JPS61242644A - Production of catalyst for purifying exhaust gas - Google Patents

Production of catalyst for purifying exhaust gas

Info

Publication number
JPS61242644A
JPS61242644A JP60083305A JP8330585A JPS61242644A JP S61242644 A JPS61242644 A JP S61242644A JP 60083305 A JP60083305 A JP 60083305A JP 8330585 A JP8330585 A JP 8330585A JP S61242644 A JPS61242644 A JP S61242644A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
slurry
powder
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60083305A
Other languages
Japanese (ja)
Inventor
Akiko Naito
明子 内藤
Shinichi Matsumoto
伸一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP60083305A priority Critical patent/JPS61242644A/en
Publication of JPS61242644A publication Critical patent/JPS61242644A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a catalyst excellent in the durability of the purifying performance by mixing both a liquid dispersed with the fine granular catalytic components in a dispersion medium and the slurry suspended with ZrO2 powder and Al2O3 powder and molding the mixture. CONSTITUTION:In relation to a catalyst for purifying an exhaust gas of an internal combustion engine, a dispersion liquid is prepared by dispersing the fine granular catalytic components in a dispersion medium such as water and alcohol and the slurry suspended with the catalyst deposition components consisting of ZrO2 powder and Al2O3 powder is prepared. After mixing the slurry to the dispersion liquid, a molding body is molded from this mixture and calcined and the catalytic components are deposited on the catalyst deposition components. By such a way, the flocculation of the catalytic components is prevented and simultaneously the alloying of the catalytic components with each other is prevented and the thereby, the catalyst for purifying an exhaust gas excellent in the durability of the purifying performance is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は内燃機関のjノ]気ガス浄化用触媒の製造方法
に関し、詳しくは触媒としての浄化11能の耐久性に優
れた触媒の製造り法に関りるものである。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for producing a catalyst for purifying gas in an internal combustion engine, and more specifically, to a method for producing a catalyst with excellent purification performance and durability as a catalyst. It is related to the law.

[従来の技術1 内燃機関、特に自動車用エンジンの1))気ガス浄化用
触媒どしては、耐久性、浄化性能などにおいて極めて高
度<> 1’l能が要求されている。自動車の排気ガス
中には、−酸化炭素(Co)、炭化水素(+−I C>
 、窒素酸化物(、N Ox ) 4にとのイf害成分
が含まれており、それら成分を同11、旨こ除去するの
に有効な触媒として、規在種々のものが提案されている
。その内、例えばアルミナ担体に白金(Pl)、パラジ
ウム(Pd)、又はロジウム(Rh)41どをそ1+ぞ
パれli独あるいは絹合わせて担持しIC触媒は、比較
的侵れた浄化性能を右するものどして知られている。
[Prior Art 1] Catalysts for gas purification (1) for internal combustion engines, particularly automobile engines, are required to have extremely high performance in terms of durability, purification performance, etc. Automobile exhaust gas contains -carbon oxide (Co), hydrocarbons (+-IC>
Nitrogen oxides (NOx) contain harmful components, and a variety of catalysts have been proposed as effective catalysts for removing these components. . Among them, for example, IC catalysts, in which platinum (Pl), palladium (Pd), or rhodium (Rh) 41, etc. are supported on an alumina carrier in combination with palladium or silk, have relatively poor purification performance. It is known as the right thing.

従来、このような自動車用内燃機関などに用いる4ノ+
気ガス浄化用触媒の製造においては、アルミナ、コーシ
丁ライ1へ等から形成されたモノリス担体基月等に、ア
ルミナ担体層を形成させる。その後触媒成分の塩化物等
の水溶液と該担持層を接触させることによって、アルミ
ナ担体の粒子表面に触媒成分の微細粒子を被覆させ、そ
の後、乾燥、焼成してり1気ガス浄化用触媒とするのが
通常であった。又、1![開明57−153737号公
報に見られるように、アルミナ担体にジルコニア(7r
O2)を混合()、触媒成分担持量を少なくしても従来
と同等の浄化性Oti b<得られるil+気ガス浄化
用触媒も提案されている。
Conventionally, the 4+ type used in internal combustion engines for automobiles, etc.
In the production of gas purification catalysts, an alumina carrier layer is formed on a monolithic carrier base made of alumina, porcelain, etc. Thereafter, the support layer is brought into contact with an aqueous solution of a chloride or the like of the catalyst component to coat the surface of the particles of the alumina carrier with fine particles of the catalyst component, and then dried and calcined to obtain a catalyst for gas purification. It was normal. Also, 1! [As seen in Kaimei No. 57-153737, zirconia (7r
There has also been proposed a catalyst for purifying gases that can achieve the same purification performance as the conventional one even if the amount of catalyst components supported is reduced.

[発明が解決しようとする問題点1 」二記した従来の排気ガス浄化用触媒の製造方法におい
ては、触媒成分を溶液どして用い、アルミナ担体と接触
後乾燥、焼成してアルミナの粒子表面【こ被覆させるた
めに、触媒成分は凝集し、粒子成長を引き起こし−c 
fJl気ガス浄化用触媒としての浄化性能の耐久十)1
が悪くなるという問題点があった。又各触媒成分どうし
が合金化()、性能の低下を引き起こづ一場合もあった
[Problem to be Solved by the Invention 1] In the conventional manufacturing method of the exhaust gas purifying catalyst described in Section 2, the catalyst components are used as a solution, and after contacting with an alumina carrier, they are dried and calcined to form the surface of the alumina particles. [To achieve this coating, the catalyst components aggregate and cause particle growth.
Durability of purification performance as a gas purification catalyst
There was a problem that it deteriorated. In addition, there were cases in which catalyst components were alloyed with each other, causing a decrease in performance.

本発明は上記問題点に鑑みてなされたものであり、触媒
成分の凝集を防ぎ、又同時に触媒成分どうしの合金化を
防ぎ゛、ぞれによって浄化性能の耐久性に優れた排気ガ
スか他用触媒の製造方法を提供することを1]的とする
The present invention has been made in view of the above-mentioned problems, and it prevents the agglomeration of catalyst components and at the same time prevents alloying of catalyst components, thereby providing exhaust gas with excellent purification performance and durability for other purposes. 1] The purpose is to provide a method for producing a catalyst.

L問題点を解決覆るだめの手段] 本発明の排気ガス浄化用触媒の製造方法は、水、アル」
−ル等の分散媒中に微粒子状の触媒成分を分散ざUて分
散液を調整η−る分散工程と、ジル」ニア7粉末とアル
ミナ粉末とからへる触媒担持成分を懸濁させたスラリー
を調整する懸濁ニ稈と、 該スラリーに該分I′lI液を混合して混合物を得る混
合工程ど、 該混合物から成形体を成形覆る成形工程と、該成形体を
焼成L/て該触媒担持成分(こ該触媒成分を]n持さl
!る触媒10持工稈ど、からなることを特徴とする。
[Means for solving and overcoming the problems] The method for producing the exhaust gas purifying catalyst of the present invention is based on
- A dispersion process in which fine particulate catalyst components are dispersed in a dispersion medium such as a liquid to prepare a dispersion liquid, and a slurry in which a catalyst supporting component made of Zirnia 7 powder and alumina powder is suspended. A mixing step of mixing the slurry with a corresponding amount of liquid I'lI to obtain a mixture, a molding step of molding and covering the mixture into a molded body, and a baking process of the molded body to form a mixture. Catalyst supporting component (carrying this catalyst component)
! The catalyst is characterized in that it consists of 10 culms.

分散T稈は分散媒中に触媒成分の微細粒子を分散ざ甘る
工程で゛ある。分散媒には水、メチルアルコール、エヂ
ルアル]−ル、イソプロピルアルコールなどを用いるこ
とができる。又触媒成分としては、従来知られている白
金(Pt)、パラジウム(Pd)、イリジウム<lr)
、ルテニウム(Ru)、ロジウム(R’h)、オスミウ
ム(Os)などの貴金属、あるい(31クロム(Cr)
、ニッケル<N i ) 、バナジウム〈V)、銅(C
1、コバル1〜(CO)、マンガン(Mn)イzどの卑
金属を単独で゛、あるいは複数種類混合して用いること
ができる。この触媒成分の粒子径もま10から5On 
”mの範囲にあることが望ましい。この粒子径が5On
mよりも大きい場合には粒子の表面積は小さくなり、浄
化性能に劣るようになって好ましくない。又粒子径が1
OnmJ:り小さい場合には、凝集し易くなり、凝集し
た二次粒子の表面積は小さなものどなって同様に浄化性
能が劣るJ=うになる。
Dispersion T-culm is a process in which fine particles of catalyst components are dispersed in a dispersion medium. Water, methyl alcohol, alcohol, isopropyl alcohol, etc. can be used as the dispersion medium. In addition, as catalyst components, conventionally known platinum (Pt), palladium (Pd), iridium <lr)
, noble metals such as ruthenium (Ru), rhodium (R'h), osmium (Os), or (31 chromium (Cr)
, nickel <N i ), vanadium <V), copper (C
1. Base metals such as cobal (CO) and manganese (Mn) can be used alone or in combination. The particle size of this catalyst component is also 10 to 5 On.
It is desirable that the particle size is in the range of 5 On.
If it is larger than m, the surface area of the particles becomes small and the purification performance becomes poor, which is not preferable. Also, the particle size is 1
When OnmJ: is small, it tends to aggregate, and the surface area of the aggregated secondary particles is small, resulting in similarly poor purification performance.

触媒成分を分散媒に分散させるには、分散剤を用いて分
散させる方法、コロイドとする方法などの種々の方法が
考えられるが、超音波振動を利用するのが望ましい。む
お超音波振動を利用する場合には触媒成分の粒径は20
〜30 n mとするのがよい。これにより触媒成分は
分散媒中に均一に分散され、かつ望ましい表面積となる
To disperse the catalyst component in a dispersion medium, various methods can be considered, such as a method of dispersing using a dispersant and a method of forming a colloid, but it is preferable to use ultrasonic vibration. When using ultrasonic vibration, the particle size of the catalyst component is 20
It is preferable to set it to 30 nm. This allows the catalyst components to be uniformly dispersed in the dispersion medium and provides the desired surface area.

懸濁工程は、アルミナ粉末どジルコニア粉末と水とから
スラリーを調整づる工程である。ジルコニア粉末は、そ
の粒子径が0.5〜10μm、特には平均粒径が2μm
程度のものが望ましい。このような粒径どずれば、触媒
成分の微細粒子どうしの間、あるいはアルミナ粒子どう
しの間に適当にジルコニア粉末が介在し、触媒成分の微
細粒子の凝集及び合金化を防11−することが可能どな
る。
The suspension step is a step of preparing a slurry from alumina powder, zirconia powder, and water. Zirconia powder has a particle size of 0.5 to 10 μm, particularly an average particle size of 2 μm.
It is desirable that the degree of If the particle sizes are so different, the zirconia powder will be appropriately interposed between the fine particles of the catalyst component or between the alumina particles, and the agglomeration and alloying of the fine particles of the catalyst component will be prevented. It's possible to yell.

アルミナわ)末に(J、従来と同様に、α体、1体41
どを用いることができるが、好ましり(」1体が使用さ
れる。j′ルミ−J粉末に対するジルコニア粉末の配分
間(ま、ジルコニア粉末が増加するに従って浄化率が向
−Iすることから、ジル」ニア粉末が多い方が好ましい
。しかしイ蒙がらあまり多くすると強度的に問題が7で
くる場合があるので、ジルコニア粉末は30−、80重
量%の範囲が好ましい。
Alumina) Finally (J, as before, α body, 1 body 41
Although any one of them can be used, it is preferable to use one.j' Between the distribution of zirconia powder to Lumi-J powder (well, since the purification rate increases as the amount of zirconia powder increases) It is preferable to use a large amount of zirconia powder.However, if too much zirconia powder is used, problems may arise in terms of strength, so the zirconia powder is preferably in the range of 30-80% by weight.

混合工程は、1−配分数工程により得られた分散液と懸
濁工程に」、す1qられたスラリーとを混合する工程で
ある。尚、この場合必要であれば、ジルコニア粉末ある
いはアルミナ粉末を追加すること0できる。この混合−
L稈では、アルミナ粉末の表面に触媒成分の微細粒子が
被覆される。そしてこの場合ジルコニア粉末が介在する
ために、触媒成分の微細粒子どうしはnいに距離を保ら
ながら、J−なわ4)微細粒子状態のまま被覆される。
The mixing step is a step of mixing the dispersion obtained in the 1-allocation step and the slurry added to the suspension step. In this case, if necessary, zirconia powder or alumina powder can be added. This mixture-
In the L culm, the surface of the alumina powder is coated with fine particles of the catalyst component. In this case, since the zirconia powder is present, the fine particles of the catalyst component are coated in a fine particle state while maintaining a small distance from each other.

成形工程は、」−記(、風上りjqられた触媒成分を含
むスラリーを、使用[1的に合4つF!た所定形状をな
ず成形体に成彫りる工程である。なお本発明にいう成形
と(ま、スラリーから所定形状のらのを一体成形するこ
とはいうまでもなく、所定形状をなり一予備成形体にス
ラリーをイく1着させることをも意味するものて゛ある
。例えば、粒状、あるいはベレッ1へ状に成形すること
もできる。この場合には該スラリーからベレッ1〜状等
に成形してもに<、ペレ伴 ッ1〜状等の川Jか基材にスラリーを付着ざぜることで
成形することもてきる。又アルミナ、二し−ジエライ1
〜などから成る、へニカム形状などのモノリス担体基材
の細孔表面にスラリーをイ」着させて成形づることbで
きる。なお所定の形状に成形する際には、比較的低い温
度で・加熱し水分等を蒸発ざぜることも行なわれる。
The molding step is a step in which a slurry containing the upwind catalyst component is carved into a molded body into a predetermined shape. The term "molding" (well, it goes without saying that it is integrally molding a sheet of a predetermined shape from a slurry, but also refers to applying a slurry to a preformed body having a predetermined shape). For example, it can be formed into granules or pellets.In this case, even if the slurry is formed into pellets, etc., the slurry may be formed into pellets or pellets. It can also be molded by adhering and agitating the slurry.Also, alumina,
The slurry can be deposited on the pore surface of a monolithic carrier base material such as a henicum shape consisting of ~, etc., and then shaped. Note that when molding into a predetermined shape, heating is performed at a relatively low temperature to evaporate moisture and the like.

触媒担持工程は、従来と同様に成形体を700℃以上の
温度で焼成し、この成形体に含まれるアルミナ表面に触
媒成分を担持させ−る工程である。。
The catalyst supporting step is a step in which the molded body is fired at a temperature of 700° C. or higher, as in the conventional method, and the catalyst component is supported on the surface of the alumina contained in the molded body. .

成形体では触媒成分は、微細粒子のまま一定距離ヲ保っ
てアルミツー表面を被覆し−Cいる。従ってこの状態で
焼成することにより、触媒成分は微細粒=  8 − 子状のままアルミ7表面に〕n持される。
In the compact, the catalyst component remains in the form of fine particles and covers the aluminum surface at a certain distance. Therefore, by firing in this state, the catalyst component remains in the form of fine particles on the surface of the aluminum 7.

[発明の作用及び効果] 本発明の排気ガス浄化用触媒の製造7!i法においては
、触媒成分は超音波振動などにより均一に分散している
の【゛、微細粒子構造を保ったまま、アルミナ表面に担
持される。更にジルコlニア粉末が、触媒成分の微細粒
子どう(J、あるいはアルミナ粉末どうしの間に介在し
、立体障害どして働くために、触媒成分の凝集あるいは
合金化は更に防出される。従って触媒成分の各粒子の表
面積は、従来の触媒成分の粒子に比べ、著しく大きなも
のとなる。更にジル−lニア粉末による浄化すり能の向
上および耐熱性も寄与する。従って本発明の製造方法に
よれば、従来と同量の触媒成分の配合量においても、従
来」;りも著しく優れた浄化性能を有する4111気ガ
ス浄化用触媒を、筒中に、しかも確実に製造することが
できる。
[Operations and effects of the invention] Production of the exhaust gas purifying catalyst of the present invention 7! In the i method, the catalyst components are uniformly dispersed by ultrasonic vibration, etc., and are supported on the alumina surface while maintaining their fine particle structure. Furthermore, since the zirconia powder is interposed between the fine particles of the catalyst component (J) or the alumina powder and acts as a steric hindrance, agglomeration or alloying of the catalyst component is further prevented. The surface area of each particle of the component is significantly larger than that of conventional catalyst component particles.Furthermore, the Zir-lnia powder also contributes to improved purification ability and heat resistance.Therefore, the production method of the present invention For example, even with the same amount of catalyst components as the conventional one, it is possible to reliably produce the 4111 gas purifying catalyst in a cylinder, which has significantly superior purification performance than the conventional one.

[実施例] 以下実施例により説明覆る。[Example] The following will be explained using examples.

まず粒子径20〜30 n mの白金<pt>と、粒径
20〜30 n mのパラジウム(Pd)の1;1の混
合微粒子からなる触媒成分100chを、蒸溜水150
ミリリツ1〜ル中1=加え、超音波振動にJ:り分散さ
せる。
First, 100 channels of a catalyst component consisting of fine particles of a 1:1 mixture of platinum <pt> with a particle size of 20 to 30 nm and palladium (Pd) with a particle size of 20 to 30 nm were mixed with 150 channels of distilled water.
Add 1 to 1 milliliter and disperse in ultrasonic vibration.

次に、アルミナ含有量が10重量%のアルミノ−シルア
009に、硝酸アルミニウム水溶液(硝酸アルミニウム
含有量40重量%〉を1500を添加し、更に蒸溜水4
50ミリリットルを加えて、撹拌して混合懸濁液を調整
した。更にこの混合懸濁液中ヘジルコニア粉末(平均粒
径2μ)を1009加えてスラリーとし、その中ヘト記
触媒成ヅ)の分散液を仝M加えた。更にアルミナ粉末を
800g加え、撹拌してスラリーを調整した。このアル
ミナ、ジルコニア、触媒成分の微細粒子を懸濁させたス
ラリー中に、直径10cm、長さ′15cmのコージェ
ライ1〜質からなる円筒状モノリス担体用基材を1分間
浸漬した。ついで引き1−げ後、空気を吹き付()るこ
とにより、円筒状モノリス担体基材のセル内の余分のス
ラリーを吹き取ばし1こ後、200℃−二で1時間水分
の乾燥処理を行なった。
Next, 1,500 g of an aqueous aluminum nitrate solution (aluminum nitrate content: 40 wt.%) was added to Alumino-Silua 009 with an alumina content of 10% by weight, and further 4 g of distilled water was added.
50 ml was added and stirred to prepare a mixed suspension. Furthermore, 1,009 m of hezirconia powder (average particle size: 2 .mu.m) was added to this mixed suspension to form a slurry, and 1,000 m of a dispersion of the catalyst described above was added thereto. Furthermore, 800 g of alumina powder was added and stirred to prepare a slurry. A cylindrical monolith carrier base material made of Corjelai 1-2 and having a diameter of 10 cm and a length of 15 cm was immersed in this slurry in which fine particles of alumina, zirconia, and catalyst components were suspended for 1 minute. After pulling, the excess slurry inside the cells of the cylindrical monolithic carrier base material was blown off by blowing air, and then the moisture was dried at 200°C for 1 hour. I did it.

ざらに不粘性ガス中で700℃で2時間の焼成処理を行
なった。これを再び上記スラリー中に浸)hし、同様に
スラリーの吹き飛ばし及び乾燥、焼成を行ない、本発明
の製造方法番こよる排気ガス浄化用触媒を製造した。イ
rお本実施例の場合の触媒担持量は、白金(PL〉、パ
ラジウム(Pd)共、モノリス担体基材に対し、0.5
!It/リツトルであった。
Firing treatment was performed at 700° C. for 2 hours in a roughly inviscid gas. This was immersed again in the above slurry, and the slurry was similarly blown off, dried, and fired to produce an exhaust gas purifying catalyst according to the production method of the present invention. In this example, the amount of catalyst supported was 0.5 for both platinum (PL) and palladium (Pd) relative to the monolithic carrier base material.
! It/liter.

上記に」:す1th1られた触媒を、双手の方法により
耐久試験を実施した。そしてその耐久試lIA後にお【
ノる1−ICのか化↑(を能を評価した。
The catalyst prepared above was subjected to a durability test using a two-handed method. And after that endurance test,
Noru 1-IC's Kaka↑( was evaluated for ability.

耐久試験条件は、■ンジンを空燃比〈Δ/F)が14.
6、空間速度(SV)が60000h−1、触媒床温度
が720℃として運転し、300時間運転した後、名触
媒の浄化率を測定した。この浄化率の測定は、空燃比(
△/F)を14.6どして触媒の浄化率の、入口側排気
ガスの温度特性を評価する方法(こより実施した。その
測定結果を図に示す。
The durability test conditions were as follows: ■The engine had an air-fuel ratio <Δ/F) of 14.
6. The catalyst was operated at a space velocity (SV) of 60,000 h-1 and a catalyst bed temperature of 720°C, and after operating for 300 hours, the purification rate of the famous catalyst was measured. The measurement of this purification rate is based on the air-fuel ratio (
This method was used to evaluate the temperature characteristics of the exhaust gas on the inlet side of the purification rate of the catalyst by setting Δ/F) to 14.6.The measurement results are shown in the figure.

〈従来例) アルミナ含有量が10重品%のアルミナシルア00(J
に、硝酸アルミニウム水溶液(硝酸アルミニウム含有i
1/10重量%)を150 G添加し、更に蒸溜水を4
50ミリリツトル111えて撹拌して混合懸濁液を調整
した。
<Conventional example> Alumina Silua 00 (J) with an alumina content of 10%
, aluminum nitrate aqueous solution (aluminum nitrate-containing i
1/10% by weight) was added to 150 G, and further distilled water was added to
A mixed suspension was prepared by adding 50 milliliters and stirring.

そしてその混合懸濁液中に、アルミナ粉末1000qを
加え、撹拌してスラリーを調整した。このスラリー中に
実施例と同一形状の同一材質から成る円筒形モノリス担
体基材を1分間浸漬し、実施例と同じ操作を繰り返して
、モノリス担体基月払にアルミナ担持層を形成した。こ
の活性アルミナ担持層を形成したモノリス担体用基$4
を、蒸溜水に浸漬して充分吸水させ、その後引き上げて
余分な水分を吹き払った。続いてジニト[1ジアンミン
白金水溶液「Pt (Nl−13)2 (NO2)2 
](ジニトロジアンミン白金として0.5o/リツトル
)に1時間浸漬した。引き」−げて余分な水溶液を吹き
飛ばし、200℃で1時間水分を乾燥した後、同様に塩
化パラジウム水溶液[PdCfz](塩化パラジウムと
して0.5(J/リッ[−ル)を■持さけ、従来例の触
媒を製造した。なおこの従来例の場合の触媒担持層は、
白金、パラジウム共、モノリスノロ体u体に対し、実施
例の場合と同量の0.5o/リツ1〜ルであった。
Then, 1000q of alumina powder was added to the mixed suspension and stirred to prepare a slurry. A cylindrical monolith carrier base material having the same shape and made of the same material as in the example was immersed in this slurry for 1 minute, and the same operations as in the example were repeated to form an alumina support layer on the monolith carrier base. Base for monolith carrier on which this activated alumina support layer was formed $4
was immersed in distilled water to absorb sufficient water, then pulled out and blown off excess water. Subsequently, dinit[1 diamine platinum aqueous solution “Pt (Nl-13)2 (NO2)2
] (0.5o/liter as dinitrodiammine platinum) for 1 hour. After drying the water at 200°C for 1 hour, add a palladium chloride aqueous solution [PdCfz] (0.5 (J/liter) as palladium chloride), A conventional catalyst was manufactured.The catalyst supporting layer in this conventional example was as follows:
Both platinum and palladium were in the same amount of 0.5 o/L to the monolithic u-form as in the example.

そして従来例の触媒について、実施例の触媒と同様に、
空燃比(A/F)を14.6として触媒の浄化率の温度
特性を評価する方法で、1−IC浄化率を測定した結果
を図に示す。
As for the catalyst of the conventional example, similarly to the catalyst of the example,
The figure shows the results of measuring the 1-IC purification rate using the method of evaluating the temperature characteristics of the purification rate of the catalyst with the air-fuel ratio (A/F) set at 14.6.

図から明らかなように、本発明の製造方法にJ:り製造
()だ実施例の排気ガス浄化用触媒は、従来の製造方法
による排気ガス浄化用触媒と比較して、300時間の艮
時間耐久試M後においても、高温浄化性能に優れている
。これはジルコニア粉末を添加し、かつ触媒成分が微細
粒子状として担持させられているものによることは明ら
かである。なお、GO,NOXについても図と同様の傾
向を示し、実施例の触媒は従来例のものと比べ明らかに
優れていた。
As is clear from the figure, the exhaust gas purification catalyst of the example manufactured by the manufacturing method of the present invention has a 300-hour burning time compared to the exhaust gas purification catalyst manufactured by the conventional manufacturing method. Even after the durability test M, it has excellent high-temperature purification performance. It is clear that this is due to the addition of zirconia powder and the catalyst component being supported in the form of fine particles. It should be noted that GO and NOX showed similar trends as shown in the figure, and the catalyst of the example was clearly superior to that of the conventional example.

【図面の簡単な説明】[Brief explanation of drawings]

図【よ実施例おにび従来例の触媒の浄化率の湿度特性を
評価した結果を示すグラフである。
FIG. 1 is a graph showing the results of evaluating the humidity characteristics of the purification rate of the catalysts of the example and the conventional example.

Claims (5)

【特許請求の範囲】[Claims] (1)水、アルコール等の分散媒中に微粒子状の触媒成
分を分散させて分散液を調整する分散工程と、 ジルコニア粉末とアルミナ粉末とからなる触媒担持成分
を懸濁させたスラリーを調整する懸濁工程と、 該スラリーに該分散液を混合して混合物を得る混合工程
と、 該混合物から成形体を成形する成形工程と、該成形体を
焼成して該触媒担持成分に該触媒成分を担持させる触媒
担持工程と、からなることを特徴とする排気ガス浄化用
触媒の製造方法。
(1) A dispersion process in which fine particulate catalyst components are dispersed in a dispersion medium such as water or alcohol to prepare a dispersion liquid, and a slurry in which a catalyst supporting component consisting of zirconia powder and alumina powder is suspended is prepared. a suspension step, a mixing step of mixing the dispersion liquid with the slurry to obtain a mixture, a molding step of molding a molded body from the mixture, and a molding step of firing the molded body to transfer the catalyst component to the catalyst supporting component. A method for producing an exhaust gas purifying catalyst, comprising the steps of supporting a catalyst.
(2)微粒子状の触媒成分は分散媒中に超音波振動によ
り分散されている特許請求の範囲第1項記載の排気ガス
浄化用触媒の製造方法。
(2) The method for producing an exhaust gas purifying catalyst according to claim 1, wherein the particulate catalyst component is dispersed in a dispersion medium by ultrasonic vibration.
(3)触媒成分の粒径は10〜50nmである特許請求
の範囲第1項記載の排気ガス浄化用触媒の製造方法。
(3) The method for producing an exhaust gas purifying catalyst according to claim 1, wherein the catalyst component has a particle size of 10 to 50 nm.
(4)ジルコニア粉末の平均粒径は約2μmである特許
請求の範囲第1項記載の排気ガス浄化用触媒の製造方法
(4) The method for producing an exhaust gas purifying catalyst according to claim 1, wherein the zirconia powder has an average particle size of about 2 μm.
(5)ジルコニア粉末はアルミナ粉末に対して配分量が
30〜80重量%となるように配分されている特許請求
の範囲第1項記載の排気ガス浄化用触媒の製造方法。
(5) The method for producing an exhaust gas purifying catalyst according to claim 1, wherein the zirconia powder is distributed in an amount of 30 to 80% by weight relative to the alumina powder.
JP60083305A 1985-04-18 1985-04-18 Production of catalyst for purifying exhaust gas Pending JPS61242644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60083305A JPS61242644A (en) 1985-04-18 1985-04-18 Production of catalyst for purifying exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60083305A JPS61242644A (en) 1985-04-18 1985-04-18 Production of catalyst for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPS61242644A true JPS61242644A (en) 1986-10-28

Family

ID=13798700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60083305A Pending JPS61242644A (en) 1985-04-18 1985-04-18 Production of catalyst for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPS61242644A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034695A1 (en) * 1996-03-21 1997-09-25 Joachim Pohl Heterogenous catalyst, its manufacture and its use
JP2013513483A (en) * 2009-12-15 2013-04-22 エスディーシー マテリアルズ インコーポレイテッド Method of forming a catalyst with reduced mobility of nanoactive materials
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080699A (en) * 1996-03-21 2000-06-27 Pohl; Joachim Heterogenous catalyst, its manufacture and its use
WO1997034695A1 (en) * 1996-03-21 1997-09-25 Joachim Pohl Heterogenous catalyst, its manufacture and its use
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
JP2013513483A (en) * 2009-12-15 2013-04-22 エスディーシー マテリアルズ インコーポレイテッド Method of forming a catalyst with reduced mobility of nanoactive materials
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10086356B2 (en) 2014-03-21 2018-10-02 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10413880B2 (en) 2014-03-21 2019-09-17 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same

Similar Documents

Publication Publication Date Title
JP3953630B2 (en) Automobile exhaust catalyst and its production method
US5202299A (en) Catalytic washcoat for treatment of diesel exhaust
JPS61242644A (en) Production of catalyst for purifying exhaust gas
JPH10249198A (en) Catalyst for purifying exhaust gas and production thereof
JPS6137982B2 (en)
WO2007057981A1 (en) Catalyst for exhaust-gas purification
JPH07300315A (en) Complex, catalyst body using the same and its production
JPH0699069A (en) Catalyst for purification of exhaust gas
JPS6384635A (en) Catalyst for purifying exhaust gas
JPS62282641A (en) Production of catalyst for purifying exhaust gas
JPH064132B2 (en) Integrated catalyst carrier for exhaust gas purification
JP3722060B2 (en) Catalyst body, method for producing catalyst body, and exhaust gas purification catalyst using the catalyst body
JPH0578378B2 (en)
JP3916197B2 (en) Method for producing exhaust gas purification catalyst
JP2001162166A (en) Catalyst for purification of discharged gas
JPS63185450A (en) Catalyst for purifying exhaust gas
JPS6178438A (en) Monolithic catalyst for purifying exhaust gas
JP2001000862A (en) NOx REMOVING CATALYST FOR LEAN-BURN ENGINE
JP3330154B2 (en) Exhaust gas purification catalyst
JPH04180835A (en) Production of catalyst for purifying exhaust gas
JPH0578379B2 (en)
JPS6320036A (en) Production of catalyst for purifying exhaust gas
JPS621543B2 (en)
JPS60248236A (en) Process for forming porous alumina coating film on monolithic carrier
JPH0520435Y2 (en)