfilled aperture formed in the sampling structure. Each filled aperture is configured to collect particles from the mixture stream, such as by using a filter. The sampling structure is configured to be adjusted between a pass-through configuration and a collection configuration. The pass-through configuration comprises an unfilled aperture being fluidly aligned with a conduit, such as conduit 140, thereby allowing the unfilled aperture to receive the mixture stream from the conduit and the mixture stream to flow through the sampling structure without substantially altering the particle content of the mixture stream. The collection configuration comprises a filled aperture being fluidly aligned with the conduit, thereby allowing the filled aperture to receive the mixture stream and collect particles while the mixture stream is being flown through the filled aperture. It is contemplated that the sampling structure can be adjusted between the pass-through configuration and the collection configuration in a variety of ways. In one embodiment, the sampling structure is a disk-shaped structure including an annular array of apertures, wherein the annular array comprises a plurality of the filled apertures and a plurality of the unfilled apertures. The sampling structure is rotatably mounted to a base, wherein rotational movement of the sampling structure results in the adjustment of the sampling structure between the pass-through configuration and the collection configuration. In another embodiment, the sampling structure is a rectangular-shaped structure including a linear array of apertures, wherein the linear array comprises a plurality of the filled apertures and a plurality of the unfilled apertures. The sampling structure is slideably mounted to a base, wherein sliding of the sampling structure results in the adjustment of the sampling structure between the pass-through configuration and the collection configuration.
  • FIG. 4 is a flowchart illustrating one embodiment of a method of providing a plurality of particles having a ceramic core and a metallic outer layer in accordance with the principles of the present. invention.
  • At step 410, a plasma is formed. It is contemplated that the plasma can be formed in a variety of ways. However, in a preferred embodiment, a working gas is supplied to a plasma production chamber, where the working gas is energized to form the plasma. Preferably, a plasma is formed from hydrogen and an inert gas, such as argon. Hydrogen is used to provide high heat conductivity within the plasma. By having a highly heat conductive plasma, higher vapor point coater materials can be used.
  • At step 420, a metallic coater powder (e.g., copper, tantalum, titanium, molybdenum, aluminum, etc.) is vaporized within the plasma to form a coater-plasma mixture. Preferably, as the gas used to form a plasma flows through a plasma production chamber in an ‘upstream’ area of the plasma production chamber, energy is delivered to the gas stream to form the plasma, then later in a ‘downstream’ area of the plasma production chamber, a water material is introduced into the resulting stream of plasma. However, it is contemplated that other configuration can be used as well. The material is vaporized and results in a stream of coater-plasma mixture.
  • At step 430, a stream of the coater-plasma mixture is delivered into a coating chamber. Preferably, the coating chamber is configured so that the mixture stream reaches a maximum enthalpy at a location within the chamber and then decreases in enthalpy as it proceeds toward a chamber outlet.
  • At step 440, a ceramic coatee powder (e.g., boron carbide) is delivered into the mixture stream between the location of maximum enthalpy and the chamber outlet. it is possible for such delivery to take place at a location where the stream has sufficient enthalpy to vaporize the coatee material. Furthermore, the method optionally includes additional steps, such as maintaining the mixture at a selected enthalpy below the maximum enthalpy to vaporize the ceramic Goatee material.
  • At step 450, the vaporized metallic material is partially or completely condensed onto the ceramic coatee powder, thereby coating the individual ceramic particles with the metallic material and forming a plurality of particles, each having a ceramic core with a metallic outer layer.
  • Referring back to the method in FIG. 1, at step 120, a tile is formed from the plurality of particles. It is noted that these particular particles, each having a ceramic core surrounded by a metallic outer layer, help form a novel tile that provides significant advantages over the prior art. The ceramic core maintains the toughness of the resulting tile, while the metallic outer layer makes the tile more ductile, thereby reducing the likelihood of fracture.
  • It is contemplated that this formation can be achieved in a variety of ways. In some embodiments, the tile is formed by performing a sintering process on the plurality of particles, When using nano-particles to form the tile, maintaining the nano-scale properties of the particles during formation may be difficult. For example, performing a standard sintering process on a plurality of nano-particles will typically result in an undesirable amount of melting of the nano-particles due to the high-temperature of the standard sintering process, thereby leading to nano-particles uniting with nearby nano-particles to a degree that they form particles that are larger than nano-particles. Therefore, in order to maintain the nano-scale properties of the particles within the formed tile, some embodiments employ spark plasma sintering (also known as field assisted sintering technique) on the plurality of particles to form the tile. Spark plasma sintering uses axial pressure and elevated temperature that are generated by a current flow. The energy released by the current raises the temperature in the graphite dies enclosing the powder and within powders that have some electrical conductivity. The heat is generated internally, in contrast to conventional hot pressing, where the heat is provided by external heating elements. The spark plasma sintering process is very fast, thereby ensuring it has the potential of densifying powders with nanosize or nanostructure, while avoiding coarsening which accompanies standard densification routes. Spark plasma sintering provides significant advantages by lowering the required sintering temperature and shortening its duration. It is contemplated that the spark plasma sintering can also be advantageously used when forming a tile from particles other than nano-particles, such as micron-sized particles.
  • At step 130, the tile is bonded to a ductile backing material using heat-curable adhering material and catalyzed foamable exothermic material between the tile and the ductile backing material. Such a bonding process is described in U.S. Pat. No. 6,117,376 to Merkel, entitled “Method of Making Foam-Filled Composite Products,” the entirety of which is hereby incorporated by reference as if set forth herein. Merkel discloses a method for making foam-filled parts having fiber-reinforced skins or surfaces. Mold halves of pressure-resisting thermally insulative material are covered with a release material, which is then covered with the fiber skins, The fiber skins are coated with heat-curable resin, and the mold halves are then clamped together to form a cavity. A catalyzed foam-forming mixture is poured into the cavity. The mixture foams and expands to the full volume of the cavity. While the mixture hardens, it generates heat sufficient to cure the resin.
  • In some embodiments, the concave inner surfaces of the mold halves are covered with a commercial Teflon™ sheet having an adhesive backing. This material adheres to the mold face through numerous replications of parts and freely releases from polymers that are cured in direct contact with its surface, This approach also has the advantage of avoiding contamination of the resin surface with the release agent, such as wax-based materials. Dry (i.e., unimpregnated) fiber-reinforced skin material is laid in to cover the inner surfaces of the mold halves. The fiber skins can be in loosely woven sheet or strip form, having sufficient cross weave fibers to permit easy handling without separating. The fibers are then thoroughly wetted or impregnated in place with an uncured resin, such as an epoxy resin from West, sold as system resin with 205 or 206 hardener. The hardener is a thermally activated catalyst that requires a long term curing at ambient temperature, although it acts quickly above a threshold, so that it remains wet until the proper time in the ensuing process. The resin system causes the fiber reinforcement to adhere tightly to the inner surfaces of the mold halves, despite the Teflon™ covering. With the two mold halves prepared in this manner, they can be placed together. With side flanges being in intimate contact, an interior cavity is defined between the concave inner surfaces of the mold halves, and C-clamps are then placed about the periphery of the flanges and tightened. The clamped mold halves thus form what may be regarded as a pressure vessel. In addition, a malleable seal is placed across one end of the mold cavity.
  • When the two mold halves are clamped together in opposition, the C-clamps are tightened sufficiently on the flanges to prevent leakage of foam material out the sides. The mold cavity is thus sealed on three sides, and can be placed in a substantially vertical position so that a premixed foamable liquid can be poured in immediately after preparation. This mix may be of the type such as Polytech 20/08-, and will include the proper amount of catalyst for the volume of resin and the cavity. This material expands to about 40 times its original volume. The foamable liquid mix rapidly begins to expand and build up interior pressure within the mold cavity after being poured. The reaction is strongly exothermic, and heats the foam to in excess of 300 degrees F. as it expands under significant local pressure everywhere in the mold cavity. The heat is conducted into the skin layers throughout. A property of this mixture, however, is that the expansion is self-limiting, in that while significant pressure is generated during expansion, total expansion is limited by the rapid hardening characteristic of the material. Consequently, while the predetermined volume of mix is such that material foams out of the top of the mold cavity, and may even leak through the malleable seal to a limited extent, the interior of the mold cavity is uniformly pressurized and there are no voids. The heat generated by the exotherm raises the temperature of the wet resin matrix at the skin above the curing level. A high temperature level is also maintained for many more minutes by the insulative characteristic of the mold halves. The close physical, pressurized contact between the foam and the skin resin system not only cures the skins into true fiber-reinforced composites, but assures chemical adherence at the interface between the foam and the skin on all surfaces. Typically, after one to two hours, the C-clamps are released and the mold halves are readily separated from the formed composite.
  • While any of the features of U.S. Pat. No. 6,117,376 to Merkel can be used in the bonding process of the present invention, it is contemplated that certain modifications can be made in order to bond an inorganic tile to a ductile backing material, which is not disclosed in Merkel. For example, in some embodiments, fiber skins may be required on only one of the mold halves or on one side of the composite (e.g., acting as the ductile backing material). Additionally, in some embodiments, the resin (or other heat curable adhering material) may be required on only one of the mold halves or on one side of the composite. Furthermore, in some embodiments, separable mold halves may not be required. In some embodiments, all that is required is that an interior volume between the tile and the ductile backing material be sealed to a degree sufficient to allow the catalyzed foamable exothermic material to expand and build up interior pressure within the interior volume, thereby creating physical pressurized contact between the catalyzed foamable exothermic material and the heat-curable adhering material of each of the tile and the ductile backing material. Other modifications are within the scope of the present invention as well.
  • FIG. 5A illustrates one embodiment 500 of a tile 510 and a ductile backing material 520 before insertion of catalyzed formable exothermic material within the interior volume 530 between them. The tile 510 is formed from the plurality of particles previously discussed. In some embodiments, the ductile backing material 520 is formed from organic material, In some embodiments, the ductile backing material 520 is formed from a plurality of fibers. In some embodiments, the ductile backing material 520 is formed from a plurality of polyethylene fibers. In some embodiments, the ductile backing material 520 is Dyneerna® or Kevlar®.
  • The interior surface of the tile 510 is wetted with a heat-curable adhering material 515. The interior surface of the ductile backing material 520 is also wetted with a heat-curable adhering material 525. In some embodiments, heat-curable adhering material 515 and heat-curable adhering material 525 are the same material. In some embodiments, the adhering material is resin.
  • An interior volume 530 is formed between the tile 510 and the ductile backing material 520, with the interior surface of the tile 510 and the interior surface of the ductile backing material 520 facing one another. The interior surface of the tile 510 and the interior surface of the ductile backing material 520 each form a boundary of the interior volume 530. The tile 510 and the ductile backing material 520 can be secured in this position using mold halves and/or clamps, and/or other securing and sealing means. For the purposes of this disclosure, the interior volume 530 does not extend into any area that is not disposed between the tile 510 and the ductile backing material 520.
  • A catalyzed foamable exothermic material, such as that used in U.S. Pat. No. 6,117,376 to Merkel, is inserted into the interior volume after wetting the interior surfaces of the tile 510 and the ductile backing material 520 with the heat-curable adhering material. An amount of catalyzed foamable exothermic material is used that is sufficient to fill (in some cases, overfill) the entire interior volume when foamed and form a solid foam body between the tile 510 and the ductile backing material 520. The exotherm from the foaming is allowed to activate and cure the heat-curable adhering material 515, 525 for a time sufficient to unite the solid foam body to the heat-curable adhering material 515, 525 of the tile 510 and the ductile backing material 520.
  • FIG. 5B illustrates one embodiment 500′ of the tile 510 and the ductile backing material 520 after insertion of catalyzed foamable exothermic material within the interior volume between them in accordance with the principles of the present invention. The catalyzed foamable exothermic material has expanded to form a solid foam body 535 that fills the entire interior volume 530. The heat-curable adhering material 515 and 525 has been cured by the exotherm from the foaming to form cured adhering material 515′ and 525′.
  • The use of the catalyzed foamable exothermic material and heat-curable adhering material provides a significant advantage over the use of an autoclave, which is the standard way of bonding a meltable plate to a hard plate. An autoclave process is too hot, resulting in the loss of certain advantageous properties (e.g., nano-scale properties) of the tile 510. Typically, the maximum temperature of the bonding process is half the melting point temperature of the particles of the tile 510. However, when the tile 510 is formed from nano-particles, the maximum temperature of the bonding process is preferably one-quarter of the melting point temperature of the particles of the tile 510. Using the exotherm from the foamable material instead of the heat from an autoclave allows the temperature of the bonding process to be sufficiently minimized and the tile 510 to retain its advantageous structural properties.
  • It is noted that while FIGS. 5A-B show certain shapes and sizes of the components, other shapes and sizes, as well as other configurations, are also within the scope of the present invention. For example, the tile 510, ductile backing material 520, and the interior volume 530 are shown as having substantially rectangular features. However, it is contemplated that these components can be shaped in other ways, such as with curves. Additionally, although the tile 510 and the ductile backing material 520 are shown having substantially the same thickness, it is contemplated that one can be substantially thicker than the other. Furthermore, the heat-curable adhering material 525 may extend into the ductile backing material 520. For example, in an embodiment where the ductile backing material 520 comprises fibers, the fibers may be held together and/or in position by the heat-curable adhering material.
  • The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of principles of construction and operation of the invention, Such reference herein to specific embodiments and details thereof is not intended to limit the scope of the claims appended hereto, It will be readily apparent to one skilled in the art that other various modifications may be made in the embodiment chosen for illustration without departing from the spirit and scope of the invention as defined by the claims.

Claims (21)

1-31. (canceled)
32. A method of making a tile, comprising:
vaporizing a coater material;
condensing the vaporized coater material onto coatee particles to form coated particles comprising a layer of the coater material on the coatee particles; and
sintering the coated particles to form the tile.
33. The method of claim 32, wherein vaporizing the coater material comprises:
vaporizing the coater material within a plasma stream.
34. The method of claim 32, wherein the sintering comprises spark plasma sintering.
35. The method of claim 32, wherein the coatee particles comprise ceramic coatee particles.
36. The method of claim 35, wherein the ceramic coatee particles comprise boron carbide.
37. The method of claim 32, wherein the coated particles comprise an average grain size of less than 250 nanometers.
38. The method of claim 37, wherein the coated particles are sintered so that the nano-particle size and structure of the coated particles is maintained in the tile.
39. The method of claim 32, wherein the coater material comprises metallic coater material.
40. The method of claim 32, wherein the metallic coater material comprises at least one of copper, tantalum, titanium, molybdenum, and aluminum.
41. A method of making a composite material, comprising:
vaporizing a coater material;
condensing the vaporized coater material onto coatee particles to form coated particles comprising a layer of the coater material on the coatee particles;
sintering the coated particles to form the tile; and
bonding the tile to a ductile backing material.
42. The method of claim 41, wherein vaporizing the coater material comprises:
vaporizing the coater material within a plasma stream.
43. The method of claim 41, wherein the sintering comprises spark plasma sintering.
44. The method of claim 41, wherein the coatee particles comprise ceramic coatee particles.
45. The method of claim 41, wherein the coated particles comprise an average grain size of less than 250 nanometers.
46. The method of claim 45, wherein the coated particles are sintered so that the nano-particle size and structure of the coated particles is maintained in the tile.
47. The method of claim 41, wherein the coater material comprises metallic coater material.
48. The method of claim 41, wherein the tile is bonded to the ductile backing material by an autoclave process.
49. The method of claim 41, wherein the tile is bonded to the ductile backing material using heat-curable adhering material and catalyzed foamable exothermic material between the tile and the ductile backing material, wherein heat generated from the use of the catalyzed foamable exothermic material cures the heat-curable adhering material.
50. The method of claim 41, wherein the ductile backing material comprises a plurality of fibers.
51. The method of claim 50, wherein the plurality of fibers comprises polyethylene fibers.
US14/508,968 2009-12-15 2014-10-07 Impact resistant material Abandoned US20150314581A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/508,968 US20150314581A1 (en) 2009-12-15 2014-10-07 Impact resistant material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US28432909P 2009-12-15 2009-12-15
US12/968,245 US8877357B1 (en) 2009-12-15 2010-12-14 Impact resistant material
US14/508,968 US20150314581A1 (en) 2009-12-15 2014-10-07 Impact resistant material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/968,245 Division US8877357B1 (en) 2009-12-15 2010-12-14 Impact resistant material

Publications (1)

Publication Number Publication Date
US20150314581A1 true US20150314581A1 (en) 2015-11-05

Family

ID=44143251

Family Applications (13)

Application Number Title Priority Date Filing Date
US12/961,200 Active 2031-01-21 US9119309B1 (en) 2009-12-15 2010-12-06 In situ oxide removal, dispersal and drying
US12/961,030 Active 2031-10-01 US9039916B1 (en) 2009-12-15 2010-12-06 In situ oxide removal, dispersal and drying for copper copper-oxide
US12/961,108 Active 2031-02-01 US9090475B1 (en) 2009-12-15 2010-12-06 In situ oxide removal, dispersal and drying for silicon SiO2
US12/962,533 Expired - Fee Related US8992820B1 (en) 2009-12-15 2010-12-07 Fracture toughness of ceramics
US12/962,523 Expired - Fee Related US8932514B1 (en) 2009-12-15 2010-12-07 Fracture toughness of glass
US12/962,463 Active 2033-03-07 US8859035B1 (en) 2009-12-15 2010-12-07 Powder treatment for enhanced flowability
US12/968,253 Expired - Fee Related US8906498B1 (en) 2009-12-15 2010-12-14 Sandwich of impact resistant material
US12/968,235 Expired - Fee Related US8668803B1 (en) 2009-12-15 2010-12-14 Sandwich of impact resistant material
US12/968,245 Expired - Fee Related US8877357B1 (en) 2009-12-15 2010-12-14 Impact resistant material
US12/969,087 Active 2032-11-04 US8821786B1 (en) 2009-12-15 2010-12-15 Method of forming oxide dispersion strengthened alloys
US12/969,503 Active 2032-06-06 US8828328B1 (en) 2009-12-15 2010-12-15 Methods and apparatuses for nano-materials powder treatment and preservation
US14/176,986 Expired - Fee Related US9332636B2 (en) 2009-12-15 2014-02-10 Sandwich of impact resistant material
US14/508,968 Abandoned US20150314581A1 (en) 2009-12-15 2014-10-07 Impact resistant material

Family Applications Before (12)

Application Number Title Priority Date Filing Date
US12/961,200 Active 2031-01-21 US9119309B1 (en) 2009-12-15 2010-12-06 In situ oxide removal, dispersal and drying
US12/961,030 Active 2031-10-01 US9039916B1 (en) 2009-12-15 2010-12-06 In situ oxide removal, dispersal and drying for copper copper-oxide
US12/961,108 Active 2031-02-01 US9090475B1 (en) 2009-12-15 2010-12-06 In situ oxide removal, dispersal and drying for silicon SiO2
US12/962,533 Expired - Fee Related US8992820B1 (en) 2009-12-15 2010-12-07 Fracture toughness of ceramics
US12/962,523 Expired - Fee Related US8932514B1 (en) 2009-12-15 2010-12-07 Fracture toughness of glass
US12/962,463 Active 2033-03-07 US8859035B1 (en) 2009-12-15 2010-12-07 Powder treatment for enhanced flowability
US12/968,253 Expired - Fee Related US8906498B1 (en) 2009-12-15 2010-12-14 Sandwich of impact resistant material
US12/968,235 Expired - Fee Related US8668803B1 (en) 2009-12-15 2010-12-14 Sandwich of impact resistant material
US12/968,245 Expired - Fee Related US8877357B1 (en) 2009-12-15 2010-12-14 Impact resistant material
US12/969,087 Active 2032-11-04 US8821786B1 (en) 2009-12-15 2010-12-15 Method of forming oxide dispersion strengthened alloys
US12/969,503 Active 2032-06-06 US8828328B1 (en) 2009-12-15 2010-12-15 Methods and apparatuses for nano-materials powder treatment and preservation
US14/176,986 Expired - Fee Related US9332636B2 (en) 2009-12-15 2014-02-10 Sandwich of impact resistant material

Country Status (1)

Country Link
US (13) US9119309B1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10124322B2 (en) 2015-02-11 2018-11-13 Umicore Ag & Co. Kg Lean NOx traps, trapping materials, washcoats, and methods of making and using the same

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
DE102010063342A1 (en) * 2010-12-17 2012-06-21 Laser Zentrum Hannover E.V. Process for the preparation of micro-nanocombined active systems
EP3069098B1 (en) * 2013-11-14 2019-01-09 The Regents Of The University Of Michigan Blast/impact frequency tuning and mitigation
US10041767B2 (en) 2013-11-14 2018-08-07 The Regents Of The University Of Michigan Blast/impact frequency tuning and mitigation
KR101705943B1 (en) * 2014-04-08 2017-02-22 성균관대학교산학협력단 Method of manufacturing multilayer graphene coated composite powders by wire explosion
KR101532898B1 (en) * 2015-01-13 2015-07-02 성균관대학교산학협력단 Method of manufacturing mixed-metal powder by wire explosion in liquids and multi carbon layer coated mixed-metal powder
DE102016002630A1 (en) * 2016-03-07 2017-09-07 Forschungszentrum Jülich GmbH Adhesive layer for bonding a high-temperature protective layer on a substrate, and method for producing the same
ES2698260B2 (en) 2016-03-30 2019-11-21 Noritake Co Ltd RED PAINT FOR CERAMIC DECORATION
US11292061B2 (en) * 2016-10-19 2022-04-05 Hewlett-Packard Development Company, L.P. Three-dimensional (3D) printing
KR101872868B1 (en) * 2017-03-07 2018-07-02 (주)윈스 A conductivity ceramic composition having high performance electric conductivity
CN109707131B (en) * 2019-01-05 2021-07-23 广东嘉宾陶瓷有限公司 Nano hydrophobic ceramic tile
WO2021072341A1 (en) * 2019-10-11 2021-04-15 The Board Of Trustees Of The Leland Stanford Junior University Solution processed metallic nano-glass films
CN111230098B (en) * 2020-03-18 2021-07-13 北京大学 Metal-based nano composite powder material, preparation method and application thereof
CH718548A1 (en) * 2021-04-19 2022-10-31 Mft Dhorlogerie Audemars Piguet Sa Process for manufacturing a watch component in composite material.

Family Cites Families (589)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2021936A (en) 1930-12-08 1935-11-26 Univ Illinois Removal of so2 from flue gases
US2284554A (en) 1940-08-03 1942-05-26 Standard Oil Dev Co Condensation catalysts of increased activity and process of producing the same
US2519531A (en) 1945-07-21 1950-08-22 Lummus Co Ejector apparatus
US2419042A (en) 1945-10-06 1947-04-15 Todd Floyd Vacuum distillation apparatus and pressure regulator therefor
US2562753A (en) 1948-05-24 1951-07-31 Micronizer Company Anvil grinder
US2689780A (en) 1948-12-27 1954-09-21 Hall Lab Inc Method of and apparatus for producing ammonium phosphate
US3181947A (en) 1957-01-15 1965-05-04 Crucible Steel Co America Powder metallurgy processes and products
US3067025A (en) 1957-04-05 1962-12-04 Dow Chemical Co Continuous production of titanium sponge
US3042511A (en) 1959-02-09 1962-07-03 Dow Chemical Co Apparatus for condensation of a metal vapor
US3001402A (en) 1959-08-06 1961-09-26 Koblin Abraham Vapor and aerosol sampler
US3145287A (en) 1961-07-14 1964-08-18 Metco Inc Plasma flame generator and spray gun
US3179782A (en) 1962-02-07 1965-04-20 Matvay Leo Plasma flame jet spray gun with a controlled arc region
US3178121A (en) 1962-04-24 1965-04-13 Du Pont Process for comminuting grit in pigments and supersonic fluid energy mill therefor
BE634714A (en) 1962-07-27 1900-01-01
DE1571153A1 (en) 1962-08-25 1970-08-13 Siemens Ag Plasma spray gun
US3520656A (en) 1966-03-30 1970-07-14 Du Pont Silicon carbide compositions
US3313908A (en) 1966-08-18 1967-04-11 Giannini Scient Corp Electrical plasma-torch apparatus and method for applying coatings onto substrates
US3450926A (en) 1966-10-10 1969-06-17 Air Reduction Plasma torch
US3401465A (en) 1966-12-23 1968-09-17 Nat Lead Co Means for cooling solid particulate materials with fluids
US3457788A (en) 1966-12-29 1969-07-29 Continental Carbon Co Apparatus for sampling carbon black
US3617358A (en) 1967-09-29 1971-11-02 Metco Inc Flame spray powder and process
US4146654A (en) 1967-10-11 1979-03-27 Centre National De La Recherche Scientifique Process for making linings for friction operated apparatus
US3552653A (en) 1968-01-10 1971-01-05 Inoue K Impact deposition of particulate materials
US3537513A (en) 1968-03-11 1970-11-03 Garrett Corp Three-fluid heat exchanger
GB1307941A (en) 1969-02-13 1973-02-21 Shinku Yakin Kk Method and an apparatus for manufacturing fine powders of metal or alloy
BE746396A (en) 1969-03-05 1970-07-31 Chausson Usines Sa PROCESS FOR THE FLUXING AND BRAZING OF ALUMINUM OR ALUMINUM ALLOY PARTS TO BE ASSEMBLED AND APPLICATION OF THIS PROCESS TO THE MANUFACTURE OF RADIATORS
US3857744A (en) 1970-01-19 1974-12-31 Coors Porcelain Co Method for manufacturing composite articles containing boron carbide
US3761360A (en) 1971-01-20 1973-09-25 Allied Chem Re entrainment charging of preheated coal into coking chambers of a coke oven battery
JPS4721256U (en) 1971-02-27 1972-11-09
US3914573A (en) 1971-05-17 1975-10-21 Geotel Inc Coating heat softened particles by projection in a plasma stream of Mach 1 to Mach 3 velocity
US3752172A (en) 1971-06-14 1973-08-14 United Aircraft Corp Jet penetration control
US3730827A (en) 1971-11-22 1973-05-01 Norton Research Corp Ltd Boron carbide ballistic armor modified with copper
US3774442A (en) 1972-01-05 1973-11-27 Bahco Ab Particle sampling devices
US3741001A (en) 1972-03-20 1973-06-26 Nasa Apparatus for sampling particulates in gases
US4369167A (en) 1972-03-24 1983-01-18 Weir Jr Alexander Process for treating stack gases
US3804034A (en) 1972-05-09 1974-04-16 Boride Prod Inc Armor
US3959420A (en) 1972-05-23 1976-05-25 Stone & Webster Engineering Corporation Direct quench apparatus
JPS4931571A (en) 1972-07-24 1974-03-22
US3830756A (en) 1972-08-04 1974-08-20 Grace W R & Co Noble metal catalysts
US3892882A (en) 1973-05-25 1975-07-01 Union Carbide Corp Process for plasma flame spray coating in a sub-atmospheric pressure environment
SU493241A1 (en) 1973-07-02 1975-11-28 Московский Ордена Ленина И Ордена Трудового Красного Знамени Химикотехнологический Институт Им.Д.И.Менделеева Ammonia synthesis catalyst
US3871448A (en) 1973-07-26 1975-03-18 Vann Tool Company Inc Packer actuated vent assembly
US3969482A (en) 1974-04-25 1976-07-13 Teller Environmental Systems, Inc. Abatement of high concentrations of acid gas emissions
JPS543391B2 (en) 1974-05-07 1979-02-22
JPS5626158Y2 (en) 1974-07-05 1981-06-20
US3959094A (en) 1975-03-13 1976-05-25 The United States Of America As Represented By The United States Energy Research And Development Administration Electrolytic synthesis of methanol from CO2
US4127760A (en) 1975-06-09 1978-11-28 Geotel, Inc. Electrical plasma jet torch and electrode therefor
MX4509E (en) 1975-08-27 1982-06-02 Engelhard Min & Chem IMPROVED CATALYTIC COMPOSITION FOR SIMULTANEOUS OXIDATION GASCOUS HYDROCARBONS AND CARBON MONOXIDE AND REDUCE NITROGEN OXIDES
US4021021A (en) 1976-04-20 1977-05-03 Us Energy Wetter for fine dry powder
US4018388A (en) 1976-05-13 1977-04-19 Andrews Norwood H Jet-type axial pulverizer
JPS52165360U (en) 1976-06-07 1977-12-14
US4139497A (en) 1977-04-04 1979-02-13 The Dow Chemical Company Dehydrogenation catalyst tablet and method for making same
US4284609A (en) 1977-07-11 1981-08-18 Quad Environmental Technologies Corp. Condensation cleaning of particulate laden gases
US4171288A (en) 1977-09-23 1979-10-16 Engelhard Minerals & Chemicals Corporation Catalyst compositions and the method of manufacturing them
US4174298A (en) 1978-01-09 1979-11-13 Uop Inc. Activated multimetallic catalytic composite
US4227928A (en) 1978-05-01 1980-10-14 Kennecott Copper Corporation Copper-boron carbide composite particle and method for its production
US4189925A (en) 1978-05-08 1980-02-26 Northern Illinois Gas Company Method of storing electric power
JPS6037804B2 (en) 1979-04-11 1985-08-28 三井化学株式会社 Method for manufacturing carrier for olefin polymerization catalyst
US4260649A (en) 1979-05-07 1981-04-07 The Perkin-Elmer Corporation Laser induced dissociative chemical gas phase processing of workpieces
US4248387A (en) 1979-05-09 1981-02-03 Norandy, Inc. Method and apparatus for comminuting material in a re-entrant circulating stream mill
US4459327A (en) 1979-08-24 1984-07-10 Kennecott Corporation Method for the production of copper-boron carbide composite
US4253917A (en) 1979-08-24 1981-03-03 Kennecott Copper Corporation Method for the production of copper-boron carbide composite
USRE32244E (en) 1979-10-30 1986-09-09 Armotek Industries, Inc. Methods and apparatus for applying wear resistant coatings to rotogravure cylinders
JPS56146804U (en) 1980-04-04 1981-11-05
US4326492A (en) 1980-04-07 1982-04-27 Runfree Enterprise, Inc. Method and apparatus for preheating fuel
JPS56146804A (en) 1980-04-10 1981-11-14 Kobe Steel Ltd Gas atomizer for molten metal
US4388274A (en) 1980-06-02 1983-06-14 Xerox Corporation Ozone collection and filtration system
US4344779A (en) 1980-08-27 1982-08-17 Isserlis Morris D Air pollution control system
US4440733A (en) 1980-11-06 1984-04-03 California Institute Of Technology Thermochemical generation of hydrogen and carbon dioxide
US4458138A (en) 1980-12-15 1984-07-03 Adrian Glenn J Fast recovery electric fluid
US4436075A (en) 1982-01-07 1984-03-13 Daniel D. Bailey Fuel pre-heat device
JPS58160794A (en) 1982-03-17 1983-09-24 Matsushita Electric Ind Co Ltd Heat exchanger
US4513149A (en) 1982-04-05 1985-04-23 Olin Corporation Raney nickel alloy expanded mesh hydrogenation catalysts
US4419331A (en) 1982-04-12 1983-12-06 Michael F. Walters Sulphur dioxide converter and pollution arrester system
US4431750A (en) 1982-05-19 1984-02-14 Phillips Petroleum Company Platinum group metal catalyst on the surface of a support and a process for preparing same
JPS5959410A (en) 1982-09-30 1984-04-05 Toshiba Corp Spheroidizing device of thermoplastic grain
US4506136A (en) 1982-10-12 1985-03-19 Metco, Inc. Plasma spray gun having a gas vortex producing nozzle
FR2545007B1 (en) 1983-04-29 1986-12-26 Commissariat Energie Atomique METHOD AND DEVICE FOR COATING A WORKPIECE BY PLASMA SPRAYING
JPS59227765A (en) 1983-06-04 1984-12-21 科学技術庁金属材料技術研究所長 Manufacture of ceramic super fine particle
FR2550467B1 (en) 1983-08-08 1989-08-04 Aerospatiale METHOD AND DEVICE FOR INJECTING A FINELY DIVIDED MATERIAL INTO A HOT GAS FLOW AND APPARATUS USING THE SAME
SE461095B (en) 1983-09-09 1990-01-08 Berol Kemi Ab AMINING PROCEDURE USING A RUTENIUM DOPPED NICKEL AND / OR COVOLT CATALYST
JPS60175537A (en) 1984-02-22 1985-09-09 Toyota Motor Corp Preparation of ultra-fine ceramic particles
US4523981A (en) 1984-03-27 1985-06-18 Texaco Inc. Means and method for reducing carbon dioxide to provide a product
US4545872A (en) 1984-03-27 1985-10-08 Texaco Inc. Method for reducing carbon dioxide to provide a product
JPS6186815A (en) 1984-10-05 1986-05-02 Hitachi Ltd Minute pressure controller
DE3445273A1 (en) 1984-12-12 1986-06-19 Wilfried 8672 Selb Müller Heat exchanger
US4824624A (en) 1984-12-17 1989-04-25 Ceradyne, Inc. Method of manufacturing boron carbide armor tiles
US5006163A (en) 1985-03-13 1991-04-09 Inco Alloys International, Inc. Turbine blade superalloy II
JPS61242644A (en) 1985-04-18 1986-10-28 Toyota Motor Corp Production of catalyst for purifying exhaust gas
US4764283A (en) 1985-04-24 1988-08-16 Ashbrook Clifford L Method and apparatus for treating cooling tower water
US4921586A (en) 1989-03-31 1990-05-01 United Technologies Corporation Electrolysis cell and method of use
JPS62102827A (en) 1985-10-29 1987-05-13 Natl Res Inst For Metals Production of metallic or ceramic fine grain
US4609441A (en) 1985-12-18 1986-09-02 Gas Research Institute Electrochemical reduction of aqueous carbon dioxide to methanol
US4751021A (en) 1985-12-30 1988-06-14 Aar Corporation Bendable sheet material
DE3603511A1 (en) 1986-02-05 1987-08-06 Standard Elektrik Lorenz Ag METHOD AND DEVICE FOR REMOVING DUST AND GASEOUS POLLUTANTS FROM EXHAUST GAS, ESPECIALLY EXHAUST GASES IN THE LIGHTWAVE LEAD PREFORMING
NL8600449A (en) 1986-02-22 1987-09-16 Delft Tech Hogeschool ARMOR PLATE-COMPOSITE WITH CERAMIC COLLECTION COAT.
US4731517A (en) 1986-03-13 1988-03-15 Cheney Richard F Powder atomizing methods and apparatus
US4885038A (en) 1986-05-01 1989-12-05 International Business Machines Corporation Method of making multilayered ceramic structures having an internal distribution of copper-based conductors
US4723589A (en) 1986-05-19 1988-02-09 Westinghouse Electric Corp. Method for making vacuum interrupter contacts by spray deposition
US4780591A (en) 1986-06-13 1988-10-25 The Perkin-Elmer Corporation Plasma gun with adjustable cathode
JPH0693309B2 (en) 1986-09-25 1994-11-16 三菱電機株式会社 Magnetic tape recording / reproducing device
US4982050A (en) 1986-10-06 1991-01-01 Mobil Oil Corporation Natural gas treating system including mercury trap
JPH0720553B2 (en) 1986-11-07 1995-03-08 軽質留分新用途開発技術研究組合 Method for producing platinum-supported catalyst
DE3642375A1 (en) 1986-12-11 1988-06-23 Castolin Sa METHOD FOR APPLYING AN INTERNAL COATING INTO TUBES OD. DGL. CAVITY NARROW CROSS SECTION AND PLASMA SPLASH BURNER DAFUER
JPS63214342A (en) 1987-03-02 1988-09-07 Natl Res Inst For Metals Preparation of compound
US5269848A (en) 1987-03-20 1993-12-14 Canon Kabushiki Kaisha Process for preparing a functional thin film by way of the chemical reaction among active species and apparatus therefor
US4983555A (en) 1987-05-06 1991-01-08 Coors Porcelain Company Application of transparent polycrystalline body with high ultraviolet transmittance
US20020102674A1 (en) 1987-05-20 2002-08-01 David M Anderson Stabilized microporous materials
US5230844A (en) 1987-09-04 1993-07-27 Skis Rossignol, S.A. Process for producing a complex elastic molded structure of the sandwich type
JP2584805B2 (en) 1987-12-19 1997-02-26 富士通株式会社 Method for synthesizing diamond particles
JPH01275708A (en) 1988-04-28 1989-11-06 Natl Res Inst For Metals Production of composite superfine particles with joined structure of superfine particles of nickel and titanium nitride
US5041713A (en) 1988-05-13 1991-08-20 Marinelon, Inc. Apparatus and method for applying plasma flame sprayed polymers
CH676681A5 (en) 1988-06-13 1991-02-28 Battelle Memorial Institute
JP2662986B2 (en) 1988-06-24 1997-10-15 高周波熱錬株式会社 Method for producing ultrafine tungsten or tungsten oxide particles
US4866240A (en) 1988-09-08 1989-09-12 Stoody Deloro Stellite, Inc. Nozzle for plasma torch and method for introducing powder into the plasma plume of a plasma torch
JPH02160040A (en) 1988-12-15 1990-06-20 Mitsubishi Heavy Ind Ltd Production of superfine particle of mineral matter
US4987033A (en) 1988-12-20 1991-01-22 Dynamet Technology, Inc. Impact resistant clad composite armor and method for forming such armor
US5371049A (en) 1989-01-09 1994-12-06 Fmc Corporation Ceramic composite of silicon carbide and aluminum nitride
US5562966A (en) 1989-01-27 1996-10-08 Science Applications International Corporation Method of applying oxidation resistant coating on carbon fibers
JPH02203932A (en) 1989-01-31 1990-08-13 Idemitsu Petrochem Co Ltd Method and apparatus for producing ultrafine particles
US5043548A (en) 1989-02-08 1991-08-27 General Electric Company Axial flow laser plasma spraying
JP2578514B2 (en) 1989-03-03 1997-02-05 三井石油化学工業株式会社 Method for removing mercury from liquid hydrocarbon compounds
WO1990012126A1 (en) 1989-03-31 1990-10-18 Canon Kabushiki Kaisha Method of forming polycrystalline film by chemical vapor deposition
JPH032695A (en) 1989-05-31 1991-01-09 Nisshin Steel Co Ltd Radiation shielding material with high heat removal efficiency
US5070064A (en) 1989-08-07 1991-12-03 Exxon Research And Engineering Company Catalyst pretreatment method
US5187140A (en) 1989-10-18 1993-02-16 Union Carbide Chemicals & Plastics Technology Corporation Alkylene oxide catalysts containing high silver content
DE3940758A1 (en) 1989-12-09 1991-06-13 Degussa METHOD FOR PURIFYING THE EXHAUST GAS FROM DIESEL ENGINES
JPH03226509A (en) 1990-01-31 1991-10-07 Sumitomo Metal Ind Ltd Apparatus for generating plasma and manufacture of super fine particle powder
JPH03258332A (en) 1990-03-06 1991-11-18 Konica Corp Method and equipment for production of emulsion
DE4109979C2 (en) 1990-03-28 2000-03-30 Nisshin Flour Milling Co Process for the production of coated particles from inorganic or metallic materials
JPH0665772B2 (en) 1990-03-31 1994-08-24 株式会社スリーデイコンポリサーチ Method and device for manufacturing three-dimensional fabric
EP0586756B1 (en) 1990-05-29 2002-04-17 Sulzer Metco AG Plasma systems for thermal spraying of powders
US5225656A (en) 1990-06-20 1993-07-06 General Electric Company Injection tube for powder melting apparatus
US5073193A (en) 1990-06-26 1991-12-17 The University Of British Columbia Method of collecting plasma synthesize ceramic powders
US5296667A (en) 1990-08-31 1994-03-22 Flame-Spray Industries, Inc. High velocity electric-arc spray apparatus and method of forming materials
WO1992005902A1 (en) 1990-10-09 1992-04-16 Iowa State University Research Foundation, Inc. Environmentally stable reactive alloy powders and method of making same
US5217746A (en) 1990-12-13 1993-06-08 Fisher-Barton Inc. Method for minimizing decarburization and other high temperature oxygen reactions in a plasma sprayed material
JPH06135797A (en) 1991-01-24 1994-05-17 Idemitsu Petrochem Co Ltd Method and device for synthesizing diamond
US5133190A (en) 1991-01-25 1992-07-28 Abdelmalek Fawzy T Method and apparatus for flue gas cleaning by separation and liquefaction of sulfur dioxide and carbon dioxide
US5369241A (en) 1991-02-22 1994-11-29 Idaho Research Foundation Plasma production of ultra-fine ceramic carbides
US5330945A (en) 1991-04-08 1994-07-19 General Motors Corporation Catalyst for treatment of diesel exhaust particulate
JP3200464B2 (en) 1991-08-27 2001-08-20 株式会社エステック Liquid material vaporizer
EP0532000B1 (en) 1991-09-13 1997-07-23 Tsuyoshi Masumoto High strength structural member and process for producing the same
US5294242A (en) 1991-09-30 1994-03-15 Air Products And Chemicals Method for making metal powders
JP3100084B2 (en) 1991-11-25 2000-10-16 日清製粉株式会社 Ultrafine particle manufacturing equipment
JP2673978B2 (en) 1991-12-26 1997-11-05 大平洋金属 株式会社 Ultrafine particle manufacturing method and manufacturing apparatus
US5233153A (en) 1992-01-10 1993-08-03 Edo Corporation Method of plasma spraying of polymer compositions onto a target surface
JP3229353B2 (en) 1992-01-21 2001-11-19 トヨタ自動車株式会社 Method for producing metal oxide powder
US20020018815A1 (en) 1992-03-06 2002-02-14 Sievers Robert E. Methods and apparatus for fine particle formation
JPH0665772U (en) 1992-05-11 1994-09-16 田村 悦夫 Exhaust heat utilization type road heating device
JPH05324094A (en) 1992-05-15 1993-12-07 Tlv Co Ltd Liquid pressure controller
US6319599B1 (en) 1992-07-14 2001-11-20 Theresa M. Buckley Phase change thermal control materials, method and apparatus
JP3285614B2 (en) 1992-07-30 2002-05-27 日本碍子株式会社 Exhaust gas purification catalyst and method for producing the same
JPH0665772A (en) 1992-08-19 1994-03-08 Mitsubishi Kasei Corp Method for cleaning oil sticking material therefor
JP2863675B2 (en) 1992-09-01 1999-03-03 井上 明久 Manufacturing method of particle reinforced composite material
US5804155A (en) 1992-11-19 1998-09-08 Engelhard Corporation Basic zeolites as hydrocarbon traps for diesel oxidation catalysts
US5338716A (en) 1992-12-01 1994-08-16 Akzo Nobel Nv Non-oxide metal ceramic catalysts comprising metal oxide support and intermediate ceramic passivating layer
DE4240991A1 (en) 1992-12-05 1994-06-09 Plasma Technik Ag Plasma spray gun
JP3254278B2 (en) 1992-12-09 2002-02-04 高周波熱錬株式会社 Method for producing mixed / composite ultrafine particles and apparatus for producing the same
JPH0656772U (en) 1993-01-14 1994-08-05 ミツミ電機株式会社 Holding device for contact probe for electronic measuring instrument
GB9302387D0 (en) 1993-02-06 1993-03-24 Osprey Metals Ltd Production of powder
JPH06272012A (en) 1993-03-19 1994-09-27 Hirofumi Shimura Formation of high functional coating film by laser-plasma hybrid thermal spraying
JPH08506901A (en) 1993-06-10 1996-07-23 ラプレット アンド パタシュニック カンパニー,インコーポレーテッド Airborne particle sampling monitoring device
JP2751136B2 (en) 1993-07-21 1998-05-18 科学技術庁無機材質研究所長 Method for producing self-grading composite particles
US5460701A (en) 1993-07-27 1995-10-24 Nanophase Technologies Corporation Method of making nanostructured materials
US5543173A (en) * 1993-10-12 1996-08-06 Aluminum Company Of America Surface treating aluminum trihydrate powders with prehydrolized silane
CA2118081C (en) 1993-10-14 2006-10-03 Jacobus Swanepoel Production of fluorocarbon compounds
JPH07120176A (en) 1993-10-28 1995-05-12 Toray Ind Inc Cooling apparatus
JPH07130490A (en) 1993-11-02 1995-05-19 Komatsu Ltd Plasma torch
JP3483282B2 (en) 1993-11-12 2004-01-06 高周波熱錬株式会社 Method for producing ultrafine titanium dioxide composite oxide
ES2137484T3 (en) 1994-02-24 1999-12-16 Fina Research PREPARATION OF SILICE-ALUMINA SUPPORTS, PREPARATION WITH THEM OF HYDROGENATION CATALYSTS, AND THEIR USE FOR AROMATIC HYDROGENATIONS.
US5392797A (en) 1994-03-10 1995-02-28 Vq Corporation Single motive pump, clean-in-place system, for use with piping systems and with vessels
JPH07256116A (en) 1994-03-25 1995-10-09 Calsonic Corp Metallic catalyst carrier of catalytic converter and production thereof
JPH07279648A (en) 1994-04-05 1995-10-27 Isao Yamamoto Exhaust emission control system
DE4418931C2 (en) 1994-05-31 1997-06-19 Degussa Process for separating catalyst-free working solution from the hydrogenation cycle of the anthraquinone process for the production of hydrogen peroxide
DE4422588C2 (en) 1994-06-28 1999-09-23 Ald Vacuum Techn Gmbh Process for quenching workpieces with gases and heat treatment system to carry out the process
US5492627A (en) 1994-06-29 1996-02-20 Minnesota Mining And Manufacturing Company Method for separating mercury from fluids using composite articles
US5485941A (en) 1994-06-30 1996-01-23 Basf Corporation Recirculation system and method for automated dosing apparatus
DE4423738A1 (en) 1994-07-06 1996-01-11 Basf Ag Process and catalyst for the selective hydrogenation of butynediol to butenediol
US5679167A (en) 1994-08-18 1997-10-21 Sulzer Metco Ag Plasma gun apparatus for forming dense, uniform coatings on large substrates
FR2724123A1 (en) 1994-09-07 1996-03-08 Serole Bernard DEVICE FOR STABILIZING A CONTINUOUS CHEMICAL REACTION BETWEEN SEVERAL BODIES IN A PLASMA
IL111063A0 (en) 1994-09-26 1994-12-29 Plas Plasma Ltd A method for depositing a coating onto a substrate by means of thermal spraying and an apparatus for carrying out said method
US5985356A (en) 1994-10-18 1999-11-16 The Regents Of The University Of California Combinatorial synthesis of novel materials
US5582807A (en) 1994-11-04 1996-12-10 Tek-Kol Method and apparatus for removing particulate and gaseous pollutants from a gas stream
JPH08158033A (en) 1994-12-02 1996-06-18 Nisshin Steel Co Ltd Production of fine-structure thick film material and device therefor
US5858470A (en) 1994-12-09 1999-01-12 Northwestern University Small particle plasma spray apparatus, method and coated article
US5534270A (en) 1995-02-09 1996-07-09 Nanosystems Llc Method of preparing stable drug nanoparticles
JP3645931B2 (en) 1995-02-16 2005-05-11 Ykk株式会社 Method for producing composite ultrafine particles
JPH08215576A (en) 1995-02-16 1996-08-27 Ykk Kk Composite superfine particle, its production and catalyst for synthesis and refining of methanol using the same
US5749937A (en) 1995-03-14 1998-05-12 Lockheed Idaho Technologies Company Fast quench reactor and method
US7576296B2 (en) 1995-03-14 2009-08-18 Battelle Energy Alliance, Llc Thermal synthesis apparatus
DE19512615A1 (en) 1995-04-05 1996-10-10 Bayer Ag Supported catalysts containing platinum metal and process for the preparation of diaryl carbonates
US5510086A (en) 1995-04-10 1996-04-23 General Motors Corporation Adcat exhaust treatment device
US5596973A (en) 1995-06-05 1997-01-28 Grice; Franklin R. Fuel expander
US5793013A (en) 1995-06-07 1998-08-11 Physical Sciences, Inc. Microwave-driven plasma spraying apparatus and method for spraying
JP3375790B2 (en) 1995-06-23 2003-02-10 日本碍子株式会社 Exhaust gas purification system and exhaust gas purification method
US5652304A (en) 1995-08-31 1997-07-29 The Goodyear Tire & Rubber Company Vapor phase synthesis of rubbery polymers
US5837959A (en) 1995-09-28 1998-11-17 Sulzer Metco (Us) Inc. Single cathode plasma gun with powder feed along central axis of exit barrel
JP3806847B2 (en) 1995-11-24 2006-08-09 イーシー化学株式会社 Powder processing method and apparatus using atmospheric pressure glow discharge plasma
DE69730764T2 (en) 1996-02-08 2006-01-19 Sakai Chemical Industry Co., Ltd., Sakai Catalyst and process for the catalytic reduction of nitrogen oxides
AU715859B2 (en) 1996-04-04 2000-02-10 Nanophase Technologies Corporation Siloxane star-graft polymers, ceramic powders coated therewith and method of preparing coated ceramic powders
JP3193294B2 (en) 1996-05-24 2001-07-30 財団法人ファインセラミックスセンター Composite ceramic powder, method for producing the same, electrode for solid oxide fuel cell, and method for producing the same
US5723187A (en) 1996-06-21 1998-03-03 Ford Global Technologies, Inc. Method of bonding thermally sprayed coating to non-roughened aluminum surfaces
CA2259691A1 (en) 1996-07-11 1998-01-22 The University Of Cincinnati Electrically assisted synthesis of particles and films with precisely controlled characteristics
US5788738A (en) 1996-09-03 1998-08-04 Nanomaterials Research Corporation Method of producing nanoscale powders by quenching of vapors
US6933331B2 (en) 1998-05-22 2005-08-23 Nanoproducts Corporation Nanotechnology for drug delivery, contrast agents and biomedical implants
US5905000A (en) 1996-09-03 1999-05-18 Nanomaterials Research Corporation Nanostructured ion conducting solid electrolytes
US6344271B1 (en) 1998-11-06 2002-02-05 Nanoenergy Corporation Materials and products using nanostructured non-stoichiometric substances
US6652967B2 (en) 2001-08-08 2003-11-25 Nanoproducts Corporation Nano-dispersed powders and methods for their manufacture
US6832735B2 (en) 2002-01-03 2004-12-21 Nanoproducts Corporation Post-processed nanoscale powders and method for such post-processing
US6202471B1 (en) 1997-10-10 2001-03-20 Nanomaterials Research Corporation Low-cost multilaminate sensors
US6569397B1 (en) 2000-02-15 2003-05-27 Tapesh Yadav Very high purity fine powders and methods to produce such powders
US5851507A (en) 1996-09-03 1998-12-22 Nanomaterials Research Corporation Integrated thermal process for the continuous synthesis of nanoscale powders
US6855749B1 (en) 1996-09-03 2005-02-15 Nanoproducts Corporation Polymer nanocomposite implants with enhanced transparency and mechanical properties for administration within humans or animals
JP3956437B2 (en) 1996-09-26 2007-08-08 マツダ株式会社 Exhaust gas purification catalyst
JP3605969B2 (en) 1996-10-31 2004-12-22 石川島播磨重工業株式会社 Method of producing titanium oxide film for corrosion protection and titanium oxide film for corrosion protection
WO1998019965A1 (en) 1996-11-04 1998-05-14 Materials Modification, Inc. Microwave plasma chemical synthesis of ultrafine powders
US6117376A (en) 1996-12-09 2000-09-12 Merkel; Michael Method of making foam-filled composite products
US6322756B1 (en) 1996-12-31 2001-11-27 Advanced Technology And Materials, Inc. Effluent gas stream treatment system having utility for oxidation treatment of semiconductor manufacturing effluent gases
US7625420B1 (en) 1997-02-24 2009-12-01 Cabot Corporation Copper powders methods for producing powders and devices fabricated from same
JPH10249198A (en) 1997-03-10 1998-09-22 Toyota Central Res & Dev Lab Inc Catalyst for purifying exhaust gas and production thereof
US5993967A (en) 1997-03-28 1999-11-30 Nanophase Technologies Corporation Siloxane star-graft polymers, ceramic powders coated therewith and method of preparing coated ceramic powders
US6093306A (en) 1997-04-07 2000-07-25 Solar Reactor Technologies Inc. Comprehensive system for utility load leveling, hydrogen production, stack gas cleanup, greenhouse gas abatement, and methanol synthesis
US5989648A (en) 1997-05-06 1999-11-23 The Penn State Research Foundation Plasma generation of supported metal catalysts
US5928806A (en) 1997-05-07 1999-07-27 Olah; George A. Recycling of carbon dioxide into methyl alcohol and related oxygenates for hydrocarbons
US6093378A (en) 1997-05-07 2000-07-25 Engelhard Corporation Four-way diesel exhaust catalyst and method of use
GB9711876D0 (en) 1997-06-10 1997-08-06 Secr Defence Dispersion-strengthened aluminium alloy
US6213049B1 (en) 1997-06-26 2001-04-10 General Electric Company Nozzle-injector for arc plasma deposition apparatus
US6576906B1 (en) 1999-10-08 2003-06-10 Symyx Technologies, Inc. Method and apparatus for screening combinatorial libraries for semiconducting properties
US20020068026A1 (en) 1997-08-08 2002-06-06 Lawrence L. Murrell Reactor
DE69805303T2 (en) 1997-08-08 2002-12-19 Abb Lummus Global Inc METHOD FOR PRODUCING POROUS FIBER STRUCTURES
DE19734974A1 (en) 1997-08-13 1999-02-25 Hoechst Ag Production of supported catalyst for vinyl acetate production
US6514453B2 (en) 1997-10-21 2003-02-04 Nanoproducts Corporation Thermal sensors prepared from nanostructureed powders
IL122015A (en) 1997-10-22 2003-04-10 Clue As Scrubber for the treatment of flue gases
GB9723762D0 (en) 1997-11-12 1998-01-07 Rolls Royce Plc A method of coating a component
US6012647A (en) 1997-12-01 2000-01-11 3M Innovative Properties Company Apparatus and method of atomizing and vaporizing
DE19753738A1 (en) 1997-12-04 1999-06-10 Degussa Process for producing a catalyst
JP2001527189A (en) 1997-12-24 2001-12-25 エンゲルハード・コーポレーシヨン Catalytic converter for internal combustion engine powered vehicles
US6076597A (en) 1997-12-31 2000-06-20 Flowserve Management Company Helical coil heat exchanger with removable end plates
GB9803554D0 (en) 1998-02-20 1998-04-15 Johnson Matthey Plc Improvements in automotive catalysts
US6491423B1 (en) 1998-03-11 2002-12-10 Mc21, Incorporated Apparatus for mixing particles into a liquid medium
JPH11300198A (en) 1998-04-23 1999-11-02 Hitachi Plant Eng & Constr Co Ltd Method for controlling reaction temperature and supercritical water oxidizing device
US6084197A (en) 1998-06-11 2000-07-04 General Electric Company Powder-fan plasma torch
US6524662B2 (en) 1998-07-10 2003-02-25 Jin Jang Method of crystallizing amorphous silicon layer and crystallizing apparatus thereof
US6362449B1 (en) 1998-08-12 2002-03-26 Massachusetts Institute Of Technology Very high power microwave-induced plasma
US6416818B1 (en) 1998-08-17 2002-07-09 Nanophase Technologies Corporation Compositions for forming transparent conductive nanoparticle coatings and process of preparation therefor
US6379419B1 (en) 1998-08-18 2002-04-30 Noranda Inc. Method and transferred arc plasma system for production of fine and ultrafine powders
US6576214B2 (en) 2000-12-08 2003-06-10 Hydrocarbon Technologies, Inc. Catalytic direct production of hydrogen peroxide from hydrogen and oxygen feeds
US6267864B1 (en) 1998-09-14 2001-07-31 Nanomaterials Research Corporation Field assisted transformation of chemical and material compositions
US6531704B2 (en) 1998-09-14 2003-03-11 Nanoproducts Corporation Nanotechnology for engineering the performance of substances
US6214195B1 (en) 1998-09-14 2001-04-10 Nanomaterials Research Corporation Method and device for transforming chemical compositions
US6576199B1 (en) 1998-09-18 2003-06-10 Alliedsignal Inc. Environmental control system including ozone-destroying catalytic converter having anodized and washcoat layers
US6716525B1 (en) 1998-11-06 2004-04-06 Tapesh Yadav Nano-dispersed catalysts particles
US6395214B1 (en) 1998-11-30 2002-05-28 Rutgers, The State University Of New Jersey High pressure and low temperature sintering of nanophase ceramic powders
US6139813A (en) 1998-12-18 2000-10-31 Ford Global Technologies, Inc. NOx trapping by metal-zirconia materials during lean-burn automotive engine operation
WO2000038831A1 (en) 1998-12-31 2000-07-06 Hexablock, Inc. Magneto absorbent
US20010004009A1 (en) 1999-01-25 2001-06-21 Mackelvie Winston Drainwater heat recovery system
JP2000220978A (en) 1999-01-27 2000-08-08 Mitsubishi Cable Ind Ltd Cooling storage heat exchanger
US6168694B1 (en) 1999-02-04 2001-01-02 Chemat Technology, Inc. Methods for and products of processing nanostructure nitride, carbonitride and oxycarbonitride electrode power materials by utilizing sol gel technology for supercapacitor applications
DE19908394A1 (en) 1999-02-26 2000-08-31 Degussa Catalyst material and process for its manufacture
DE19909168A1 (en) 1999-03-03 2000-09-07 Basf Ag Process for the production of amines
DE10010466A1 (en) * 1999-03-05 2000-10-12 Sumitomo Chemical Co Acrylic resin film laminate for internal and external use is highly flexible and retains its transparency on dyeing, has a layer containing acrylic rubber particles in an acrylic resin and an acrylic resin-only layer
US6413781B1 (en) 1999-04-06 2002-07-02 Massachusetts Institute Of Technology Thermophoretic pump and concentrator
EP1043067A3 (en) 1999-04-09 2002-03-27 Denso Corporation A ceramic support capable of supporting a catalyst, a catalyst-ceramic body and processes for producing same
AU4237300A (en) 1999-04-19 2000-11-02 Engelhard Corporation Catalyst composition comprising ceria and a platinum group metal
AU5449400A (en) 1999-05-27 2000-12-18 Regents Of The University Of Michigan, The Zeolite catalysts for selective catalytic reduction of nitric oxide by ammonia and method of making
US6399030B1 (en) 1999-06-04 2002-06-04 The Babcock & Wilcox Company Combined flue gas desulfurization and carbon dioxide removal system
JP3940546B2 (en) 1999-06-07 2007-07-04 株式会社東芝 Pattern forming method and pattern forming material
KR100449648B1 (en) 1999-06-15 2004-09-22 학교법인 한양학원 An effective dry etching process of actinide oxides and their mixed oxides in cf4/o2/n2 plasma
CN1101335C (en) 1999-06-16 2003-02-12 中国科学院金属研究所 Hydrogn arc discharging method for large scale prodn. of single wall nanometer carbon tube
US6468490B1 (en) 2000-06-29 2002-10-22 Applied Materials, Inc. Abatement of fluorine gas from effluent
US20070044513A1 (en) 1999-08-18 2007-03-01 Kear Bernard H Shrouded-plasma process and apparatus for the production of metastable nanostructured materials
US6972115B1 (en) 1999-09-03 2005-12-06 American Inter-Metallics, Inc. Apparatus and methods for the production of powders
US6190627B1 (en) 1999-11-30 2001-02-20 Engelhard Corporation Method and device for cleaning the atmosphere
US6452338B1 (en) 1999-12-13 2002-09-17 Semequip, Inc. Electron beam ion source with integral low-temperature vaporizer
KR20020061011A (en) 1999-12-28 2002-07-19 코닝 인코포레이티드 Zeolite/alumina catalyst support compositions and method of making the same
DE60140516D1 (en) 2000-02-10 2009-12-31 3M Innovative Properties Co TREATMENT OF FLUOROLE CARBON OUTPUT MATERIALS
EP1134302A1 (en) 2000-03-17 2001-09-19 Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase, C.S.G.I New process for the production of nanostructured solid powders and nano-particles films by compartimentalised solution thermal spraying (CSTS)
US7834349B2 (en) 2000-03-29 2010-11-16 Georgia Tech Research Corporation Silicon based nanospheres and nanowires
CA2405743C (en) 2000-04-10 2009-09-15 Tetronics Limited Twin plasma torch apparatus
US7338515B2 (en) 2000-04-10 2008-03-04 Arizant Healthcare Inc. System, combination and method for controlling airflow in convective treatment
GB2358629B (en) 2000-05-18 2001-12-19 Mark William Youds Formulae, methods and apparatus for the: treatment of; processing of; pasteurisation; dissociating water in; and the communication of: materials;
CA2396281A1 (en) 2000-06-01 2001-12-06 Blue Planet Co., Ltd. Apparatus for removing soot and nox in exhaust gas from diesel engines
ATE337173T1 (en) 2000-06-30 2006-09-15 Ngimat Co METHOD FOR PLASTIC COATING
DE10035679A1 (en) 2000-07-21 2002-01-31 Inst Neue Mat Gemein Gmbh Nanoscale corundum powder, sintered bodies made therefrom and process for their production
US6261484B1 (en) 2000-08-11 2001-07-17 The Regents Of The University Of California Method for producing ceramic particles and agglomerates
JP3908447B2 (en) 2000-08-11 2007-04-25 株式会社荏原製作所 Ejector
WO2002014854A1 (en) 2000-08-14 2002-02-21 Chevron U.S.A. Inc. Use of microchannel reactors in combinatorial chemistry
JP2002088486A (en) 2000-09-13 2002-03-27 Chubu Electric Power Co Inc High-frequency induction heat plasma apparatus
KR100814702B1 (en) 2000-09-28 2008-03-18 롬 앤드 하스 캄파니 Methods for producing unsaturated nitriles
US6862970B2 (en) 2000-11-21 2005-03-08 M Cubed Technologies, Inc. Boron carbide composite bodies, and methods for making same
US6896958B1 (en) 2000-11-29 2005-05-24 Nanophase Technologies Corporation Substantially transparent, abrasion-resistant films containing surface-treated nanocrystalline particles
US6464919B2 (en) 2000-12-22 2002-10-15 Husky Injection Molding Systems, Ltd. Device and method for temperature adjustment of an object
US7591957B2 (en) 2001-01-30 2009-09-22 Rapt Industries, Inc. Method for atmospheric pressure reactive atom plasma processing for surface modification
JP2002241812A (en) 2001-02-20 2002-08-28 Murata Mfg Co Ltd Method and equipment for manufacturing metallic ultrafine particle
JP2002263496A (en) 2001-03-13 2002-09-17 Honda Motor Co Ltd Catalyst composition, manufacturing method thereof and method of manufacturing carbon nanofiber
JP4677679B2 (en) 2001-03-27 2011-04-27 株式会社デンソー Characteristics adjustment method in product manufacturing process
DE10117457A1 (en) 2001-04-06 2002-10-17 T Mobile Deutschland Gmbh Method for displaying standardized, large-format Internet pages with, for example, HTML protocol in one-hand-held devices with a mobile radio connection
US6444009B1 (en) 2001-04-12 2002-09-03 Nanotek Instruments, Inc. Method for producing environmentally stable reactive alloy powders
US6994837B2 (en) 2001-04-24 2006-02-07 Tekna Plasma Systems, Inc. Plasma synthesis of metal oxide nanopowder and apparatus therefor
US6915964B2 (en) 2001-04-24 2005-07-12 Innovative Technology, Inc. System and process for solid-state deposition and consolidation of high velocity powder particles using thermal plastic deformation
DE10122491A1 (en) 2001-05-10 2002-11-14 Bayer Ag Device and method for carrying out experiments in parallel
US6652822B2 (en) 2001-05-17 2003-11-25 The Regents Of The University Of California Spherical boron nitride particles and method for preparing them
JP2002336688A (en) 2001-05-18 2002-11-26 Tdk Corp Method for treating powder, method for manufacturing inorganic powder and apparatus for treating object to be treated
US6506995B1 (en) 2001-06-21 2003-01-14 General Electric Company Conforming welding torch shroud
US7622693B2 (en) 2001-07-16 2009-11-24 Foret Plasma Labs, Llc Plasma whirl reactor apparatus and methods of use
WO2003011783A2 (en) 2001-08-02 2003-02-13 3M Innovative Properties Company Method of making amorphous materials and ceramics
US6855426B2 (en) 2001-08-08 2005-02-15 Nanoproducts Corporation Methods for producing composite nanoparticles
US6596187B2 (en) 2001-08-29 2003-07-22 Motorola, Inc. Method of forming a nano-supported sponge catalyst on a substrate for nanotube growth
US6891319B2 (en) 2001-08-29 2005-05-10 Motorola, Inc. Field emission display and methods of forming a field emission display
ES2247370T3 (en) 2001-08-31 2006-03-01 Apit Corp. Sa PROCEDURE FOR MANUFACTURING POWDER OF GREAT COMPOUNDS AND DEVICE FOR CARRYING OUT THE PROCEDURE.
JP3543149B2 (en) 2001-09-03 2004-07-14 島津工業有限会社 Torch head for plasma spraying
US7049226B2 (en) 2001-09-26 2006-05-23 Applied Materials, Inc. Integration of ALD tantalum nitride for copper metallization
WO2003029775A2 (en) 2001-10-01 2003-04-10 Mykrolis Corporation Thermoplastic apparatus for conditioning the temperature of a fluid
US6693253B2 (en) 2001-10-05 2004-02-17 Universite De Sherbrooke Multi-coil induction plasma torch for solid state power supply
DE60211004T2 (en) 2001-10-10 2006-08-31 Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield POWDER PROCESSING WITH UNDERPRESSED GAS-FLUID FLUIDS
JP2003126694A (en) 2001-10-25 2003-05-07 Toyota Motor Corp Catalyst for cleaning exhaust gas
AU2002361585B2 (en) 2001-11-03 2005-08-25 Nanophase Technologies Corporation Nanostructured compositions
JP3854134B2 (en) 2001-12-04 2006-12-06 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
US6623559B2 (en) 2001-12-10 2003-09-23 Nanotek Instruments, Inc. Method for the production of semiconductor quantum particles
US20030108459A1 (en) 2001-12-10 2003-06-12 L. W. Wu Nano powder production system
US6689192B1 (en) 2001-12-13 2004-02-10 The Regents Of The University Of California Method for producing metallic nanoparticles
US6706660B2 (en) 2001-12-18 2004-03-16 Caterpillar Inc Metal/metal oxide doped oxide catalysts having high deNOx selectivity for lean NOx exhaust aftertreatment systems
JP4356313B2 (en) 2001-12-19 2009-11-04 住友金属鉱山株式会社 Method for producing metal compound fine powder
US7119418B2 (en) 2001-12-31 2006-10-10 Advanced Technology Materials, Inc. Supercritical fluid-assisted deposition of materials on semiconductor substrates
JP4404961B2 (en) 2002-01-08 2010-01-27 双葉電子工業株式会社 A method for producing carbon nanofibers.
US6680279B2 (en) 2002-01-24 2004-01-20 General Motors Corporation Nanostructured catalyst particle/catalyst carrier particle system
WO2003070810A2 (en) 2002-02-15 2003-08-28 Nanophase Technologies Corporation Composite nanoparticle materials and method of making the same
EP1476397A4 (en) 2002-02-19 2008-03-05 Tal Materials Mixed-metal oxide particles by liquid feed flame spray pyrolysis of oxide precursors in oxygenated solvents
US6635357B2 (en) 2002-02-28 2003-10-21 Vladimir S. Moxson Bulletproof lightweight metal matrix macrocomposites with controlled structure and manufacture the same
US7147894B2 (en) 2002-03-25 2006-12-12 The University Of North Carolina At Chapel Hill Method for assembling nano objects
US6579446B1 (en) 2002-04-04 2003-06-17 Agrimond, Llc Multi-process disinfectant delivery control system
US6625246B1 (en) 2002-04-12 2003-09-23 Holtec International, Inc. System and method for transferring spent nuclear fuel from a spent nuclear fuel pool to a storage cask
DE10219643B4 (en) 2002-05-02 2010-04-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the preparation of catalysts
KR100483886B1 (en) 2002-05-17 2005-04-20 (주)엔피씨 Plasma reaction apparatus
US6738452B2 (en) 2002-05-28 2004-05-18 Northrop Grumman Corporation Gasdynamically-controlled droplets as the target in a laser-plasma extreme ultraviolet light source
US6777639B2 (en) 2002-06-12 2004-08-17 Nanotechnologies, Inc. Radial pulsed arc discharge gun for synthesizing nanopowders
US6669823B1 (en) 2002-06-17 2003-12-30 Nanophase Technologies Corporation Process for preparing nanostructured materials of controlled surface chemistry
EP1378489A1 (en) 2002-07-03 2004-01-07 Eidgenössische Technische Hochschule Zürich Metal oxides prepared by flame spray pyrolysis
FR2842125B1 (en) 2002-07-09 2006-03-31 Sicat PROCESS FOR THE PREPARATION BY BIPHASIC IMPREGNATION OF NEW CATALYSTS FOR HETEROGENEOUS CATALYSIS, AND THE USE OF SAID CATALYSTS
US7357910B2 (en) 2002-07-15 2008-04-15 Los Alamos National Security, Llc Method for producing metal oxide nanoparticles
US7557324B2 (en) 2002-09-18 2009-07-07 Volvo Aero Corporation Backstream-preventing thermal spraying device
US20040065171A1 (en) 2002-10-02 2004-04-08 Hearley Andrew K. Soild-state hydrogen storage systems
US6838072B1 (en) 2002-10-02 2005-01-04 The United States Of America As Represented By The United States Department Of Energy Plasma synthesis of lithium based intercalation powders for solid polymer electrolyte batteries
US6902699B2 (en) 2002-10-02 2005-06-07 The Boeing Company Method for preparing cryomilled aluminum alloys and components extruded and forged therefrom
US20040065170A1 (en) 2002-10-07 2004-04-08 L. W. Wu Method for producing nano-structured materials
US20050199739A1 (en) 2002-10-09 2005-09-15 Seiji Kuroda Method of forming metal coating with hvof spray gun and thermal spray apparatus
WO2004035196A2 (en) 2002-10-16 2004-04-29 Conocophillips Company A stabilized transition alumina catalyst support from boehmite and catalysts made therefrom
US20040077494A1 (en) 2002-10-22 2004-04-22 Labarge William J. Method for depositing particles onto a catalytic support
US20060068989A1 (en) 2002-10-28 2006-03-30 Mitsubishi Rayon Co., Ltd. Carbon-intersticed metallic palladium, palladium catalyst and method for preparation thereof, and method for producing alpha,beta-unsaturated carboxylic acid
EP2325224A1 (en) 2002-10-30 2011-05-25 Sumitomo Chemical Company, Limited Aryl copolymer compounds and polymer light emitting devices made by using the same
US6913740B2 (en) 2002-11-14 2005-07-05 Catalytic Materials, Inc. Graphite nanocatalysts
GB0227081D0 (en) 2002-11-20 2002-12-24 Exxonmobil Res & Eng Co Methods for preparing catalysts
US7105118B2 (en) 2002-12-02 2006-09-12 North Carolina State University Methods of forming three-dimensional nanodot arrays in a matrix
US6824585B2 (en) 2002-12-03 2004-11-30 Adrian Joseph Low cost high speed titanium and its alloy production
EP2390000A1 (en) 2002-12-17 2011-11-30 E. I. du Pont de Nemours and Company Method of producing nanoparticles using an evaporation-condensation process with a reaction chamber plasma reactor system
EP1433745A2 (en) 2002-12-26 2004-06-30 Matsushita Electric Industrial Co., Ltd. Catalyst for the removal of carbon monoxide, its method of manufacture and its uses
DE10262106C5 (en) 2002-12-30 2011-03-31 Gerhard Dr. Meyer Leucite glass ceramics powder
US7858185B2 (en) 2003-09-08 2010-12-28 Nantero, Inc. High purity nanotube fabrics and films
JP2004233007A (en) 2003-01-31 2004-08-19 Sumitomo Chem Co Ltd Vent gas condenser
CA2418836A1 (en) 2003-02-12 2004-08-12 Resorption Canada Ltd. Multiple plasma generator hazardous waste processing system
JP4227816B2 (en) 2003-02-20 2009-02-18 日本ニューマチック工業株式会社 Powder heat treatment equipment
US20040167009A1 (en) 2003-02-26 2004-08-26 The Regents Of The University Of California, A California Corporation Ceramic materials reinforced with metal and single-wall carbon nanotubes
US20040176246A1 (en) 2003-03-05 2004-09-09 3M Innovative Properties Company Catalyzing filters and methods of making
US7371666B2 (en) * 2003-03-12 2008-05-13 The Research Foundation Of State University Of New York Process for producing luminescent silicon nanoparticles
CN1514243A (en) 2003-04-30 2004-07-21 成都夸常科技有限公司 Method of preceeding qualitative and lor quantitative analysis against target substance its device and marker and detecting reagent box
US7070342B2 (en) 2003-03-24 2006-07-04 Aurora Instruments, Inc. Low profile system for joining optical fiber waveguides
JP4396811B2 (en) 2003-03-25 2010-01-13 Tdk株式会社 Method for producing composite particles, method for producing spherical composite particles
US7073559B2 (en) 2003-07-02 2006-07-11 Ati Properties, Inc. Method for producing metal fibers
US20040235657A1 (en) 2003-05-21 2004-11-25 Fina Technology, Inc. Freeze dry process for the preparation of a high surface area and high pore volume catalyst
WO2004112447A2 (en) 2003-06-11 2004-12-23 Nuvotec, Inc. Inductively coupled plasma/partial oxidation reformation of carbonaceous compounds to produce fuel for energy production
TWI242465B (en) 2003-07-21 2005-11-01 Ind Tech Res Inst Carbon nanocapsule as catalyst support
CA2551020C (en) 2003-08-28 2011-10-18 Tekna Plasma Systems Inc. Process for the synthesis, separation and purification of powder materials
RU2242532C1 (en) 2003-09-09 2004-12-20 Гуревич Сергей Александрович Method of production of nanoparticles
US7217407B2 (en) 2003-09-11 2007-05-15 E. I. Du Pont De Nemours And Company Plasma synthesis of metal oxide nanoparticles
US20050066805A1 (en) 2003-09-17 2005-03-31 Park Andrew D. Hard armor composite
US7278265B2 (en) 2003-09-26 2007-10-09 Siemens Power Generation, Inc. Catalytic combustors
US6877552B1 (en) 2003-10-14 2005-04-12 Komax Systems, Inc Static mixer-heat exchanger
WO2005046855A2 (en) 2003-10-16 2005-05-26 Conocophillips Company Silica-alumina catalyst support, catalysts made therefrom and methods of making and using same
JP4342266B2 (en) 2003-10-20 2009-10-14 トヨタ自動車株式会社 Decompressor
KR100708642B1 (en) 2003-11-21 2007-04-18 삼성에스디아이 주식회사 Mesoporous carbon molecular sieve and supported catalyst employing the same
US7282167B2 (en) 2003-12-15 2007-10-16 Quantumsphere, Inc. Method and apparatus for forming nano-particles
US20050133121A1 (en) 2003-12-22 2005-06-23 General Electric Company Metallic alloy nanocomposite for high-temperature structural components and methods of making
TW200536776A (en) 2003-12-25 2005-11-16 Mitsui Mining & Smelting Co Method and device of manufacturing microparticles
JP3912377B2 (en) 2003-12-25 2007-05-09 日産自動車株式会社 Method for producing exhaust gas purification catalyst powder
US7285312B2 (en) 2004-01-16 2007-10-23 Honeywell International, Inc. Atomic layer deposition for turbine components
JP4564263B2 (en) 2004-01-16 2010-10-20 日本板硝子株式会社 Ultrafine metal particle-containing photocatalyst and method for producing the same
US7547418B2 (en) 2004-01-23 2009-06-16 Gm Global Technology Operations, Inc. Fluidized-bed reactor system
US7494527B2 (en) 2004-01-26 2009-02-24 Tekna Plasma Systems Inc. Process for plasma synthesis of rhenium nano and micro powders, and for coatings and near net shape deposits thereof and apparatus therefor
JP4420690B2 (en) 2004-02-04 2010-02-24 ホソカワミクロン株式会社 Fine particle production method and fine particle production apparatus
JP4976642B2 (en) 2004-02-10 2012-07-18 三井金属鉱業株式会社 High crystalline silver powder and method for producing the same
US7604843B1 (en) 2005-03-16 2009-10-20 Nanosolar, Inc. Metallic dispersion
EP2559482A1 (en) 2004-02-24 2013-02-20 Japan Oil, Gas and Metals National Corporation Catalyst and process for producing hydrocarbons
US6886545B1 (en) 2004-03-05 2005-05-03 Haldex Hydraulics Ab Control scheme for exhaust gas circulation system
US7208126B2 (en) 2004-03-19 2007-04-24 E. I. Du Pont De Nemours And Company Titanium dioxide nanopowder manufacturing process
JP4199691B2 (en) 2004-03-25 2008-12-17 田中貴金属工業株式会社 catalyst
JP4513384B2 (en) 2004-03-31 2010-07-28 日産自動車株式会社 High heat-resistant exhaust gas purification catalyst and method for producing the same
CA2503655C (en) 2004-04-06 2013-08-06 Universite De Sherbrooke Carbon sequestration and dry reforming process and catalysts to produce same
EP2138458A1 (en) 2004-04-19 2009-12-30 SDC Materials, LLC High throughput discovery of materials through vapor phase synthesis
JP4624006B2 (en) 2004-06-02 2011-02-02 財団法人電力中央研究所 Spherical composite particle manufacturing method and manufacturing apparatus thereof
US7736582B2 (en) 2004-06-10 2010-06-15 Allomet Corporation Method for consolidating tough coated hard powders
US20050274646A1 (en) 2004-06-14 2005-12-15 Conocophillips Company Catalyst for hydroprocessing of Fischer-Tropsch products
JP4649586B2 (en) 2004-06-16 2011-03-09 独立行政法人物質・材料研究機構 Production method of SiC nanoparticles by nitrogen plasma
DE112005001429T5 (en) 2004-06-18 2007-04-26 Innovalight, Inc., St. Paul Method and apparatus for forming nanoparticles using radio frequency plasmas
GB0413767D0 (en) 2004-06-21 2004-07-21 Johnson Matthey Plc Metal oxide sols
KR20050121426A (en) 2004-06-22 2005-12-27 삼성에스디아이 주식회사 Method for preparing catalyst for manufacturing carbon nano tubes
FR2872061B1 (en) 2004-06-23 2007-04-27 Toulouse Inst Nat Polytech DIVIDED DIVIDED SOLID GRAIN COMPOSITION WITH CONTINUOUS ATOMIC METAL DEPOSITION AND PROCESS FOR OBTAINING THE SAME
US7541012B2 (en) 2004-07-07 2009-06-02 The Hong Kong University Of Science And Technology Catalytic material and method of production thereof
US7465430B2 (en) 2004-07-20 2008-12-16 E. I. Du Pont De Nemours And Company Apparatus for making metal oxide nanopowder
WO2006096205A2 (en) 2004-08-04 2006-09-14 Nanotechnologies, Inc. Carbon and metal nanomaterial composition and synthesis
DE102004037752A1 (en) 2004-08-04 2006-03-16 Cognis Deutschland Gmbh & Co. Kg Equipped fibers and textile fabrics
US7713908B2 (en) 2004-08-30 2010-05-11 Kabushiki Kaisha Toyota Chuo Kenkyusho Porous composite metal oxide and method of producing the same
JP4111983B2 (en) 2004-09-01 2008-07-02 芝浦メカトロニクス株式会社 Plasma processing method
KR101207602B1 (en) 2004-09-07 2012-12-03 닛신 엔지니어링 가부시키가이샤 Process and apparatus for producing fine particle
JP4988164B2 (en) 2005-03-08 2012-08-01 株式会社日清製粉グループ本社 Fine particle manufacturing method and apparatus
JP4640961B2 (en) 2005-07-27 2011-03-02 株式会社日清製粉グループ本社 Fine particle manufacturing method and apparatus
EP1790612B1 (en) 2004-09-17 2013-07-31 National Institute of Advanced Industrial Science and Technology Method for manufacturing a carbon nanotube
JP4560621B2 (en) 2004-09-21 2010-10-13 国立大学法人山梨大学 Method for producing fine particle catalyst, alloy fine particle catalyst or composite oxide fine particle catalyst, apparatus therefor, and method for using the same
TW200611449A (en) 2004-09-24 2006-04-01 Hon Hai Prec Ind Co Ltd A catalyst layer of a fuel cell, a method for fabricating the same and a fuel cell utilizing the same
EP1810001A4 (en) 2004-10-08 2008-08-27 Sdc Materials Llc An apparatus for and method of sampling and collecting powders flowing in a gas stream
US7601671B2 (en) 2004-10-28 2009-10-13 Umicore Ag & Co. Kg Drying method for exhaust gas catalyst
JP4282586B2 (en) 2004-11-02 2009-06-24 Spsシンテックス株式会社 Nano precision sintering system
US7632775B2 (en) 2004-11-17 2009-12-15 Headwaters Technology Innovation, Llc Multicomponent nanoparticles formed using a dispersing agent
US7750265B2 (en) 2004-11-24 2010-07-06 Vladimir Belashchenko Multi-electrode plasma system and method for thermal spraying
CN1647858A (en) 2004-12-01 2005-08-03 天津大学 Method for reducing loaded metal catalyst using low temperature plasma
DE102004059375A1 (en) 2004-12-09 2006-06-22 Consortium für elektrochemische Industrie GmbH Platinum catalysts supported on nanoscale titanium dioxide, their use in hydrosilylation, a hydrosilylation process with such catalysts, and compositions containing such catalysts
JP4245051B2 (en) 2004-12-14 2009-03-25 日産自動車株式会社 Exhaust gas purification catalyst
US7507495B2 (en) 2004-12-22 2009-03-24 Brookhaven Science Associates, Llc Hydrogen absorption induced metal deposition on palladium and palladium-alloy particles
US20060153728A1 (en) 2005-01-10 2006-07-13 Schoenung Julie M Synthesis of bulk, fully dense nanostructured metals and metal matrix composites
CA2595872C (en) 2005-01-28 2011-07-12 Tekna Plasma Systems Inc. Induction plasma synthesis of nanopowders
US7618919B2 (en) 2005-01-28 2009-11-17 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst support and method of producing the same
WO2006091613A2 (en) 2005-02-24 2006-08-31 Rutgers, The State University Of New Jersey Nanocomposite ceramics and process for making the same
EP1861192A1 (en) 2005-03-11 2007-12-05 The Regents of the University of Minnesota Air pollutant removal using magnetic sorbent particles
US7332454B2 (en) 2005-03-16 2008-02-19 Sud-Chemie Inc. Oxidation catalyst on a substrate utilized for the purification of exhaust gases
JP2006260385A (en) 2005-03-18 2006-09-28 Osaka Gas Co Ltd Pressure governor and processing method
US7799111B2 (en) 2005-03-28 2010-09-21 Sulzer Metco Venture Llc Thermal spray feedstock composition
JP4634199B2 (en) 2005-03-30 2011-02-16 関東電化工業株式会社 Surface modification method and apparatus using fluorine-containing gas
RU2403953C2 (en) 2005-05-17 2010-11-20 Макс-Планк-Гезельшафт Зур Фёрдерунг Дер Виссеншафтен Е.В. Purification of materials by hydrogen-based plasma
JP2006326554A (en) 2005-05-30 2006-12-07 Nissan Motor Co Ltd Catalyst for purifying exhaust gas, and method for producing it
US8034441B2 (en) * 2005-07-08 2011-10-11 Arkema France Multilayer composition
KR100711967B1 (en) 2005-08-08 2007-05-02 삼성전기주식회사 Method for making silver nanoparticles and comductive ink
JP2007044585A (en) 2005-08-08 2007-02-22 Toyota Central Res & Dev Lab Inc Manufacturing method of porous composite metal oxide material
US7695705B2 (en) 2005-08-26 2010-04-13 Ppg Industries Ohio, Inc. Method and apparatus for the production of ultrafine silica particles from solid silica powder and related coating compositions
US20080026041A1 (en) 2005-09-12 2008-01-31 Argonide Corporation Non-woven media incorporating ultrafine or nanosize powders
CN1931423A (en) 2005-09-13 2007-03-21 鸿富锦精密工业(深圳)有限公司 Nanometer particle synthesizing apparatus and process
US20080031806A1 (en) 2005-09-16 2008-02-07 John Gavenonis Continuous process for making nanocrystalline metal dioxide
US7342197B2 (en) 2005-09-30 2008-03-11 Phoenix Solutions Co. Plasma torch with corrosive protected collimator
US8063315B2 (en) 2005-10-06 2011-11-22 Endicott Interconnect Technologies, Inc. Circuitized substrate with conductive paste, electrical assembly including said circuitized substrate and method of making said substrate
US7678955B2 (en) 2005-10-13 2010-03-16 Exxonmobil Chemical Patents Inc Porous composite materials having micro and meso/macroporosity
US7615097B2 (en) 2005-10-13 2009-11-10 Plasma Processes, Inc. Nano powders, components and coatings by plasma technique
TWI402117B (en) 2005-10-17 2013-07-21 Nisshin Seifun Group Inc Process for producing ultrafine particles
JP4963586B2 (en) 2005-10-17 2012-06-27 株式会社日清製粉グループ本社 Method for producing ultrafine particles
KR101193163B1 (en) 2005-10-21 2012-10-19 삼성에스디아이 주식회사 Catalyst for oxidizing carbon monoxide and method of producing the same
EP1955765B1 (en) 2005-11-01 2020-12-30 Nissan Motor Co., Ltd. Process for producing a catalyst for exhaust-gas purification
US7935655B2 (en) 2005-11-04 2011-05-03 Kent State University Nanostructured core-shell electrocatalysts for fuel cells
JP4959717B2 (en) 2005-12-31 2012-06-27 中国科学院物理研究所 Magnetic memory cell, magnetic random access memory, and access storage method thereof
JP4565191B2 (en) 2006-01-30 2010-10-20 国立大学法人山梨大学 Fine particle catalyst production method, fine particle catalyst, and reformer
WO2007089881A2 (en) 2006-01-31 2007-08-09 Regents Of The University Of Minnesota Electrospray coating of objects
US7402899B1 (en) 2006-02-03 2008-07-22 Pacesetter, Inc. Hermetically sealable silicon system and method of making same
WO2007119658A1 (en) 2006-04-03 2007-10-25 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst and method for producing the same
KR100807806B1 (en) 2006-04-04 2008-02-27 제주대학교 산학협력단 DC arc plasmatron and the method using the same
WO2008008104A2 (en) 2006-04-05 2008-01-17 Foret Plasma Labs, Llc System, method and apparatus for treating liquids with wave energy from plasma
FR2899594A1 (en) 2006-04-10 2007-10-12 Commissariat Energie Atomique METHOD FOR ASSEMBLING SUBSTRATES WITH THERMAL TREATMENTS AT LOW TEMPERATURES
WO2008054867A2 (en) 2006-05-01 2008-05-08 Warwick Mills, Inc. Mosaic extremity protection system with transportable solid elements
US7601294B2 (en) 2006-05-02 2009-10-13 Babcock & Wilcox Technical Services Y-12, Llc High volume production of nanostructured materials
US20070259768A1 (en) 2006-05-03 2007-11-08 Kear Bernard H Nanocomposite ceramic and method for producing the same
AU2007247899A1 (en) 2006-05-05 2007-11-15 Plascoenergy Ip Holdings, S.L., Bilbao, Schaffhausen Branch A gas conditioning system
BRPI0711295A2 (en) 2006-05-08 2011-08-23 Bp Corp North America Inc aromatic charge conversion and aromatic carboxylic acid, terephthalic, isophthalic, 2,6-naphthalene dicarboxylic or 2,7-naphthalene dicarboxylic acid processes, catalyst and terephthalic acid compositions and solutions
US7541309B2 (en) 2006-05-16 2009-06-02 Headwaters Technology Innovation, Llc Reforming nanocatalysts and methods of making and using such catalysts
US7417008B2 (en) 2006-05-31 2008-08-26 Exxonmobil Chemical Patents Inc. Supported polyoxometalates and process for their preparation
US7576031B2 (en) 2006-06-09 2009-08-18 Basf Catalysts Llc Pt-Pd diesel oxidation catalyst with CO/HC light-off and HC storage function
EA014126B1 (en) 2006-06-15 2010-10-29 Экокат Ой Coating for particulate filters
JP4294041B2 (en) 2006-07-31 2009-07-08 本田技研工業株式会社 NOx purification catalyst
US7803210B2 (en) 2006-08-09 2010-09-28 Napra Co., Ltd. Method for producing spherical particles having nanometer size, crystalline structure, and good sphericity
BRPI0715693B1 (en) 2006-08-19 2018-10-23 Umicore Ag & Co Kg catalytic coated diesel particulate filter, process for its production and use
KR100756025B1 (en) 2006-08-28 2007-09-07 희성엥겔하드주식회사 A catalyst system with three layers for purifying the exhaust gases from internal engines
US7776303B2 (en) 2006-08-30 2010-08-17 Ppg Industries Ohio, Inc. Production of ultrafine metal carbide particles utilizing polymeric feed materials
ES2534215T3 (en) 2006-08-30 2015-04-20 Oerlikon Metco Ag, Wohlen Plasma spray device and a method for introducing a liquid precursor into a plasma gas system
EP2058279A4 (en) 2006-08-31 2012-01-25 Mitsubishi Materials Corp Metallic silicon and process for producing the same
US20080063855A1 (en) * 2006-09-07 2008-03-13 Maxim Kelman Semiconductor thin films formed from group iv nanoparticles
US7758784B2 (en) 2006-09-14 2010-07-20 Iap Research, Inc. Method of producing uniform blends of nano and micron powders
JP2008100152A (en) 2006-10-18 2008-05-01 Cataler Corp Catalyst for cleaning exhaust gas
JP5052291B2 (en) 2006-11-02 2012-10-17 株式会社日清製粉グループ本社 Alloy fine particles and method for producing the same
US7803295B2 (en) 2006-11-02 2010-09-28 Quantumsphere, Inc Method and apparatus for forming nano-particles
US8030592B2 (en) 2006-11-22 2011-10-04 Reintjes Marine Surface Technologies, Llc Apparatus and method for applying antifoulants to marine vessels
KR20080047950A (en) 2006-11-27 2008-05-30 나노스텔라 인코포레이티드 Engine exhaust catalysts containing palladium-gold
US7709414B2 (en) 2006-11-27 2010-05-04 Nanostellar, Inc. Engine exhaust catalysts containing palladium-gold
US7534738B2 (en) 2006-11-27 2009-05-19 Nanostellar, Inc. Engine exhaust catalysts containing palladium-gold
US8258070B2 (en) 2006-11-27 2012-09-04 WGCH Technology Limited Engine exhaust catalysts containing palladium-gold
US20080125313A1 (en) 2006-11-27 2008-05-29 Fujdala Kyle L Engine Exhaust Catalysts Containing Palladium-Gold
WO2008130451A2 (en) 2006-12-04 2008-10-30 Battelle Memorial Institute Composite armor and method for making composite armor
US20100050868A1 (en) 2006-12-11 2010-03-04 Governors Of The University Of Alberta Mercury absorption using chabazite supported metallic nanodots
CN100479918C (en) 2007-01-09 2009-04-22 大连理工大学 Method for preparing metal phosphide hydrogenation refining catalyst by using hydrogen plasma reduction method
US20080206562A1 (en) 2007-01-12 2008-08-28 The Regents Of The University Of California Methods of generating supported nanocatalysts and compositions thereof
CN101683622B (en) 2007-01-17 2013-03-06 纳米星公司 Engine exhaust catalysts containing palladium-gold
WO2008089221A1 (en) 2007-01-18 2008-07-24 Shell Oil Company A catalyst, its preparation and use
EP1952876A1 (en) 2007-01-25 2008-08-06 Nissan Motor Co., Ltd. Exhaust gas purifying catalyst and manufacturing method thereof
JP4971918B2 (en) 2007-01-25 2012-07-11 日産自動車株式会社 Exhaust gas purification catalyst and method for producing the same
CN101653047B (en) 2007-02-02 2013-08-14 普拉斯马外科投资有限公司 Plasma spraying device and method
US8679291B2 (en) 2007-03-13 2014-03-25 Heartland Technology Partners Llc Compact wastewater concentrator using waste heat
US8124043B2 (en) 2007-03-16 2012-02-28 Honda Motor Co., Ltd. Method of preparing carbon nanotube containing electrodes
US7635218B1 (en) 2007-04-19 2009-12-22 Vortex Systems (International) Ci Method for dust-free low pressure mixing
JP5125202B2 (en) 2007-04-24 2013-01-23 トヨタ自動車株式会社 Method for producing Ni nanoparticles
US20080268270A1 (en) * 2007-04-30 2008-10-30 Wenjie Chen High impact polymer interlayers
US7772150B2 (en) 2007-05-01 2010-08-10 Ut-Battelle, Llc Method to prepare nanoparticles on porous mediums
AU2008247280A1 (en) 2007-05-04 2008-11-13 Principle Energy Solutions, Inc. Production of hydrocarbons from carbon and hydrogen sources
US20080277264A1 (en) 2007-05-10 2008-11-13 Fluid-Quip, Inc. Alcohol production using hydraulic cavitation
EP2150971B1 (en) 2007-05-11 2018-11-28 Umicore AG & Co. KG Method and apparatus for making uniform and ultrasmall nanoparticles
US20090010801A1 (en) 2007-05-15 2009-01-08 Murphy Oliver J Air cleaner
FR2917405B1 (en) 2007-06-18 2010-12-10 Vibro Meter France PROCESS FOR PREPARING A SINTERED CERAMIC, CERAMIC THUS OBTAINED AND IGNITION CANDLE COMPRISING SAME
AU2008276180B2 (en) 2007-07-13 2011-08-04 University Of Southern California Electrolysis of carbon dioxide in aqueous media to carbon monoxide and hydrogen for production of methanol
CA2694949A1 (en) 2007-07-31 2009-02-05 Perry Equipment Corporation Systems and methods for removal of heavy metal contaminants from fluids
US8900420B2 (en) 2007-08-20 2014-12-02 3M Innovative Properties Company Catalyst production process
US20090081092A1 (en) 2007-09-24 2009-03-26 Xiaolin David Yang Pollutant Emission Control Sorbents and Methods of Manufacture and Use
US20090092887A1 (en) 2007-10-05 2009-04-09 Quantumsphere, Inc. Nanoparticle coated electrode and method of manufacture
KR100831069B1 (en) 2007-10-10 2008-05-22 한국과학기술원 Nanocrater in metal nanoparticle shells and method for preparing the same
US8575059B1 (en) 2007-10-15 2013-11-05 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
CA2703878C (en) 2007-10-29 2015-04-21 Ict Co., Ltd. Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the same
US20100183497A1 (en) 2007-11-06 2010-07-22 Quantumsphere, Inc. System and method for ammonia synthesis
US7759212B2 (en) * 2007-12-26 2010-07-20 Stats Chippac, Ltd. System-in-package having integrated passive devices and method therefor
JP5228495B2 (en) 2008-01-11 2013-07-03 富士通セミコンダクター株式会社 Manufacturing method of semiconductor device
US20120171098A1 (en) 2008-01-22 2012-07-05 Ppg Industries Ohio, Inc Method of consolidating ultrafine metal carbide and metal boride particles and products made therefrom
US8252244B2 (en) 2008-02-08 2012-08-28 Peat International, Inc. Method and apparatus of treating waste
US20090208367A1 (en) 2008-02-19 2009-08-20 Rosario Sam Calio Autoclavable bucketless cleaning system
JP2009226261A (en) 2008-03-19 2009-10-08 Fujifilm Corp Liquid mixing method and liquid mixing apparatus
US8535632B2 (en) 2008-03-20 2013-09-17 The University Of Akron Ceramic nanofibers containing nanosize metal catalyst particles and medium thereof
KR101407650B1 (en) 2008-04-04 2014-06-13 성균관대학교산학협력단 A method for preparing a nanoparticle, a nanoparticle and a lithium battery comprising an electrode comprising the nanoparticle
US8431102B2 (en) 2008-04-16 2013-04-30 The Regents Of The University Of California Rhenium boride compounds and uses thereof
US8716165B2 (en) 2008-04-30 2014-05-06 Corning Incorporated Catalysts on substrates and methods for providing the same
US20090324468A1 (en) 2008-06-27 2009-12-31 Golden Stephen J Zero platinum group metal catalysts
US8168561B2 (en) 2008-07-31 2012-05-01 University Of Utah Research Foundation Core shell catalyst
US20110049045A1 (en) 2008-10-07 2011-03-03 Brown University Nanostructured sorbent materials for capturing environmental mercury vapor
US8484918B2 (en) 2008-10-15 2013-07-16 Merkel Composite Technologies, Inc. Composite structural elements and method of making same
TWI363357B (en) * 2008-12-09 2012-05-01 Univ Nat Pingtung Sci & Tech Method for manufacturing composite metal conductive particules
WO2010067344A1 (en) 2008-12-11 2010-06-17 Robin Ernest Fossey An autoclave
WO2010077843A2 (en) 2008-12-29 2010-07-08 Basf Catalysts Llc Oxidation catalyst with low co and hc light-off and systems and methods
US8329607B2 (en) 2009-01-16 2012-12-11 Basf Corporation Layered diesel oxidation catalyst composites
US8252258B2 (en) 2009-01-16 2012-08-28 Basf Corporation Diesel oxidation catalyst with layer structure for improved hydrocarbon conversion
US8211392B2 (en) 2009-01-16 2012-07-03 Basf Corporation Diesel oxidation catalyst composite with layer structure for carbon monoxide and hydrocarbon conversion
GB0903262D0 (en) 2009-02-26 2009-04-08 Johnson Matthey Plc Filter
DE102009010711A1 (en) 2009-02-27 2010-09-30 Umicore Ag & Co. Kg Nitrogen storage catalytic converter for use in motor vehicles in close-up position
US20100229725A1 (en) 2009-03-10 2010-09-16 Kasra Farsad Systems and Methods for Processing CO2
CN102365234A (en) 2009-03-20 2012-02-29 波士顿硅材料有限公司 Method for the manufacture of photovoltaic grade silicon metal
WO2010122855A1 (en) 2009-04-24 2010-10-28 国立大学法人山梨大学 Catalyst for selective methanation of carbon monoxide, process for producing same, and device using same
US8294060B2 (en) 2009-05-01 2012-10-23 The Regents Of The University Of Michigan In-situ plasma/laser hybrid scheme
US8309489B2 (en) 2009-06-18 2012-11-13 University Of Central Florida Research Foundation, Inc. Thermally stable nanoparticles on supports
US8758695B2 (en) 2009-08-05 2014-06-24 Basf Se Treatment system for gasoline engine exhaust gas
WO2011019988A2 (en) 2009-08-14 2011-02-17 The Regents Of The University Of Michigan DIRECT THERMAL SPRAY SYNTHESIS OF Li ION BATTERY COMPONENTS
US8176830B1 (en) * 2009-09-24 2012-05-15 Wright Materials Research Co. Ballistic shield
US8803025B2 (en) 2009-12-15 2014-08-12 SDCmaterials, Inc. Non-plugging D.C. plasma gun
EP2512656A4 (en) 2009-12-15 2014-05-28 Sdcmaterails Inc Advanced catalysts for fine chemical and pharmaceutical applications
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US8557727B2 (en) 2009-12-15 2013-10-15 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8470112B1 (en) 2009-12-15 2013-06-25 SDCmaterials, Inc. Workflow for novel composite materials
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US9119309B1 (en) 2009-12-15 2015-08-25 SDCmaterials, Inc. In situ oxide removal, dispersal and drying
US20110143930A1 (en) 2009-12-15 2011-06-16 SDCmaterials, Inc. Tunable size of nano-active material on nano-support
US8545652B1 (en) 2009-12-15 2013-10-01 SDCmaterials, Inc. Impact resistant material
US8574520B2 (en) 2009-12-17 2013-11-05 BASF SE Ludwigshafen Metal oxide support material containing nanoscaled iron platinum group metal
US8124798B2 (en) 2009-12-17 2012-02-28 Lyondell Chemical Technology, Lp Direct epoxidation catalyst and process
GB0922195D0 (en) 2009-12-21 2010-02-03 Johnson Matthey Plc Improvements in NOx traps
CN102811797B (en) 2010-02-01 2017-02-15 约翰逊马西有限公司 Extruded SCR filter
US9394632B2 (en) 2010-03-22 2016-07-19 The Regents Of The University Of California Method and device to synthesize boron nitride nanotubes and related nanoparticles
US8080495B2 (en) 2010-04-01 2011-12-20 Cabot Corporation Diesel oxidation catalysts
WO2011127095A2 (en) 2010-04-05 2011-10-13 Gonano Technologies, Inc. Catalytic converters, insert materials for catalytic converters, and methods of making
US8734743B2 (en) 2010-06-10 2014-05-27 Basf Se NOx storage catalyst with improved hydrocarbon conversion activity
US8349761B2 (en) 2010-07-27 2013-01-08 Toyota Motor Engineering & Manufacturing North America, Inc. Dual-oxide sinter resistant catalyst
EP2611948A2 (en) 2010-09-01 2013-07-10 Facultés Universitaires Notre-Dame de la Paix Method for depositing nanoparticles on substrates
US8845974B2 (en) 2010-11-24 2014-09-30 Basf Corporation Advanced catalyzed soot filters and method of making and using the same
ES2793954T3 (en) 2010-12-15 2020-11-17 Sulzer Metco Us Inc Pressure Based Liquid Feed System for Suspension Plasma Spray Coatings
DE102010063342A1 (en) 2010-12-17 2012-06-21 Laser Zentrum Hannover E.V. Process for the preparation of micro-nanocombined active systems
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US8491860B2 (en) 2011-08-17 2013-07-23 Ford Global Technologies, Llc Methods and systems for an engine emission control system
MX2014001718A (en) 2011-08-19 2014-03-26 Sdcmaterials Inc Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions.
ES2402147B1 (en) 2011-10-17 2014-03-04 Universitat Politècnica De Catalunya PROCEDURE FOR OBTAINING A SUBSTRATE WITH NANOCLUSTERS OF AU FIXED IN THEIR SURFACE, AND SUBSTRATE AND CATALYST OBTAINED THROUGH SUCH PROCEDURE.
KR101273567B1 (en) 2011-11-22 2013-06-11 한국과학기술연구원 A counter electrodes for dye-sensitized solar cells and preparation method thereof
US9486791B2 (en) 2011-12-22 2016-11-08 Johnson Matthey Public Limited Company NOx trap
EP2844388B1 (en) 2012-04-06 2019-07-17 BASF Corporation LEAN NOx TRAP DIESEL OXIDATION CATALYST WITH HYDROCARBON STORAGE FUNCTION
US8906331B2 (en) 2012-05-07 2014-12-09 GM Global Technology Operations LLC Nitric oxide oxidation over silver-based catalysts
GB201219600D0 (en) 2012-10-31 2012-12-12 Johnson Matthey Plc Catalysed soot filter
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
WO2014138254A1 (en) 2013-03-06 2014-09-12 SDCmaterials, Inc. Particle-based systems for removal of pollutants from gases and liquids
US20140263190A1 (en) 2013-03-14 2014-09-18 SDCmaterials, Inc. High-throughput particle production using a plasma system
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
KR20160061367A (en) 2013-09-23 2016-05-31 에스디씨머티리얼스, 인코포레이티드 High surface area catalyst
CA2926133A1 (en) 2013-10-22 2015-04-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
EP3119500A4 (en) 2014-03-21 2017-12-13 SDC Materials, Inc. Compositions for passive nox adsorption (pna) systems

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10086356B2 (en) 2014-03-21 2018-10-02 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10413880B2 (en) 2014-03-21 2019-09-17 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10124322B2 (en) 2015-02-11 2018-11-13 Umicore Ag & Co. Kg Lean NOx traps, trapping materials, washcoats, and methods of making and using the same

Also Published As

Publication number Publication date
US8828328B1 (en) 2014-09-09
US9090475B1 (en) 2015-07-28
US8932514B1 (en) 2015-01-13
US8992820B1 (en) 2015-03-31
US8906498B1 (en) 2014-12-09
US8877357B1 (en) 2014-11-04
US8821786B1 (en) 2014-09-02
US8668803B1 (en) 2014-03-11
US9332636B2 (en) 2016-05-03
US8859035B1 (en) 2014-10-14
US9039916B1 (en) 2015-05-26
US9119309B1 (en) 2015-08-25
US20140338519A1 (en) 2014-11-20

Similar Documents

Publication Publication Date Title
US8877357B1 (en) Impact resistant material
US8470112B1 (en) Workflow for novel composite materials
US8545652B1 (en) Impact resistant material
Parandoush et al. Laser assisted additive manufacturing of continuous fiber reinforced thermoplastic composites
US10100890B2 (en) Systems and methods for forming a layer onto a surface of a solid substrate and products formed thereby
KR100576767B1 (en) Manufacture of void-free laminates and use thereof
KR20190131487A (en) Economical manufacturing of lightweight components
US9782828B2 (en) Methods for forming near net-shape metal parts from binderless metal powder
WO2005061116A1 (en) Cold spray apparatus having powder preheating device
Rohatgi et al. Moldability of tackified fiber preforms in liquid composite molding
US20200338818A1 (en) Method and apparatus for additive manufacturing
CA2557565A1 (en) Noise suppression structure and method of making the same
JP6862002B2 (en) Manufacturing method of composite structure
JP2012529385A (en) Manufacturing method for advanced composite components
US8057914B2 (en) Method for fabricating a medical component from a material having a high carbide phase and such medical component
WO2015027423A1 (en) Method for producing non-metal self-heatable molds
US20140272170A1 (en) Nanoparticle Hybrid Composites by RF Plasma Spray Deposition
US7588179B2 (en) Bonding of carbon fibers to metal inserts for use in composites
Yang et al. Enhancing mechanical properties of selectively laser sintered SiC/Si composites printed using electrostatic spraying microspheres with fine particles
Klosterman et al. Structural composites via laminated object manufacturing (LOM)
US11597012B2 (en) Article and method
Baril-Gosselin Improving integrally heated composite tooling through cold sprayed copper coatings and heat transfer simulations
JP2021041634A (en) Method for molding laminated composite sheet comprising fiber reinforced resin sheet and resin foamed sheet
Singh et al. Different Techniques for Designing and Fabrication of Advanced Composite Materials
RU2665775C1 (en) Method for producing articles of complex form based on carbon syntactic foam materials and installation for implementation of method

Legal Events

Date Code Title Description
AS Assignment

Owner name: SDCMATERIALS, INC., ARIZONA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BIBERGER, MAXIMILIAN A.;REEL/FRAME:034055/0640

Effective date: 20141015

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION