JP2006260385A - Pressure governor and processing method - Google Patents

Pressure governor and processing method Download PDF

Info

Publication number
JP2006260385A
JP2006260385A JP2005079391A JP2005079391A JP2006260385A JP 2006260385 A JP2006260385 A JP 2006260385A JP 2005079391 A JP2005079391 A JP 2005079391A JP 2005079391 A JP2005079391 A JP 2005079391A JP 2006260385 A JP2006260385 A JP 2006260385A
Authority
JP
Japan
Prior art keywords
pressure
diaphragm
chamber
processing method
pressure regulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005079391A
Other languages
Japanese (ja)
Inventor
Shuichi Inoue
修一 井上
Hideki Yamaguchi
秀樹 山口
Hiroyuki Nishimura
寛之 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2005079391A priority Critical patent/JP2006260385A/en
Publication of JP2006260385A publication Critical patent/JP2006260385A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/04Control of fluid pressure without auxiliary power
    • G05D16/06Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule
    • G05D16/063Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule the sensing element being a membrane
    • G05D16/0644Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule the sensing element being a membrane the membrane acting directly on the obturator
    • G05D16/0672Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule the sensing element being a membrane the membrane acting directly on the obturator using several spring-loaded membranes

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Fluid Pressure (AREA)
  • Fluid-Driven Valves (AREA)
  • Diaphragms And Bellows (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pressure governor and its processing method for suppressing degradation of air tightness and pressure governance, and securing good performance even for long term use. <P>SOLUTION: Regarding the pressure governor 100, a diaphragm 50 is made of rubber with smaller compressive permanent distortion than that of a pressure receiver 51 dividing a tucking section 52 compressed and tucked at a flange connecting section 3a into a pressure equalizing chamber and a secondary pressure chamber. Further, the processing method of the pressure governor 100 executes a holding process for heating the assembled pressure governor to the preset temperature and holding for a certain period of time. Further again, the processing method of the pressure governor 100 comprising a biasing mechanism made of a spring member 40 for biasing to increase the opening of a valve mechanism 30 executes the holding process for holding the assembled pressure governor 100 for a certain period of time, and executes an adjusting process for adjusting the biasing strength of the spring member 40 after executing the holding process. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、内部に均圧室が形成される上部ケーシングと内部に二次側圧力室が形成される下部ケーシングとをフランジ接続してなる本体ケーシングと、前記均圧室と前記二次側圧力室とを区画する受圧部と前記上部ケーシングと前記下部ケーシングとのフランジ接続部に圧縮状態で挟持される挟持部とからなるダイヤフラムと、一次側流路から前記二次側圧力室に連通する二次側流路へのガスの流量を調整可能且つ前記ダイヤフラムの受圧部が前記二次側圧力室側から前記均圧室側に向けて変位するほど開度が減少するバルブ機構と、前記バルブ機構の開度を増加させる方向に付勢する付勢機構とを備えた整圧器、及び、その整圧器の使用前に実行される処理方法に関する。   The present invention includes a main body casing formed by flange connection of an upper casing in which a pressure equalizing chamber is formed and a lower casing in which a secondary pressure chamber is formed, and the pressure equalizing chamber and the secondary pressure. A diaphragm comprising a pressure receiving part that divides the chamber and a flange connecting part between the upper casing and the lower casing in a compressed state; and a second side communicating from the primary channel to the secondary pressure chamber. A valve mechanism capable of adjusting a gas flow rate to a secondary side flow path and having an opening degree that decreases as the pressure receiving portion of the diaphragm is displaced from the secondary pressure chamber side toward the pressure equalizing chamber side; and the valve mechanism The present invention relates to a pressure regulator that includes a biasing mechanism that biases in the direction of increasing the degree of opening, and a processing method that is performed before use of the pressure regulator.

上記のような整圧器は、ダイヤフラムの受圧部が二次側流路に連通する二次側圧力室の圧力を感知して変位し、その変位に伴ってバルブ機構の開度を調整することで、二次側流路の圧力を設定圧力に安定させるように構成されている(例えば、特許文献1及び2を参照。)。   In the pressure regulator as described above, the pressure receiving part of the diaphragm detects and displaces the pressure in the secondary side pressure chamber communicating with the secondary side flow path, and adjusts the opening degree of the valve mechanism in accordance with the displacement. The secondary side flow path is stabilized at the set pressure (see, for example, Patent Documents 1 and 2).

従来の整圧器に設けられるダイヤフラムとしては、一般的に、基布を覆う形態で合成ゴム材料(例えばニトリルゴム(NBR))を一体成形したものが利用されている(例えば、特許文献3を参照。)。
そして、上記ダイヤフラムの外周縁部に形成される挟持部が上部ケーシングのフランジ面と下部ケーシングのフランジ面とにより圧縮状態で挟持されることにより、本体ケーシング内の気密性能を得ることができ、更に、ダイヤフラムの中央部の受圧部により本体ケーシング内が均圧室と二次側圧力室とに区画される。
As a diaphragm provided in a conventional pressure regulator, generally, a synthetic rubber material (for example, nitrile rubber (NBR)) integrally molded in a form covering a base fabric is used (see, for example, Patent Document 3). .)
And the clamping part formed in the outer peripheral edge part of the diaphragm is clamped between the flange surface of the upper casing and the flange surface of the lower casing, so that the airtight performance in the main body casing can be obtained. The main body casing is partitioned into a pressure equalizing chamber and a secondary pressure chamber by the pressure receiving portion at the center of the diaphragm.

また、上記バルブ機構の開度を増加させる方向に付勢する付勢機構については、一般的にコイルばね等のばね部材が利用されている。
そして、このような整圧器では、二次側流路の圧力が変動した場合に、ダイヤフラムの受圧部が均圧室側と二次側流路側との間で変位して、その変位に伴ってバルブ機構の開度及びガスの流量が調整されて、二次側流路の圧力を安定させる整圧性能を得ることができる。
Further, a spring member such as a coil spring is generally used for the biasing mechanism that biases the valve mechanism in the direction of increasing the opening degree.
In such a pressure regulator, when the pressure in the secondary flow path fluctuates, the pressure receiving portion of the diaphragm is displaced between the pressure equalization chamber side and the secondary flow path side, and along with the displacement The opening degree of the valve mechanism and the gas flow rate are adjusted, and pressure regulation performance that stabilizes the pressure in the secondary side flow path can be obtained.

特開2003−288124号公報JP 2003-288124 A 特開20001208954号公報JP 20001208954 A 実開平5−66368号公報Japanese Utility Model Publication No. 5-66368

上記のような従来の整圧器では、特に長期にわたる使用により、その性能が低下し、補修又は交換を要する場合があった。
このような整圧器の性能低下としては、気密性能の低下、即ち上部ケーシングと下部ケーシングとのフランジ接続部におけるシール性の低下や、整圧性能の低下、即ち二次側流路の圧力の設定圧力に対する変動や低下がある。
In the conventional pressure regulator as described above, the performance of the conventional pressure regulator deteriorates due to use over a long period of time, and repair or replacement may be required.
As such a pressure regulator performance degradation, the airtight performance declines, that is, the sealing performance declines at the flange connection between the upper casing and the lower casing, and the pressure regulation performance declines, that is, the pressure of the secondary side flow path is set. There are fluctuations and drops to the pressure.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、長期にわたって使用しても、上記のような気密性能の低下や整圧性能の低下を抑制して、良好な性能を確保することができる整圧器及びその処理方法を提供する点にある。   The present invention has been made in view of the above problems, and its purpose is to suppress the above-described deterioration in airtight performance and pressure regulation performance even when used over a long period of time, and to achieve good performance. It is in providing the pressure regulator which can be ensured, and its processing method.

上記目的を達成するための本発明に係る整圧器は、内部に均圧室が形成される上部ケーシングと内部に二次側圧力室が形成される下部ケーシングとをフランジ接続してなる本体ケーシングと、前記均圧室と前記二次側圧力室とを区画する受圧部と前記上部ケーシングと前記下部ケーシングとのフランジ接続部に圧縮状態で挟持される挟持部とからなるダイヤフラムと、一次側流路から前記二次側圧力室に連通する二次側流路へのガスの流量を調整可能且つ前記ダイヤフラムの受圧部が前記二次側圧力室側から前記均圧室側に向けて変位するほど開度が減少するバルブ機構と、前記バルブ機構の開度を増加させる方向に付勢する付勢機構とを備えた整圧器であって、その第1特徴構成は、前記ダイヤフラムが、前記挟持部を前記受圧部よりも圧縮永久ひずみが小さいゴム材料で形成してなる点にある。
尚、本願において、圧縮永久ひずみとは、日本工業規格JIS K 6262に規定されている試験方法により測定されるものであり、詳しくは、ゴム材料において圧縮変形を起こさせた場合に、その圧縮力を完全に除去した後も残存する変形の上記圧縮変形に対する割合で示される。
To achieve the above object, a pressure regulator according to the present invention includes a main casing formed by flange-connecting an upper casing in which a pressure equalizing chamber is formed and a lower casing in which a secondary pressure chamber is formed. A diaphragm comprising a pressure receiving portion that partitions the pressure equalizing chamber and the secondary pressure chamber, and a sandwiching portion that is sandwiched in a compressed state by a flange connecting portion between the upper casing and the lower casing, and a primary side flow path The flow rate of the gas from the secondary side pressure chamber to the secondary side flow chamber can be adjusted and the pressure receiving part of the diaphragm is opened as the displacement from the secondary pressure chamber side toward the pressure equalizing chamber side is increased. The pressure regulator includes a valve mechanism that decreases in degree and an urging mechanism that urges the valve mechanism in an increasing direction. The first feature of the pressure regulator is that the diaphragm includes the clamping portion. More pressure than the pressure receiving part Lies in permanent set is formed of a small rubber material.
In the present application, the compression set is measured by a test method specified in Japanese Industrial Standard JIS K 6262. Specifically, when compression deformation is caused in a rubber material, the compression force It is shown as a ratio of the deformation remaining after the complete removal of the above-mentioned compression deformation.

上記整圧器の第1特徴構成によれば、ダイヤフラムの挟持部を、受圧部を形成する材料とは異なり、受圧部よりも圧縮永久ひずみが小さいゴム材料で形成することで、上部ケーシングと下部ケーシングとのフランジ接続部において、圧縮状態で挟持された挟持部の圧縮永久ひずみが抑制され、挟持部の復元力が良好に確保されるので、長期にわたって使用しても、挟持部の夫々のフランジ面に対する密着性を良好なものとして気密性能の低下を抑制し、良好な性能を確保することができる。   According to the first characteristic configuration of the pressure regulator, an upper casing and a lower casing are formed by forming the sandwiching portion of the diaphragm with a rubber material having a compression set smaller than that of the pressure receiving portion, unlike the material forming the pressure receiving portion. In the flange connection part, the compression set of the clamping part clamped in the compressed state is suppressed, and the restoring force of the clamping part is ensured satisfactorily. As a result, it is possible to suppress the deterioration of the airtight performance and to secure good performance.

本発明に係る整圧器の第2特徴構成は、前記フランジ接続部の前記ダイヤフラムの挟持部よりも外側に、Oリングによりシールされるシール部を備えた点にある。   A second characteristic configuration of the pressure regulator according to the present invention is that a seal portion sealed by an O-ring is provided on the outer side of the diaphragm connecting portion of the flange connecting portion.

上記整圧器の第2特徴構成によれば、フランジ接続部において、ダイヤフラムの挟持部を圧縮状態で挟持することによるシール性に加えて、上記シール部によるシール性を持たせることができ、一方側のシール性が低下した場合でも他方のシール性が確保されていることにより、長期使用による気密性能の低下を一層抑制することができる。   According to the second characteristic configuration of the pressure regulator, in the flange connection portion, in addition to the sealing performance by clamping the diaphragm clamping portion in a compressed state, the sealing performance by the sealing portion can be provided, Even when the sealing property of the other is deteriorated, the deterioration of the airtight performance due to long-term use can be further suppressed by ensuring the other sealing property.

本発明に係る整圧器の処理方法は、内部に均圧室が形成される上部ケーシングと内部に二次側圧力室が形成される下部ケーシングとをフランジ接続してなる本体ケーシングと、前記均圧室と前記二次側圧力室とを区画する受圧部と前記上部ケーシングと前記下部ケーシングとのフランジ接続部に圧縮状態で挟持される挟持部とからなるダイヤフラムと、一次側流路から前記二次側圧力室に連通する二次側流路へのガスの流量を調整可能且つ前記ダイヤフラムの受圧部が前記二次側圧力室側から前記均圧室側に向けて変位するほど開度が減少するバルブ機構と、前記バルブ機構の開度を増加させる方向に付勢する付勢機構とを備えた整圧器の使用前に実行される処理方法であって、その特徴構成は、前記整圧器が、上述した第1又は第2特徴構成の何れかを備えた整圧器として構成され、前記整圧器を組み立てた状態で設定温度に加熱して一定時間保持する保持工程を実行する点にある。   The pressure regulator processing method according to the present invention includes a main casing formed by flange-connecting an upper casing in which a pressure equalizing chamber is formed and a lower casing in which a secondary pressure chamber is formed, and the pressure equalizing A diaphragm comprising a pressure receiving part that divides the chamber and the secondary pressure chamber, and a clamping part that is clamped in a flange connection part between the upper casing and the lower casing, and the secondary side from the primary channel. The flow rate of the gas to the secondary flow path communicating with the side pressure chamber can be adjusted, and the opening degree decreases as the pressure receiving portion of the diaphragm is displaced from the secondary pressure chamber side toward the pressure equalizing chamber side. A processing method that is performed before use of a pressure regulator that includes a valve mechanism and a biasing mechanism that biases the valve mechanism in a direction that increases the opening thereof. 1st or 2nd characteristic structure mentioned above It is configured as pressure regulators having one of lies in executing the holding step of holding a predetermined time and heating the set temperature in the assembled state of the pressure regulators.

上記整圧器の処理方法の特徴構成によれば、整圧器を組み立てた状態で上記保持工程を実行して、その整圧器を設定温度に加熱して一定時間保持することで、その受圧部よりも圧縮永久ひずみが小さいゴム材料で形成された挟持部の外表面が夫々のフランジ面に圧着された状態で若干塑性変形することにより、塑性変形による復元力の低下が極力抑制された状態で、挟持部の夫々のフランジ面に対する密着性を一層向上させることができる。よって、組み立てた状態の整圧器に対して使用前に上記のような処理方法を実行することにより、その後長期にわたって使用しても、挟持部の夫々のフランジ面に対する密着性を良好なものとして気密性能の低下を抑制して良好な性能を確保することができる整圧器を製造することができる。   According to the characteristic configuration of the pressure regulator processing method, the holding step is performed in a state where the pressure regulator is assembled, and the pressure regulator is heated to a set temperature and held for a certain period of time, so that the pressure receiver is more than the pressure receiving unit. Clamping is performed in a state in which the reduction in restoring force due to plastic deformation is suppressed as much as possible by slightly plastically deforming the outer surface of the clamping part formed of a rubber material with a small compression set while being pressed against each flange surface. It is possible to further improve the adhesion of each part to each flange surface. Therefore, by performing the above-described processing method on the pressure regulator in an assembled state before use, even if it is used for a long time thereafter, the tightness of each clamping portion with respect to each flange surface is improved and airtightness is achieved. The pressure regulator which can suppress the fall of performance and can ensure favorable performance can be manufactured.

尚、上記設定温度は、上記挟持部のフランジ面に対する密着性を向上し得る温度以上に設定され、且つ、整圧器に設けられた各種部品が熱により機能低下する最低温度以下、特に、上記挟持部の塑性変形が促進されすぎてフランジ接続部の気密性能が低下する最低温度以下に設定することが望ましく、例えば、40℃〜100℃程度の範囲内に設定することができる。   The set temperature is set to be higher than the temperature at which the tightness of the clamping part to the flange surface can be improved, and below the minimum temperature at which various components provided in the pressure regulator are degraded by heat. It is desirable to set the temperature below the minimum temperature at which the plastic deformation of the portion is promoted too much and the airtight performance of the flange connection portion decreases, and for example, it can be set within a range of about 40 ° C to 100 ° C.

本発明に係る整圧器の処理方法の別の特徴構成は、前記付勢手段がばね部材からなり、
前記整圧器を組み立てた状態で一定時間保持する保持工程を実行し、
前記保持工程を実行した後に、前記ばね部材の付勢力を調整する調整工程を実行する点にある。
Another characteristic configuration of the processing method of the pressure regulator according to the present invention is that the biasing means includes a spring member,
Performing a holding step of holding the pressure regulator in a assembled state for a certain period of time;
After performing the holding step, the adjustment step of adjusting the biasing force of the spring member is performed.

上記整圧器の処理方法の特徴構成によれば、上記付勢手段がばね部材からなる場合には、整圧器を組み立てた状態で上記保持工程を実行して、その整圧器を一定時間保持することで、そのばね部材に比較的大きな初期へたりを発生させることができるので、その後の使用時にばね部材に発生するへたりを低減させることができる。そして、この保持工程を実行した後に、そのばね部材のバルブ機構に対する付勢力を調整することで、その後長期にわたって使用しても、ばね部材に発生するへたりが低減されることから、その調整した付勢力を良好に維持して、整圧性能の低下を抑制することができる整圧器を製造することができる。   According to the characteristic configuration of the processing method of the pressure regulator, when the biasing means is made of a spring member, the holding step is executed in a state where the pressure regulator is assembled, and the pressure regulator is held for a certain period of time. Thus, since a relatively large initial sag can be generated in the spring member, the sag generated in the spring member during subsequent use can be reduced. And after performing this holding | maintenance process, even if it used over a long period of time by adjusting the urging | biasing force with respect to the valve mechanism of the spring member, since the sag generate | occur | produced in a spring member is reduced, it adjusted. A pressure regulator that can maintain the urging force well and suppress a decrease in pressure regulation performance can be manufactured.

更に、上記特徴構成において、前記保持工程において、前記整圧器を設定温度に加熱することにより、上述したように、挟持部の夫々のフランジ面に対する密着性を一層向上させ、その後長期にわたって使用しても、挟持部の夫々のフランジ面に対する密着性を良好なものとして気密性能の低下を抑制して良好な性能を確保することができる整圧器を製造することができる。   Furthermore, in the above characteristic configuration, in the holding step, by heating the pressure regulator to a set temperature, as described above, the adhesion of the clamping part to each flange surface is further improved, and then used for a long period of time. In addition, it is possible to manufacture a pressure regulator that can ensure good performance by suppressing the deterioration of the airtight performance by making the adhesion of the sandwiching portion to each flange surface favorable.

本発明に係る整圧器及びその処理方法の実施の形態について、図面に基づいて説明する。   An embodiment of a pressure regulator and a processing method thereof according to the present invention will be described with reference to the drawings.

〔整圧器〕
図1に示す整圧器100は、内部に均圧室10が形成される上部ケーシング1と内部に二次側圧力室20が形成される下部ケーシング2とをフランジ接続してなる本体ケーシング3を備える。
また、この本体ケーシング3は、上部ケーシング1の下方側のフランジ面1aと、下部ケーシング2の上方側のフランジ面2aとを重ね合わせた状態でボルト・ナット(図示せず)により螺合される所謂フランジ接続されることで一体化されている。
(Pressure regulator)
A pressure regulator 100 shown in FIG. 1 includes a main casing 3 in which an upper casing 1 in which a pressure equalizing chamber 10 is formed and a lower casing 2 in which a secondary pressure chamber 20 is formed are flange-connected. .
The main body casing 3 is screwed by a bolt and a nut (not shown) in a state where the lower flange surface 1a of the upper casing 1 and the upper flange surface 2a of the lower casing 2 are overlapped. The so-called flange connection is integrated.

更に、上部ケーシング1と下部ケーシング2との間には、均圧室10と二次側圧力室20とを区画する受圧部51と、上部ケーシング1と下部ケーシング2とのフランジ接続部3aに圧縮状態で挟持される挟持部52とからなるダイヤフラム50が設けられている。   Further, between the upper casing 1 and the lower casing 2, compression is performed on a pressure receiving portion 51 that partitions the pressure equalizing chamber 10 and the secondary pressure chamber 20, and a flange connection portion 3 a between the upper casing 1 and the lower casing 2. A diaphragm 50 is provided that includes a clamping portion 52 that is clamped in a state.

このダイヤフラム50は、略円盤状に形成されており、その外周縁部に形成された挟持部52の内側に円形の受圧部51が形成されている。また、この受圧部51の挟持部52に対する境界部には、受圧部51を上下方向に容易に変位させるための可撓部53が形成されている。   The diaphragm 50 is formed in a substantially disk shape, and a circular pressure receiving portion 51 is formed inside a clamping portion 52 formed on the outer peripheral edge portion thereof. Further, a flexible portion 53 for easily displacing the pressure receiving portion 51 in the vertical direction is formed at a boundary portion of the pressure receiving portion 51 with respect to the sandwiching portion 52.

また、ダイヤフラム50の受圧部51は、基布に含浸させた形態のニトリルゴムにより形成されており、一方、フランジ接続部3aに圧縮状態で挟持される挟持部52は、その受圧部51を形成する材料とは異なり受圧部51よりも圧縮永久ひずみが小さいゴム材料、例えば、エピクロルヒドリンゴム、ブチルゴム、スチレンブタジエンゴム(SBR)、クロロプレンゴム、フッ素系ゴム等で形成されている。
よって、フランジ接続部3aにおいて、圧縮状態で挟持された挟持部52の圧縮永久ひずみが抑制されることで、挟持部52の復元力が良好に確保される。よって、長期にわたって使用しても、挟持部52の夫々のフランジ面1a,2aに対する密着性が良好なものに維持され、特に二次側圧力室20の外部に対する気密性能の低下が抑制される。
The pressure receiving portion 51 of the diaphragm 50 is formed of nitrile rubber in a form impregnated in a base fabric, while the clamping portion 52 that is sandwiched in a compressed state by the flange connecting portion 3a forms the pressure receiving portion 51. Unlike the material to be formed, it is formed of a rubber material having a compression set smaller than that of the pressure receiving portion 51, for example, epichlorohydrin rubber, butyl rubber, styrene butadiene rubber (SBR), chloroprene rubber, fluorine rubber or the like.
Therefore, in the flange connection part 3a, the compression set of the clamping part 52 clamped in the compressed state is suppressed, so that the restoring force of the clamping part 52 is ensured satisfactorily. Therefore, even when used over a long period of time, the adhesion of the clamping part 52 to the respective flange surfaces 1a and 2a is kept good, and in particular, a decrease in hermetic performance with respect to the outside of the secondary pressure chamber 20 is suppressed.

尚、このようなダイヤフラム50については、上記受圧部51に対して挟持部52を上記受圧部51とは異なる材料で一体成形することで製造することができる。
また、受圧部51の均圧室10側には、その受圧部51の形状を略平面状に保持するための保持板部材54が貼り付けられている。
Such a diaphragm 50 can be manufactured by integrally forming the clamping portion 52 with a material different from that of the pressure receiving portion 51 with respect to the pressure receiving portion 51.
Further, a holding plate member 54 for holding the shape of the pressure receiving portion 51 in a substantially flat shape is attached to the pressure equalizing chamber 10 side of the pressure receiving portion 51.

更に、このダイヤフラム50の挟持部52は、図2に示すように、ダイヤフラム50の外周縁部を、円形断面を有する環状、即ちOリング状に形成してなる。
そして、この挟持部52が、下部ケーシング2側のフランジ面2aに環状に形成された溝部2cに上下方向において圧縮状態で嵌合されることで、二次側圧力室20の気密性能が一層向上されている。
Further, as shown in FIG. 2, the sandwiching portion 52 of the diaphragm 50 is formed by forming the outer peripheral edge portion of the diaphragm 50 into an annular shape having a circular cross section, that is, an O-ring shape.
And the airtight performance of the secondary side pressure chamber 20 is further improved by this clamping part 52 being fitted in the groove part 2c formed cyclically | annularly in the flange surface 2a by the side of the lower casing 2 in the compression direction in the up-down direction. Has been.

尚、本実施形態では、ダイヤフラム50の外周縁部を構成する円形断面部分のみを挟持部52として受圧部51よりも圧縮永久ひずみが小さいゴム材料により構成しているが、その円形断面部分に加えてその内側のフランジ接続部3aに挟持される平面部分を挟持部52として上記圧縮永久ひずみが小さいゴム材料により構成しても構わない。   In the present embodiment, only the circular cross-sectional portion constituting the outer peripheral edge of the diaphragm 50 is made of the rubber material having a compression set smaller than that of the pressure receiving portion 51 as the sandwiching portion 52. In addition to the circular cross-sectional portion, The flat portion sandwiched between the flange connecting portions 3a on the inner side of the lever may be formed of a rubber material having a small compression set as the sandwiching portion 52.

更に、フランジ面2aの上記溝部2cよりも外側には、ダイヤフラム50の挟持部52とは別のOリング56が上下方向に圧縮状態で嵌合する環状の溝部2bが形成されている。
即ち、フランジ接続部3aは、挟持部52よりも外側において、Oリング56によりシールされるシール部を備えることで、ダイヤフラム50の挟持部52によるシール性に加えて2重のシール性を有することになり、例えば、一方側のシール性が低下した場合でも他方のシール性が確保されていることにより、長期使用による気密性能の低下が一層抑制される。
尚、このOリング56は、上記挟持部52と同様に、圧縮永久ひずみが小さい材料で形成することが望ましい。
Further, an annular groove 2b is formed on the outer side of the groove 2c of the flange surface 2a. The O-ring 56, which is different from the sandwiching portion 52 of the diaphragm 50, is fitted in a compressed state in the vertical direction.
In other words, the flange connecting portion 3a includes a sealing portion that is sealed by the O-ring 56 on the outer side of the sandwiching portion 52, and thus has a double sealing property in addition to the sealing property by the sandwiching portion 52 of the diaphragm 50. For example, even when the sealing performance on one side is lowered, the sealing performance on the other side is ensured, so that the deterioration of the airtight performance due to long-term use is further suppressed.
The O-ring 56 is desirably formed of a material having a small compression set, similar to the sandwiching portion 52.

図1を参照して、上部ケーシング1の内部に形成された均圧室10は、均圧孔11により外部に連通し、その均圧孔11を大気などの圧力が一定に保たれる部分に接続することで、均圧室10の圧力が一定に保たれる。   Referring to FIG. 1, a pressure equalizing chamber 10 formed inside the upper casing 1 communicates with the outside through a pressure equalizing hole 11, and the pressure equalizing hole 11 is formed in a portion where the pressure of air or the like is kept constant. By connecting, the pressure in the pressure equalizing chamber 10 is kept constant.

下部ケーシング2には、ガスGが流入する流入口21とガスGが流出する流出口24とが形成され、更にその内部には、その流入口21から流入したガスGを後述する弁座口33に導く一次側流路22と、その一次側流路22から同弁座口33を通じて流入したガスGを流出口24に導く二次側流路23とが形成されている。
尚、上記弁座口33は、上方側の一次側流路22と下方側の二次側流路23とを仕切る開口部として形成されている。
The lower casing 2 is formed with an inlet 21 through which the gas G flows in and an outlet 24 through which the gas G flows out, and further inside the valve seat 33, which will be described later. And a secondary channel 23 that guides the gas G flowing from the primary channel 22 through the valve seat 33 to the outlet 24.
The valve seat 33 is formed as an opening that partitions the upper primary flow path 22 and the lower secondary flow path 23.

また、下部ケーシング2の内部に形成された二次側圧力室20は、導圧路25を通じて二次側流路23に連通することで、二次側流路23の圧力と同等の圧力とされている。   Further, the secondary pressure chamber 20 formed in the lower casing 2 communicates with the secondary flow path 23 through the pressure guide path 25, so that the pressure is equal to the pressure of the secondary flow path 23. ing.

下部ケーシング2内には、一次側流路22から二次側流路23へのガスGの流量を調整可能なバルブ機構30が設けられており、更にこのバルブ機構30は、ダイヤフラム50の受圧部51が二次側圧力室20側から均圧室10側に向けて変位するほど開度が減少するように構成されている。   A valve mechanism 30 capable of adjusting the flow rate of the gas G from the primary side flow path 22 to the secondary side flow path 23 is provided in the lower casing 2, and the valve mechanism 30 further includes a pressure receiving portion of the diaphragm 50. The opening is reduced as 51 is displaced from the secondary pressure chamber 20 side toward the pressure equalizing chamber 10 side.

即ち、バルブ機構30は、一次側流路22と二次側流路23との間に形成された弁座口33と、その弁座口33の下方で上下方向に変位することでその弁座口33との間の開度を調整可能な弁体31と、ダイヤフラム50における受圧部51の上下方向の変位をその弁体31の上下方向の変位として伝達する軸部32とからなる。
また、上記軸部32の側部には、上記二次側圧力室20と一次側流路22とを仕切るための可撓膜26が設けられている。
That is, the valve mechanism 30 includes a valve seat 33 formed between the primary side flow path 22 and the secondary side flow path 23, and the valve seat 30 is displaced in the vertical direction below the valve seat port 33, thereby It consists of a valve body 31 capable of adjusting the opening between the opening 33 and a shaft portion 32 that transmits the displacement in the vertical direction of the pressure receiving portion 51 in the diaphragm 50 as the displacement in the vertical direction of the valve body 31.
Further, a flexible film 26 for partitioning the secondary side pressure chamber 20 and the primary side flow path 22 is provided on the side portion of the shaft portion 32.

そして、ダイヤフラム50の受圧部51が二次側圧力室20側から均圧室10側に向けて即ち上方に向けて変位することで、弁体31が上方に変位して弁座口33と弁体31との間の開度が減少し、一次側流路22から二次側流路23へのガスの流量が減少され、逆に、同受圧部51が均圧室10側から二次側圧力室20側に向けて即ち下方に向けて変位することで、弁体31が下方に変位して弁座口33と弁体31との間の開度が増加し、一次側流路22から二次側流路23へのガスの流量が増加される。   Then, when the pressure receiving portion 51 of the diaphragm 50 is displaced from the secondary pressure chamber 20 side toward the pressure equalizing chamber 10 side, that is, upward, the valve element 31 is displaced upward, and the valve seat 33 and the valve The opening degree with the body 31 is reduced, the flow rate of the gas from the primary side flow path 22 to the secondary side flow path 23 is reduced, and conversely, the pressure receiving part 51 is changed from the pressure equalization chamber 10 side to the secondary side. By displacing toward the pressure chamber 20 side, that is, downward, the valve body 31 is displaced downward to increase the opening between the valve seat 33 and the valve body 31, and from the primary side flow path 22. The flow rate of the gas to the secondary channel 23 is increased.

上部ケーシング1の内部には、バルブ機構30の開度を増加させる方向に付勢する付勢機構として、ダイヤフラム50の受圧部51を均圧室10側から二次側圧力室20側に向けて付勢する形態で配置されたばね部材40が設けられている。   Inside the upper casing 1, as a biasing mechanism that biases the valve mechanism 30 in an increasing direction, the pressure receiving portion 51 of the diaphragm 50 is directed from the pressure equalizing chamber 10 side to the secondary pressure chamber 20 side. A spring member 40 arranged in a biasing form is provided.

更に、このばね部材40の上端部は、上部ケーシング1に対して上下方向に変位自在に設けられたばね調整部41に当接されており、このばね調整部41が上下方向に調整されることで、ばね部材40のばね長さが変更されてばね部材40の受圧部51に対する付勢力が調整される。   Further, the upper end portion of the spring member 40 is in contact with a spring adjustment portion 41 provided so as to be vertically displaceable with respect to the upper casing 1, and the spring adjustment portion 41 is adjusted in the vertical direction. The spring length of the spring member 40 is changed to adjust the urging force of the spring member 40 against the pressure receiving portion 51.

次に、整圧器100による二次側流路23の圧力を安定させる性能、所謂整圧性能について説明を加える。
バルブ機構30の軸部32にかかる下向きの力の大きさは、受圧部51に対して下向きにかかるばねの付勢力と、可撓膜26に対して下向きにかかる二次側圧力室20の圧力による力との合計となる。一方、同軸部32にかかる上向きの力の大きさは、受圧部51に対して上向きにかかる二次側圧力室20の圧力による力と、可撓膜26に対して上向きにかかる一次側流路22の圧力による力との合計となる。
Next, the performance of stabilizing the pressure of the secondary side flow path 23 by the pressure regulator 100, that is, so-called pressure regulation performance will be described.
The magnitude of the downward force applied to the shaft portion 32 of the valve mechanism 30 includes the biasing force of the spring applied downward to the pressure receiving portion 51 and the pressure of the secondary pressure chamber 20 applied downward to the flexible film 26. It becomes the sum with the power by. On the other hand, the magnitude of the upward force applied to the coaxial portion 32 is such that the force due to the pressure of the secondary pressure chamber 20 applied upward with respect to the pressure receiving portion 51 and the primary flow path applied upward with respect to the flexible membrane 26. This is the sum of the force of 22 pressures.

そして、整圧器100は、二次側流路23の圧力が略設定圧力となるときには、バルブ機構30の軸部32にかかる上向きの力と下向きの力とが略同等となって、軸部32が変位せずに安定して、バルブ機構30の開度及びガスGの流量が安定し、結果、二次側流路23の圧力が設定圧力に安定する。   In the pressure regulator 100, when the pressure of the secondary side flow path 23 becomes substantially the set pressure, the upward force and the downward force applied to the shaft portion 32 of the valve mechanism 30 are substantially equal, and the shaft portion 32. Is stable without being displaced, the opening degree of the valve mechanism 30 and the flow rate of the gas G are stabilized, and as a result, the pressure of the secondary side flow path 23 is stabilized at the set pressure.

また、二次側流路23の圧力が設定圧力よりも大きくなった場合には、バルブ機構30の軸部32にかかる上向きの力が下向きの力に打ち勝って、軸部32が上方に変位し、バルブ機構30の開度及びガスGの流量が減少されて、結果、二次側流路23の圧力が設定圧力となるように低下される。
逆に、二次側流路23の圧力が設定圧力よりも小さくなった場合には、バルブ機構30の軸部32にかかる下向きの力が上向きの力に打ち勝って、軸部32が下方に変位し、バルブ機構30の開度及びガスGの流量が増加されて、結果、二次側流路23の圧力が設定圧力となるように上昇される。
Further, when the pressure in the secondary flow path 23 becomes larger than the set pressure, the upward force applied to the shaft portion 32 of the valve mechanism 30 overcomes the downward force, and the shaft portion 32 is displaced upward. The opening degree of the valve mechanism 30 and the flow rate of the gas G are reduced, and as a result, the pressure in the secondary side flow path 23 is lowered to the set pressure.
On the contrary, when the pressure in the secondary flow path 23 becomes smaller than the set pressure, the downward force applied to the shaft portion 32 of the valve mechanism 30 overcomes the upward force, and the shaft portion 32 is displaced downward. Then, the opening degree of the valve mechanism 30 and the flow rate of the gas G are increased, and as a result, the pressure in the secondary side flow path 23 is increased to the set pressure.

また、この整圧器100には、二次側圧力室20の過剰な圧力上昇を回避するべく、その過剰に上昇した圧力を均圧室10に放出するリリーフ機構が設けられており、その具体的構成について説明を加える。
かかるリリーフ機構は、バルブ機構30の軸部32がダイヤフラム50の中央部に形成された開口部55を貫通する形態で配置され、更に、その軸部32に設けられたリリーフ弁部34が、受圧部51の下面に対して下方側から当接するように構成されている。
更に、上記バルブ機構30の軸部の均圧室10側に上下方向に変位自在に設けられたリリーフばね調整部36が設けられ、このリリーフ弁部34を上記開口部55側に付勢するためのリリーフばね部材35が、このリリーフばね調整部36と受圧部51の上面との間に圧縮状態で介装されている。
In addition, the pressure regulator 100 is provided with a relief mechanism that discharges the excessively increased pressure to the pressure equalizing chamber 10 in order to avoid an excessive pressure increase in the secondary pressure chamber 20. A description of the configuration will be added.
Such a relief mechanism is arranged in such a manner that the shaft portion 32 of the valve mechanism 30 passes through an opening 55 formed in the central portion of the diaphragm 50, and the relief valve portion 34 provided on the shaft portion 32 is further configured to receive pressure. It is comprised so that it may contact | abut with respect to the lower surface of the part 51 from the downward side.
Furthermore, a relief spring adjusting portion 36 is provided on the pressure equalizing chamber 10 side of the shaft portion of the valve mechanism 30 so as to be displaceable in the vertical direction, and this relief valve portion 34 is urged toward the opening 55 side. The relief spring member 35 is interposed between the relief spring adjusting portion 36 and the upper surface of the pressure receiving portion 51 in a compressed state.

よって、二次側流路23の圧力が過剰に上昇すると、二次側圧力室20の過剰な圧力上昇に伴って、先ずバルブ機構30が全閉状態となった後に、二次側圧力室20の圧力が上記リリーフばね部材35の付勢力に押し勝って、リリーフ弁部34に対してダイヤフラム50の受圧部51が更に上昇することで、上記開口部55が開放され、二次側圧力室20の過剰に上昇した圧力が均圧室10側に放出されることになる。
尚、本実施形態では、上記リリーフ機構を設けた例について説明したが、別にこのリリーフ機構を省略しても構わない。
Therefore, if the pressure in the secondary side flow path 23 increases excessively, the secondary pressure chamber 20 is first closed after the valve mechanism 30 is fully closed as the secondary pressure chamber 20 increases excessively. This pressure overcomes the urging force of the relief spring member 35 and the pressure receiving portion 51 of the diaphragm 50 further rises with respect to the relief valve portion 34, thereby opening the opening 55 and opening the secondary pressure chamber 20. The excessively increased pressure is discharged to the pressure equalizing chamber 10 side.
In the present embodiment, the example in which the relief mechanism is provided has been described. However, the relief mechanism may be omitted separately.

〔整圧器の処理方法〕
(第1処理方法)
先ず、上記のように構成された整圧器100に対して使用前に実行される処理方法として、特に長期使用による気密性能の低下を抑制するための第1処理方法について説明する。
[Processing method of pressure regulator]
(First processing method)
First, as a processing method executed before use for the pressure regulator 100 configured as described above, a first processing method for suppressing a decrease in airtight performance due to long-term use will be described.

第1処理方法では、これまで説明してきた整圧器100を組み立てた状態、即ち、ダイヤフラム50の挟持部52が上部ケーシング1と下部ケーシング2とのフランジ接続部3aに圧縮状態で挟持された状態で、設定温度に加熱して一定時間保持する保持工程を実行する。
すると、挟持部52の外表面が夫々のフランジ面1a,2aに圧着された状態で若干塑性変形して良好に密着し、更には、上記挟持部52の圧縮永久ひずみが小さいことから、その復元力の低下が極力抑制されているので、挟持部52の夫々のフランジ面1a,2aに対する密着性が一層向上され、結果、整圧器100のフランジ接続部3aにおける気密性能が向上される。
また、Oリング56についても、上記挟持部52と同様に、圧縮永久ひずみが小さい材料で形成すれば、フランジ接続部3aにおける気密性能が一層向上される。
In the first processing method, the pressure regulator 100 described so far is assembled, that is, in a state where the sandwiching portion 52 of the diaphragm 50 is sandwiched between the flange connecting portion 3a of the upper casing 1 and the lower casing 2 in a compressed state. Then, a holding step of heating to a set temperature and holding for a certain time is executed.
Then, the outer surface of the clamping part 52 is slightly plastically deformed in a state of being crimped to the respective flange surfaces 1a and 2a, and is closely adhered. Further, since the compression permanent strain of the clamping part 52 is small, its restoration is possible. Since the reduction of the force is suppressed as much as possible, the adhesion of the sandwiching portion 52 to the flange surfaces 1a and 2a is further improved, and as a result, the airtight performance of the flange connecting portion 3a of the pressure regulator 100 is improved.
Further, if the O-ring 56 is formed of a material having a small compression set as in the case of the sandwiching portion 52, the airtight performance in the flange connecting portion 3a is further improved.

例えば、図3に示すように、上記保持工程における加熱温度を50℃とした場合には、この保持工程を開始してからの保持時間を150時間程度以上とすることで、その気密性能が極めて向上する。一方、上記保持工程における加熱温度を90℃とした場合には、上記のように50℃とした場合と比較して、保持時間を10時間程度以上と比較的短い保持時間で、その気密性能が極めて向上される。
尚、この保持工程において、整圧器100を加熱せずに室温で保持した場合には、殆ど変化することなく、あえて言うなら、挟持部52の圧縮永久ひずみや劣化等により徐々に低下する。
尚、図3において、整圧性能は、フランジ接続部3aにおいて二次側圧力室20から外部にガスが漏洩することができる二次側圧力室20の上限界圧力として求められている。
For example, as shown in FIG. 3, when the heating temperature in the holding step is 50 ° C., the holding time after starting the holding step is set to about 150 hours or more, so that the airtight performance is extremely high. improves. On the other hand, when the heating temperature in the holding step is 90 ° C., the holding time is about 10 hours or more and the airtight performance is relatively short compared with the case where the heating temperature is 50 ° C. as described above. It is greatly improved.
In this holding step, when the pressure regulator 100 is held at room temperature without being heated, it hardly changes and, in other words, gradually decreases due to compression set or deterioration of the holding portion 52.
In FIG. 3, the pressure regulation performance is obtained as the upper limit pressure of the secondary pressure chamber 20 at which the gas can leak from the secondary pressure chamber 20 to the outside at the flange connection portion 3a.

したがって、組み立てた状態の整圧器100に対して使用前に上記のような処理方法を実行することにより、その後長期にわたって使用しても、挟持部52の夫々のフランジ面1a,2aに対する密着性を良好なものとして気密性能の低下を抑制して良好な性能を確保することができる整圧器が製造される。   Therefore, by performing the above-described processing method on the pressure regulator 100 in an assembled state before use, even if it is used for a long time thereafter, the adhesion of the clamping portion 52 to the respective flange surfaces 1a and 2a is improved. A pressure regulator that can suppress a decrease in hermetic performance and ensure good performance as a good product is manufactured.

尚、この第1処理方法においては、上記整圧器100の付勢機構がばね部材40である必要はなく、例えば、均圧室10の圧力を上昇させたり、ダイヤフラム50の上面に重りを設けるなど、別の付勢機構を設けても構わない。   In the first processing method, the biasing mechanism of the pressure regulator 100 does not need to be the spring member 40. For example, the pressure in the pressure equalizing chamber 10 is increased, or a weight is provided on the upper surface of the diaphragm 50. Alternatively, another urging mechanism may be provided.

(第2処理方法)
次に、上記のように構成された整圧器100に対して使用前に実行される処理方法として、特に長期使用による整圧性能の低下を抑制するための第2処理方法について説明する。
(Second processing method)
Next, as a processing method executed before use for the pressure regulator 100 configured as described above, a second processing method for suppressing a decrease in pressure regulation performance due to long-term use will be described.

第2処理方法では、これまで説明してきた整圧器100を組み立てた状態、即ち、ばね部材40をバルブ機構30の開度を増加させる方向に付勢すべく圧縮状態で本体ケーシング3内に設置した状態で、一定時間保持する保持工程を実行し、更に、この保持工程を実行した後に、ばね部材40の付勢力を調整する調整工程を実行する。   In the second processing method, the pressure regulator 100 described so far is assembled, that is, the spring member 40 is installed in the main casing 3 in a compressed state so as to bias the valve member 30 in the direction of increasing the opening degree of the valve mechanism 30. In this state, a holding process for holding for a certain period of time is executed, and further, after executing this holding process, an adjusting process for adjusting the biasing force of the spring member 40 is executed.

即ち、上記保持工程では、ばね部材40が圧縮状態で保持されることから、そのばね部材40に比較的大きな初期へたりが発生し、その後の使用時にばね部材40に発生するへたりが低減される。
そして、その保持工程の後に、上記調整工程において、ばね調整部41の上下方向の位置を調整して、ばね部材40の受圧部51に対する付勢力を調整することで、その後長期にわたって使用しても、ばね部材40に発生するへたりが低減されていることから、その調整した付勢力が良好に維持され、整圧性能の低下が抑制される。
That is, in the holding step, since the spring member 40 is held in a compressed state, a relatively large initial sag occurs in the spring member 40, and the sag generated in the spring member 40 during subsequent use is reduced. The
Then, after the holding step, in the above adjusting step, the vertical position of the spring adjusting portion 41 is adjusted to adjust the urging force of the spring member 40 against the pressure receiving portion 51, so that it can be used for a long time thereafter. Since the sag generated in the spring member 40 is reduced, the adjusted urging force is maintained well, and a decrease in pressure regulation performance is suppressed.

例えば、ばね部材40はへたりによりその付勢力が低下するのであるが、図4に示すように、そのばね部材40の初期時に対する付勢力の低下量は、保持工程を開始してからの保持時間を20年(約175200時間)とした場合に0.35N程度となるのに対して、保持時間を500時間とした場合では0.18N程度、保持時間を2000時間とした場合では0.25N程度となる。即ち、保持時間を500時間程度、好ましくは2000時間程度とすることで、そのばね部材40の20年間で発生するへたりの約半分程度を発生させることができ、その後の使用において、ばね部材40に発生するへたりが低減される。   For example, the biasing force of the spring member 40 decreases due to the sag, but as shown in FIG. 4, the amount of decrease in the biasing force with respect to the initial time of the spring member 40 is held after the holding step is started. When the time is 20 years (about 175,200 hours), it is about 0.35N, whereas when the holding time is 500 hours, it is about 0.18N, and when the holding time is 2000 hours, it is 0.25N. It will be about. That is, by setting the holding time to about 500 hours, preferably about 2000 hours, about half of the sag generated in the spring member 40 over 20 years can be generated. The amount of sag generated is reduced.

また、この第2処理方法における保持工程で、整圧器を設定温度に加熱すれば、上記ばね部材40のへたりの発生状態はあまり変化しないものの、上述した第1処理方法と同様に、挟持部52の夫々のフランジ面1a,2aに対する密着性を向上させて、気密性能を向上させることができる。   Further, if the pressure regulator is heated to a set temperature in the holding step in the second processing method, the state of occurrence of sag of the spring member 40 does not change so much, but as in the first processing method described above, the clamping portion By improving the adhesion to the flange surfaces 1a and 2a of 52, the airtight performance can be improved.

本発明に係る整圧器及びその処理方法は、長期にわたって使用しても、上記のような気密性能の低下や整圧性能の低下を抑制して、良好な性能を確保することができる整圧器及びその処理方法として有効に利用可能である。   The pressure regulator and the processing method thereof according to the present invention can suppress a decrease in the airtight performance and the pressure regulation performance as described above even when used over a long period of time, and a pressure regulator that can ensure good performance. It can be effectively used as the processing method.

本発明に係る整圧器の概略構成図Schematic configuration diagram of a pressure regulator according to the present invention 整圧器の部分断面図Partial sectional view of pressure regulator 保持時間と気密性能の関係を示すグラフ図Graph showing the relationship between holding time and airtightness performance 保持時間とばね部材の付勢力の変化量との関係を示すグラフ図The graph which shows the relationship between holding time and the variation | change_quantity of the urging | biasing force of a spring member

符号の説明Explanation of symbols

1:上部ケーシング
2:下部ケーシング
3:本体ケーシング
3a:フランジ接続部
10:均圧室
20:二次側圧力室
22:一次側流路
23:二次側流路
30:バルブ機構
40:ばね部材(付勢手段)
50:ダイヤフラム
51:受圧部
52:挟持部
100:整圧器
1: Upper casing 2: Lower casing 3: Main body casing 3a: Flange connection part 10: Pressure equalizing chamber 20: Secondary side pressure chamber 22: Primary side channel 23: Secondary side channel 30: Valve mechanism 40: Spring member (Biasing means)
50: Diaphragm 51: Pressure receiving part 52: Holding part 100: Pressure regulator

Claims (5)

内部に均圧室が形成される上部ケーシングと内部に二次側圧力室が形成される下部ケーシングとをフランジ接続してなる本体ケーシングと、前記均圧室と前記二次側圧力室とを区画する受圧部と前記上部ケーシングと前記下部ケーシングとのフランジ接続部に圧縮状態で挟持される挟持部とからなるダイヤフラムと、一次側流路から前記二次側圧力室に連通する二次側流路へのガスの流量を調整可能且つ前記ダイヤフラムの受圧部が前記二次側圧力室側から前記均圧室側に向けて変位するほど開度が減少するバルブ機構と、前記バルブ機構の開度を増加させる方向に付勢する付勢機構とを備えた整圧器であって、
前記ダイヤフラムが、前記挟持部を前記受圧部よりも圧縮永久ひずみが小さいゴム材料で形成してなる整圧器。
A main body casing formed by flange-connecting an upper casing in which a pressure equalizing chamber is formed and a lower casing in which a secondary pressure chamber is formed, and dividing the pressure equalizing chamber and the secondary pressure chamber A diaphragm including a pressure receiving portion that performs compression and a flanged connection portion between the upper casing and the lower casing in a compressed state, and a secondary-side flow path that communicates from the primary-side flow path to the secondary-side pressure chamber. A valve mechanism that can adjust the gas flow rate to the diaphragm and the opening degree of the diaphragm decreases as the pressure receiving portion of the diaphragm is displaced from the secondary pressure chamber side toward the pressure equalizing chamber side; and the opening degree of the valve mechanism A pressure regulator comprising an urging mechanism for urging in an increasing direction,
The pressure regulator in which the diaphragm is formed of a rubber material in which the clamping portion has a compression set smaller than that of the pressure receiving portion.
前記フランジ接続部の前記ダイヤフラムの挟持部よりも外側に、Oリングによりシールされるシール部を備えた請求項1に記載の整圧器。   The pressure regulator according to claim 1, further comprising a seal portion that is sealed by an O-ring outside the sandwiching portion of the diaphragm of the flange connection portion. 内部に均圧室が形成される上部ケーシングと内部に二次側圧力室が形成される下部ケーシングとをフランジ接続してなる本体ケーシングと、前記均圧室と前記二次側圧力室とを区画する受圧部と前記上部ケーシングと前記下部ケーシングとのフランジ接続部に圧縮状態で挟持される挟持部とからなるダイヤフラムと、一次側流路から前記二次側圧力室に連通する二次側流路へのガスの流量を調整可能且つ前記ダイヤフラムの受圧部が前記二次側圧力室側から前記均圧室側に向けて変位するほど開度が減少するバルブ機構と、前記バルブ機構の開度を増加させる方向に付勢する付勢機構とを備えた整圧器の使用前に実行される処理方法であって、
前記整圧器が請求項1又は2に記載の整圧器として構成され、
前記整圧器を組み立てた状態で設定温度に加熱して一定時間保持する保持工程を実行することを特徴とする処理方法。
A main body casing formed by flange-connecting an upper casing in which a pressure equalizing chamber is formed and a lower casing in which a secondary pressure chamber is formed, and dividing the pressure equalizing chamber and the secondary pressure chamber A diaphragm including a pressure receiving portion that performs compression and a flanged connection portion between the upper casing and the lower casing in a compressed state, and a secondary-side flow path that communicates from the primary-side flow path to the secondary-side pressure chamber. A valve mechanism that can adjust the gas flow rate to the diaphragm and the opening degree of the diaphragm decreases as the pressure receiving portion of the diaphragm is displaced from the secondary pressure chamber side toward the pressure equalizing chamber side; and the opening degree of the valve mechanism A processing method that is performed before use of a pressure regulator that includes a biasing mechanism that biases in an increasing direction,
The pressure regulator is configured as a pressure regulator according to claim 1 or 2,
A processing method comprising: performing a holding step of heating to a set temperature and holding the pressure regulator in a state in which the pressure regulator is assembled.
内部に均圧室が形成される上部ケーシングと内部に二次側圧力室が形成される下部ケーシングとをフランジ接続してなる本体ケーシングと、前記均圧室と前記二次側圧力室とを区画する受圧部と前記上部ケーシングと前記下部ケーシングとのフランジ接続部に圧縮状態で挟持される挟持部とからなるダイヤフラムと、一次側流路から前記二次側圧力室に連通する二次側流路へのガスの流量を調整可能且つ前記ダイヤフラムの受圧部が前記二次側圧力室側から前記均圧室側に向けて変位するほど開度が減少するバルブ機構と、前記バルブ機構の開度を増加させる方向に付勢する付勢機構とを備えた整圧器の使用前に実行される処理方法であって、
前記付勢手段がばね部材からなり、
前記整圧器を組み立てた状態で一定時間保持する保持工程を実行し、
前記保持工程を実行した後に、前記ばね部材の付勢力を調整する調整工程を実行することを特徴とする処理方法。
A main body casing formed by flange-connecting an upper casing in which a pressure equalizing chamber is formed and a lower casing in which a secondary pressure chamber is formed, and dividing the pressure equalizing chamber and the secondary pressure chamber A diaphragm including a pressure receiving portion that performs compression and a flanged connection portion between the upper casing and the lower casing in a compressed state, and a secondary-side flow path that communicates from the primary-side flow path to the secondary-side pressure chamber. A valve mechanism that can adjust the gas flow rate to the diaphragm and the opening degree of the diaphragm decreases as the pressure receiving portion of the diaphragm is displaced from the secondary pressure chamber side toward the pressure equalizing chamber side; and the opening degree of the valve mechanism A processing method that is performed before use of a pressure regulator that includes a biasing mechanism that biases in an increasing direction,
The biasing means comprises a spring member;
Performing a holding step of holding the pressure regulator in a assembled state for a certain period of time;
After performing the said holding process, the adjustment process which adjusts the urging | biasing force of the said spring member is performed, The processing method characterized by the above-mentioned.
前記保持工程において、前記整圧器を設定温度に加熱する請求項4に記載の処理方法。   The processing method according to claim 4, wherein in the holding step, the pressure regulator is heated to a set temperature.
JP2005079391A 2005-03-18 2005-03-18 Pressure governor and processing method Pending JP2006260385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005079391A JP2006260385A (en) 2005-03-18 2005-03-18 Pressure governor and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005079391A JP2006260385A (en) 2005-03-18 2005-03-18 Pressure governor and processing method

Publications (1)

Publication Number Publication Date
JP2006260385A true JP2006260385A (en) 2006-09-28

Family

ID=37099521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005079391A Pending JP2006260385A (en) 2005-03-18 2005-03-18 Pressure governor and processing method

Country Status (1)

Country Link
JP (1) JP2006260385A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009026054A (en) * 2007-07-19 2009-02-05 Koganei Corp Pressure reducing valve
JP2009209973A (en) * 2008-02-29 2009-09-17 Aisin Seiki Co Ltd Valve unit and manufacturing method of valve unit
JP2009265893A (en) * 2008-04-24 2009-11-12 Kayaba Ind Co Ltd Decompression valve
JP2010537796A (en) * 2007-05-11 2010-12-09 エスディーシー マテリアルズ インコーポレイテッド Gas supply system and gas supply method
JP2012237389A (en) * 2011-05-12 2012-12-06 Yamaho Kogyo Kk Diaphragm valve and nozzle switching valve device
CN102927352A (en) * 2012-10-31 2013-02-13 福建华龙化油器有限公司 Buffer air chamber structure of vehicle compressed natural gas (CNG) pressure reducing valve
US8470112B1 (en) 2009-12-15 2013-06-25 SDCmaterials, Inc. Workflow for novel composite materials
US8481449B1 (en) 2007-10-15 2013-07-09 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US8545652B1 (en) 2009-12-15 2013-10-01 SDCmaterials, Inc. Impact resistant material
US8557727B2 (en) 2009-12-15 2013-10-15 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US8668803B1 (en) 2009-12-15 2014-03-11 SDCmaterials, Inc. Sandwich of impact resistant material
US8679433B2 (en) 2011-08-19 2014-03-25 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US8803025B2 (en) 2009-12-15 2014-08-12 SDCmaterials, Inc. Non-plugging D.C. plasma gun
JP2015011389A (en) * 2013-06-26 2015-01-19 株式会社ダンレイ Pressure reduction valve
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
JP2017201329A (en) * 2011-03-21 2017-11-09 テスコム・コーポレーション Diaphragm interface apparatus to improve cycle life of diaphragm
WO2018008335A1 (en) * 2016-07-07 2018-01-11 川崎重工業株式会社 Pressure reducing valve
JP2018123868A (en) * 2017-01-31 2018-08-09 リンナイ株式会社 Gas governor device
JP2020122534A (en) * 2019-01-31 2020-08-13 株式会社フジキン Diaphragm valve manufacturing method
EP4075232A1 (en) * 2021-04-05 2022-10-19 SMC Corporation Fluid control valve

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9023754B2 (en) 2005-04-19 2015-05-05 SDCmaterials, Inc. Nano-skeletal catalyst
US9180423B2 (en) 2005-04-19 2015-11-10 SDCmaterials, Inc. Highly turbulent quench chamber
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9216398B2 (en) 2005-04-19 2015-12-22 SDCmaterials, Inc. Method and apparatus for making uniform and ultrasmall nanoparticles
US9132404B2 (en) 2005-04-19 2015-09-15 SDCmaterials, Inc. Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
JP2010537796A (en) * 2007-05-11 2010-12-09 エスディーシー マテリアルズ インコーポレイテッド Gas supply system and gas supply method
US8893651B1 (en) 2007-05-11 2014-11-25 SDCmaterials, Inc. Plasma-arc vaporization chamber with wide bore
US8956574B2 (en) 2007-05-11 2015-02-17 SDCmaterials, Inc. Gas delivery system with constant overpressure relative to ambient to system with varying vacuum suction
US8524631B2 (en) 2007-05-11 2013-09-03 SDCmaterials, Inc. Nano-skeletal catalyst
US8604398B1 (en) 2007-05-11 2013-12-10 SDCmaterials, Inc. Microwave purification process
US8663571B2 (en) 2007-05-11 2014-03-04 SDCmaterials, Inc. Method and apparatus for making uniform and ultrasmall nanoparticles
US8906316B2 (en) 2007-05-11 2014-12-09 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US8574408B2 (en) 2007-05-11 2013-11-05 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
JP2009026054A (en) * 2007-07-19 2009-02-05 Koganei Corp Pressure reducing valve
US8481449B1 (en) 2007-10-15 2013-07-09 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US8575059B1 (en) 2007-10-15 2013-11-05 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US9186663B2 (en) 2007-10-15 2015-11-17 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US8507402B1 (en) 2007-10-15 2013-08-13 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US8507401B1 (en) 2007-10-15 2013-08-13 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US8759248B2 (en) 2007-10-15 2014-06-24 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9089840B2 (en) 2007-10-15 2015-07-28 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9302260B2 (en) 2007-10-15 2016-04-05 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
JP2009209973A (en) * 2008-02-29 2009-09-17 Aisin Seiki Co Ltd Valve unit and manufacturing method of valve unit
JP2009265893A (en) * 2008-04-24 2009-11-12 Kayaba Ind Co Ltd Decompression valve
US8557727B2 (en) 2009-12-15 2013-10-15 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8877357B1 (en) 2009-12-15 2014-11-04 SDCmaterials, Inc. Impact resistant material
US8906498B1 (en) 2009-12-15 2014-12-09 SDCmaterials, Inc. Sandwich of impact resistant material
US8932514B1 (en) 2009-12-15 2015-01-13 SDCmaterials, Inc. Fracture toughness of glass
US8865611B2 (en) 2009-12-15 2014-10-21 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8859035B1 (en) 2009-12-15 2014-10-14 SDCmaterials, Inc. Powder treatment for enhanced flowability
US8828328B1 (en) 2009-12-15 2014-09-09 SDCmaterails, Inc. Methods and apparatuses for nano-materials powder treatment and preservation
US8992820B1 (en) 2009-12-15 2015-03-31 SDCmaterials, Inc. Fracture toughness of ceramics
US8821786B1 (en) 2009-12-15 2014-09-02 SDCmaterials, Inc. Method of forming oxide dispersion strengthened alloys
US8803025B2 (en) 2009-12-15 2014-08-12 SDCmaterials, Inc. Non-plugging D.C. plasma gun
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8668803B1 (en) 2009-12-15 2014-03-11 SDCmaterials, Inc. Sandwich of impact resistant material
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US9308524B2 (en) 2009-12-15 2016-04-12 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8545652B1 (en) 2009-12-15 2013-10-01 SDCmaterials, Inc. Impact resistant material
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9332636B2 (en) 2009-12-15 2016-05-03 SDCmaterials, Inc. Sandwich of impact resistant material
US8470112B1 (en) 2009-12-15 2013-06-25 SDCmaterials, Inc. Workflow for novel composite materials
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9216406B2 (en) 2011-02-23 2015-12-22 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
JP2017201329A (en) * 2011-03-21 2017-11-09 テスコム・コーポレーション Diaphragm interface apparatus to improve cycle life of diaphragm
JP2012237389A (en) * 2011-05-12 2012-12-06 Yamaho Kogyo Kk Diaphragm valve and nozzle switching valve device
US8969237B2 (en) 2011-08-19 2015-03-03 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9498751B2 (en) 2011-08-19 2016-11-22 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US8679433B2 (en) 2011-08-19 2014-03-25 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
CN102927352A (en) * 2012-10-31 2013-02-13 福建华龙化油器有限公司 Buffer air chamber structure of vehicle compressed natural gas (CNG) pressure reducing valve
CN102927352B (en) * 2012-10-31 2016-02-03 福建华龙化油器有限公司 With the natural gas used for automobile CNG reduction valve of buffer air chamber structure
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
JP2015011389A (en) * 2013-06-26 2015-01-19 株式会社ダンレイ Pressure reduction valve
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10086356B2 (en) 2014-03-21 2018-10-02 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10413880B2 (en) 2014-03-21 2019-09-17 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
JP2018005769A (en) * 2016-07-07 2018-01-11 川崎重工業株式会社 Pressure reduction valve
WO2018008335A1 (en) * 2016-07-07 2018-01-11 川崎重工業株式会社 Pressure reducing valve
CN109416548A (en) * 2016-07-07 2019-03-01 川崎重工业株式会社 Pressure reducing valve
US10907745B2 (en) 2016-07-07 2021-02-02 Kawasaki Jukogyo Kabushiki Kaisha Pressure regulator valve
CN109416548B (en) * 2016-07-07 2022-01-14 川崎重工业株式会社 Pressure reducing valve
JP2018123868A (en) * 2017-01-31 2018-08-09 リンナイ株式会社 Gas governor device
JP2020122534A (en) * 2019-01-31 2020-08-13 株式会社フジキン Diaphragm valve manufacturing method
EP4075232A1 (en) * 2021-04-05 2022-10-19 SMC Corporation Fluid control valve

Similar Documents

Publication Publication Date Title
JP2006260385A (en) Pressure governor and processing method
CN102985730B (en) For valve rod and the valve plug apparatus of fluid conditioner
JP7237370B2 (en) valve device
CN109899555B (en) Fluid control valve and method of assembling fluid control valve
EP2370871B1 (en) Valve seat apparatus having positive retention for use with fluid control devices
EP3362718B1 (en) Control member for a fluid control device
US9304517B2 (en) Flow control device
US20140034155A1 (en) Valve Seat For A Pressure Regulator
KR20090080474A (en) Constant flow rate valve
JP6030474B2 (en) Flow control device
US10877495B2 (en) Pressure loaded regulator with dual diaphragm and redundant seal
TW201812197A (en) Fluid control valve and fluid control valve manufacturing method
US9310811B2 (en) Self-aligning valve port
US20130207010A1 (en) Flow control device
JP7270990B2 (en) Valve device, fluid control device, fluid control method, semiconductor manufacturing device and semiconductor manufacturing method
JP6002789B2 (en) Vacuum pressure proportional control valve
JP7353197B2 (en) Pressure reducing valve and valve unit
CN111911683A (en) Pressure reducing valve
JP6384246B2 (en) Pneumatically operated valve
CN218494291U (en) Control mechanism for gas pressure regulating valve
WO2024084907A1 (en) Pressure reducing valve and valve device
CN212536817U (en) Pressure reducing valve
JP4164016B2 (en) Gas regulator
JP7308506B2 (en) VALVE DEVICE, FLOW CONTROL METHOD USING THIS VALVE DEVICE, SEMICONDUCTOR MANUFACTURING METHOD, AND SEMICONDUCTOR MANUFACTURER
JP5004702B2 (en) Pressure reducing valve