JPS62102827A - Production of metallic or ceramic fine grain - Google Patents

Production of metallic or ceramic fine grain

Info

Publication number
JPS62102827A
JPS62102827A JP24052685A JP24052685A JPS62102827A JP S62102827 A JPS62102827 A JP S62102827A JP 24052685 A JP24052685 A JP 24052685A JP 24052685 A JP24052685 A JP 24052685A JP S62102827 A JPS62102827 A JP S62102827A
Authority
JP
Japan
Prior art keywords
gas
plasma
metallic
reaction vessel
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24052685A
Other languages
Japanese (ja)
Other versions
JPH0424284B2 (en
Inventor
Isao Nakatani
功 中谷
Takao Furubayashi
孝夫 古林
Hiroaki Hanaoka
花岡 博明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Original Assignee
National Research Institute for Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals filed Critical National Research Institute for Metals
Priority to JP24052685A priority Critical patent/JPS62102827A/en
Publication of JPS62102827A publication Critical patent/JPS62102827A/en
Publication of JPH0424284B2 publication Critical patent/JPH0424284B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compounds Of Iron (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

PURPOSE:To continuously produce a metallic or ceramic fine grain having uniform grain size by introducing vapor of a metallic compd. or a gas reactive with this vapor into low-temp. plasma of gaseous atmosphere having specified pressure, decomposing and allowing it to react each other. CONSTITUTION:One or more of electrodes 2, 3 are provided to the inside of a reaction vessel 1 and a high frequency electric power source 4 is connected thereto and low-temp. plasma 5 is generated between the electrodes. The electrode 3 is connected to the reaction vessel 1 and furthermore grounded. A reaction gas 7 consisting of vapor of a metallic compd. [e.g. metallic carbonyl of Fe(CO)5] or a mixed gas of a gas 8 (e.g. O2 and NH3, etc.) reactive therewith is introduced into the inside of the reaction vessel 1 through the nozzles 6. Simultaneously it is exhausted by a vacuum pump 9 to maintain the pressure of the inside of the reaction vessel 1 in 10<-4>-50Torr. Thereby the reaction gas 7 is decomposed by plasma or allowed to react with the reactive gas 8 and associated and a metallic fine grain or a ceramic fine grain is accumulated to the grounded electrode.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は金属またはセラミ、クス微粒子の製造法に関す
る。更に詳しくは低量プラズマ利用による金属またはセ
ラミックス微粒子の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for producing metal, ceramic, or cus fine particles. More specifically, the present invention relates to a method for producing metal or ceramic particles using low-volume plasma.

従来技術 従来のプラズマを用いる金属またはセラミ。Conventional technology Metal or ceramic using conventional plasma.

クス微粒子の製造法としては、 (1)窒素雰囲気中で金属を加熱し蒸発させ、いったん
金属微粒子を発生させ、その金属微粒子を数Torrの
窒素の低量プラズマ雰囲気に導入し、金属微粒子を窒化
し、金属窒化物微粒子を製造する方法。
The manufacturing method of the gas particles is as follows: (1) Metal is heated and evaporated in a nitrogen atmosphere to generate metal particles, and then the metal particles are introduced into a low nitrogen plasma atmosphere of several Torr to nitride the metal particles. and a method for producing metal nitride fine particles.

(2)  数100Torrの気体によって数1000
℃以上の高温プラズマを発生させ、これによって金属を
蒸発、反応させる方法。
(2) Several 1000 Torr of gas
A method that generates high-temperature plasma at temperatures above ℃ and causes metals to evaporate and react.

が知られている。It has been known.

しかしながら、(1)の方法は蒸発熱源からの輻射熱に
より生成粒子が融合するため、粒径を制御し難く、粒径
分布が広くなると共に、装置が複雑であり、かつ原料の
連続供給ができないため、生産性が悪い欠点がある。ま
た(2)の方法は、高温プラズマの熱により、生成粒子
が融合するため、粒径を制御し難く、粒径分布が広くな
る欠点がある。更にまた、(1)、(2)のいずれの方
法も大きな電力を必要とする欠点を有している。
However, in method (1), the generated particles are fused by radiant heat from the evaporation heat source, making it difficult to control the particle size, resulting in a wide particle size distribution, the equipment being complex, and the continuous supply of raw materials being impossible. , it has the disadvantage of poor productivity. Furthermore, method (2) has the drawback that the generated particles are fused by the heat of the high-temperature plasma, making it difficult to control the particle size and resulting in a wide particle size distribution. Furthermore, both methods (1) and (2) have the disadvantage of requiring large amounts of power.

発明の目的 本発明は従来法における欠点を解消すべくなされたもの
で、その目的は大きな電力を必要とせず、微粒子の発生
に熱源を用いず、粒径の揃った微粒子を連続的に製造す
ることができる低量プラズマ利用による金属またはセラ
ミックスの製造法を提供するにある。
Purpose of the Invention The present invention has been made to overcome the drawbacks of conventional methods, and its purpose is to continuously produce fine particles of uniform particle size without requiring a large amount of electric power and without using a heat source to generate fine particles. An object of the present invention is to provide a method for manufacturing metals or ceramics using low-volume plasma.

発明の構成 本発明者は前記目的を達成すべく研究の結果、特定圧の
気体プラズマ中に、気化し得る金属化合物の蒸気を導入
すると、金属微粒子が容易に得られ、オたプラズマ雰囲
気中に反応性気体を含ませることによ抄セラミックス微
粒子が得られることを究明し得た。この知見に基いて本
発明を完成した。
Structure of the Invention As a result of research to achieve the above object, the present inventor found that when vapor of a metal compound that can be vaporized is introduced into a gas plasma at a specific pressure, fine metal particles can be easily obtained. It was found that fine ceramic particles could be obtained by incorporating a reactive gas. The present invention was completed based on this knowledge.

本発明の要旨は、10−’〜50 ’ro r rの低
圧雰囲気ガスの低量プラズマ中に、気化し得る金属化合
物の蒸気または該蒸気と他の反応性気体を導入1−1該
金萬化合物の蒸気をプラズマ分解させることを特つとす
る金属またはセラミックス微粒子の製造法にちる。
The gist of the present invention is to introduce the vapor of a vaporizable metal compound or the vapor and other reactive gas into a low-volume plasma of a low-pressure atmospheric gas of 10-' to 50'-50' ro r r. This refers to a method for producing metal or ceramic fine particles, which is characterized by subjecting compound vapor to plasma decomposition.

本発明の方法におけるプラズマを発生させるための雰囲
気ガスの圧力は、io−’〜50T’orrの範囲であ
ることが必要であるっ 10−4+llo r rより
圧力が低くなると、プラズマが発生し難< 、50’I
’orrより圧力が高くなると、プラズマの温度が高く
なり、生成粒子が融合して微粒子の制御が困難となや粒
径分布が広くなる。
The pressure of the atmospheric gas for generating plasma in the method of the present invention needs to be in the range of io-' to 50 T'orr.If the pressure is lower than 10-4+llo r, it is difficult to generate plasma. < , 50'I
When the pressure is higher than 'orr, the temperature of the plasma becomes high and the generated particles fuse, making it difficult to control the fine particles and widening the particle size distribution.

本発明の方法における気化し得る金属化合物としては、
例えばPc(Go)、、にo2(Co)、 、N1(0
0)、、阿0 V(C!0)、、 C!r(00)、、 Mn2(CO
)6、m(Co)、 、 W(C!0’)、 。
The metal compound that can be vaporized in the method of the present invention includes:
For example, Pc(Go), , o2(Co), , N1(0
0),,A0 V(C!0),,C! r(00),, Mn2(CO
)6, m(Co), , W(C!0'), .

FLe(CO)6等の金属力ルホニル、5it(4、A
、N3、PH8等の金属水素化物、GaC11、In(
j13、BBr3、AlCl、、F e CI z、F
eC!l、等の金属ハロゲン化物、Al(CH3)3、
I n (CH3)、、5n(CI−I、)、、 Zn
(CH3)2、Zn(02H,)、等の有機金属化合物
が挙げられる。
Metal sulfonyl such as FLe(CO)6, 5it(4, A
, N3, metal hydrides such as PH8, GaC11, In(
j13,BBr3,AlCl,,F e CI z,F
eC! metal halides such as Al(CH3)3,
I n (CH3), 5n (CI-I,), Zn
Examples include organometallic compounds such as (CH3)2, Zn(02H,), and the like.

しかし気化し得る金属化合物であれば何であってもよい
。なかでも、金属カルボニルが操業上の点で好ましい。
However, any metal compound that can be vaporized may be used. Among these, metal carbonyl is preferred from the operational point of view.

雰囲気ガスはプラズマが発生するガス、例えばN2、N
2、NH3,02、ArXCo、 002、H,01H
e。
The atmospheric gas is a gas that generates plasma, such as N2, N
2, NH3,02, ArXCo, 002, H, 01H
e.

Neが洋ビられ、このガスが発生金属原子と反応するガ
スであれば、例えば02であると金属酸化物、NT、T
3であると、金属窒化物が得られる。
If Ne is oxidized and this gas is a gas that reacts with generated metal atoms, for example, if it is 02, metal oxides, NT, T
3, a metal nitride is obtained.

次に本発明の方法の実施態様を第1図に基いて説明する
。反応容器1の内部に一対以上の対向した電極2.3を
設け、この電極に高周波電源4を接続し1、両電極間に
低量プラズマ5を発生させるようにする。なお、電極の
一方3を反応容器1に接続し7、更に接地し、両者を零
電位とし、接地側の電極3は例えば水により冷却するう
接地されていない電極2にはノズル6を設け、これを通
じて反応容器1の内部に雰囲気ガスとともに気化し得る
金属化合物(以下反応ガスと言う)7例えばFe(C!
O)5と必要に応じ反応性気体8を導入する。
Next, an embodiment of the method of the present invention will be explained based on FIG. One or more pairs of opposing electrodes 2.3 are provided inside the reaction vessel 1, and a high frequency power source 4 is connected to these electrodes 1 to generate a low amount of plasma 5 between the two electrodes. In addition, one of the electrodes 3 is connected to the reaction vessel 1 7 and further grounded, so that both are at zero potential, the electrode 3 on the ground side is cooled with water, for example, and the electrode 2 that is not grounded is provided with a nozzle 6. Through this, a metal compound (hereinafter referred to as reaction gas) 7 that can be vaporized together with the atmospheric gas inside the reaction vessel 1, such as Fe (C!
O) 5 and, if necessary, a reactive gas 8 are introduced.

なお、反応容器1内に低量プラズマを発生させることが
できれば、電極の代りに誘導コイルを用いてもよく、ま
た、高周波を導入する代りに例えばマイクロ波やレーザ
ー光であってもよい。
Note that as long as a small amount of plasma can be generated in the reaction vessel 1, an induction coil may be used instead of the electrode, and instead of introducing high frequency waves, for example, microwaves or laser light may be used.

また、ガス導入口はガスが直接プラズマに触れさえすれ
ばどこに設けてもよい。
Further, the gas inlet may be provided anywhere as long as the gas directly contacts the plasma.

反応ガスFe(00)、 7またはこれと反応性気体8
を反応容器l内に導入すると同時に、真空ポンプ9によ
り排気し、反応容器1内を10”〜50TOrr K維
持する。
Reactive gas Fe(00), 7 or this and reactive gas 8
is introduced into the reaction vessel 1, and at the same time, it is evacuated by the vacuum pump 9 to maintain the inside of the reaction vessel 1 at 10'' to 50 TOrr K.

導入したF e ((:30 )sはプラズマにより分
解し、Fe原子を発生し、また、反応性気体8と反応し
、つづいて会合して鉄微粒子あるいはセラミックスの微
粒子が接地電極上に堆積するっこの場合、冷却管10を
接地電極に設けると、そこに微粒子を堆壇させるのに効
果的である、もちろん接地電極以外の個所を冷却し、そ
こに微粒子を堆積させることも可能である。。
The introduced Fe((:30)s is decomposed by the plasma, generates Fe atoms, reacts with the reactive gas 8, and then assembles to deposit iron particles or ceramic particles on the ground electrode. In this case, providing the cooling pipe 10 at the ground electrode is effective for depositing fine particles there.Of course, it is also possible to cool parts other than the ground electrode and deposit fine particles there. .

実施例1゜ 第1図に示す装管を使用し、電極として、上下に対向し
た1対の直径100■の円板を用い、電極間距離を70
m+とじた5 下部電極は反応容器に接続させ、同時に接地した。また
、下部電極には銅製のじゃ管を設け、電極面を微粒子が
補集されるように、水で冷却した、 上部電極には多数の小穴を開け、そこを通じて反応ガス
及び反応性気体を反応容器中に導入するようにした。反
応ガスとしてFe(00)、蒸気を使用し、H,40r
c/分、N26occ/分を反応容器内に導入した。一
方で反応容器を真空ポンプで排気し、内圧をlmHgの
低圧に保持した。上下電極間に1156MHz周波数の
高周波電圧を印加し、プラズマを発生させた。プラズマ
に有効に吸収された電力は約toowであった。これに
よって、下電極表面、また一部は反応容器内壁面上にF
e微粒子が堆積した。その平均粒径は約10OAであっ
た。
Example 1 The tube shown in Fig. 1 was used, a pair of vertically opposed discs with a diameter of 100 cm was used as the electrodes, and the distance between the electrodes was set at 70 mm.
The lower electrode of m+ was connected to the reaction vessel and grounded at the same time. In addition, a copper tube was installed on the lower electrode, and the electrode surface was cooled with water so that fine particles could be collected.Many small holes were made on the upper electrode, through which the reactive gas and reactive gas were allowed to react. It was introduced into the container. Using Fe(00) and steam as the reaction gas, H, 40r
c/min, N26 occ/min was introduced into the reaction vessel. On the other hand, the reaction vessel was evacuated using a vacuum pump, and the internal pressure was maintained at a low pressure of 1 mHg. A high frequency voltage of 1156 MHz frequency was applied between the upper and lower electrodes to generate plasma. The power effectively absorbed by the plasma was about too. As a result, the F
e Fine particles were deposited. Its average particle size was about 10OA.

実施例2 実施例1におけるN2ガスの代りに0□ガスを6oc、
c、7分で供給しIo]様にして酸化鉄微粒子が得らル
だ。微粒子の平均粒径は約10OAであった。
Example 2 Instead of N2 gas in Example 1, 0□ gas was used at 6 oc.
c, iron oxide fine particles were obtained in 7 minutes. The average particle size of the fine particles was about 10OA.

実施例3゜ 実施例2における02ガスに代えNH3ガスを60CC
Z分を供給し、同様にして望化鉄(Fe、N)(x=約
4)の微粒子が得られた。その平均粒径は約20OAで
あった。
Example 3゜60CC of NH3 gas instead of 02 gas in Example 2
Fine particles of iron (Fe, N) (x=about 4) were obtained in the same manner by supplying Z component. Its average particle size was about 20OA.

実施例4゜ 反応ガスとしてE” e (CO)s及びN i (C
O)sを用い、これらの蒸気を1=1の割合で反応容器
内に導入した。他は実施例1と同様にして約80係Nl
−Fe合金の微粒子が坐られた。その千力粒径は約10
OAであった。
Example 4 E” e (CO)s and N i (C
These vapors were introduced into the reaction vessel in a ratio of 1=1 using O)s. The rest was the same as in Example 1, about 80 parts Nl.
-Fe alloy fine particles were placed. Its thousand force particle size is about 10
It was OA.

発明の効果 本発明の方法によると、用いるプラズマは室温附近の低
量であるため、生成粒子の融合が起らず、そのため粒径
の揃っだ微粒子が得られ、また反応容器内の圧力を調節
することてよって粒径の制御も可能である。
Effects of the Invention According to the method of the present invention, since the amount of plasma used is low and near room temperature, fusion of the generated particles does not occur, so fine particles of uniform particle size can be obtained, and the pressure inside the reaction vessel can be adjusted. By doing so, it is also possible to control the particle size.

更に原料は連続的に供給し得られるため、多量生栄が可
能で少電力使用で生産性も高いので安価となる。しかも
金属のほか、合金、セラミックスも同一反応装置で容易
に製造可能である等の優れた効果を奏し得られる。
Furthermore, since the raw materials can be continuously supplied, large quantities can be produced, low power consumption is required, and productivity is high, resulting in low cost. Furthermore, in addition to metals, alloys and ceramics can also be easily manufactured using the same reaction apparatus, and other excellent effects can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法の実施態様の概要図であろう 1−反応容器  2:上部電極 3;下部電体4、高周
波電源 5;プラズマ 6ニノズル7:反応ガス   
8:反応性気体及び雰囲気ガス9°九空ポンプ [0:
冷却管 特許出願人 科学技術庁金属材料技術研究所長中  川
  龍  − 一一う     1 第T1又
FIG. 1 is a schematic diagram of an embodiment of the method of the present invention 1-Reaction vessel 2: Upper electrode 3; Lower electric body 4, high frequency power source 5; Plasma 6 Nozzle 7: Reactant gas
8: Reactive gas and atmospheric gas 9° nine air pump [0:
Cooling tube patent applicant Ryu Kawa, Director, Metal Materials Technology Research Institute, Science and Technology Agency - 1st T1

Claims (1)

【特許請求の範囲】 1)10^−^4〜50Torrの低圧雰囲気ガスの低
量プラズマ中に、気化し得る金属化合物の蒸気または該
蒸気と他の反応性気体を導入し、該金属化合物の蒸気を
プラズマ分解あるいは反応させることにより微粒子を発
生させることを特徴とする金属またはセラミックス微粒
子の製造法。 2)気化し得る金属化合物が金属カルボニルである特許
請求の範囲第1項記載の金属またはセラミックス微粒子
の製造法。 3)反応性気体がNH_3である特許請求の範囲第1項
記載のセラミックス微粒子の製造法。
[Claims] 1) Introducing the vapor of a evaporable metal compound or the vapor and other reactive gas into a low-volume plasma of a low-pressure gas atmosphere of 10^-^4 to 50 Torr, A method for producing metal or ceramic fine particles, which is characterized by generating fine particles by plasma decomposition or reaction of steam. 2) The method for producing metal or ceramic fine particles according to claim 1, wherein the vaporizable metal compound is a metal carbonyl. 3) The method for producing ceramic fine particles according to claim 1, wherein the reactive gas is NH_3.
JP24052685A 1985-10-29 1985-10-29 Production of metallic or ceramic fine grain Granted JPS62102827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24052685A JPS62102827A (en) 1985-10-29 1985-10-29 Production of metallic or ceramic fine grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24052685A JPS62102827A (en) 1985-10-29 1985-10-29 Production of metallic or ceramic fine grain

Publications (2)

Publication Number Publication Date
JPS62102827A true JPS62102827A (en) 1987-05-13
JPH0424284B2 JPH0424284B2 (en) 1992-04-24

Family

ID=17060836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24052685A Granted JPS62102827A (en) 1985-10-29 1985-10-29 Production of metallic or ceramic fine grain

Country Status (1)

Country Link
JP (1) JPS62102827A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164443A (en) * 1988-12-20 1990-06-25 Natl Res Inst For Metals Plasma vapor phase reaction appartus
KR20010111152A (en) * 2000-06-08 2001-12-17 채재우 an apparatus for making highly pure and fine grains
JP2005104830A (en) * 2003-09-11 2005-04-21 E I Du Pont De Nemours & Co Plasma synthesis of metal oxide nanoparticle
JP2005132716A (en) * 2003-09-11 2005-05-26 E I Du Pont De Nemours & Co Plasma synthesis of metal oxide nanoparticle
JP2007533861A (en) * 2004-04-19 2007-11-22 エスディーシー マテリアルズ リミテッド ライアビリティ カンパニー High-throughput material discovery method by vapor phase synthesis
JP2008222488A (en) * 2007-03-12 2008-09-25 National Institute For Materials Science Method for manufacturing cubic boron nitride
JP2009024246A (en) * 2007-07-23 2009-02-05 Toyota Motor Corp Method for producing metal nanoparticle
JP2009538981A (en) * 2006-06-01 2009-11-12 シーヴィアールディ インコ リミテッド Method for producing metal nanopowder by decomposing metal carbonyl
JP2010510950A (en) * 2006-12-01 2010-04-08 ユミコア ソシエテ アノニム Method for producing nano-sized powder
JP2011051814A (en) * 2009-08-31 2011-03-17 Teijin Ltd Iron nitride fine particle and colloidal solution containing the same
JP2011098849A (en) * 2009-11-04 2011-05-19 Furukawa Electric Co Ltd:The Oxide nanoparticle, oxide nanoparticle dispersed colloidal liquid and method for producing those
US8859035B1 (en) 2009-12-15 2014-10-14 SDCmaterials, Inc. Powder treatment for enhanced flowability
US8865611B2 (en) 2009-12-15 2014-10-21 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8893651B1 (en) 2007-05-11 2014-11-25 SDCmaterials, Inc. Plasma-arc vaporization chamber with wide bore
US8969237B2 (en) 2011-08-19 2015-03-03 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
WO2017175550A1 (en) * 2016-04-08 2017-10-12 富士フイルム株式会社 Composition, method for producing composition, cured film, color filter, light-blocking film, solid-state imaging element, and image display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60826A (en) * 1983-06-18 1985-01-05 Canon Inc Method and apparatus for manufacturing ultrafine particle
JPS6013960U (en) * 1983-07-07 1985-01-30 富士通株式会社 plasma processing equipment
JPS61288071A (en) * 1985-06-17 1986-12-18 Hitachi Ltd Production of ferromagnetic material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3941252A (en) * 1975-01-23 1976-03-02 Koehring Company Crane with removable superstructure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60826A (en) * 1983-06-18 1985-01-05 Canon Inc Method and apparatus for manufacturing ultrafine particle
JPS6013960U (en) * 1983-07-07 1985-01-30 富士通株式会社 plasma processing equipment
JPS61288071A (en) * 1985-06-17 1986-12-18 Hitachi Ltd Production of ferromagnetic material

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164443A (en) * 1988-12-20 1990-06-25 Natl Res Inst For Metals Plasma vapor phase reaction appartus
KR20010111152A (en) * 2000-06-08 2001-12-17 채재우 an apparatus for making highly pure and fine grains
JP2005104830A (en) * 2003-09-11 2005-04-21 E I Du Pont De Nemours & Co Plasma synthesis of metal oxide nanoparticle
JP2005132716A (en) * 2003-09-11 2005-05-26 E I Du Pont De Nemours & Co Plasma synthesis of metal oxide nanoparticle
JP2007533861A (en) * 2004-04-19 2007-11-22 エスディーシー マテリアルズ リミテッド ライアビリティ カンパニー High-throughput material discovery method by vapor phase synthesis
US9180423B2 (en) 2005-04-19 2015-11-10 SDCmaterials, Inc. Highly turbulent quench chamber
US9132404B2 (en) 2005-04-19 2015-09-15 SDCmaterials, Inc. Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction
US9216398B2 (en) 2005-04-19 2015-12-22 SDCmaterials, Inc. Method and apparatus for making uniform and ultrasmall nanoparticles
US9023754B2 (en) 2005-04-19 2015-05-05 SDCmaterials, Inc. Nano-skeletal catalyst
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
JP2009538981A (en) * 2006-06-01 2009-11-12 シーヴィアールディ インコ リミテッド Method for producing metal nanopowder by decomposing metal carbonyl
JP2010510950A (en) * 2006-12-01 2010-04-08 ユミコア ソシエテ アノニム Method for producing nano-sized powder
JP2008222488A (en) * 2007-03-12 2008-09-25 National Institute For Materials Science Method for manufacturing cubic boron nitride
US8906316B2 (en) 2007-05-11 2014-12-09 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US8893651B1 (en) 2007-05-11 2014-11-25 SDCmaterials, Inc. Plasma-arc vaporization chamber with wide bore
JP2009024246A (en) * 2007-07-23 2009-02-05 Toyota Motor Corp Method for producing metal nanoparticle
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9302260B2 (en) 2007-10-15 2016-04-05 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9186663B2 (en) 2007-10-15 2015-11-17 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
JP2011051814A (en) * 2009-08-31 2011-03-17 Teijin Ltd Iron nitride fine particle and colloidal solution containing the same
JP2011098849A (en) * 2009-11-04 2011-05-19 Furukawa Electric Co Ltd:The Oxide nanoparticle, oxide nanoparticle dispersed colloidal liquid and method for producing those
US8865611B2 (en) 2009-12-15 2014-10-21 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US8932514B1 (en) 2009-12-15 2015-01-13 SDCmaterials, Inc. Fracture toughness of glass
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8992820B1 (en) 2009-12-15 2015-03-31 SDCmaterials, Inc. Fracture toughness of ceramics
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8859035B1 (en) 2009-12-15 2014-10-14 SDCmaterials, Inc. Powder treatment for enhanced flowability
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US8906498B1 (en) 2009-12-15 2014-12-09 SDCmaterials, Inc. Sandwich of impact resistant material
US8877357B1 (en) 2009-12-15 2014-11-04 SDCmaterials, Inc. Impact resistant material
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US8969237B2 (en) 2011-08-19 2015-03-03 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10086356B2 (en) 2014-03-21 2018-10-02 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10413880B2 (en) 2014-03-21 2019-09-17 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
WO2017175550A1 (en) * 2016-04-08 2017-10-12 富士フイルム株式会社 Composition, method for producing composition, cured film, color filter, light-blocking film, solid-state imaging element, and image display device
JPWO2017175550A1 (en) * 2016-04-08 2019-03-14 富士フイルム株式会社 Composition, method for producing composition, cured film, color filter, light-shielding film, solid-state imaging device, and image display device

Also Published As

Publication number Publication date
JPH0424284B2 (en) 1992-04-24

Similar Documents

Publication Publication Date Title
JPS62102827A (en) Production of metallic or ceramic fine grain
IE50240B1 (en) A method of vapour phase growth and apparatus therefor
JPWO2012060325A1 (en) Plasma annealing method and apparatus
US5413821A (en) Process for depositing Cr-bearing layer
JPH02213474A (en) Manufacture of thin molybdenum sulfide film, manufacture of molybdenum sulfide film and self-lubricating layer, electro-optical layer, and catalytically acting layer
WO2001008795A1 (en) Fine particle manufacturing method using laser beam
JP2794173B2 (en) Method of forming composite carbon coating
US4342734A (en) Method for forming γ-boron
JPS62235466A (en) Vapor deposition material generator
JPS5935092A (en) Vapor-phase synthesis of diamond
JPH0420985B2 (en)
JPS6395200A (en) Production of hard boron nitride film
JPS6211896B2 (en)
JPH01145309A (en) Production of metallic nitride and device therefor
JPH0449518B2 (en)
JPH01201481A (en) Method and apparatus for vapor phase synthesis of high-pressure phase boron nitride
JPH03211268A (en) Low-pressure synthesizing method of cubic boron nitride
JP2617539B2 (en) Equipment for producing cubic boron nitride film
JPH01104763A (en) Production of thin metal compound film
JPH01275412A (en) Production of aluminum nitride fine powder
JPH01201098A (en) Synthesis of diamond
JPS63475A (en) Hybrid ion plating device
JPH04116155A (en) Formation of thin film
Yushkov et al. Electron-Beam Deposition of Magneto-Dielectric Coatings in Medium Vacuum
RU1545860C (en) Method of obtaining electric-insulation coating

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term