TWI671403B - Method for controlling controlled assembly of polypeptide - Google Patents

Method for controlling controlled assembly of polypeptide Download PDF

Info

Publication number
TWI671403B
TWI671403B TW105116065A TW105116065A TWI671403B TW I671403 B TWI671403 B TW I671403B TW 105116065 A TW105116065 A TW 105116065A TW 105116065 A TW105116065 A TW 105116065A TW I671403 B TWI671403 B TW I671403B
Authority
TW
Taiwan
Prior art keywords
amino acid
antibody
acid residues
chain
polypeptide
Prior art date
Application number
TW105116065A
Other languages
Chinese (zh)
Other versions
TW201631154A (en
Inventor
井川智之
角田浩行
Original Assignee
中外製藥股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37073456&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=TWI671403(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 中外製藥股份有限公司 filed Critical 中外製藥股份有限公司
Publication of TW201631154A publication Critical patent/TW201631154A/en
Application granted granted Critical
Publication of TWI671403B publication Critical patent/TWI671403B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/31Immunoglobulins specific features characterized by aspects of specificity or valency multispecific

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Analytical Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

發現藉由將形成多肽間組裝時之界面的胺基酸殘基改變為帶同種電荷之胺基酸,可抑制該組裝。依照本發明,可有效率地形成異分子。 It was found that the assembly can be inhibited by changing the amino acid residue that forms the interface during the assembly between polypeptides to an amino acid with the same charge. According to the present invention, hetero molecules can be efficiently formed.

本發明例如可適用於製作雙專一性抗體時。 The present invention is applicable, for example, when producing a bispecific antibody.

Description

控制組裝之多肽的製造方法 Manufacturing method of controlled assembly polypeptide

本發明係關於利用各分子內或各分子間組裝進行控制之多肽之製造方法、各分子內或各分子間之組裝受控制之多肽、及含有該多肽為有效成分之醫藥組成物等。 The present invention relates to a method for manufacturing a polypeptide controlled by intramolecular or intermolecular assembly, a polypeptide with controlled assembly within or between molecules, and a pharmaceutical composition containing the polypeptide as an active ingredient.

抗體由於在血液中之安定性高且副作用少,作為醫藥品受到重視。其中有一種可同時認識二種抗原之雙專一性抗體。現在,正在進行臨床試驗之MDX-210係一IgG型雙專一性抗體,係將表現FcγRI之單核球等重導(retargeting)至表現HER-2/neu之癌細胞的抗體(參照非專利文獻1)。抗體製造一般多使用基因重組技術。具體而言,係自融合瘤、產生抗體之感作淋巴球等抗體產生細胞、或提示抗體基因之噬菌體庫之中選殖出編碼為抗體之蛋白質的DNA,嵌入適當載體之中,並將該等導入寄主細胞使生產的技術。使用基因重組技術之IgG型雙專一性抗體之製造,係將構成目的之二種IgG的H鏈及L鏈的基因,合計4種基因導入細胞,並藉由共表現使分泌。如該表現之中,使野生型之H鏈及L鏈之構成基因表現之情形,由於2種H鏈之共價鍵或H鏈與L鏈之非共價鍵係隨機發生,因此目的雙專一性抗體之比例變得極低。具體而言,目的雙專一性抗體在10種中僅1種,生產效率低。目標抗體之生產效 率低不僅會妨害目標抗體精製,而且使批間差等不均勻性增大,會造成生產成本上漲。 Antibodies have high stability in the blood and have few side effects, so they are valued as pharmaceuticals. One of them is a bispecific antibody that recognizes both antigens. Currently, MDX-210 is a IgG bispecific antibody that is undergoing clinical trials. It is an antibody that retargets mononuclear spheres expressing FcγRI to cancer cells expressing HER-2 / neu (see non-patent literature). 1). Antibody manufacturing generally uses genetic recombination techniques. Specifically, DNA encoding an antibody-producing protein is cloned from antibody-producing cells such as fusion tumors, antibody-sensing lymphocytes, or phage libraries suggesting antibody genes, and is embedded in an appropriate vector. Etc. Introduction of host cell technology for production. The production of IgG type bispecific antibodies using genetic recombination technology is to introduce the genes of the H chain and L chain of the two IgGs of interest into a total of 4 genes and secrete them by co-expression. As shown in this expression, when the wild-type H chain and L chain constitutive genes are expressed, the two covalent bonds of the H chain or the non-covalent bonds of the H chain and the L chain occur randomly, so the purpose is dual-specific The proportion of sexual antibodies becomes extremely low. Specifically, only one of the ten bispecific antibodies has low production efficiency. Production efficiency of target antibody A low rate will not only hinder the purification of the target antibody, but also increase the non-uniformity such as the difference between batches, which will increase the production cost.

就關於雙專一性抗體之有效率生產之見解而言,有人報告藉由對IgG H鏈之CH3區域施以胺基酸取代,而使優先分泌就H鏈為異種組合之IgG(參照專利文獻1及非專利文獻2及3)。具體而言,將存在於其中之一H鏈之CH3區域的胺基酸側鏈取代為較大側鏈(knob;突起),並將存在於另一H鏈之CH3區域的胺基酸側鏈取代為較小側鏈(hole;空隙),以將突起配置於空隙內之方式來促進異種H鏈形成及抑制同種H鏈形成。也有人報告在H鏈可變區域(以下稱為VH)與L鏈可變區域(以下稱為VL)進行組裝之界面利用同樣的「突起」與「空隙」之見解(參照非專利文獻4)。依據Zhe等之報告,藉由將存在於VH與VL界面之胺基酸取代2種(兩鏈共4種),異分子之形成被促進1.28倍的效率(野生型;72%、變異體;92%)。 又,一種胺基酸取代(兩鏈共2種)則與野生型為同左右之效率。但是,在VH與VL設置突起(knob)及空隙(hole)之方法不能說是能充分地促進異分子之形成。 From the viewpoint of the efficient production of bispecific antibodies, it has been reported that by replacing the CH3 region of the IgG H chain with an amino acid, preferential secretion of IgG in which the H chain is a heterogeneous combination (see Patent Document 1) And non-patent documents 2 and 3). Specifically, the amino acid side chain existing in the CH3 region of one of the H chains is replaced with a larger side chain (knob; protrusion), and the amino acid side chain existing in the CH3 region of the other H chain is replaced Instead of a small side chain (hole; void), the protrusions are arranged in the void to promote the formation of heterogeneous H chains and inhibit the formation of homogeneous H chains. It has also been reported that the interface between the H-chain variable region (hereinafter referred to as VH) and the L-chain variable region (hereinafter referred to as VL) uses the same "protrusion" and "gap" (see Non-Patent Document 4). . According to the report by Zhe et al., By replacing two types of amino acids present at the interface of VH and VL (four types of two chains), the formation of hetero molecules is promoted 1.28 times more efficiently (wild type; 72%, variants; 92 %). In addition, one amino acid substitution (two types in both chains) has about the same efficiency as the wild type. However, the method of providing knobs and holes in VH and VL cannot be said to sufficiently promote the formation of foreign molecules.

【專利文獻1】國際公開第96/27011號 [Patent Document 1] International Publication No. 96/27011

【非專利文獻1】Segal DM等著,Current Opinion in Immunology,1999年,Vol.11,p.558-562 [Non-Patent Document 1] Segal DM et al., Current Opinion in Immunology, 1999, Vol. 11, p. 558-562

【非專利文獻2】Ridgway JB等著,Protein Engineering,1996年,Vol.9,p.617-621 [Non-Patent Document 2] Ridgway JB et al., Protein Engineering, 1996, Vol. 9, p. 617-621

【非專利文獻3】Merchant AM等著,Nature Biotechnology,1998年,Vol.16,p.677-681 [Non-Patent Document 3] Merchant AM, Nature Biotechnology, 1998, Vol. 16, p. 677-681

【非專利文獻4】Zhe Z等著,Protein Science,1997年,Vol.6,p.781-788 [Non-Patent Document 4] Zhe Z et al., Protein Science, 1997, Vol. 6, p. 781-788

本發明係有鑑於如該狀況而生,其目的為提供控制多肽組裝之方法、組裝受控制之多肽,以及該多肽之製造方法。又,本發明其中之一的態樣之目的為,提供控制VH與VL之界面之組裝而有效率地製造雙專一性抗體之方法。又,目的為提供有效率地製造sc(Fv)2其中之一的構造構造異構物之方法。 The present invention was conceived in view of this situation, and its purpose is to provide a method for controlling the assembly of a polypeptide, an assembly of a controlled polypeptide, and a method for manufacturing the polypeptide. Another aspect of the present invention is to provide a method for efficiently manufacturing a bispecific antibody by controlling the assembly of the interface between VH and VL. Another object is to provide a method for efficiently producing one structural isomer of sc (Fv) 2.

本發明者等就供組裝控制之多肽選擇了抗體的VH及VL,並對於可控制該等VH與VL組裝之方法,努力地研究。 The present inventors have selected VH and VL of antibodies for polypeptides for assembly control, and have worked hard on methods to control the assembly of these VH and VL.

其結果,發現:藉由將存在於VH與VL之界面的胺基酸取代為帶有電荷的胺基酸,可抑制VH與VL之組裝,較使用上述突起與空隙的方法能較有效率的形成異分子。 As a result, it was found that by replacing the amino acid existing at the interface between VH and VL with a charged amino acid, the assembly of VH and VL can be suppressed, which is more efficient than the method using the above-mentioned protrusions and voids. Formation of hetero molecules.

令人驚訝的是依照本發明之方法,僅僅將取代存在於VH與VL之界面的各1種胺基酸(VH與VL合計2個胺基酸),便可有效率地形成異分子。有,由抗原性之觀點,胺基酸之取代愈少愈好。依照本發明之一態樣,僅僅取代存在於VH與VL之界面的1個胺基酸,便可有效率的形成異分子。 Surprisingly, according to the method of the present invention, it is possible to efficiently form a hetero molecule only by substituting one amino acid (two amino acids in total, VH and VL) existing at the interface between VH and VL. Yes, from the viewpoint of antigenicity, the less the amino acid substitution, the better. According to one aspect of the present invention, only one amino acid existing at the interface between VH and VL can effectively form a hetero molecule.

亦即,藉由本發明者等所發現之見解,可控制VH 與VL之組裝。又,本發明不僅可應用於VH與VL之組裝之控制,也可應用於任意多肽間之組裝控制。 That is, VH can be controlled by the findings discovered by the present inventors, etc. Assembly with VL. In addition, the present invention can be applied not only to the control of assembly of VH and VL, but also to the control of assembly between arbitrary polypeptides.

再者,本發明者等實際上確認了由本發明之組裝控制方法所取得之雙專一性抗體保持著機能。 In addition, the present inventors confirmed that the bispecific antibody obtained by the assembly control method of the present invention maintains its function.

如上所述,本發明者等成功地開發了可控制任意多肽間之組裝的方法,並完成本發明。 As described above, the present inventors have successfully developed a method capable of controlling assembly between arbitrary polypeptides, and completed the present invention.

本發明係關於控制多肽組裝之方法、組裝受控制之多肽,以及該多肽之製造方法,更具體而言,係提供以下: The present invention relates to a method for controlling the assembly of a polypeptide, a polypeptide to be controlled for assembly, and a method for manufacturing the polypeptide. More specifically, it provides the following:

[1]一種多肽變異體之製造方法,係使形成多肽內界面之胺基酸殘基具有變異而控制多肽組裝,包含下列步驟:(a)將編碼為形成多肽內界面之胺基酸殘基的核酸以使多肽內之組裝受抑制之方式自原核酸改變,(b)培養寄主細胞使表現該核酸,(c)自寄主細胞培養物將該多肽回收。 [1] A method for manufacturing a polypeptide variant, which comprises mutating the amino acid residues forming the internal interface of the polypeptide to control the assembly of the polypeptide, comprising the following steps: (a) encoding the amino acid residues forming the internal interface of the polypeptide The nucleic acid is altered from the original nucleic acid in a manner that inhibits assembly within the polypeptide, (b) culturing the host cell to express the nucleic acid, and (c) recovering the polypeptide from the host cell culture.

[2]一種異種多聚體之製造方法,係使形成多肽間界面之胺基酸殘基具有變異而控制異種多聚體組裝,包含下列步驟:(a)將編碼為形成多肽間界面之胺基酸殘基的核酸以使多肽間之組裝受抑制之方式自原核酸改變,(b)培養寄主細胞使表現該核酸,(c)自寄主細胞培養物將該異種多聚體回收。 [2] A method for producing heteromultimers, which comprises mutating the amino acid residues forming the interface between polypeptides to control the assembly of heteromultimers, including the following steps: (a) encoding the amines that form the interfaces between polypeptides The nucleic acid of the amino acid residue is changed from the original nucleic acid in such a manner that the assembly between the polypeptides is inhibited, (b) the host cell is cultured to express the nucleic acid, and (c) the heteromultimer is recovered from the host cell culture.

[3]如[1]之方法,其中,於可形成2種以上構造構造異構物之多肽之中,將編碼為形成多肽內界面之胺基酸殘基的核酸以使形成1種以上構造構造異構物之多肽之組裝受抑制之方式自原核酸改變。 [3] The method according to [1], wherein, among the polypeptides capable of forming two or more structural structural isomers, a nucleic acid encoding an amino acid residue forming an internal interface of the polypeptide is formed so as to form one or more structures The manner in which the assembly of the structural isomer polypeptide is inhibited is altered from the original nucleic acid.

[4]如[2]之方法,其中,於可形成2種以上多聚體之異種多聚體之中,將編碼為形成多肽間界面之胺基酸殘基的核酸以 使形成1種以上多聚體之多肽之組裝受抑制之方式自原核酸改變。 [4] The method according to [2], wherein, among heteromultimers capable of forming two or more kinds of multimers, a nucleic acid encoding an amino acid residue forming an interface between polypeptides is subjected to The manner in which the assembly of polypeptides forming more than one multimer is inhibited is altered from the original nucleic acid.

[5]如[1]或[2]之方法,其中,步驟(a)之改變係將原核酸改變為使形成界面之2個殘基以上的胺基酸殘基為同種電荷的方式於該界面導入胺基酸殘基之變異。 [5] The method according to [1] or [2], wherein the change of step (a) is to change the original nucleic acid to a method in which the amino acid residues of two or more residues forming the interface have the same charge. Variations of amino acid residues introduced at the interface.

[6]如[5]之方法,其中,導入之胺基酸殘基為谷胺酸(E)。 [6] The method according to [5], wherein the amino acid residue introduced is glutamic acid (E).

[7]如[5]之方法,其中,導入之胺基酸殘基為天冬醯胺酸(D)。 [7] The method according to [5], wherein the introduced amino acid residue is aspartic acid (D).

[8]如[5]之方法,其中,導入之胺基酸殘基為離胺酸(K)。 [8] The method according to [5], wherein the introduced amino acid residue is lysine (K).

[9]如[5]之方法,其中,導入之胺基酸殘基為精胺酸(R)。 [9] The method according to [5], wherein the amino acid residue introduced is arginine (R).

[10]如[5]之方法,其中,導入之胺基酸殘基為組胺酸(H)。 [10] The method according to [5], wherein the amino acid residue introduced is histamine (H).

[11]如[1]或[2]之方法,其中,步驟(a)之改變係將原核酸改變為以使形成存在界面之疏水性核之胺基酸殘基成為帶有電荷之胺基酸殘基之方式在該界面導入胺基酸殘基之變異。 [11] The method according to [1] or [2], wherein the change in step (a) is to change the original nucleic acid so that the amino acid residue forming the hydrophobic core at the interface becomes a charged amino group The method of acid residue introduces a variation of amino acid residue at this interface.

[12]如[11]之方法,其中,導入之胺基酸殘基為谷胺酸(E)。 [12] The method according to [11], wherein the introduced amino acid residue is glutamic acid (E).

[13]如[11]之方法,其中,導入之胺基酸殘基為天冬醯胺酸(D)。 [13] The method according to [11], wherein the introduced amino acid residue is aspartic acid (D).

[14]如[11]之方法,其中,導入之胺基酸殘基為離胺酸(K)。 [14] The method according to [11], wherein the amino acid residue introduced is lysine (K).

[15]如[11]之方法,其中,導入之胺基酸殘基為精胺酸(R)。 [15] The method according to [11], wherein the introduced amino acid residue is arginine (R).

[16]如[11]之方法,其中,導入之胺基酸殘基為組胺酸(H)。 [16] The method according to [11], wherein the amino acid residue introduced is histidine (H).

[17]如[1]或[2]之方法,其中,多肽之界面係由抗體之重鏈可變區域及輕鏈可變區域形成。 [17] The method according to [1] or [2], wherein the interface of the polypeptide is formed by the variable region of the heavy chain and the variable region of the light chain of the antibody.

[18]如[1]或[2]之方法,其中,多肽之界面係由2種以上重鏈可變區域形成。 [18] The method according to [1] or [2], wherein the interface of the polypeptide is formed by two or more heavy chain variable regions.

[19]如[1]或[2]之方法,其中,多肽之界面係由抗體之重鏈不變區域及輕鏈不變區域形成。 [19] The method of [1] or [2], wherein the interface of the polypeptide is formed by the heavy chain constant region and the light chain constant region of the antibody.

[20]如[1]或[2]之方法,其中,多肽之界面係由2種以上重鏈不變區域形成。 [20] The method according to [1] or [2], wherein the interface of the polypeptide is formed by two or more heavy chain invariant regions.

[21]如[1]之方法,其中,多肽係將2個以上重鏈可變區域及2個以上輕鏈可變區域以連接子結合之單鏈多肽。 [21] The method according to [1], wherein the polypeptide is a single-chain polypeptide in which two or more heavy chain variable regions and two or more light chain variable regions are bound by a linker.

[22]如[2]之方法,其中,異種多聚體係包含2種以上重鏈可變區域及2種以上輕鏈可變區域之多重專一性抗體。 [22] The method of [2], wherein the heteromultimer system includes a multispecific antibody having two or more types of variable regions of a heavy chain and two or more types of variable regions of a light chain.

[23]如[22]之方法,其中,異種多聚體為雙專一性抗體。 [23] The method according to [22], wherein the heteromultimer is a bispecific antibody.

[24]多肽變異體或異種多聚體,係由[1]或[2]之方法製造。 [24] A polypeptide variant or heteromultimer is produced by the method of [1] or [2].

[25]一種多肽變異體,係將形成該多肽內之界面的胺基酸殘基改變,以抑制原來多肽內之組裝。 [25] A polypeptide variant that changes the amino acid residues that form the interface within the polypeptide to inhibit assembly in the original polypeptide.

[26]一種異種多聚體,係將形成該多肽間之界面的胺基酸殘基改變,以抑制原來多肽間之組裝。 [26] A heteromultimer that changes the amino acid residues that form the interface between the polypeptides to inhibit the assembly between the original polypeptides.

[27]如[25]之多肽變異體,其中,原多肽可形成2種以上構造構造異構物。 [27] The polypeptide variant of [25], wherein the original polypeptide can form two or more kinds of structural isomers.

[28]如[26]之異種多聚體,其中,原多肽可形成2種以上多聚體。 [28] The heteromultimer according to [26], wherein the original polypeptide can form two or more kinds of multimers.

[29]如[25]之多肽變異體或[26]之異種多聚體,其中,形成前述多肽界面之胺基酸殘基之改變係於該界面導入胺基酸殘基之變異,使形成界面2個殘基以上之胺基酸殘基成為同種電荷。 [29] The polypeptide variant of [25] or the heteromultimer of [26], wherein the change of the amino acid residue forming the interface of the aforementioned polypeptide is a variation of the amino acid residue introduced at the interface to form Amino acid residues with more than 2 residues at the interface become the same charge.

[30]如[29]之多肽變異體或異種多聚體,其中,導入之胺基酸殘基為谷胺酸(E)。 [30] The polypeptide variant or heteromultimer according to [29], wherein the amino acid residue introduced is glutamic acid (E).

[31]如[29]之多肽變異體或異種多聚體,其中,導入之胺基酸殘基為天冬醯胺酸(D)。 [31] The polypeptide variant or heteromultimer according to [29], wherein the amino acid residue introduced is aspartic acid (D).

[32]如[29]之多肽變異體或異種多聚體,其中,導入之胺基酸殘基為離胺酸(K)。 [32] The polypeptide variant or heteromultimer according to [29], wherein the amino acid residue introduced is lysine (K).

[33]如[29]之多肽變異體或異種多聚體,其中,導入之胺基酸殘基為精胺酸(R)。 [33] The polypeptide variant or heteromultimer according to [29], wherein the amino acid residue introduced is arginine (R).

[34]如[29]之多肽變異體或異種多聚體,其中,導入之胺基酸殘基為組胺酸(H)。 [34] The polypeptide variant or heteromultimer according to [29], wherein the amino acid residue introduced is histidine (H).

[35]如[25]之多肽變異體或[26]之異種多聚體,其中,形成前述多肽界面之胺基酸殘基之改變係於該界面導入胺基酸殘基之變異,使形成存在於界面之疏水性核的胺基酸殘基具有電荷。 [35] The polypeptide variant of [25] or the heteromultimer of [26], wherein the change of the amino acid residue forming the interface of the aforementioned polypeptide is a variation of the amino acid residue introduced at the interface to form The amino acid residues present in the hydrophobic core of the interface have a charge.

[36]如[35]之多肽變異體或異種多聚體,其中,導入之胺基酸殘基為谷胺酸(E)。 [36] The polypeptide variant or heteromultimer according to [35], wherein the amino acid residue introduced is glutamic acid (E).

[37]如[35]之多肽變異體或異種多聚體,其中,導入之胺基酸殘基為天冬醯胺酸(D)。 [37] The polypeptide variant or heteromultimer according to [35], wherein the amino acid residue introduced is aspartic acid (D).

[38]如[35]之多肽變異體或異種多聚體,其中,導入之胺基酸殘基為離胺酸(K)。 [38] The polypeptide variant or heteromultimer according to [35], wherein the amino acid residue introduced is lysine (K).

[39]如[35]之多肽變異體或異種多聚體,其中,導入之胺基酸殘基為精胺酸(R)。 [39] The polypeptide variant or heteromultimer according to [35], wherein the amino acid residue introduced is arginine (R).

[40]如[35]之多肽變異體或異種多聚體,其中,導入之胺基酸殘基為組胺酸(H)。 [40] The polypeptide variant or heteromultimer according to [35], wherein the amino acid residue introduced is histidine (H).

[41]如[25]之多肽變異體或[26]之異種多聚體,其中,多肽界面由抗體之重鏈可變區域及輕鏈可變區域形成。 [41] The polypeptide variant of [25] or the heteromultimer of [26], wherein the polypeptide interface is formed by a variable region of a heavy chain and a variable region of a light chain of an antibody.

[42]如[25]之多肽變異體或[26]之異種多聚體,其中,多肽界面由2種以上重鏈可變區域形成。 [42] The polypeptide variant of [25] or the heteromultimer of [26], wherein the polypeptide interface is formed by two or more kinds of variable regions of heavy chains.

[43]如[25]之多肽變異體或[26]之異種多聚體,其中,多肽界面由抗體之重鏈不變區域及輕鏈不變區域形成。 [43] The polypeptide variant of [25] or the heteromultimer of [26], wherein the polypeptide interface is formed by the heavy chain invariant region and the light chain invariant region of the antibody.

[44]如[25]之多肽變異體或[26]之異種多聚體,其中,多肽界面由2種以上重鏈不變區域形成。 [44] The polypeptide variant of [25] or the heteromultimer of [26], wherein the polypeptide interface is formed by two or more heavy chain invariant regions.

[45]如[25]之多肽變異體,其中,多肽係將2個以上重鏈可變區域及2個以上輕鏈可變區域以連接子結合之單鏈多肽。 [45] The polypeptide variant of [25], wherein the polypeptide is a single-chain polypeptide in which two or more heavy chain variable regions and two or more light chain variable regions are linked by a linker.

[46]如[26]之異種多聚體,其中,異種多聚體係包含2種以上重鏈可變區域及2種以上輕鏈可變區域之多重專一性抗體。 [46] The heteromultimer according to [26], wherein the heteromultimer system includes a multispecific antibody having two or more heavy chain variable regions and two or more light chain variable regions.

[47]如[46]之異種多聚體,其中,異種多聚體為雙專一性抗體。 [47] The heteromultimer according to [46], wherein the heteromultimer is a bispecific antibody.

[48]一種組成物,包含[25]之多肽變異體或[26]之異種多聚體,及醫藥上可可容許的擔體。 [48] A composition comprising the polypeptide variant of [25] or the heteromultimer of [26], and a pharmaceutically acceptable carrier.

[49]一種核酸,編碼為[25]之多肽變異體或[26]之異種多聚體。 [49] A nucleic acid encoding the polypeptide variant of [25] or a heteromultimer of [26].

[50]一種寄主細胞,具有[49]之核酸。 [50] A host cell having the nucleic acid of [49].

[51]一種[25]之多肽變異體或[26]之異種多聚體之製造方法,包含下列步驟:培養[50]之寄主細胞、自細胞培養物將多肽回收之步驟。 [51] A method for producing a polypeptide variant of [25] or a heteromultimer of [26], comprising the steps of: culturing the host cell of [50], and recovering the polypeptide from the cell culture.

[52]一種多肽之組裝控制方法,包含將形成原來多肽內之界面之胺基酸殘基改變,以抑制多肽內之組裝。 [52] A method for controlling assembly of a polypeptide, comprising changing an amino acid residue that forms an interface within the original polypeptide to inhibit assembly within the polypeptide.

[53]一種異種多聚體之組裝控制方法,包含將形成原來多 肽間之界面之胺基酸殘基改變,以抑制多肽間之組裝。 [53] A method for controlling the assembly of heteromultimers, including The amino acid residues at the interface between the peptides are changed to inhibit assembly between the polypeptides.

[54]如[52]之方法,其中,係將可形成2種以上構造構造異構物之多肽之中,改變形成多肽內界面之胺基酸殘基,以抑制形成1種以上構造構造異構物之多肽之組裝。 [54] The method according to [52], wherein, among the polypeptides capable of forming two or more structural isomers, the amino acid residues forming the internal interface of the polypeptide are changed to suppress the formation of one or more structural isoforms. Assembly of polypeptides of the structure.

[55]如[53]之方法,其中,係將可形成2種以上多聚體之異種多聚體之中,改變形成多肽間界面之胺基酸殘基,以抑制形成1種以上多聚體之多肽間之組裝。 [55] The method according to [53], wherein among the heteromultimers capable of forming more than two kinds of multimers, the amino acid residues forming the interface between the polypeptides are changed to inhibit the formation of more than one kind of multimers Assembly between peptides in the body.

[56]如[52]或[53]之方法,其中,形成前述多肽界面之胺基酸殘基之改變係於該界面導入胺基酸殘基之變異,以使形成界面之2個殘基以上之胺基酸殘基成為帶同種電荷。 [56] The method according to [52] or [53], wherein the change of the amino acid residue forming the interface of the aforementioned polypeptide is a variation of an amino acid residue introduced at the interface so that two residues forming the interface are formed The above amino acid residues become charged with the same kind.

[57]如[56]之方法,其中,導入之胺基酸殘基為谷胺酸(E)。 [57] The method according to [56], wherein the introduced amino acid residue is glutamic acid (E).

[58]如[56]之方法,其中,導入之胺基酸殘基為天冬醯胺酸(D)。 [58] The method according to [56], wherein the introduced amino acid residue is aspartic acid (D).

[59]如[56]之方法,其中,導入之胺基酸殘基為離胺酸(K)。 [59] The method according to [56], wherein the introduced amino acid residue is lysine (K).

[60]如[56]之方法,其中,導入之胺基酸殘基為精胺酸(R)。 [60] The method according to [56], wherein the introduced amino acid residue is arginine (R).

[61]如[56]之方法,其中,導入之胺基酸殘基為組胺酸(H)。 [61] The method according to [56], wherein the amino acid residue introduced is histidine (H).

[62]如[52]或[53]之方法,其中,形成前述多肽界面之胺基酸殘基之改變係於該界面導入胺基酸殘基之變異,以使形成存在於界面疏水性核之胺基酸殘基成為具有電荷之胺基酸殘基。 [62] The method according to [52] or [53], wherein the change of the amino acid residue forming the interface of the aforementioned polypeptide is a variation of the amino acid residue introduced at the interface so that a hydrophobic core existing at the interface is formed The amino acid residue becomes a charged amino acid residue.

[63]如[62]之方法,其中,導入之胺基酸殘基為谷胺酸(E)。 [63] The method according to [62], wherein the introduced amino acid residue is glutamic acid (E).

[64]如[62]之方法,其中,導入之胺基酸殘基為天冬醯胺酸(D)。 [64] The method according to [62], wherein the introduced amino acid residue is aspartic acid (D).

[65]如[62]之方法,其中,導入之胺基酸殘基為離胺酸(K)。 [65] The method according to [62], wherein the amino acid residue introduced is lysine (K).

[66]如[62]之方法,其中,導入之胺基酸殘基為精胺酸(R)。 [66] The method according to [62], wherein the amino acid residue introduced is arginine (R).

[67]如[62]之方法,其中,導入之胺基酸殘基為組胺酸(H)。 [67] The method according to [62], wherein the introduced amino acid residue is histidine (H).

[68]如[52]或[53]之方法,其中,多肽界面由抗體之重鏈可變區域及輕鏈可變區域形成。 [68] The method according to [52] or [53], wherein the polypeptide interface is formed by a heavy chain variable region and a light chain variable region of the antibody.

[69]如[52]或[53]之方法,其中,多肽界面由2種以上之重鏈可變區域形成。 [69] The method according to [52] or [53], wherein the polypeptide interface is formed by two or more kinds of heavy chain variable regions.

[70]如[52]或[53]之方法,其中,多肽界面由抗體之重鏈不變區域及輕鏈不變區域形成。 [70] The method according to [52] or [53], wherein the polypeptide interface is formed by a heavy chain constant region and a light chain constant region of the antibody.

[71]如[52]或[53]之方法,其中,多肽界面由2種以上重鏈不變區域形成。 [71] The method according to [52] or [53], wherein the polypeptide interface is formed of two or more heavy chain invariant regions.

[72]如[52]之方法,其中,多肽係將2個以上重鏈可變區域及2個以上輕鏈可變區域以連接子結合之單鏈多肽。 [72] The method according to [52], wherein the polypeptide is a single-chain polypeptide in which two or more heavy chain variable regions and two or more light chain variable regions are bound by a linker.

[73]如[53]之方法,其中,異種多聚體係包含2種以上重鏈可變區域及2種以上輕鏈可變區域之多重專一性抗體。 [73] The method according to [53], wherein the heteromultimer system includes a multispecific antibody having two or more heavy chain variable regions and two or more light chain variable regions.

[74]如[73]之方法,其中,異種多聚體為雙專一性抗體。 [74] The method of [73], wherein the heteromultimer is a bispecific antibody.

[75]一種抗體,包含重鏈可變區域及輕鏈可變區域,以下(1)及(2)胺基酸殘基為帶同種電荷之胺基酸殘基:(1)包含於重鏈可變區域之胺基酸殘基,相當於序列編號:6之胺基酸序列之中39位(谷醯胺);(2)包含於輕鏈可變區域之胺基酸殘基,相當於序列編號:8之胺基酸序列之中44位(谷醯胺)。 [75] An antibody comprising a heavy chain variable region and a light chain variable region. The following (1) and (2) amino acid residues are amino acid residues having the same charge: (1) contained in the heavy chain The amino acid residue in the variable region is equivalent to position 39 (glutamine) in the amino acid sequence of SEQ ID NO: 6; (2) the amino acid residue included in the variable region of the light chain is equivalent to SEQ ID NO: 44 of the amino acid sequence of 8 (glutamine).

[76]一種抗體,包含重鏈可變區域及輕鏈可變區域,以下(1)及(2)之胺基酸殘基為帶同種電荷之胺基酸殘基:(1)包含於重鏈可變區域之胺基酸殘基,相當於序列編號:6之胺基酸序列之中45位(白胺酸); (2)包含於輕鏈可變區域之胺基酸殘基,相當於序列編號:8之胺基酸序列之中50位(脯胺酸)。 [76] An antibody comprising a heavy chain variable region and a light chain variable region. The following amino acid residues (1) and (2) are amino acid residues having the same charge: (1) included in the heavy The amino acid residue in the variable region of the chain is equivalent to the 45th position (leucine) in the amino acid sequence of sequence number: 6; (2) The amino acid residue contained in the variable region of the light chain corresponds to position 50 (proline) in the amino acid sequence of SEQ ID NO: 8.

[77]一種抗體,包含重鏈可變區域及輕鏈可變區域,以下(1)或(2)任一者為帶電荷之胺基酸殘基:(1)包含於重鏈可變區域之胺基酸殘基,相當於序列編號:6之胺基酸序列之中45位(白胺酸);(2)包含於輕鏈可變區域之胺基酸殘基,相當於序列編號:8之胺基酸序列之中50位(脯胺酸)。 [77] An antibody comprising a heavy chain variable region and a light chain variable region, and any one of (1) or (2) below is a charged amino acid residue: (1) included in the heavy chain variable region The amino acid residue corresponds to position 45 (leucine) in the amino acid sequence of SEQ ID NO: 6; (2) the amino acid residue contained in the variable region of the light chain corresponds to the sequence number: Position 50 in the amino acid sequence of 8 (proline).

[78]如[75]或[76]之抗體,其中,前述帶同種電荷之胺基酸殘基係擇自包含於以下(a)或(b)任一群之胺基酸殘基:(a)谷胺酸(E)、天冬醯胺酸(D);(b)離胺酸(K)、精胺酸(R)、組胺酸(H)。 [78] The antibody of [75] or [76], wherein the aforementioned amino acid residues having the same charge are selected from amino acid residues contained in any of the following groups (a) or (b): (a ) Glutamic acid (E), aspartic acid (D); (b) lysine (K), arginine (R), and histidine (H).

[79]如[77]之抗體,其中,前述帶電荷之胺基酸殘基為谷胺酸(E)、天冬醯胺酸(D)、離胺酸(K)、精胺酸(R)或組胺酸(H)。 [79] The antibody of [77], wherein the charged amino acid residues are glutamic acid (E), aspartic acid (D), lysine (K), and spermine (R ) Or Histidine (H).

[80]如[75]~[77]之中任一項之抗體,其中,多肽係將2個以上重鏈可變區域與2個以上輕鏈可變區域以連接子結合之單鏈多肽。 [80] The antibody according to any one of [75] to [77], wherein the polypeptide is a single-chain polypeptide in which two or more heavy chain variable regions and two or more light chain variable regions are bound by a linker.

[81]如[75]~[77]之中任一項之抗體,其中,多肽係包含2種以上重鏈可變區域及2種以上輕鏈可變區域之多重專一性抗體。 [81] The antibody according to any one of [75] to [77], wherein the polypeptide is a multispecific antibody comprising two or more heavy chain variable regions and two or more light chain variable regions.

[82]如[81]之抗體,其中,多肽為雙專一性抗體。 [82] The antibody of [81], wherein the polypeptide is a bispecific antibody.

[83]一種組成物,包含[75]~[77]之中任一項之抗體及醫藥上可容許的擔體。 [83] A composition comprising the antibody of any one of [75] to [77] and a pharmaceutically acceptable carrier.

[84]一種核酸,係編碼為構成[75]~[77]任一項之抗體之多 肽。 [84] A nucleic acid encoded as many antibodies constituting any one of [75] to [77] Peptide.

[85]一種寄主細胞,具有[84]之核酸。 [85] A host cell having the nucleic acid of [84].

[86]一種製造如[75]~[77]之中任一項之抗體之方法,包含下列步驟:培養[85]之寄主細胞之步驟、自細胞培養物將多肽回收之步驟。 [86] A method for producing an antibody according to any one of [75] to [77], comprising the steps of: culturing the host cell of [85], and recovering the polypeptide from the cell culture.

[87]一種抗體,包含2種以上重鏈CH3區域,第1重鏈CH3區域之中,擇自由以下(1)~(3)所示胺基酸殘基所構成組之中1組至3組胺基酸殘基帶同種電荷。 [87] An antibody comprising two or more heavy chain CH3 regions. Among the first heavy chain CH3 regions, one of the groups consisting of the amino acid residues shown in (1) to (3) below is selected from one to three. Histidine residues have the same charge.

(1)EU編號為356位及439位之胺基酸殘基,包含於重鏈CH3區域。 (1) Amino acid residues with EU numbers 356 and 439 are included in the CH3 region of the heavy chain.

(2)EU編號為357位及370位之胺基酸殘基,包含於重鏈CH3區域。 (2) Amino acid residues with EU numbers 357 and 370 are included in the CH3 region of the heavy chain.

(3)EU編號為399位及409位之胺基酸殘基,包含重鏈CH3區域。 (3) Amino acid residues with EU numbers 399 and 409, including the heavy chain CH3 region.

[88]如[87]之抗體,係擇自第2重鏈CH3區域之中前述(1)~(3)所示胺基酸殘基之組之胺基酸殘基組,對應於前述第1重鏈CH3區域之中帶同種電荷之前述(1)~(3)所示胺基酸殘基組之1組至3組胺基酸殘基,帶有與前述第1重鏈CH3區域之中對應之胺基酸殘基相反的電荷。 [88] The antibody according to [87], which is an amino acid residue group selected from the group of amino acid residues shown in (1) to (3) above in the second heavy chain CH3 region, corresponding to the aforementioned first In the heavy chain CH3 region, the amino acid residues of groups 1 to 3 shown in the above (1) to (3) with the same kind of charge are carried with the same charges as those in the first heavy chain CH3 region. The corresponding amino acid residue in the charge.

[89]如[87]之抗體,其中,前述帶同種電荷之胺基酸殘基係擇自以下(a)或(b)任一群中包含的胺基酸殘基:(a)谷胺酸(E)、天冬醯胺酸(D);(b)離胺酸(K)、精胺酸(R)、組胺酸(H)、 [89] The antibody of [87], wherein the amino acid residue having the same charge is selected from the amino acid residues contained in any of the following groups (a) or (b): (a) glutamic acid (E), aspartic acid (D); (b) lysine (K), arginine (R), histidine (H),

[90]如[87]之抗體,其中,前述第1重鏈CH3區域與第2 重鏈CH3區域以雙硫鍵交聯。 [90] the antibody of [87], wherein the first heavy chain CH3 region and the second heavy chain The CH3 region of the heavy chain is crosslinked with a disulfide bond.

[91]如[87]之抗體,具有2種以上重鏈不變區域。 [91] The antibody according to [87], which has two or more heavy chain invariant regions.

[92]如[87]之抗體,為包含2種以上重鏈可變區域與2種以上輕鏈可變區域之多重專一性抗體。 [92] The antibody of [87] is a multispecific antibody comprising two or more heavy chain variable regions and two or more light chain variable regions.

[93]如[92]之抗體,為雙專一性抗體。 [93] The antibody of [92] is a bispecific antibody.

[94]一種組成物,包含[87]之抗體及醫藥上可容許的擔體。 [94] A composition comprising the antibody of [87] and a pharmaceutically acceptable carrier.

[95]一種核酸,編碼為構成[87]之抗體之多肽。 [95] A nucleic acid encoding a polypeptide constituting the antibody of [87].

[96]一種寄主細胞,具有[95]之核酸。 [96] A host cell having the nucleic acid of [95].

[97]一種抗體之製造方法,製造[87]之抗體,包含下列步驟:培養[96]之寄主細胞之步驟、自細胞培養物將多肽回收之步驟。 [97] A method for producing an antibody, the antibody of [87], comprising the steps of: culturing the host cell of [96], and recovering the polypeptide from the cell culture.

第1圖顯示將人類化SB04之Fv區域模式化之圖,(A)顯示VH與VL界面之胺基酸殘基H39及L38、(B)VH與VL界面之胺基酸殘基H45及L44。 Figure 1 shows the pattern of the Fv region of humanized SB04. (A) shows amino acid residues H39 and L38 at the interface of VH and VL, and (B) amino acid residues H45 and L44 at the interface of VH and VL. .

第2圖顯示H39與L38改變之抗體中,關於H鏈L鏈組裝之評價結果。結果,所有改變抗體與野生型比較,顯示目的抗體之組裝比例上升。 Figure 2 shows the evaluation results of H chain L chain assembly in H39 and L38 altered antibodies. As a result, the comparison of all modified antibodies with the wild type showed that the assembly ratio of the antibody of interest increased.

線(lane)之說明 Description of the line

M:分子量標記 M: molecular weight marker

1:人類化XB12 H鏈(Q)+人類化XB12 L鏈(Q) 1: Humanized XB12 H chain (Q) + Humanized XB12 L chain (Q)

2:人類化XB12 H鏈(Q)+人類化SB04 L鏈(Q) 2: Humanized XB12 H chain (Q) + Humanized SB04 L chain (Q)

3:野生型:人類化XB12 H鏈(Q)+人類化XB12 L鏈(Q) 3: Wild type: Humanized XB12 H chain (Q) + Humanized XB12 L chain (Q)

+人類化SB04 L鏈(Q) + Humanized SB04 L chain (Q)

4:D變異型:人類化XB12 H鏈(D)+人類化XB12 L鏈(Q)+人類化SB04 L鏈(D) 4: D variant: humanized XB12 H chain (D) + humanized XB12 L chain (Q) + humanized SB04 L chain (D)

5:E變異型:人類化XB12 H鏈(E)+人類化XB12 L鏈(Q)+人類化SB04 L鏈(E) 5: E variant: humanized XB12 H chain (E) + humanized XB12 L chain (Q) + humanized SB04 L chain (E)

6:R變異型:人類化XB12 H鏈(R)+人類化XB12 L鏈(Q)+人類化SB04 L鏈(R) 6: R variant: humanized XB12 H chain (R) + humanized XB12 L chain (Q) + humanized SB04 L chain (R)

7:K變異型:人類化XB12 H鏈(K)+人類化XB12 L鏈(Q)+人類化SB04 L鏈(K) 7: K variant: humanized XB12 H chain (K) + humanized XB12 L chain (Q) + humanized SB04 L chain (K)

第3圖顯示H39與L38之改變抗體之中,凝固活性之評價結果。結果,XB12 H鏈(H39)及SB04 L鏈(L38)改變為Glu之雙專一性抗體顯示與野生型為同等以上之凝固活性。 Figure 3 shows the results of evaluation of the coagulation activity among the modified antibodies of H39 and L38. As a result, the bispecific antibodies in which the XB12 H chain (H39) and SB04 L chain (L38) were changed to Glu showed coagulation activity equal to or more than that of the wild type.

第4圖顯示H39與L38之改變抗體之中,FactorIXa結合活性之評價結果。結果,所有改變抗體之中顯示與野生型為同等之結合活性。 Figure 4 shows the results of evaluation of FactorIXa binding activity among the modified antibodies of H39 and L38. As a result, among all the altered antibodies, the binding activity was equivalent to that of the wild type.

第5圖顯示H39與L38之改變抗體之中,FactorX結合活性之評價結果。結果,所有改變抗體之中,顯示與野生型為同等之結合活性。 Figure 5 shows the evaluation results of FactorX-binding activity among the modified antibodies of H39 and L38. As a result, among all the modified antibodies, the binding activity was equivalent to that of the wild type.

第6圖顯示L44之改變抗體之中,H鏈與L鏈組裝之評價結果。結果,所有改變抗體之中,與野生型比較,目的抗體之組裝比例上升。 Fig. 6 shows the evaluation results of the assembly of H chain and L chain among the modified antibodies of L44. As a result, compared with the wild type, the assembly ratio of the target antibody increased among all the changed antibodies.

線之說明 Description of the line

1:野生型:人類化XB12 H鏈+人類化XB12 L鏈(P)+人類化SB04 L鏈(P) 1: Wild type: humanized XB12 H chain + humanized XB12 L chain (P) + humanized SB04 L chain (P)

2:D變異型:人類化XB12 H鏈+人類化XB12 L鏈(P)+人類化SB04 L鏈(D) 2: D variant: humanized XB12 H chain + humanized XB12 L chain (P) + humanized SB04 L chain (D)

3:E變異型:人類化XB12 H鏈+人類化XB12 L鏈(P)+人類化SB04 L鏈(E) 3: E variant: humanized XB12 H chain + humanized XB12 L chain (P) + humanized SB04 L chain (E)

4:R變異型:人類化XB12 H鏈+人類化XB12 L鏈(P)+人類化SB04 L鏈(R) 4: R variant: humanized XB12 H chain + humanized XB12 L chain (P) + humanized SB04 L chain (R)

5:K變異型:人類化XB12 H鏈+人類化XB12 L鏈(P)+人類化SB04 L鏈(K) 5: K variant: humanized XB12 H chain + humanized XB12 L chain (P) + humanized SB04 L chain (K)

第7圖顯示L44之改變抗體之中,凝固活性之評價結果。結果,所有改變抗體之中,顯示較野生型為高之凝固活性。 Fig. 7 shows the results of evaluation of coagulation activity among L44-modified antibodies. As a result, among all the modified antibodies, it showed higher coagulation activity than the wild type.

第8圖顯示L44之改變抗體之中,FactorX結合活性之評價結果。結果,所有改變抗體之中,顯示與野生型為同等之結合活性。 Figure 8 shows the evaluation results of FactorX-binding activity among L44-modified antibodies. As a result, among all the modified antibodies, the binding activity was equivalent to that of the wild type.

第9圖顯示H39、L38及L44之改變抗體之中,H鏈與L鏈組裝之評價結果。結果,所有改變抗體之中,與野生型比較,顯示目的抗體之組裝比例上升。 Figure 9 shows the evaluation results of the assembly of H chain and L chain among the modified antibodies of H39, L38 and L44. As a result, compared with the wild type, among all the changed antibodies, it was shown that the assembly ratio of the antibody of interest increased.

線之說明 Description of the line

1:野生型:人類化XB12 H鏈(H39:Q)+人類化XB12 L鏈(L38:Q)+人類化SB04 L鏈(L38:Q,L44:P) 1: Wild type: Humanized XB12 H chain (H39: Q) + Humanized XB12 L chain (L38: Q) + Humanized SB04 L chain (L38: Q, L44: P)

2:E+D變異型:人類化XB12 H鏈(H39:E)+人類化XB12 L鏈(L38:Q)+人類化SB04 L鏈(L38:E,L44:D) 2: E + D variant: humanized XB12 H chain (H39: E) + humanized XB12 L chain (L38: Q) + humanized SB04 L chain (L38: E, L44: D)

3:E+E變異型:人類化XB12 H鏈(H39:E)+人類化XB12 L鏈(L38:Q)+人類化SB04 L鏈(L38:E,L44:E) 3: E + E variant: humanized XB12 H chain (H39: E) + humanized XB12 L chain (L38: Q) + humanized SB04 L chain (L38: E, L44: E)

4:E+R變異型:人類化XB12 H鏈(H39:E)+人類化XB12 L鏈(L38:Q)+人類化SB04 L鏈(L38:E,L44:R) 4: E + R variant: humanized XB12 H chain (H39: E) + humanized XB12 L chain (L38: Q) + humanized SB04 L chain (L38: E, L44: R)

5:E+K變異型:人類化XB12 H鏈(H39:E)+人類化XB12L鏈(L38:Q)+人類化SB04 L鏈(L38:E,L44:K) 5: E + K variant: humanized XB12 H chain (H39: E) + humanized XB12L chain (L38: Q) + humanized SB04 L chain (L38: E, L44: K)

M:分子量標記 M: molecular weight marker

第10圖顯示H39、L38及L44之改變抗體之中,凝固活性之評價結果。結果,XB12 H鏈(H39)及SB04 L鏈(L38、L44)改變之雙專一性抗體顯示與野生型為同等以上之凝固活性。 Figure 10 shows the results of evaluation of coagulation activity among the modified antibodies of H39, L38, and L44. As a result, the XB12 H chain (H39) and SB04 L chain (L38, L44) altered bispecific antibodies showed coagulation activity equal to or more than that of the wild type.

第11圖顯示H39、L38及L44之改變抗體之中,FactorIXa結合活性之評價結果。結果,所有改變抗體之中,顯示與野生型為同等之結合活性。 Fig. 11 shows the evaluation results of FactorIXa binding activity among the modified antibodies of H39, L38 and L44. As a result, among all the modified antibodies, the binding activity was equivalent to that of the wild type.

第12圖顯示包含2種重鏈可變區域(VH1及VH2)及2種輕鏈可變區域(VL1及VL2)之sc(Fv)2構造之一例的示意圖。(a)構造之sc(Fv)2主要存在以(b)所示之2種型構造異構物。 FIG. 12 is a schematic diagram showing an example of an sc (Fv) 2 structure including two types of heavy chain variable regions (VH1 and VH2) and two types of light chain variable regions (VL1 and VL2). (a) Structural sc (Fv) 2 mainly exists in two types of structural isomers as shown in (b).

第13圖顯示u2-wz4之構造異構物peak1與peak2以陽離子交換層析分離之結果。 Figure 13 shows the results of the structural isomers of u2-wz4, peak1 and peak2, separated by cation exchange chromatography.

第14圖顯示以陽離子交換層析分離之peak1與peak2之肽輿圖。 Figure 14 shows the peptide map of peak1 and peak2 separated by cation exchange chromatography.

第15圖顯示u2-wz4之構造異構物peak1與peak2、分離前u2-wz4經subtilisin處理後之還原SDS-PAGE結果。所得到之譜帶構造如右所示。 Figure 15 shows the reduced SDS-PAGE results of the structural isomers of u2-wz4, peak1 and peak2, and the separation of u2-wz4 after subtilisin treatment. The resulting band structure is shown on the right.

第16圖顯示由於二價scFv與單鏈抗體之構造差異所產生subtilisin限定分解後之分解圖案不同。二價scFv構造之情形,會產生以虛線圍住之低分子量片段。 FIG. 16 shows that the decomposition pattern of the subtilisin-limited decomposition due to the structural difference between the bivalent scFv and the single-chain antibody is different. In the case of a bivalent scFv structure, a low molecular weight fragment surrounded by a dotted line is generated.

第17圖顯示u2-wz4之構造異構物peak1及peak2、分離 前之u2-wz4以Subtilisin進行限定分解後之凝膠過濾層析結果。箭頭顯示低分子量峰部之溶出位置。 Figure 17 shows the structural isomers of u2-wz4, peak1, peak2, and separation. Former u2-wz4 gel filtration chromatography results after limited decomposition with Subtilisin. The arrow indicates the dissolution position of the low molecular weight peak.

第18圖顯示MG10-GST融合蛋白質固定化管柱精製後之u2-wz4、變異體v1、變異體v3之凝膠過濾層析結果。 Figure 18 shows the gel filtration chromatography results of u2-wz4, variant v1, and variant v3 after purification of the MG10-GST fusion protein immobilized column.

第19圖顯示u2-wz4、變異體v1、變異體v3陽離子交換層析之結果。 Figure 19 shows the results of cation exchange chromatography with u2-wz4, variant v1, and variant v3.

第20圖顯示u2-wz4、u2-wz4精製peak1、u2-wz4精製peak2、變異體v1、變異體v3之等電點電泳結果。 Figure 20 shows isoelectric point electrophoresis results of u2-wz4, u2-wz4 refined peak1, u2-wz4 refined peak2, variant v1, and variant v3.

第21圖顯示u2-wz4精製peak1、u2-wz4精製peak2、變異體v1、變異體v3之蛋白酶限定分解後之凝膠過濾層析分析結果。 Figure 21 shows the results of gel filtration chromatography analysis of the protease-limited decomposition of u2-wz4 refined peak1, u2-wz4 refined peak2, variant v1, and variant v3.

第22圖顯示u2-wz4精製peak1、u2-wz4精製peak2、變異體v1、變異體v3之TPO類似協同活性評價之結果。 Fig. 22 shows the results of evaluation of TPO-like synergistic activity of the purified peaks of u2-wz4, peak2 of u2-wz4, variant v1, and variant v3.

第23圖顯示u2-wz4精製peak1、u2-wz4精製peak2、變異體v1、變異體v3之DSC分析結果。 Figure 23 shows the results of DSC analysis of u2-wz4 refined peak1, u2-wz4 refined peak2, variant v1, and variant v3.

第24圖顯示u2-wz4精製peak1、u2-wz4精製peak2、變異體v1、變異體v3之熱加速試驗之中凝膠過濾層析分析所得到之單體殘存率。 FIG. 24 shows the monomer residual rate obtained by gel filtration chromatography analysis in the thermal accelerated test of u2-wz4 refined peak1, u2-wz4 refined peak2, variant v1, and variant v3.

第25圖顯示u2-wz4精製peak1、u2-wz4精製peak2、變異體v1、變異體v3之熱加速試驗之中陽離子交換層析分析所得到之構造異構物含有比例。 Figure 25 shows the proportion of structural isomers obtained by cation exchange chromatography analysis in the thermal accelerated test of u2-wz4 refined peak1, u2-wz4 refined peak2, variant v1, and variant v3.

第26圖顯示人類化雙專一性抗體(人類化A69(hA69-PFL)/人類化B26(hB26-PF)/人類化BBA(hAL-AQ))之凝固活性之評價結果。結果顯示與嵌合雙專一性抗體為同等以上之凝固活 性。 Figure 26 shows the results of the evaluation of the coagulation activity of humanized bispecific antibodies (Humanized A69 (hA69-PFL) / Humanized B26 (hB26-PF) / Humanized BBA (hAL-AQ)). The results showed that the coagulation activity was more than or equal to that of the chimeric bispecific antibody. Sex.

第27圖顯示改變H鏈不變區域使雙專一性抗體之形成效率提高之概念圖。改變位置編號採用EU編號(Kabat EA et al.1991.Sequences of Proteins of Immunological Interest.NIH)。 FIG. 27 is a conceptual diagram showing that the formation efficiency of a bispecific antibody is improved by changing the invariant region of the H chain. The EU number (Kabat EA et al. 1991. Sequences of Proteins of Immunological Interest. NIH) was used to change the position number.

第28圖顯示CH3界面經過改變之人類化雙專一性抗體(IgG4型)之IEX分析層析圖。 Figure 28 shows the IEX analysis chromatogram of a humanized bispecific antibody (IgG4 type) with a modified CH3 interface.

第29圖顯示CH3界面經過改變之人類化雙專一性抗體(IgG4型)以IEX分析所得到之A-Homo、BiAb、B-Homo之形成比例。 FIG. 29 shows the formation ratios of A-Homo, BiAb, and B-Homo obtained by IEX analysis of a humanized bispecific antibody (IgG4) with a changed CH3 interface.

第30圖顯示由CH3界面經過改變之人類化雙專一性抗體(IgG4型)所精製之BiAb於60℃-1W之熱加速試驗後之單體殘存率。 Fig. 30 shows the monomer residual rate of the BiAb purified from a humanized bispecific antibody (IgG4) with a changed CH3 interface after a thermal acceleration test at 60 ° C-1W.

第31圖顯示CH3界面經過改變之人類化雙專一性抗體(IgG4型)之凝固活性評價結果。結果顯示與未改變之雙專一性抗體為同等凝固活性。 Figure 31 shows the results of the coagulation activity evaluation of a humanized bispecific antibody (IgG4 type) with a modified CH3 interface. The results showed the same coagulation activity as the unchanged bispecific antibody.

第32圖顯示CH3界面經過改變之人類化雙專一性抗體(IgG1型)以A-Homo、BiAb、B-Homo之IEX分析所得到之形成比例。 Figure 32 shows the formation ratio of the humanized bispecific antibody (IgG1 type) with the CH3 interface changed by A-Homo, BiAb, and B-Homo analysis by IEX.

【實施發明之最佳形態】 [Best Mode for Implementing Invention]

本發明係關於多肽組裝或多肽構成之異種多聚體之組裝的控制方法。 The present invention relates to a method for controlling the assembly of polypeptides or the assembly of heteromultimers composed of polypeptides.

首先本發明提供一種多肽之組裝控制方法,包含將形成原來多肽內界面之胺基酸殘基改變,以抑制多肽內組 裝。 First, the present invention provides a method for controlling the assembly of a polypeptide, which comprises changing the amino acid residues forming the internal interface of the original polypeptide to inhibit the internal organization of the polypeptide. Installed.

本發明之中多肽通常指長度10個胺基酸左右以上長度之肽及蛋白質。又,通常為生物由來之多肽,但不特別限定,例如也可為由人工設計之序列構成之多肽。又,也可為天然多肽、或者合成多肽、重組多肽等任一者。再者,上述多肽之片段也包含於本發明之多肽。 Polypeptides in the present invention generally refer to peptides and proteins with a length of about 10 amino acids or more. The peptide is usually derived from a biological organism, but is not particularly limited. For example, it may be a polypeptide composed of artificially designed sequences. In addition, it may be any of a natural polypeptide, a synthetic polypeptide, and a recombinant polypeptide. Furthermore, fragments of the above-mentioned polypeptides are also included in the polypeptides of the present invention.

本發明之中多肽之組裝,換言之,可指例如2個以上多肽區域交互作用之狀態。 The assembly of the polypeptide in the present invention, in other words, can refer to a state where, for example, two or more polypeptide regions interact.

本發明之中「對組裝進行控制」係指控制使成為所望之組裝狀態,更具體而言,係指控制使多肽內之中不形成不希望的組裝。 In the present invention, "controlling assembly" means controlling the desired assembly state, and more specifically, controlling so that undesired assembly is not formed in the polypeptide.

本發明之中「界面」係指通常組裝(交互作用)時之組裝面,形成界面之胺基酸殘基係指通常供組裝之多肽區域中所包含的1或多數胺基酸殘基,更佳為於組裝時接近並與交互作用相關的胺基酸殘基。該交互作用具體而言,包含組裝時接近的胺基酸殘基彼此形成氫鍵、靜電交互作用、鹽橋之情形等。 In the present invention, "interface" refers to the assembly surface during normal assembly (interaction), and the amino acid residue forming the interface refers to the 1 or most amino acid residues contained in the polypeptide region usually used for assembly, more Preferred are amino acid residues that are close to and associated with the interaction during assembly. Specifically, the interaction includes a case where amino residues which are close to each other during assembly form hydrogen bonds with each other, an electrostatic interaction, a case of a salt bridge, and the like.

本發明之中「形成界面之胺基酸殘基」更加詳述的話,係指構成界面之多肽區域之中,該多肽區域所包含的胺基酸殘基。構成界面之多肽區域若舉一例來表示,係指抗體、配體、受體、基質等之中,負責其分子內或分子間之中選擇性結合之多肽區域。具體而言,例如有抗體之中之重鏈可變區域、輕鏈可變區域等。 In the present invention, the "amino acid residue forming an interface", in more detail, refers to the amino acid residue contained in the polypeptide region constituting the interface. The polypeptide region constituting the interface, if taken as an example, refers to a polypeptide region in an antibody, a ligand, a receptor, a matrix, and the like, which is responsible for selective binding within or between molecules. Specific examples include heavy chain variable regions and light chain variable regions among antibodies.

本發明方法之中,胺基酸殘基之「改變」具體而言,係指將原胺基酸殘基取代為其他胺基酸殘基、使原來之胺 基酸殘基缺失、附加新的胺基酸殘基等,較佳為指將原胺基酸殘基取代為其他胺基酸殘基。 In the method of the present invention, the "change" of the amino acid residue specifically refers to replacing the original amino acid residue with another amino acid residue to make the original amine The deletion of an amino acid residue, the addition of a new amino acid residue, and the like preferably refer to the replacement of an ortho amino acid residue with another amino acid residue.

又,本發明之中「多肽」較佳為可形成2種以上構造構造異構物之多肽。該構造構造異構物一般而言,係指胺基酸序列相同,但是立體構造(三次構造)彼此不同的蛋白質。通常,構造構造異構物彼此之中化學或物理性質之中至少之一多會不同。 The "polypeptide" in the present invention is preferably a polypeptide capable of forming two or more structural isomers. Generally speaking, the structural structural isomers refer to proteins having the same amino acid sequence but different three-dimensional structures (cube structures) from each other. Generally, at least one of the chemical or physical properties of the structural isomers differs from each other.

本發明較佳態樣之中,係關於自可存在2種以上構造構造異構物之中優先地(有效率地)取得所望構造構造異構物之方法。亦即,就一態樣而言,係關於將可形成2種以上構造構造異構物之多肽之中,將形成多肽內界面之胺基酸殘基加以改變,以抑制形成1種以上構造構造異構物之多肽間之組裝之方法。 A preferred aspect of the present invention relates to a method for preferentially (efficiently) obtaining a desired structural structural isomer from among two or more structural structural isomers. That is, in one aspect, it is related to changing the amino acid residues forming the internal interface of the polypeptide among polypeptides capable of forming two or more structural isomers to inhibit the formation of one or more structural structures. Method for assembling isomeric polypeptides.

例如,於多肽內之中,存在第一~第四之多肽區域並且該等任意2個區域可組裝的情形,可考慮(1)第一及第二多肽區域組裝,再者第三及第四多肽區域組裝、(2)第一及第三多肽區域組裝,再者,第二及第四多肽區域組裝、(3)第一及第四多肽區域組裝,再者,第二及第三多肽區域組裝之情形,主要可存在3種構造構造異構物。 For example, in the case where there are first to fourth polypeptide regions and these two arbitrary regions can be assembled, (1) the first and second polypeptide regions can be assembled, and the third and the third polypeptide regions can be assembled. Assembly of four polypeptide regions, (2) assembly of first and third polypeptide regions, further, assembly of second and fourth polypeptide regions, (3) assembly of first and fourth polypeptide regions, further, second In the case of the third polypeptide region assembly, there are mainly three structural and structural isomers.

為了優先地取得如上述狀況之中(1)的方式組裝的多肽(構造構造異構物),例如可將存在於該等第一、三或四多肽區域之形成界面的胺基酸殘基加以改變,以抑制第一多肽區域與第三及第四多肽區域之組裝。 In order to obtain preferentially the polypeptides (structural and structural isomers) assembled in the manner described in (1) above, for example, amino acid residues existing at the interface forming the first, third, or tetrapeptide regions may be used. Changes are made to inhibit the assembly of the first and third and fourth polypeptide regions.

又,本發明之方法係關於異種多聚體之組裝控制 方法,包含將形成原來多肽間界面之胺基酸殘基加以改變,以抑制多肽間之組裝。 The method of the present invention relates to the assembly control of heteromultimers. The method comprises changing the amino acid residues forming the interface between the original polypeptides to inhibit the assembly between the polypeptides.

本發明之中「異種多聚體(heteromultimer)」係指由多數種多肽構成,且該多肽可彼此組裝之蛋白質多聚體。更詳細地說,「異種多聚體」為至少具有第一多肽及第二多肽,且其中第二多肽為與胺基酸序列之中第一多肽至少有1個胺基酸殘基不同的分子。又,雖不特別限定,較佳為,該異種多聚體至少對於2種相異配體、抗原、受體、或基質等具有結合專一性。該異種多聚體除了第一及第二多肽所形成「異種二聚體」,尚可存在其他種多肽。亦即,本發明之「異種多聚體」不限於異種二聚體,例如也包含異種三聚體、異種四聚體等。 The “heteromultimer” in the present invention refers to a protein multimer composed of a plurality of polypeptides and the polypeptides can be assembled with each other. In more detail, a "heteromeric polymer" has at least a first polypeptide and a second polypeptide, and the second polypeptide is at least one amino acid residue from the first polypeptide in the amino acid sequence. Different molecules. Although not particularly limited, it is preferred that the heteromultimer has binding specificity for at least two different ligands, antigens, receptors, or matrices. In addition to the "heterodimer" formed by the first and second polypeptides of the heteromultimer, other types of polypeptides may exist. That is, the "heteromeric multimer" of the present invention is not limited to heterodimer, and includes, for example, heterotrimer and heterotetramer.

上述方法之較佳態樣之中,為對於可形成2種以上多聚體之異種多聚體,改變形成多肽間界面之胺基酸殘基,以抑制形成1種以上多聚體之多肽間之組裝的方法。 In a preferred aspect of the above method, for heteromultimers that can form two or more multimers, the amino acid residues that form the interface between the polypeptides are changed to inhibit the formation of one or more multimers. Method of assembly.

例如,於由第一~第四多肽構成之蛋白質多聚體之中,可將該等任意2個多肽組裝之情形,主要可存在:(1)第一及第二多肽組裝,再者,第三及第四多肽組裝之多聚體、(2)第一及第三多肽組裝,再者,第二及第四多肽組裝之多聚體,或(3)第一及第四多肽組裝,再者,第二及第三多肽組裝之多聚體。 For example, in a protein multimer consisting of the first to fourth polypeptides, any two of these polypeptides can be assembled, mainly including: (1) the first and second polypeptides are assembled, and , Multimers of the third and fourth polypeptide assemblies, (2) first and third polypeptide assemblies, and (2) multimers of the second and fourth polypeptide assemblies, or (3) first and third polypeptides. Four polypeptide assemblies, and multimers of the second and third polypeptide assemblies.

為了優先地取得如上述狀況之中(1)之方式組裝之多聚體的情形,例如,可改變該等第一、三或四多肽所包含之胺基酸殘基,以抑制第一多肽與第三及第四多肽組裝。 In order to preferentially obtain the situation of multimers assembled in the manner described in (1) above, for example, the amino acid residues contained in the first, three, or tetrapeptides can be changed to inhibit the first poly The peptide is assembled with the third and fourth polypeptides.

本發明之多肽之組裝控制方法之較佳態樣,特徵 為:例如形成多肽界面之胺基酸殘基之改變係對該界面導入胺基酸殘基之變異,以使形成界面之2個殘基以上胺基酸殘基成為帶同種電荷。 Preferred aspects and characteristics of the assembly control method of the polypeptide of the present invention For example, the change of the amino acid residue forming the interface of the polypeptide is a variation of introducing an amino acid residue into the interface, so that the amino acid residue having more than 2 residues forming the interface becomes the same kind of charge.

上述方法之中,可認為藉由使與界面之中組裝相關的2個以上胺基酸殘基改變成為彼此帶同種電荷,藉由電荷之斥力,而使該等胺基酸殘基彼此之組裝受到抑制。 In the above method, it is considered that the amino acid residues are assembled with each other by changing two or more amino acid residues related to assembly in the interface to have the same charge with each other, and by the repulsive force of the charges. Suppressed.

因此,上述方法之中,被改變的胺基酸殘基較佳為,形成界面之多肽區域間之中,於組裝時彼此接近之2個以上胺基酸殘基。 Therefore, in the above method, the amino acid residues to be changed are preferably two or more amino acid residues which are close to each other during assembly between the polypeptide regions forming the interface.

組裝時接近之胺基酸殘基可藉由,例如解析多肽之立體構造,並檢查該多肽組裝時形成界面之多肽區域之胺基酸序列而發現。界面之中彼此接近之胺基酸殘基,成為本發明方法之中「改變」之較佳目標。 The amino acid residues that are close during assembly can be found, for example, by analyzing the three-dimensional structure of the polypeptide and examining the amino acid sequence of the polypeptide region that forms the interface during the assembly of the polypeptide. The amino acid residues which are close to each other in the interface become the better target of "change" in the method of the present invention.

胺基酸之中,已知有帶電荷之胺基酸。一般而言,帶正電荷之胺基酸(正電荷胺基酸)已知有離胺酸(K)、精胺酸(R)、組胺酸(H)。帶負電荷之胺基酸(負電荷胺基酸)已知有天冬醯胺酸(D)、谷胺酸(E)等。因此,較佳為,本發明之中帶同種電荷之胺基酸係指、帶正電荷之各胺基酸,或者帶負電荷之各胺基酸。 Among the amino acids, charged amino acids are known. In general, positively charged amino acids (positively charged amino acids) are known as lysine (K), arginine (R), and histidine (H). As the negatively charged amino acid (negatively charged amino acid), aspartic acid (D), glutamic acid (E), and the like are known. Therefore, preferably, the amino acids having the same charge in the present invention refer to each amino acid having a positive charge, or each amino acid having a negative charge.

於本發明方法之中,使變異的所有胺基酸殘基以成為帶同種電荷之方式所做改變,較佳為不一定限於該情形,例如,由於改變而導入之胺基酸殘基為多數的情形,也可於該等胺基酸殘基之中包含少數不帶電荷的胺基酸殘基。 In the method of the present invention, it is preferable that all amino acid residues that are mutated are changed in such a manner that they have the same charge. It is preferably not limited to this case. For example, the amino acid residues introduced due to the change are the majority In the case of these amino acid residues, a small number of uncharged amino acid residues may also be included.

本發明方法之中供改變之胺基酸殘基數不特別限 制,例如改變抗體可變區域之情形,為了不使與抗原之結合活性降低及為了不提高抗原性,較佳為使改變之胺基酸殘基儘可能少。本發明方法如後述實施例所示,藉由使界面之中接近的2個胺基酸殘基之中兩者或一者改變,可控制組裝。上述「少數」係指,例如1~10左右之數,較佳為1~5左右之數,更佳為1~3左右之數,最佳為1或2。 The number of amino acid residues to be changed in the method of the present invention is not particularly limited For example, in the case of changing the variable region of an antibody, in order not to reduce the binding activity with the antigen and to not increase the antigenicity, it is preferable to make the number of amino acid residues to be changed as small as possible. As shown in the examples described later, the method of the present invention can control assembly by changing two or one of the two amino acid residues close to each other at the interface. The above-mentioned "minority" refers to, for example, a number of about 1 to 10, preferably a number of about 1 to 5, more preferably a number of about 1 to 3, and most preferably 1 or 2.

本發明之較佳態樣之中,由改變而導入之(供予改變)胺基酸殘基較佳為,全部為擇自上述正電荷胺基酸之胺基酸殘基,或全部為擇自上述負電荷胺基酸之胺基酸殘基。 In a preferred aspect of the present invention, the amino acid residues introduced (provided to be changed) by the change are preferably all the amino acid residues selected from the above-mentioned positively charged amino acids, or all are selected. Amino acid residues from the negatively charged amino acids described above.

又,本發明之中導入之胺基酸殘基,較佳為谷胺酸(E)、天冬醯胺(D)、離胺酸(K)、精胺酸(R)、組胺酸(H)。 The amino acid residues introduced in the present invention are preferably glutamic acid (E), asparagine (D), lysine (K), arginine (R), and histidine ( H).

又,原(改變前)多肽之中,當形成界面之胺基酸殘基(X)已經帶電荷之情形,將組裝時與該胺基酸殘基接近並相對之胺基酸殘基改變成為與該胺基酸殘基(X)為相同之胺基酸殘基(或帶同種電荷之胺基酸殘基)亦為本發明較佳態樣之一。於該態樣之中,只要改變形成界面之胺基酸殘基其中之一即可。 In the original (before change) polypeptide, when the amino acid residue (X) forming the interface is already charged, the amino acid residue that is close to and opposite to the amino acid residue during assembly is changed to The amino acid residue (or amino acid residue having the same charge) which is the same as the amino acid residue (X) is also one of the preferred aspects of the present invention. In this aspect, one of the amino acid residues forming the interface may be changed.

又,本發明組裝控制方法之較佳態樣之中,其特徵為:形成多肽界面之胺基酸殘基之改變係於該界面導入胺基酸殘基之變異,以使界面所存在形成疏水性核之胺基酸殘基成為帶電荷之胺基酸殘基。 In addition, in a preferred aspect of the assembly control method of the present invention, it is characterized in that the change of the amino acid residue forming the peptide interface is a variation of the amino acid residue introduced at the interface, so that the interface is hydrophobic Sexual core amino acid residues become charged amino acid residues.

一般而言,「疏水性核(hydrophobic core)」係指疏水性胺基酸之側鏈集合於組裝之多肽內側而形成之部分。疏水性胺基酸包含例如丙胺酸、異白胺酸、白胺酸、甲硫胺酸、 苯丙胺酸、脯胺酸、色胺酸、纈胺酸等。又,疏水核形成有時也與疏水性胺基酸以外之胺基酸殘基(例如酪胺酸)有關。該疏水性核與親水性胺基酸之側鏈露出於外側之親水性表面一起成為促進水溶性多肽組裝之驅動力。如果相異之2個功能區之疏水性胺基酸存在於分子表面,並且暴露於水分子中,則熵(entropy)增大並且自由能增大。因此,2個功能區為了使自由能減少並安定化,而彼此組裝,並使界面之疏水性胺基酸埋入分子內部,形成疏水核。 Generally speaking, a "hydrophobic core" refers to a portion formed by gathering side chains of a hydrophobic amino acid on the inside of an assembled polypeptide. Hydrophobic amino acids include, for example, alanine, isoleucine, leucine, methionine, Phenylalanine, Proline, Tryptophan, Valine, etc. Moreover, the formation of a hydrophobic core may be related to an amino acid residue (for example, tyrosine) other than a hydrophobic amino acid. The hydrophobic core, together with the hydrophilic surface on which the side chain of the hydrophilic amino acid is exposed on the outside, becomes a driving force for promoting the assembly of the water-soluble polypeptide. If the hydrophobic amino acids of the two different functional regions are present on the molecular surface and exposed to water molecules, the entropy increases and the free energy increases. Therefore, in order to reduce and stabilize the free energy, the two functional regions are assembled with each other, and the hydrophobic amino acid at the interface is embedded in the molecule to form a hydrophobic core.

可認為是發生多肽組裝時,由於自形成疏水性核之疏水性胺基酸改變為帶電荷之極性胺基酸,使疏水性核之形成受到抑制,其結果,使多肽組裝受到抑制。 It is considered that when the assembly of the polypeptide occurs, the formation of the hydrophobic core is inhibited because the hydrophobic amino acid that has formed the hydrophobic core is changed to a charged polar amino acid. As a result, the assembly of the polypeptide is inhibited.

對於該技術領域之人士,可藉由對所望多肽進行胺基酸序列解析,而了解疏水性核是否存在及形成部位(區域)等。亦即本發明係一種組裝控制方法,其特徵為將界面之中可形成疏水性核之胺基酸殘基,改變為帶電荷之胺基酸殘基。 For those skilled in the art, by analyzing the amino acid sequence of the desired polypeptide, it is possible to understand whether a hydrophobic core is present and the formation site (region). That is, the present invention is an assembly control method, which is characterized by changing an amino acid residue that can form a hydrophobic core in the interface to a charged amino acid residue.

上述方法之中,就帶電荷之胺基酸殘基而言,較佳為例如谷胺酸(E)、天冬醯胺酸(D)、離胺酸(K)、精胺酸(R)、組胺酸(H)。 Among the above methods, in terms of the charged amino acid residues, for example, glutamic acid (E), aspartic acid (D), lysine (K), and arginine (R) are preferred. , Histidine (H).

本發明之組裝控制方法,可利用為在抗體或抗體片段及具有類似抗體活性之多肽等之製造之中,優先地取得(製造)目的抗體(多肽)之方法。 The assembly control method of the present invention can be used to preferentially obtain (manufacture) an antibody (polypeptide) of interest in the production of an antibody, an antibody fragment, or a polypeptide having similar antibody activity.

本發明之中,用語「抗體」係使用為最廣的意義,只要是顯示所望之生物學活性即可,包含單株抗體、多株抗體、抗體變異體(嵌合抗體、人類化抗體、低分子化抗體(也包 含抗體片段)、多專一性抗體等)。又,本發明之中「抗體」也可為多肽或者異種多聚體之中任一者。較佳抗體為單株抗體、嵌合抗體、人類化抗體,以及抗體片段等低分子化抗體。本發明之中,取得該等抗體取得(作成)時,可適當使用本發明之組裝控制方法。 In the present invention, the term "antibody" is used in the broadest sense as long as it exhibits the desired biological activity, and includes single antibodies, multiple antibodies, and antibody variants (chimeric antibodies, humanized antibodies, low antibodies). Molecular antibodies (also include Contains antibody fragments), multispecific antibodies, etc.). The "antibody" in the present invention may be any one of a polypeptide and a heteromultimer. Preferred antibodies are monoclonal antibodies, chimeric antibodies, humanized antibodies, and low-molecular-weight antibodies such as antibody fragments. In the present invention, when obtaining (making) such antibodies, the assembly control method of the present invention can be appropriately used.

本發明之中「多重專一性抗體」(本說明書,與「多種專一性抗體」表示相同含意)係指可與相異的多種抗原決定基進行專一性結合之抗體。也就是說,多重專一性抗體係對於至少2種不同的抗原決定基具有專一性之抗體,除了認識相異抗原之抗體以外,尚包含認識相同抗原上之相異抗原決定基的抗體。(例如,當抗原為異受體之情形,多重專一性抗體為認識構成異受體之相異功能區者,或者抗原為單體之情形,多重專一性抗體認識單體抗原之多數位置)。通常,如該種分子係與2個抗原結合者(雙專一性抗體:bispecific抗體;本說明書之中與「二種專一性抗體」為相同含意),但也可對於更多種(例如3種)抗原具有專一性者。 In the present invention, "multispecific antibodies" (in this specification, the same meaning as "multiple specific antibodies") refer to antibodies that can specifically bind to different multiple epitopes. In other words, the multiple specificity antibody system has specificity for at least two different epitopes. In addition to antibodies that recognize different antigens, it also includes antibodies that recognize different epitopes on the same antigen. (For example, when the antigen is a heteroreceptor, the multispecific antibody recognizes the different functional regions constituting the heteroreceptor, or when the antigen is a monomer, the multispecific antibody recognizes most positions of the monomer antigen). Generally, if this molecular line is bound to two antigens (bispecific antibody: bispecific antibody; in this description, it has the same meaning as "two specific antibodies"), but it can also be used for more species (such as three ) Antigens are specific.

本發明之中「抗體」包含藉由對上述抗體進一步進行胺基酸取代、缺失、加成及/或插入或嵌合化或人類化等,而使其胺基酸序列改變者。以胺基酸取代、缺失、加成及/或插入、以及人類化、嵌合化等所進行之胺基酸序列改變,可利用該技術領域之人士公知之方法進行。同樣地,本發明之中以重組抗體之方式製作抗體時所利用之抗體可變區域及不變區域,也可藉由胺基酸取代、缺失、加成及/或插入或嵌合化或人類化等來改變胺基酸序列。 The "antibody" in the present invention includes those whose amino acid sequence is changed by further amino acid substitution, deletion, addition, and / or insertion or chimerization or humanization of the above-mentioned antibody. Amino acid sequence changes by amino acid substitution, deletion, addition and / or insertion, and humanization, chimerization, etc. can be performed by methods known to those skilled in the art. Similarly, in the present invention, the antibody variable region and the constant region used in the production of antibodies by recombinant antibodies can also be substituted, deleted, added, and / or inserted or chimeric or human by amino acid substitution. To change the amino acid sequence.

本發明之中抗體可為小鼠抗體、人類抗體、大鼠抗體、兔抗體、山羊抗體、駱駝抗體等各種動物由來之抗體。再者,可為例如嵌合抗體,其中,較佳為人類化抗體等將胺基酸序列取代之改變抗體。又,可為使各種分子結合之抗體修飾物、抗體片段、低分子化抗體等各種抗體。 The antibodies in the present invention may be antibodies derived from various animals, such as mouse antibodies, human antibodies, rat antibodies, rabbit antibodies, goat antibodies, camel antibodies, and the like. Further, it may be, for example, a chimeric antibody, and among them, a modified antibody in which an amino acid sequence is substituted, such as a humanized antibody, is preferred. In addition, various antibodies such as antibody modifications, antibody fragments, and low-molecular-weight antibodies that bind various molecules can be used.

「嵌合抗體」係指將相異動物由來之序列組合而製作之抗體。例如有,由小鼠抗體之重鏈及輕鏈之可變(V)區域與人類抗體之重鏈及輕鏈之不變(C)區域構成的抗體。嵌合抗體之製作為公知的,例如,可藉由將編碼為抗體V區域之DNA與編碼為人類抗體C區域之DNA連結,並將該等嵌入表現載體並導入寄主使生產,來得到嵌合抗體。 A "chimeric antibody" refers to an antibody made by combining sequences derived from different animals. For example, there are antibodies composed of the variable (V) regions of the heavy and light chains of a mouse antibody and the constant (C) regions of the heavy and light chains of a human antibody. The production of chimeric antibodies is well known. For example, chimeric antibodies can be obtained by linking the DNA encoding the V region of the antibody with the DNA encoding the C region of the human antibody, and inserting these into the expression vector and introducing them into the host for production. antibody.

「人類化抗體」也稱為再構成(reshaped)人類抗體,將係指人類以外之哺乳動物由來之抗體,例如小鼠抗體之互補性決定區域(CDR;complementarity determining region)移植到人類抗體之CDR者。鑑定CDR之方法為公知的(Kabat et al.,Sequence of Proteins of Immunological Interest(1987),National Institute of Health,Bethesda,Md.;Chothia et al.,Nature(1989)342:877)。又,其一般的基因重組方法亦為公知(參照歐洲專利申請公開編號EP 125023號公報、WO 96/02576號公報)。可藉由公知方法,例如決定小鼠抗體之CDR,並取得編碼為將該CDR與人類抗體之框架區域(framework region;FR)連結之抗體的DNA,並將人類化抗體以通常表現載體使用之系來產生。如該DNA可藉由以使CDR及FR兩者之末端區域具有重疊部分之方式所製作之數個寡核苷酸作為 引子,並以PCR法合成(參照WO98/13388號公報之方法)。透過CDR而連結之人類抗體之FR,可以用使CDR形成良好之抗原結合部位的方式來選擇。視需要,也可以用使再構成人類抗體之CDR形成適當之抗原結合部位之方式,來改變抗體可變區域之中FR之胺基酸(Sato et al.,Cancer Res.(1993)53:851-6)。可改變之FR中之胺基酸殘基包含:於抗原以直接、非共價鍵來結合之部分(Amit et al.,Science(1986)233:747-53)、對CDR構造影響或作用之部分(Chothia et al.,J.Mol.Biol.(1987)196:901-17)及與VH-VL交互作用相關之部分(EP239400號專利公報)。 "Humanized antibodies" are also known as reshaped human antibodies, which are antibodies derived from mammals other than humans, such as the complementarity determining region (CDR) of mouse antibodies, and transplanted into the CDRs of human antibodies By. Methods for identifying CDRs are well known (Kabat et al., Sequence of Proteins of Immunological Interest (1987), National Institute of Health, Bethesda, Md .; Chothia et al., Nature (1989) 342: 877). Moreover, its general genetic recombination method is also known (refer to European Patent Application Publication No. EP 125023, WO 96/02576). The CDR of a mouse antibody can be determined by a known method, and DNA encoding an antibody that links the CDR with a framework region (FR) of a human antibody can be obtained, and the humanized antibody can be used as a general expression vector. Department to produce. For example, the DNA can be made by using several oligonucleotides made in such a way that the terminal regions of both CDR and FR have overlapping portions. Primers were synthesized by PCR (see the method of WO98 / 13388). The FR of the human antibody linked via the CDR can be selected by a method in which the CDR forms a good antigen-binding site. If necessary, the amino acid of FR in the variable region of the antibody can also be changed by making the CDRs of the reconstituted human antibody into an appropriate antigen-binding site (Sato et al., Cancer Res. (1993) 53: 851 -6). The amino acid residues in the FR that can be modified include: the portion bound to the antigen by a direct, non-covalent bond (Amit et al., Science (1986) 233: 747-53), the effect on the structure of the CDR or the effect Section (Chothia et al., J. Mol. Biol. (1987) 196: 901-17) and a section related to VH-VL interactions (EP239400 Patent Gazette).

本發明之中,抗體為嵌合抗體或人類化抗體之情形,該等抗體之C區域較佳為使用人類抗體由來者。例如H鏈可使用Cγ1、Cγ2、Cγ3、Cγ4,L鏈可使用Cκ、Cλ。又,為了改善抗體或其產生之安定性,可將人類抗體C區域視需要加以修飾。本發明之中,嵌合抗體較佳為由人類以外之哺乳動物由來抗體之可變區域與人類抗體由來之不變區域構成。另一方面,人類化抗體較佳為由人類以外之哺乳動物由來抗體之CDR與人類抗體由來之FR及C區域構成。關於可變區域,於(3)-3.之中整理並說明。人類抗體由來之不變區域依IgG(IgG1、IgG2、IgG3、IgG4)、IgM、IgA、IgD及IgE等同種型(isotype)而具有固有之胺基酸序列。本發明之中,人類化抗體所使用之不變區域,可為屬於任一同種型之抗體之不變區域。較佳為,使用人類IgG之不變區域,但不限於該等。又,利用於人類化抗體之人類抗體由來之FR亦不特別限定,可為屬於任一同種型之抗體。 In the present invention, when the antibody is a chimeric antibody or a humanized antibody, the C region of the antibody is preferably derived from a human antibody. For example, Cγ1, Cγ2, Cγ3, and Cγ4 can be used for the H chain, and Cκ and Cλ can be used for the L chain. In order to improve the stability of the antibody or its production, the human antibody C region may be modified as necessary. In the present invention, the chimeric antibody is preferably composed of a variable region derived from a mammal-derived antibody and a constant region derived from a human antibody. On the other hand, the humanized antibody is preferably composed of CDRs derived from mammalian antibodies other than humans and FR and C regions derived from human antibodies. Regarding the variable region, it is organized and explained in (3) -3. The invariant regions derived from human antibodies have inherent amino acid sequences based on IgG (IgG1, IgG2, IgG3, IgG4), IgM, IgA, IgD, and IgE equivalent isotypes. In the present invention, the invariant region used by the humanized antibody may be an invariant region of an antibody belonging to any isotype. Preferably, invariant regions of human IgG are used, but are not limited to these. In addition, the FR derived from the human antibody used for the humanized antibody is not particularly limited, and may be an antibody of any isotype.

本發明之中,嵌合抗體及人類化抗體之可變區域及不變區域只要是能顯示原來抗體之結合專一性,也可藉缺失、取代、插入及/或加成等加以改變。 In the present invention, as long as the variable and invariable regions of the chimeric antibody and the humanized antibody can show the binding specificity of the original antibody, they can also be changed by deletion, substitution, insertion, and / or addition.

利用人類由來序列之嵌合抗體及人類化抗體,由於在人類體內之抗原性低,被認為在治療目的等對人類投予時為有用的。 Chimeric antibodies and humanized antibodies using human-derived sequences are considered to be useful when administered to humans for therapeutic purposes and the like due to their low antigenicity in humans.

又,低分子化抗體於體內動態之性質方面,由可使用大腸菌、植物細胞等以低成本製造之觀點,作為抗體是有用的。 In addition, the low-molecular-weight antibody is useful as an antibody because it can be produced at low cost by using coliforms, plant cells, and the like in terms of its dynamics in vivo.

抗體片段為低分子化抗體之一種。又,低分子化抗體尚包含使抗體片段成為其構造一部分之抗體。本發明之中低分子化抗體只要具有對抗原之結合能力則其構造、製造法等不限定。低分子化抗體之中,尚存在有較全長抗體更高活性之抗體(Orita et al.,Blood(2005)105:562-566)。本說明書之中,「抗體片段」雖然只要是全長抗體(whole antibody、例如whole IgG等)之一部分即不特別限定,但較佳為包含重鏈可變區域(VH)或輕鏈可變區域(VL)。較佳抗體片段之例,例如有Fab、F(ab')2、Fab'、Fv等。抗體片段中之VH或VL之胺基酸序列可藉由取代、缺失、加成及/或插入加以改變。再者,只要能保持對抗原之結合能力,則VH及VL之一部可缺損。例如,於前述抗體片段之中,「Fv」為包含完全之抗原認識部位與結合部位之最小抗體片段。「Fv」為由1個VH及1個VL以非共價鍵強力結合之二聚物(VH-VL二聚物)。由各可變區域之3個互補鏈決定區域(complementarity determining region;CDR) 在VH-VL二聚物之表面形成抗原結合部位。由6個CDR在抗體賦予抗原結合部位。然而,即使1個可變區域(或為僅含有對抗原專一性之3個CDR之Fv一半)較全結合部位之親和性為低,仍認識抗原,並具有結合能力。因此,較如該Fv小之分子亦包含於本發明之中抗體片段。又,抗體片段之可變區域可嵌合化或人類化。 The antibody fragment is one of low-molecular-weight antibodies. The low-molecular-weight antibody also includes an antibody in which an antibody fragment is part of its structure. In the present invention, as long as the low-molecular-weight antibody has the ability to bind to an antigen, its structure, manufacturing method, and the like are not limited. Among the low-molecular-weight antibodies, antibodies with higher activity than full-length antibodies still exist (Orita et al., Blood (2005) 105: 562-566). In the present specification, the "antibody fragment" is not particularly limited as long as it is a part of a full-length antibody (for example, whole IgG, etc.), but preferably contains a heavy chain variable region (VH) or a light chain variable region ( VL). Examples of preferred antibody fragments include Fab, F (ab ') 2, Fab', and Fv. The amino acid sequence of VH or VL in an antibody fragment can be changed by substitution, deletion, addition and / or insertion. Furthermore, as long as the ability to bind to the antigen is maintained, one of VH and VL may be defective. For example, among the aforementioned antibody fragments, "Fv" is the smallest antibody fragment including a complete antigen recognition site and a binding site. "Fv" is a dimer (VH-VL dimer) strongly bonded by one VH and one VL with a non-covalent bond. Complementarity determining region (CDR) determined by three complementary strands of each variable region An antigen-binding site is formed on the surface of the VH-VL dimer. The six CDRs confer an antigen-binding site on the antibody. However, even if one variable region (or half of the Fv containing only three CDRs specific for the antigen) has a lower affinity than the full binding site, the antigen is still recognized and has the ability to bind. Therefore, molecules smaller than the Fv are also included in the antibody fragments of the present invention. The variable region of the antibody fragment can be chimeric or humanized.

低分子化抗體較佳為包含VH及VL兩者。就低分子化抗體之例而言,例如有Fab、Fab'、F(ab')2及Fv等抗體片段以及可利用抗體片段所製作之scFv(單鏈Fv)(Huston et al.,Proc.Natl.Acad.Sci.USA(1988)85:5879-83;Plickthun「The Pharmacology of Monoclonal Antibodies」Vol.113,Resenburg及Moore編,Springer Verlag,New York,pp.269-315,(1994))、雙功能抗體(Diabody)(Holliger et al.,Proc.Natl.Acad.Sci.USA(1993)90:6444-8;EP404097號;WO93/11161號;Johnson et al.,Method in Enzymology(1991)203:88-98;Holliger et al.,Protein Engineering(1996)9:299-305;Perisic et al.,Structure(1994)2:1217-26;John et al.,Protein Engineering(1999)12(7):597-604;Atwell et al.,Mol.Immunol.(1996)33:1301-12)、sc(Fv)2(Hudson et al、J Immunol.Methods(1999)231:177-89;Orita et al.,Blood(2005)105:562-566)、Triabody(Journal of Immunological Methods(1999)231:177-89),及串聯雙功能抗體(Tandem Diabody)(Cancer Research(2000)60:4336-41)等。 The low-molecular-weight antibody preferably contains both VH and VL. Examples of low-molecular-weight antibodies include antibody fragments such as Fab, Fab ', F (ab') 2, and Fv, and scFv (single-chain Fv) that can be produced using antibody fragments (Huston et al., Proc. Natl. Acad. Sci. USA (1988) 85: 5879-83; Plickthun "The Pharmacology of Monoclonal Antibodies" Vol. 113, edited by Resenburg and Moore, Springer Verlag, New York, pp. 269-315, (1994)), Diabody (Holliger et al., Proc. Natl. Acad. Sci. USA (1993) 90: 6444-8; EP404097; WO93 / 11161; Johnson et al., Method in Enzymology (1991) 203 : 88-98; Holliger et al., Protein Engineering (1996) 9: 299-305; Perisic et al., Structure (1994) 2: 1217-26; John et al., Protein Engineering (1999) 12 (7) : 597-604; Atwell et al., Mol. Immunol. (1996) 33: 1301-12), sc (Fv) 2 (Hudson et al, J Immunol. Methods (1999) 231: 177-89; Orita et al ., Blood (2005) 105: 562-566), Triabody (Journal of Immunological Methods (1999) 231: 177-89), and Tandem Diabody (Cancer Research (2000) 60: 4336-41) Wait.

抗體片段可藉由將抗體以酵素,例如木瓜酵素、 胃蛋白酶等蛋白酶處理而得到(參照Morimoto et al.,J.Biochem.Biophys.Methods(1992)24:107-17;Brennan et al.,Science(1985)229:81)。又,可以依據該抗體片段之胺基酸序列,利用基因重組來製造。 Antibody fragments can be obtained by combining antibodies with enzymes such as papaya enzymes, Pepsin and other proteases (see Morimoto et al., J. Biochem. Biophys. Methods (1992) 24: 107-17; Brennan et al., Science (1985) 229: 81). Furthermore, it can be produced by genetic recombination based on the amino acid sequence of the antibody fragment.

具有將抗體片段改變之構造的低分子化抗體可利用以酵素處理或基因重組得到抗體片段而構建。或,也可構件編碼為低分子化抗體全體之基因,將該等導入於表現載體之後,以適當的寄主細胞加以表現(例如,參照Co et al.,J.Immunol.(1994)152:2968-76;Better and Horwitz,Methods Enzymol.(1989)178:476-96;Pluckthun and Skerra,Methods Enzymol.(1989)178:497-515;Lamoyi,Methods Enzymol.(1986)121:652-63;Rousseaux et al.,Methods Enzymol.(1986)121:663-9;Bird and Walker,Trends Biotechnol.(1991)9:132-7)。 A low-molecular-weight antibody having a structure that changes an antibody fragment can be constructed by obtaining an antibody fragment by enzyme treatment or genetic recombination. Alternatively, genes encoding the entire low-molecular-weight antibody can be constructed, and these genes can be introduced into a expression vector and then expressed in an appropriate host cell (for example, see Co et al., J. Immunol. (1994) 152: 2968). -76; Better and Horwitz, Methods Enzymol. (1989) 178: 476-96; Pluckthun and Skerra, Methods Enzymol. (1989) 178: 497-515; Lamoyi, Methods Enzymol. (1986) 121: 652-63; Rousseaux et al., Methods Enzymol. (1986) 121: 663-9; Bird and Walker, Trends Biotechnol. (1991) 9: 132-7).

又,上述「scFv」為將2個可變區域視需要透過連接子等而結合之單鏈多肽。scFv中包含之2個可變區域通常為1個VH及1個VL,但也可為2個VH或2個VL。一般而言,scFv多肽在VH及VL功能區之間包含連接子,藉此形成抗原結合所必須的VH及VL之配對部分。通常,為了於同分子內在VH及VL間形成配對部分,一般而言,會將連結VH及VL之連接子設為10個胺基酸以上長度之肽連接子。然而,本發明之中scFv之連接子只要不妨礙scFv形成,並不限於如該肽連接子。就scFv之總論而言,可參照Pluckthun『The Pharmacology of Monoclonal Antibody』Vol.113(Rosenburg and Moore ed.,Springer Verlag,NY,pp.269-315(1994))。 The "scFv" is a single-chain polypeptide that binds two variable regions through a linker or the like as necessary. The two variable regions included in the scFv are usually 1 VH and 1 VL, but they can also be 2 VH or 2 VL. In general, scFv polypeptides include a linker between the VH and VL functional regions, thereby forming a paired portion of VH and VL necessary for antigen binding. Generally, in order to form a pairing moiety between VH and VL in the same molecule, in general, the linker linking VH and VL is set to a peptide linker of 10 or more amino acids in length. However, the linker of scFv in the present invention is not limited to the peptide linker as long as it does not hinder the formation of scFv. For the generalization of scFv, please refer to Pluckthun "The Pharmacology of Monoclonal Antibody" Vol.113 (Rosenburg and Moore ed., Springer Verlag, NY, pp. 269-315 (1994)).

又,「雙功能抗體(diabody;Db)」係指利用基因融合所構建之二價(bivalent)抗體片段(P.Holliger et al.,Proc.Natl.Acad.Sci.USA 90:6444-6448(1993)、EP404,097號、WO93/11161號等)。雙功能抗體為由2條多肽鏈構成之二聚物,多肽鏈由各個無法將在同鏈中輕鏈可變區域(VL)及重鏈可變區域(VH)彼此結合程度之短小,例如5個殘基左右之連接子而結合。被編碼於相同多肽鏈上之VL與VH由於其之間之連接子短小,因此無法形成單鏈V區域片段而形成二聚體,使雙功能抗體具有2個抗原結合部位。此時如果將對2個相異抗原決定基(a、b)之VL及VH與VLa-VHb及VLb-VHa的組合以5個殘基左右之連接子連結者同時表現,則會以雙專一性Db之形式分泌。此時2個相異抗原決定基可指在相同抗原上之相異2位置之抗原決定基,也可指分別位於2個相異抗原之2位置的抗原決定基。 In addition, "diabody (Db)" refers to a bivalent antibody fragment constructed by gene fusion (P. Holliger et al., Proc. Natl. Acad. Sci. USA 90: 6444-6448 ( 1993), EP404,097, WO93 / 11161, etc.). A bifunctional antibody is a dimer composed of two polypeptide chains, each of which has a short degree of inability to bind the light chain variable region (VL) and heavy chain variable region (VH) to each other in the same chain, such as 5 Linkers around each residue. Due to the short linker between VL and VH encoded on the same polypeptide chain, the single-chain V region fragment cannot be formed to form a dimer, so that the bifunctional antibody has two antigen-binding sites. At this time, if the combination of VL and VH and VLa-VHb and VLb-VHa of two different epitopes (a, b) is simultaneously expressed by a linker of about 5 residues, it will be double-specific Sexual Db is secreted. In this case, the two different epitopes may refer to an epitope at a different 2 position on the same antigen, or may refer to an epitope at a 2 position of the 2 different antigens, respectively.

雙功能抗體由於包含2分子scFv,故包含4個可變區域,其結果,成為具有2個抗原結合部位。與未形成二聚物之scFv之情形不同,以形成雙功能抗體為目的之情形,通常連接各scFv分子內之VH及VL之間的連接子為肽連接子時,係定為5個胺基酸左右。然而,形成雙功能抗體之scFv之肽連接子,只要不妨礙scFv表現且不妨礙雙功能抗體之形成,並不限於如該連接子。 Since a bifunctional antibody contains two molecules of scFv, it includes four variable regions. As a result, it has two antigen-binding sites. Unlike the case where scFv does not form a dimer, and for the purpose of forming a bifunctional antibody, usually the linker linking VH and VL in each scFv molecule is a peptide linker, which is determined to be 5 amine groups. Acid around. However, the peptide linker that forms the scFv of the bifunctional antibody is not limited to the linker as long as it does not hinder the performance of the scFv and does not prevent the formation of the bifunctional antibody.

供於本發明方法之較佳多肽或異種多聚體例如有,具有抗體之重鏈可變區域及輕鏈可變區域之多肽或異種多 聚體。又,更佳為本發明較佳態樣為一組裝控制方法,其中,本發明之多肽或異種多聚體包含2種以上重鏈可變區域及2種以上輕鏈可變區域。該多肽或異種多聚體較佳為能認識2種以上抗原決定基者,例如有多重專一性抗體。 Preferred polypeptides or heteromultimers for use in the method of the present invention include, for example, polypeptides or heteromultimers having a variable region of a heavy chain and a variable region of a light chain of an antibody. Polymer. Furthermore, a more preferred aspect of the present invention is an assembly control method, wherein the polypeptide or heteromultimer of the present invention includes two or more heavy chain variable regions and two or more light chain variable regions. The polypeptide or heteromultimer is preferably one capable of recognizing two or more epitopes, for example, having multiple specific antibodies.

本發明之中又更佳為就多重專一性抗體而言,例如雙專一性抗體。 In the present invention, multispecific antibodies are more preferred, such as bispecific antibodies.

亦即,本發明較佳態樣係關於一種控制組裝之方法,係控制由例如2種重鏈可變區域(第一重鏈及第二重鏈)及2種輕鏈可變區域(第一輕鏈及第二輕鏈)構成之雙專一性抗體之組裝。 That is, the preferred aspect of the present invention relates to a method for controlling assembly, which is controlled by, for example, two types of heavy chain variable regions (first heavy chain and second heavy chain) and two types of light chain variable regions (first Light chain and second light chain) assembly of bispecific antibodies.

若對於本發明較佳態樣之「雙專一性抗體」進一步詳述,上述「第一重鏈」係指形成抗體之2個H鏈之其中之一的H鏈,第二H鏈係指與第一H鏈相異之另一H鏈。也就是說,可將2個H鏈之中任意一者作為第一H鏈,另一者作為第二H鏈。同樣地,「第一輕鏈」係指形成雙專一性抗體之2個L鏈之其中之一的L鏈,第二L鏈指與第一L鏈相異之另一L鏈,可將2個L鏈其中之任一者作為第一L鏈,另一者作為第二L鏈。通常,第一L鏈與第一H鏈由認識某抗原(或抗原決定基)之相同抗體由來,第二L鏈與第二H鏈亦由認識某抗原(或抗原決定基)之相同抗體由來。在此,將由第一H鏈‧L鏈形成之L鏈-H鏈對稱為第一對,由第二H鏈‧L鏈形成之L鏈-H鏈對稱為第二對。成為第二對由來之抗體在製作時使用之抗原(或抗原決定基)較佳為與成為第一對由來之抗體在製作時使用者不同。亦即,第一對與第二對認識之抗原可為相同, 但較佳為認識相異抗原(或抗原決定基)。於該情形,較佳為第一對及第二對之H鏈與L鏈彼此具有相異的胺基酸序列。當第一對與第二對認識相異之抗原決定基的情形,該第一對與第二對可認識完全相異之抗原,也可認識相同抗原上之相異部位(相異抗原決定基)。又,可為其中之一認識蛋白質、肽、基因、糖等抗原,另一者認識放射性物質、化學療法劑、細胞由來毒素等細胞傷害性物質等。然而,在欲考慮製作由特定H鏈與L鏈組合形成之對的抗體時,可以將其特定H鏈與L鏈作為第一對及第二對而任意地決定。 If the “bispecific antibody” in a preferred aspect of the present invention is further detailed, the “first heavy chain” refers to the H chain forming one of the two H chains of the antibody, and the second H chain refers to the The first H chain is different from another H chain. That is, any one of the two H chains can be used as the first H chain and the other can be used as the second H chain. Similarly, the "first light chain" refers to the L chain that forms one of the two L chains of a bispecific antibody, and the second L chain refers to another L chain that is different from the first L chain. Any one of the L chains serves as the first L chain and the other serves as the second L chain. Generally, the first L chain and the first H chain are derived from the same antibody that recognizes an antigen (or epitope), and the second L chain and the second H chain are also derived from the same antibody that recognizes an antigen (or epitope). . Here, the L chain-H chain pair formed by the first H chain ‧ L chain is referred to as a first pair, and the L chain-H chain pair formed by the second H chain ‧ L chain is referred to as a second pair. It is preferred that the antigen (or epitope) used in the production of the second pair of antibodies is different from the user of the antibody in the first pair. That is, the first and second recognized antigens may be the same, However, it is preferred to recognize a different antigen (or epitope). In this case, it is preferable that the H and L chains of the first and second pairs have different amino acid sequences from each other. When the first pair and the second pair recognize different epitopes, the first pair and the second pair can recognize completely different antigens, and can also recognize different positions on the same antigen (different epitopes) ). One of them can recognize antigens such as proteins, peptides, genes, and sugars, while the other can recognize radioactive substances, chemotherapeutic agents, and cell-damaging substances such as cell-derived toxins. However, when considering the production of an antibody pair consisting of a specific H chain and L chain, the specific H chain and L chain can be arbitrarily determined as the first pair and the second pair.

又,上述「雙專一性抗體」不一定限於由2種重鏈及2種輕鏈構成的抗體,例如也可為將2種重鏈可變區域及2種輕鏈可變區域以單鏈的形式連結構造之抗體(例如sc(Fv)2)。 The "bispecific antibody" is not necessarily limited to an antibody composed of two types of heavy chains and two types of light chains. For example, the two types of heavy chain variable regions and two types of light chain variable regions may be single-chain. Formally linked antibodies (eg sc (Fv) 2).

本發明方法之中,編碼為變異導入前之抗體(本說明書之中,有時單獨記載為「本發明之抗體」)之H鏈或L鏈的基因可使用既知序列,又,也可用該領域人士公知之方法取得。例如,可由抗體庫取得,也可自產生單株抗體之融合瘤選殖出編碼為抗體之基因。 In the method of the present invention, a gene encoding an H chain or an L chain of an antibody before mutation introduction (in this specification, it may be separately described as "the antibody of the present invention") may use a known sequence or use the field Obtained by methods known to the public. For example, it can be obtained from an antibody library, or a gene encoding an antibody can be cloned from a fusion antibody producing a single antibody.

關於抗體庫,已經有許多公知的抗體庫,又抗體庫之製作方法亦為公知的,因此,該技術領域之人士可適當地取得抗體庫。例如,關於抗體噬菌體庫,可參照Clackson et al.,Nature 1991,352:624-8、Marks et al.,J.Mol.Biol.1991,222:581-97、Waterhouses et al.,Nucleic Acids Res.1993,21:2265-6、Griffiths et al.,EMBO J.1994,13:3245-60、Vaughan et al.,Nature Biotechnology 1996,14:309-14及日本特表平20 -504970號公報等文獻。此外,可使用製作真核細胞庫之方法(WO95/15393號小冊)或微脂體提示法等公知方法。再者,使用人類抗體庫,利用淘篩(panning)取得人類抗體之技術亦為已知的。例如,可以將人類抗體之可變區域作為單鏈抗體(scFv),利用噬菌體提示(display)法表現於噬菌體表面,並選擇與抗原結合之噬菌體。如果對選擇的噬菌體進行基因解析,則可決定編碼為結合於抗原之人類抗體之可變區域的DNA序列。如果結合於抗原之scFv之DNA序列明瞭了,則可以依據該序列,製作適當的表現載體,並取得人類抗體。該等方法已經為周知的,可參考WO92/01047、WO92/20791、WO93/06213、WO93/11236、WO93/19172、WO95/01438、WO95/15388。 Regarding antibody libraries, there are already many well-known antibody libraries, and methods for making antibody libraries are also well known. Therefore, those skilled in the art can appropriately obtain antibody libraries. For example, for antibody phage libraries, refer to Clackson et al., Nature 1991, 352: 624-8, Marks et al., J. Mol. Biol. 1991, 222: 581-97, Waterhouses et al., Nucleic Acids Res .1993, 21: 2265-6, Griffiths et al., EMBO J. 1994, 13: 3245-60, Vaughan et al., Nature Biotechnology 1996, 14: 309-14 and Japanese Special Table Hei 20 -504970 and other documents. In addition, a known method such as a method for preparing a eukaryotic cell bank (WO95 / 15393 pamphlet) or a liposome reminder method can be used. Moreover, techniques for obtaining human antibodies using panning are also known using human antibody libraries. For example, the variable region of a human antibody can be used as a single chain antibody (scFv), displayed on the surface of a phage by a phage display method, and a phage that binds to an antigen can be selected. If the selected phage is genetically analyzed, a DNA sequence encoding a variable region of a human antibody that binds to an antigen can be determined. If the DNA sequence of the scFv bound to the antigen is clear, an appropriate expression vector can be produced based on the sequence, and a human antibody can be obtained. These methods are well known and reference can be made to WO92 / 01047, WO92 / 20791, WO93 / 06213, WO93 / 11236, WO93 / 19172, WO95 / 01438, WO95 / 15388.

自融合瘤取得編碼為抗體之基因的方法,可藉由:基本上使用公知技術,使用所望抗原或表現所望抗原之細胞作為感作抗原,將該等依照通常之免疫方法進行免疫,將得到之免疫細胞利用通常的細胞融合法與公知的母細胞融合,利用通常的篩選法,篩選單株抗體產生細胞(融合瘤),以得到融合瘤之mRNA利用反轉錄酶合成抗體之可變區域(V區域)之cDNA,並藉由將該等與編碼為所望抗體不變區域(C區域)之DNA連結而得到。 A method for obtaining a gene encoded as an antibody from a fusion tumor can be obtained by basically using a known technique, using a desired antigen or a cell expressing the desired antigen as a sensory antigen, and immunizing these in accordance with a common immunological method. Immune cells are fused with well-known mother cells using a common cell fusion method, and single antibody-producing cells (fusion tumors) are screened using a usual screening method to obtain the mRNA of the fusion tumor using reverse transcriptase to synthesize the variable region of the antibody (V CDNA) obtained by ligating these to a DNA encoding a desired antibody constant region (C region).

更具體而言,不特別限於以下例示者,但用以得到編碼為上述H鏈及L鏈之抗體基因之感作抗原,包含具有免疫原性之完全抗原及未顯示免疫原性之包含半抗原(hapten)等不完全抗原兩者。例如,可使用目的蛋白質之全長蛋白質或部分肽等。此外,多糖類、核酸、脂質等構成之物質已知可成為 抗原,但本發明抗體之抗原不特別限定。抗原之調製可依照該技術領域人士公知之方法進行,例如可依照使用桿狀病毒(Baculovirus)之方法(例如WO98/46777等)等進行。融合瘤之製作,例如可依據Milstein等人之方法(G.Kohler and C.Milstein,Methods Enzymol.1981,73:3-46)等進行。當抗原之免疫原性低的情形,可使其與白蛋白等具有免疫原性之巨大分子結合,並進行免疫即可。又,視需要抗原可藉由與其他分子結合而成為可溶性抗原。當使用如受體之膜貫通分子作為抗原之情形,可將受體之細胞外區域部分作為片段使用,或使用在細胞表面上表現膜貫通分子之細胞作為免疫原。 More specifically, it is not particularly limited to those exemplified below, but is used to obtain a sensory antigen encoding the antibody genes encoding the H chain and the L chain, including a complete antigen with immunogenicity and a hapten including no immunogenicity. (hapten) both incomplete antigens. For example, a full-length protein or a partial peptide of a protein of interest can be used. In addition, substances composed of polysaccharides, nucleic acids, lipids, etc. are known to become Antigen, but the antigen of the antibody of the present invention is not particularly limited. The preparation of the antigen can be performed according to a method known to those skilled in the art, for example, a method using a baculovirus (for example, WO98 / 46777, etc.). The fusion tumor can be produced according to, for example, the method of Milstein et al. (G. Kohler and C. Milstein, Methods Enzymol. 1981, 73: 3-46) and the like. When the immunogenicity of the antigen is low, it can be bound to a large molecule with immunogenicity such as albumin and immunized. In addition, if necessary, the antigen can become a soluble antigen by binding to other molecules. When a membrane penetrating molecule such as a receptor is used as the antigen, the extracellular region portion of the receptor may be used as a fragment, or a cell expressing a membrane penetrating molecule on the cell surface may be used as an immunogen.

抗體產生細胞可藉由使用上述適當感作抗原而將動物免疫化以得到。或也可將能產生抗體之淋巴球於體外(in vitro)免疫化而製成抗體產生細胞。免疫化動物可使用各種哺乳動物,一般使用囓齒目、兔目、靈長目動物。例如有,小鼠、大鼠、倉鼠等囓齒目、兔等兔目、長尾獼猴(Macaca fascicularis)、恆河猴(Macaca mulatta)、長鬃狒狒(Papio hamadryas)、黑猩猩(chimpanzee)等猴等靈長目動物。此外,亦已知有具有人類抗體基因曲目(repertoire)的基因轉殖動物,藉由使用如該動物,也可得到人類抗體(參照WO96/34096;Mendez et al.,Nat.Genet.1997,15:146-56)。取如該基因轉殖動物之使用而代之,例如將人類淋巴球於體外(in vitro)以所望抗原或表現所望抗原之細胞感作,再藉由將感作淋巴球與人類骨髓瘤細胞例如U266融合,也可得到對抗原具有結合活性之所望人類抗體(參照特公平1-59878號公報)。又,也可藉由將 具有人類抗體基因所有的曲目(repertoire)的基因轉殖動物以所望的抗原來免疫,得到所望之人類抗體(參照WO93/12227、WO92/03918、WO94/02602、WO96/34096、WO96/33735)。 Antibody-producing cells can be obtained by immunizing an animal using the above-mentioned suitable sensory antigen. Alternatively, antibody-producing lymphocytes can be immunized in vitro to produce antibody-producing cells. Various mammals can be used for the immunized animal, and rodents, rabbits, and primates are generally used. For example, primates such as rodents such as mice, rats, hamsters, rabbits such as rabbits, macaca fascicularis, macaca mulatta, papio hamadryas, and chimpanzee animal. In addition, transgenic animals with a human antibody gene repertoire are also known, and human antibodies can also be obtained by using such animals (see WO96 / 34096; Mendez et al., Nat. Genet. 1997, 15 : 146-56). Instead of using the gene transgenic animal, for example, human lymphocytes can be sensed in vitro with a desired antigen or a cell expressing the desired antigen, and then the sensed lymphocytes can be used with human myeloma cells such as U266 fusion can also obtain the desired human antibody with binding activity to the antigen (see Japanese Patent Publication No. 1-59878). Also, you can A transgenic animal having repertoires possessing all human antibody genes is immunized with a desired antigen to obtain a desired human antibody (see WO93 / 12227, WO92 / 03918, WO94 / 02602, WO96 / 34096, WO96 / 33735).

動物之免疫化例如可藉由:將感作抗原以磷酸緩衝鹽液(Phosphate-buffered Saline)(PBS)或生理食鹽水等適當稀釋、懸浮,再視需要與佐劑混合而後乳化,之後對動物進行腹腔內或皮下注射來進行。之後,較佳為將混合於佛洛依德不完全佐劑之感作抗原於間隔4~21日投予數次。抗體產生之確認可以慣用方法測定動物血清中之目的抗體力價來進行。 Immunization of animals can be performed, for example, by appropriately diluting and suspending the sensation antigen with Phosphate-buffered Saline (PBS) or physiological saline, and then mixing with an adjuvant and emulsifying as needed. This is done intraperitoneally or subcutaneously. Thereafter, it is preferable to administer the sensory antigen mixed with Freud's incomplete adjuvant several times at intervals of 4 to 21 days. Confirmation of antibody production can be performed by measuring the target antibody titer in animal serum using conventional methods.

融合瘤可將自以所望抗原免疫化之動物或淋巴球所得到之抗體產生細胞,使用慣用之融合劑(例如聚乙二醇)與骨髓瘤細胞融合而製作(Goding,Monoclonal Antibodies:Principles and Practice,Academic Press,1986,59-103)。視需要,將融合瘤細胞加以培養‧增殖,並利用免疫沈降、放射免疫分析(RIA)、酵素結合免疫吸附分析(ELISA)等公知之分析法,測定由該融合瘤所產生抗體之結合專一性。之後,視需要也可將會產生經過測定目的專一性、親和性或活性之抗體之融合瘤利用極限稀釋法等方法進行次選殖(sub cloning)。 Fusion tumors can be produced by fusing antibody-producing cells from animals or lymphocytes that have been immunized with the desired antigen, using conventional fusion agents (such as polyethylene glycol) and myeloma cells (Goding, Monoclonal Antibodies: Principles and Practice Academic Press, 1986, 59-103). If necessary, the fused tumor cells are cultured and proliferated, and the specificity of the antibodies produced by the fused tumor is determined using known methods such as immunoprecipitation, radioimmunoassay (RIA), and enzyme-linked immunosorbent analysis (ELISA). . Thereafter, if necessary, fusion tumors that produce antibodies with specificity, affinity, or activity for the purpose of the measurement may be sub-cloned by methods such as limiting dilution.

接著,將編碼為選擇之抗體的基因利用能對抗體專一性結合之探針(例如,與編碼為抗體不變區域之序列互補的寡核苷酸等)自融合瘤或抗體產生細胞(感作淋巴球等)加以選殖。又,也可自mRNA利用RT-PCR進行選殖。免疫球蛋白分類為IgA、IgD、IgE、IgG及IgM5種相異的類別(class)。再者,該等類別分成幾種次型(同種型)(例如、IgG-1、IgG-2、 IgG-3、及IgG-4;IgA-1及IgA-2等)。本發明之中,抗體製造使用之H鏈及L鏈可由來自屬於該等任一類型及次型之抗體,雖不特別限定,但尤佳為IgG。 Next, a gene encoding the selected antibody is used to probe the antibody specifically (e.g., an oligonucleotide complementary to the sequence encoding the constant region of the antibody) from the fusion tumor or antibody-producing cell (sense Lymphocytes, etc.). In addition, it is also possible to perform colonization from mRNA by RT-PCR. Immunoglobulins are classified into 5 different classes of IgA, IgD, IgE, IgG, and IgM. Furthermore, these categories are divided into several subtypes (isotypes) (e.g., IgG-1, IgG-2, IgG-3, and IgG-4; IgA-1 and IgA-2, etc.). In the present invention, the H chain and L chain used for antibody production may be derived from antibodies belonging to any of these types and subtypes. Although not particularly limited, IgG is particularly preferred.

在此,編碼為H鏈及L鏈之基因也可利用遺傳工程的方法加以改變。例如,可就小鼠抗體、大鼠抗體、兔抗體、倉鼠抗體、羊抗體、駱駝抗體等抗體,適當製作經過人為改變以使對人類之異種抗原性降低之基因重組型抗體,例如嵌合抗體、人類化抗體等。嵌合抗體為由人類以外之哺乳動物,例如小鼠抗體之H鏈、L鏈之可變區域與人類抗體之H鏈、L鏈之不變區域構成之抗體,可藉由將編碼為小鼠抗體之可變區域的DNA與編碼為人類抗體之不變區域的DNA連結,並將該等嵌入表現載體並導入寄主使產生來得到。人類化抗體也稱為再構成(reshaped)人類抗體,可藉由將連結人類以外之哺乳動物,例如小鼠抗體之互補性決定區域(CDR;complementary determining region)之方式設計之DNA序列利用由以末端部具有重疊部分之方式製作之數個寡核苷酸以PCR法合成。可藉由將得到之DNA與編碼為人類抗體不變區域之DNA連結,接著,嵌入表現載體,將該等導入寄主並生產而得到(參照EP239400;WO96/02576)。透過CDR連結之人類抗體之FR之中,互補性決定區域形成良好抗原結合部位者被選擇。視需要,也可將再構成人類抗體之互補性決定區域之中,抗體可變區域之框架區域之胺基酸取代,以形成適當的抗原結合部位(K.Sato et al.,Cancer Res.1993,53:851-856)。 Here, the genes encoding the H chain and the L chain can also be changed using genetic engineering methods. For example, for antibodies such as mouse antibodies, rat antibodies, rabbit antibodies, hamster antibodies, sheep antibodies, and camel antibodies, genetically modified antibodies, such as chimeric antibodies, that have been artificially altered to reduce heterogeneous antigenicity to humans can be appropriately prepared. , Humanized antibodies, etc. Chimeric antibodies are antibodies composed of mammals other than humans, such as the variable regions of the H and L chains of mouse antibodies, and the constant regions of the H and L chains of human antibodies. The DNA of the variable region of the antibody is linked to the DNA encoding the invariant region of the human antibody, and these are inserted into the expression vector and introduced into the host for generation. Humanized antibodies, also known as reshaped human antibodies, can be designed using DNA sequences designed to link complementary complementarity determining regions (CDRs) of mammals other than humans, such as mouse antibodies. Several oligonucleotides prepared with overlapping portions at the ends were synthesized by the PCR method. It can be obtained by linking the obtained DNA with a DNA encoding an invariant region of a human antibody, and then embedding it into a expression vector, introducing them into a host and producing them (see EP239400; WO96 / 02576). Among the FRs of human antibodies linked via CDRs, those in which the complementarity determining region forms a good antigen-binding site are selected. If necessary, the amino acid of the framework region of the antibody variable region among the complementarity determining regions of the reconstituted human antibody may also be substituted to form an appropriate antigen binding site (K. Sato et al., Cancer Res. 1993 53: 851-856).

上述人類化以外,可考量例如為了改善與抗原之 結合性等抗體之生物學特性而進行改變。如該改變可利用部位專一性的突變(例如參照Kunkel(1985)Proc.Natl.Acad.Sci.USA 82:488)、PCR變異、卡匣(cassette)變異等方法進行。一般而言,生物學特性經過改善之抗體變異體相對於原來抗體可變區域之胺基酸序列,有70%以上,較佳為80%以上,更佳為90%以上(例如95%以上、97%、98%、99%等)之胺基酸序列相同性及/或類似性。本說明書之中,序列相同性及/或類似性係定義為:以取得序列相同性為最大值之方式視需要將序列整列化及導入缺口(gap)後,與原來之抗體殘基為相同(相同殘基)或類似(一般而言,係依據胺基酸側鏈之特性而分類為同群(group)之胺基酸殘基)之胺基酸殘基之比例。通常,天然的胺基酸殘基依據其側鏈之性質,分類成下列群:(1)疏水性:丙胺酸、異白胺酸、正白胺酸、纈胺酸、甲硫胺酸及白胺酸;(2)中性親水性:天冬醯胺、谷醯胺、半胱胺酸、蘇胺酸及絲胺酸;(3)酸性:天冬醯胺酸及谷胺酸;(4)鹼性:精胺酸、組胺酸及離胺酸;(5)影響鏈配向之殘基:甘胺酸及脯胺酸;及(6)芳香族性:酪胺酸、色胺酸及苯丙胺酸。 In addition to the above-mentioned humanization, for example, The biological properties of antibodies such as binding are changed. Such changes can be performed using site-specific mutations (for example, refer to Kunkel (1985) Proc. Natl. Acad. Sci. USA 82: 488), PCR mutation, cassette mutation and other methods. Generally speaking, compared with the amino acid sequence of the variable region of the original antibody, the antibody variant with improved biological characteristics has more than 70%, preferably 80% or more, and more preferably 90% or more (for example, 95% or more, 97%, 98%, 99%, etc.) amino acid sequence identity and / or similarity. In this specification, sequence identity and / or similarity is defined as: the sequence of the sequence is maximized to obtain the maximum sequence identity and the gap is introduced into the gap, and the residue is the same as the original antibody residue ( Identical residues) or similar (generally, amino acid residues classified into groups based on the characteristics of the amino acid side chains) of the amino acid residues. Generally, natural amino acid residues are classified into the following groups based on the nature of their side chains: (1) Hydrophobicity: alanine, isoleucine, n-leucine, valine, methionine, and white Glycine; (2) neutral hydrophilicity: asparagine, glutamine, cysteine, threonine, and serine; (3) acidity: aspartic acid and glutamic acid; (4) ) Basic: arginine, histidine, and lysine; (5) residues affecting chain alignment: glycine and proline; and (6) aromaticity: tyrosine, tryptophan, and Phenylalanine.

通常,存在於H鏈及L鏈之可變區域中總共6個互補性決定區域(超可變部;CDR)會交互作用並形成抗體之抗原結合部位。其中,已知1個可變區域雖然較包含完整結合部位者親和性較低,但是會認識抗原並具有結合能力。因此,本發明之中編碼為H鏈及L鏈之抗體基因只要由該基因所編碼之多肽能維持與所望抗原結合性即可,能編碼為包含H鏈及L鏈之各抗原結合部位之片段部分即可。 In general, a total of six complementarity determining regions (hypervariables; CDRs) present in the variable regions of the H and L chains interact and form the antigen-binding site of the antibody. Among them, it is known that although one variable region has a lower affinity than a person including a complete binding site, it recognizes an antigen and has a binding ability. Therefore, the antibody genes encoded by the H chain and L chain in the present invention need only maintain the binding of the polypeptide encoded by the gene to the desired antigen, and can encode the fragments including the antigen binding sites of the H chain and the L chain. Part of it.

依照本發明之組裝控制方法,如上所述,例如可優先地(有效率地)取得所望之雙專一性抗體。亦即,可自單體混合物有效率地形成為所望之異種多聚體之雙專一性抗體。 According to the assembly control method of the present invention, as described above, for example, the desired bispecific antibody can be obtained preferentially (efficiently). That is, bispecific antibodies can be efficiently formed from the monomer mixture into the desired heteromultimer.

以下,對於具有2種重鏈可變區域(VH1及VH2)及2種輕鏈可變區域(VL1及VL2)之IgG型雙專一性抗體之情形更詳細說明,但關於其他異種多聚體也同樣地可應用本發明之方法。 Hereinafter, the case of an IgG type bispecific antibody having two types of heavy chain variable regions (VH1 and VH2) and two types of light chain variable regions (VL1 and VL2) will be described in more detail, but other heteromultimers are also described. The method of the present invention is equally applicable.

欲取得可自第一重鏈可變區域(VH1)及第一輕鏈可變區域(VL1)認識其中之一之抗原決定基,並可由第二重鏈可變區域(VH2)及第二輕鏈可變區域(VL2)認識另一抗原決定基之雙專一性抗體之情形,如果使該抗體之生產之中,4種鏈各別的表現,則理論上可能產生10種抗體分子。 To obtain an epitope recognizable from one of the first heavy chain variable region (VH1) and the first light chain variable region (VL1), and the second heavy chain variable region (VH2) and the second light chain The chain variable region (VL2) recognizes the situation of a bispecific antibody with another epitope. If the production of the antibody is performed with 4 different chains, it is theoretically possible to produce 10 antibody molecules.

於該情形,如果以抑制例如:VH1與VL2、及/或VH2與VL1多肽間之組裝的方式加以控制,則可優先地取得所望之抗體分子。 In this case, if controlled in a manner that inhibits, for example, the assembly between VH1 and VL2, and / or VH2 and VL1 polypeptides, the desired antibody molecule can be preferentially obtained.

舉一例來說,例如藉由將VH1多肽與VL2多肽間,及/或VH2多肽與VL1多肽間之形成界面之胺基酸殘基改成如上所述,則可抑制該等多肽間之組裝。 For example, by changing the amino acid residues forming the interface between the VH1 polypeptide and the VL2 polypeptide and / or the VH2 polypeptide and the VL1 polypeptide as described above, the assembly between the polypeptides can be inhibited.

又,藉由利用本發明之組裝控制方法,也可抑制重鏈彼此(VH1與VH2),或者輕鏈彼此(VL1與VL2)之組裝。 In addition, by using the assembly control method of the present invention, the assembly of heavy chains (VH1 and VH2) or light chains (VL1 and VL2) can be suppressed.

重鏈可變區域如上述,通常由3個CDR區域及FR區域構成。本發明較佳態樣之中供「改變」之胺基酸殘基,可自例如位在CDR區域或者FR區域之胺基酸殘基之中適當選擇。一般而言,CDR區域之胺基酸殘基之改變可能使對抗原之 結合能力下降。因此,本發明之中供「改變」之胺基酸殘基雖不特別限定,但較佳為自位於FR區域之胺基酸殘基中適當選擇。 The heavy chain variable region is generally composed of three CDR regions and FR regions as described above. In the preferred aspect of the present invention, the amino acid residue for "change" can be appropriately selected from, for example, amino acid residues located in the CDR region or the FR region. In general, changes in amino acid residues in the CDR regions may Reduced binding capacity. Therefore, although the amino acid residue to be "modified" in the present invention is not particularly limited, it is preferably selected appropriately from the amino acid residues located in the FR region.

如果為該技術領域之人士,關於欲以本發明方法控制組裝之所望多肽,可適當地了解,為組裝時接近FR界面之中之胺基酸殘基之種類。 If it is a person skilled in the art, regarding the desired polypeptide to be controlled for assembly by the method of the present invention, it can be appropriately understood that it is the kind of amino acid residue in the FR interface which is close to the assembly.

又,人類或小鼠等生物之中,可利用為抗體可變區域之FR的序列,只要是該技術領域之人士,可利用公共資料庫等而適當取得。更具體而言,可利用後述實施例之工具取得FR區域之胺基酸序列資訊。 Furthermore, among humans, mice, and other organisms, sequences that are FRs of the variable regions of antibodies can be used, and those skilled in the art can appropriately obtain them using public databases and the like. More specifically, the amino acid sequence information of the FR region can be obtained by using a tool of the embodiment described later.

例如,關於後述實施例所示雙專一性抗體,就組裝時接近FR界面之中之胺基酸殘基之具體例而言,例如有重鏈可變區域上之39位(FR2區域)(例如序列編號:6之胺基酸序列之中之39位)的谷醯胺(Q),及相對(接觸)之輕鏈可變區域上之38位(FR2區域)(例如序列編號:8之胺基酸序列之中之44位)的谷醯胺(Q)。再者,例如較佳為重鏈可變區域上之45位(FR2)(例如序列編號:6之胺基酸序列之中之45位)的白胺酸(L),及相對之輕鏈可變區域上之44位(FR2)(例如序列編號:8之胺基酸序列之中之50位)的脯胺酸(P)。又,關於該等部位之編號參考Kabat等之文獻(Kabat EA et al.1991.Sequence of Proteins of Immunological Interest.NIH)。 For example, regarding the bispecific antibodies shown in the examples described below, specific examples of amino acid residues near the FR interface during assembly include, for example, position 39 (FR2 region) on the variable region of the heavy chain (for example, Sequence number: 39 in amino acid sequence of 6) glutamine (Q), and position 38 (FR2 region) on the variable region of the light chain (contact) (e.g., amine of sequence number: 8) Glutamine (Q) at position 44 in the amino acid sequence). In addition, for example, it is preferably leucine (L) at position 45 (FR2) on the variable region of the heavy chain (e.g., position 45 of the amino acid sequence of sequence number 6), and relatively light chain variable Proline (P) at position 44 (FR2) on the region (for example, position 50 of the amino acid sequence of 8). For the numbering of these parts, refer to the literature by Kabat et al. (Kabat EA et al. 1991. Sequence of Proteins of Immunological Interest. NIH).

如後述實施例所示,藉由改變該等胺基酸殘基並實施本發明之方法,可以優先地取得所望抗體。 As shown in the examples described later, by changing the amino acid residues and carrying out the method of the present invention, the desired antibody can be preferentially obtained.

由於該等胺基酸殘基已知在人類及小鼠之中為高 度保守性的(conservative)(J.Mol.Recognit.2003;16:113-120),因此,實施例所示抗體以外之VH與VL之組裝,也可利用改變對應於上述胺基酸殘基之胺基酸殘基,而控制抗體可變區域之組裝。 Since these amino acid residues are known to be high in humans and mice Conservative (J.Mol.Recognit. 2003; 16: 113-120). Therefore, the assembly of VH and VL other than the antibodies shown in the examples can also be changed by corresponding to the amino acid residues. Amino acid residues, and control the assembly of variable regions of the antibody.

亦即,本發明較佳態樣為提供一種抗體,為包含重鏈可變區域及輕鏈可變區域之抗體(多肽(例如sc(Fv)2)或異種多聚體(例如IgG型抗體)等),以下(1)與(2)或(3)與(4)之胺基酸殘基為帶同種電荷之胺基酸殘基: That is, a preferred aspect of the present invention is to provide an antibody that is an antibody (polypeptide (e.g., sc (Fv) 2)) or heteromultimer (e.g., IgG-type antibody) comprising a heavy chain variable region and a light chain variable region. Etc.), the following amino acid residues (1) and (2) or (3) and (4) are amino acid residues with the same charge:

(1)一種胺基酸殘基,包含於重鏈可變區域,相當於序列編號:6之胺基酸序列之中之39位。 (1) An amino acid residue, contained in the variable region of the heavy chain, corresponding to position 39 in the amino acid sequence of SEQ ID NO: 6.

(2)一種胺基酸殘基,包含於輕鏈可變區域,相當於序列編號:8之胺基酸序列之中之44位。 (2) An amino acid residue, which is contained in the variable region of the light chain and corresponds to position 44 in the amino acid sequence of SEQ ID NO: 8.

(3)一種胺基酸殘基,包含於重鏈可變區域,相當於序列編號:6之胺基酸序列之中之45位。 (3) An amino acid residue included in the variable region of the heavy chain, corresponding to position 45 in the amino acid sequence of SEQ ID NO: 6.

(4)一種胺基酸殘基,包含於輕鏈可變區域,相當於序列編號:8之胺基酸序列之中之50位。 (4) An amino acid residue, which is contained in the variable region of the light chain and corresponds to the 50th position in the amino acid sequence of SEQ ID NO: 8.

又,上述序列編號:6或8之胺基酸序列係用以將本發明之中供改變之胺基酸殘基的位置更具體例示,重鏈可變區域或輕鏈可變區域不限於該等胺基酸序列情形。 The amino acid sequence of the above sequence number: 6 or 8 is used to more specifically exemplify the position of the amino acid residue to be changed in the present invention, and the heavy chain variable region or light chain variable region is not limited to this. In the case of amino acid sequences.

上述(1)與(2)、(3)與(4)各胺基酸殘基,如後述實施例及圖1所示,在組裝之後彼此為接近的。只要是該技術領域之人士,可對於所望之重鏈可變區域或輕鏈可變區域,利用使用市售軟體之相同度模擬器等,而發現與上述(1)~(4)之胺基酸殘基對應之部位,並適當將該部位之胺基酸殘基供改變。 Each of the above amino acid residues (1) and (2), (3), and (4), as shown in the examples described below and FIG. 1, are close to each other after assembly. As long as it is a person in the technical field, the same degree simulator using commercially available software can be used for the desired heavy chain variable region or light chain variable region to find the amine group similar to (1) to (4) above. The position corresponding to the acid residue, and the amino acid residue at the position is appropriately changed.

上述抗體之中,「具有電荷之胺基酸殘基」較佳為擇自例如以下(a)或(b)任一群所包含胺基酸殘基。 Among the above antibodies, the "amino acid residue having a charge" is preferably selected from, for example, amino acid residues contained in any of the following groups (a) or (b).

(a)谷胺酸(E)、天冬醯胺酸(D);(b)離胺酸(K)、精胺酸(R)、組胺酸(H)。 (a) glutamic acid (E), aspartic acid (D); (b) lysine (K), arginine (R), and histidine (H).

再者,本發明提供一種抗體,為包含重鏈可變區域及輕鏈可變區域之抗體(多肽或異種多聚體等),以下(3)與(4)任一者為帶電荷之胺基酸殘基。以下(3)與(4)表示之胺基酸殘基之側鏈可接近並形成疏水性核。 Furthermore, the present invention provides an antibody which is an antibody (polypeptide or heteromultimer, etc.) comprising a variable region of a heavy chain and a variable region of a light chain, and any one of the following (3) and (4) is a charged amine Acid residues. The side chains of the amino acid residues represented by (3) and (4) below can approach and form a hydrophobic core.

(3)一種胺基酸殘基,包含於重鏈可變區域,相當於序列編號:6之胺基酸序列之中之45位。 (3) An amino acid residue included in the variable region of the heavy chain, corresponding to position 45 in the amino acid sequence of SEQ ID NO: 6.

(4)一種胺基酸殘基,包含於輕鏈可變區域,相當於序列編號:8之胺基酸序列之中之50位。 (4) An amino acid residue, which is contained in the variable region of the light chain and corresponds to the 50th position in the amino acid sequence of SEQ ID NO: 8.

上述抗體之中,「帶電荷之胺基酸殘基」較佳為例如谷胺酸(E)、天冬醯胺酸(D)、離胺酸(K)、精胺酸(R)或組胺酸(H)。 Among the above antibodies, the "charged amino acid residue" is preferably, for example, glutamic acid (E), aspartic acid (D), lysine (K), arginine (R) or a group Amino acid (H).

上述(1)~(4)之胺基酸殘基通常在人類及小鼠之中分別為(1)谷醯胺(Q)、(2)谷醯胺(Q)、(3)白胺酸(L)、(4)脯胺酸(P)。因此,本發明較佳態樣之中,該等胺基酸殘基供予改變(例如取代為帶電荷胺基酸)。又,上述(1)~(4)胺基酸殘基之種類不一定限於上述胺基酸殘基,也可為與該胺基酸相當之其他胺基酸。例如,就相當於輕鏈可變區域上序列編號:8之胺基酸序列之中之44位的胺基酸而言,於人類之情形,例如可為組胺酸(H)。該技術領域之人士,藉由參照公知文獻等(例如J.Mol.Recognit.2003;16:113-120),可就序列編號:8上任 意位置,了解相當於該位置之胺基酸殘基種類,並適當對該胺基酸殘基進行改變(例如,取代為帶電荷胺基酸)。 The amino acid residues of (1) to (4) above are usually (1) glutamine (Q), (2) glutamine (Q), and (3) leucine in humans and mice, respectively. (L), (4) Proline (P). Therefore, in a preferred aspect of the present invention, the amino acid residues are provided for alteration (for example, substituted with a charged amino acid). The types of the amino acid residues (1) to (4) are not necessarily limited to the amino acid residues described above, and may be other amino acids equivalent to the amino acid residues. For example, the amino acid corresponding to position 44 in the amino acid sequence of the sequence number: 8 on the variable region of the light chain, in the case of humans, may be, for example, histidine (H). Those skilled in the art can refer to known literatures (for example, J. Mol. Recognit. 2003; 16: 113-120), and can assume the post number: 8 The desired position is known, and the type of amino acid residue corresponding to the position is known, and the amino acid residue is appropriately changed (for example, substituted with a charged amino acid).

又,上述抗體之製造方法,及以將上述(1)~(4)胺基酸殘基加以改變為特徴之本發明之組裝控制方法亦為本發明之較佳態樣。 In addition, the method for producing the above-mentioned antibody and the assembly control method of the present invention in which the above-mentioned (1) to (4) amino acid residues are changed to specific features are also preferred aspects of the present invention.

又,本發明之其他態樣,例如有於重鏈或輕鏈不變區域之界面導入電荷性斥力,而抑制重鏈彼此或重鏈與輕鏈之組裝的方法。於重鏈不變區域之界面接觸的胺基酸殘基,例如相對於CH3區域之中377位(356位)與470位(439位)、378位(357位)與393位(370位)、427位(399位)與440位(409位)之區域。於重鏈不變區域與輕鏈不變區域之界面接觸的胺基酸殘基,例如有與CH1區域之221位(213位)及CL區域之123位相對之區域。就抗體不變區域之編號而言,係參考Kabat等文獻(Kabat EA et al.1991.Sequences of Proteins of Immunological Interest.NIH),關於重鏈不變區域之EU編號表示於括弧內。 In another aspect of the present invention, for example, there is a method of introducing a charge repulsive force at the interface of a heavy or light chain constant region and suppressing the assembly of heavy chains with each other or between the heavy and light chains. Amino acid residues contacted at the interface of the heavy chain invariant region, for example, relative to the 377 position (356 position) and 470 position (439 position), 378 position (357 position), and 393 position (370 position) in the CH3 region , 427 (399) and 440 (409) areas. The amino acid residue in contact with the interface between the heavy chain invariant region and the light chain invariant region includes, for example, a region opposite to the 221 position (213 position) of the CH1 region and the 123 position of the CL region. As for the numbering of the invariant regions of the antibody, reference is made to Kabat et al. (Kabat EA et al. 1991. Sequences of Proteins of Immunological Interest. NIH). The EU numbering of the invariant regions of the heavy chain is shown in parentheses.

如後述實施例所示,藉由改變該等胺基酸殘基並實施本發明之方法,可控制抗體重鏈之組裝,並優先地取得所望之抗體。 As shown in the examples described later, by changing these amino acid residues and implementing the method of the present invention, the assembly of the heavy chain of the antibody can be controlled, and the desired antibody can be preferentially obtained.

亦即,本發明較佳態樣提供一種抗體,包含2種以上重鏈CH3區域之抗體及Fc區域結合蛋白質(例如、IgG型抗體、minibody(Alt M et al.FEBS Letters 1999;454:90-94)、免疫黏著素(immunoadhesin)(非專利文獻2)等),第1重鏈之CH3區域之中,擇自以下(1)~(3)所示胺基酸殘基構成之組之1組至3 組胺基酸殘基帶同種電荷。 That is, a preferred aspect of the present invention provides an antibody comprising two or more heavy chain CH3 region antibodies and an Fc region binding protein (eg, an IgG antibody, minibody (Alt M et al. FEBS Letters 1999; 454: 90- 94), immunoadhesin (non-patent document 2), etc.), among the CH3 region of the first heavy chain, selected from the group consisting of amino acid residues shown in (1) to (3) below Group to 3 Histidine residues have the same charge.

(1)一種胺基酸殘基,包含於重鏈CH3區域,以EU編號為356位及439位。 (1) An amino acid residue, which is contained in the CH3 region of the heavy chain, and is numbered at positions 356 and 439 in the EU.

(2)一種胺基酸殘基,包含於重鏈CH3區域,以EU編號為357位及370位。 (2) An amino acid residue, which is contained in the CH3 region of the heavy chain, and is numbered 357 and 370 by the EU number.

(3)一種胺基酸殘基,包含於重鏈CH3區域,以EU編號為399位及409位。 (3) An amino acid residue, which is contained in the CH3 region of the heavy chain, and is numbered 399 and 409 at the EU number.

再者,本發明較佳態樣提供一種抗體,係與上述第1重鏈CH3區域相異之第2重鏈CH3區域之中,擇自前述(1)~(3)所示胺基酸殘基之組之胺基酸殘基之組,且對應於前述第1重鏈CH3區域之中帶同種電荷之以前述(1)~(3)所示胺基酸殘基之組的1組至3組胺基酸殘基,具有前述第1重鏈CH3區域之中對應的胺基酸殘基為相反之電荷。 Furthermore, in a preferred aspect of the present invention, there is provided an antibody selected from the amino acid residues shown in the above (1) to (3) among the second heavy chain CH3 regions that are different from the first heavy chain CH3 regions. A group of amino acid residues in the group of groups corresponding to the group of amino acid residues shown in the above (1) to (3) with the same charge in the first heavy chain CH3 region The three amino acid residues have the opposite charge in the corresponding amino acid residue in the CH3 region of the first heavy chain.

上述(1)~(3)各胺基酸殘基如後述實施例及圖27所示,在組裝之後彼此接近。如為該技術領域之人士,對於所望重鏈CH3區域或重鏈不變區域,藉由使用市售軟體之相同度模擬器,可發現對應於上述(1)~(3)之胺基酸殘基之部位,並適當使該部位之胺基酸殘基供予改變。 Each of the above amino acid residues (1) to (3) is as shown in the example described later and FIG. 27, and approaches each other after assembly. For those in the technical field, for the desired heavy chain CH3 region or heavy chain constant region, by using the same degree simulator of commercially available software, the amino acid residues corresponding to the above (1) to (3) can be found And the amino acid residue of the site is appropriately changed.

上述抗體之中,「帶電荷之胺基酸殘基」較佳為,例如擇自以下(a)或(b)任一群包含之胺基酸殘基。 Among the above antibodies, the "charged amino acid residue" is preferably, for example, selected from amino acid residues contained in any of the following groups (a) or (b).

(a)谷胺酸(E)、天冬醯胺酸(D);(b)離胺酸(K)、精胺酸(R)、組胺酸(H)。 (a) glutamic acid (E), aspartic acid (D); (b) lysine (K), arginine (R), and histidine (H).

上述抗體之中,「帶同種電荷」係指例如2個以上胺基酸殘基之中任一者具有包含於上述(a)或(b)任1群之胺 基酸殘基。「帶相反電荷」係指例如2個以上胺基酸殘基之中至少1個胺基酸殘基,具有上述(a)或(b)任1群所包含之胺基酸殘基的情形,其餘之胺基酸殘基具有相異群所包含之胺基酸殘基。 In the above antibodies, "having the same kind of charge" means, for example, that any one of two or more amino acid residues has an amine contained in any one of the groups (a) or (b) above. Acid residues. "Reversely charged" means, for example, a case where at least one amino acid residue among two or more amino acid residues has the amino acid residue contained in any one of the groups (a) or (b) above, The remaining amino acid residues have amino acid residues contained in different groups.

於較佳態樣,上述抗體之中,第1重鏈CH3區域及第2重鏈CH3區域可利用雙硫鍵加以交聯。 In a preferred aspect, among the above antibodies, the first heavy chain CH3 region and the second heavy chain CH3 region can be crosslinked by a disulfide bond.

本發明之中,供「改變」之胺基酸殘基不限於上述抗體可變區域或抗體不變區域之胺基酸殘基。只要為該技術領域之人士,對於多肽變異體或異種多聚體,可藉由使用市售軟體之相同度模擬器等,發現形成界面之胺基酸殘基,並將該部位之胺基酸殘基供於改變,以控制組裝。 In the present invention, the amino acid residue for "changing" is not limited to the amino acid residue in the variable region or the constant region of the antibody. As long as it is a person skilled in the art, for polypeptide variants or heteromultimers, by using the same degree simulator of commercially available software, etc., the amino acid residues forming the interface can be found, and the amino acid at the site can be found. Residues are provided for change to control assembly.

本發明方法可與公知技術組合而實施,但並非必要的。例如,以使VH1與VL1,及/或VH2與VL2之組裝促進之方式,除了本發明之「改變」以外,將存在於其中之一H鏈可變區域之胺基酸側鏈取代為較大側鏈(knob;突起),並將存在於另一H鏈之相對可變區域的胺基酸側鏈取代為較小側鏈(hole;空隙),並使突起能配置於空隙之方式來促進VH1與VL1、及/或VH2與VL2之組裝,結果可進一步抑制VH1與VL2,及/或VH2與VL1多肽間之組裝。 The method of the present invention can be implemented in combination with known techniques, but it is not necessary. For example, in order to promote the assembly of VH1 and VL1, and / or VH2 and VL2, in addition to the "change" of the present invention, the amino acid side chain existing in one of the variable regions of the H chain is replaced with a larger one Side chain (knob; protrusion), and the amino acid side chain existing in the relatively variable region of another H chain is replaced with a smaller side chain (hole; gap), and the protrusion can be arranged in the gap to promote The assembly of VH1 and VL1 and / or VH2 and VL2 can further inhibit the assembly between VH1 and VL2, and / or VH2 and VL1 polypeptides.

本發明之組裝控制方法,當優先地(有效率地)取得所望之sc(Fv)2時,可適當地實施。以下,舉一例對於具有2種重鏈可變區域(H1與H2)及2種輕鏈可變區域(L1與L2)之sc(Fv)2的情形,更詳細說明。 The assembly control method of the present invention can be appropriately implemented when the desired sc (Fv) 2 is obtained preferentially (efficiently). In the following, the case of sc (Fv) 2 having two types of heavy chain variable regions (H1 and H2) and two types of light chain variable regions (L1 and L2) will be described in more detail.

一般而言,sc(Fv)2係將2個重鏈可變區域(VH1 與VH2)及2個輕鏈可變區域(VL1與VL2)以連接子結合之單鏈多肽。亦即,sc(Fv)2為將4個抗體可變區域以連接子等結合成為單鏈之低分子化抗體。通常,sc(Fv)2係將2個輕鏈可變區域及2個重鏈可變區域等4個可變區域以連接子等結合而成為單鏈之抗體(Hudson et al,J Immunol.Methods 1999;231:177-189)。 In general, the sc (Fv) 2 line divides two heavy chain variable regions (VH1 A single-chain polypeptide that binds to VH2) and two light chain variable regions (VL1 and VL2) with linkers. That is, sc (Fv) 2 is a low-molecular-weight antibody that binds four antibody variable regions with a linker or the like to form a single chain. Generally, sc (Fv) 2 is a single-chain antibody that combines four variable regions, such as two light chain variable regions and two heavy chain variable regions, with a linker or the like (Hudson et al, J Immunol. Methods 1999; 231: 177-189).

該技術領域之人士可用公知之方法製作sc(Fv)2,例如可藉由將scFv以連接子連結以製作。scFv包含抗體之VH及VL。該等區域存在於單一多肽鏈中(關於scFv之總論,參照Pluckthun『The Pharmacology of Monoclonal Antibodies』Vol.113(Rosenburg and Moore ed(Springer Verlag,New York)pp.269-315,1994))。 Those skilled in the art can make sc (Fv) 2 by a known method, for example, they can be produced by linking scFv with a linker. scFv contains VH and VL of the antibody. These regions exist in a single polypeptide chain (for a general discussion of scFv, refer to Pluckthun "The Pharmacology of Monoclonal Antibodies" Vol. 113 (Rosenburg and Moore ed (Springer Verlag, New York) pp. 269-315, 1994)).

又,抗體較佳為:2個VH及2個VL以單鏈多肽之N末端側為基點,依序以VH、VL、VH、VL(〔VH〕連接子〔VL〕連接子〔VH〕連接子〔VL〕)之順序排列。 In addition, the antibody is preferably such that two VH and two VL are based on the N-terminal side of the single-chain polypeptide, and are sequentially connected by VH, VL, VH, and VL ([VH] linker [VL] linker [VH] Child [VL]).

2個VH與2個VL之順序不特別限於上述配置,可以任意順序排列。例如可為如以下之配置。 The order of the two VHs and the two VLs is not particularly limited to the above configuration, and they can be arranged in any order. For example, it may be configured as follows.

〔VL〕連接子〔VH〕連接子〔VH〕連接子〔VL〕 [VL] linker [VH] linker [VH] linker [VL]

〔VH〕連接子〔VL〕連接子〔VL〕連接子〔VH〕 [VH] linker [VL] linker [VL] linker [VH]

〔VH〕連接子〔VH〕連接子〔VL〕連接子〔VL〕 [VH] linker [VH] linker [VL] linker [VL]

〔VL〕連接子〔VL〕連接子〔VH〕連接子〔VH〕 [VL] linker [VL] linker [VH] linker [VH]

〔VL〕連接子〔VH〕連接子〔VL〕連接子〔VH〕 [VL] linker [VH] linker [VL] linker [VH]

sc(Fv)2也可包含抗體可變區域、連接子以外之胺基酸序列。 sc (Fv) 2 may include an amino acid sequence other than the variable region of the antibody and the linker.

上述抗體可變區域可為可變區域全長,只要可維持對抗原之結合活性,也可為可變區域之部分序列。又,可變區域中之胺基酸序列可被取代、缺失、加成、插入等。例如,為使抗原性降低,可經過嵌合化或人類化。 The variable region of the antibody may be the entire length of the variable region, as long as it can maintain the binding activity to the antigen, or it may be a partial sequence of the variable region. The amino acid sequence in the variable region may be substituted, deleted, added, inserted, or the like. For example, in order to reduce antigenicity, chimerization or humanization may be performed.

將抗體可變區域結合之連接子,可使用利用遺傳工程導入之任意肽連接子或合成化合物連接子(參照例如Protein Engineering,9(3),299-305,1996)所揭示之連接子等,但是,本發明之中較佳為肽連接子。連接子之長度不特別限定,視目的該技術領域之人士可適當選擇,但較佳長度為12個胺基酸以上(上限雖不特別限定,通常為30個胺基酸以下,較佳為20個胺基酸以下),尤佳為15個胺基酸。於sc(Fv)2包含3個肽連接子之情形,可以都使用相同長度之肽連接子,也可具有相異長度之肽連接子。 As the linker that binds to the variable region of the antibody, any peptide linker or synthetic compound linker introduced by genetic engineering (see, for example, Protein Engineering, 9 (3), 299-305, 1996) can be used. However, a peptide linker is preferred in the present invention. The length of the linker is not particularly limited, and may be appropriately selected by those skilled in the technical field according to the purpose, but the preferred length is 12 amino acids or more (although the upper limit is not particularly limited, usually 30 amino acids or less, preferably 20) Less than amino acids), particularly preferably 15 amino acids. In the case where sc (Fv) 2 contains three peptide linkers, all peptide linkers of the same length may be used, or peptide linkers of different lengths may be used.

例如,為肽連接子之情形,例如:Ser For example, in the case of a peptide linker, for example: Ser

Gly‧Ser Gly‧Ser

Gly‧Gly‧Ser Gly‧Gly‧Ser

Ser‧Gly‧Gly Ser‧Gly‧Gly

Gly‧Gly‧Gly‧Ser Gly‧Gly‧Gly‧Ser

Ser‧Gly‧Gly‧Gly Ser‧Gly‧Gly‧Gly

Gly‧Gly‧Gly‧Gly‧Ser Gly‧Gly‧Gly‧Gly‧Ser

Ser‧Gly‧Gly‧Gly‧Gly Ser‧Gly‧Gly‧Gly‧Gly

Gly‧Gly‧Gly‧Gly‧Gly‧Ser Gly‧Gly‧Gly‧Gly‧Gly‧Ser

Ser‧Gly‧Gly‧Gly‧Gly‧Gly Ser‧Gly‧Gly‧Gly‧Gly‧Gly

Gly‧Gly‧Gly‧Gly‧Gly‧Gly‧Ser Gly‧Gly‧Gly‧Gly‧Gly‧Gly‧Ser

Ser‧Gly‧Gly‧Gly‧Gly‧Gly‧Gly Ser‧Gly‧Gly‧Gly‧Gly‧Gly‧Gly

(Gly‧Gly‧Gly‧Gly‧Ser)n (Gly‧Gly‧Gly‧Gly‧Ser) n

(Ser‧Gly‧Gly‧Gly‧Gly)n (Ser‧Gly‧Gly‧Gly‧Gly) n

〔n為1以上整數〕等。但是,該技術領域之人士可視目的對肽連接子長度或序列適當選擇。 [N is an integer of 1 or more] and the like. However, those skilled in the art can appropriately select the peptide linker length or sequence depending on the purpose.

較佳sc(Fv)2之態樣例如有以下之sc(Fv)2。 A preferred aspect of sc (Fv) 2 is, for example, the following sc (Fv) 2.

〔VH〕連接子(15個胺基酸)〔VL〕連接子(15個胺基酸)〔VH〕連接子(15個胺基酸)〔VL〕 [VH] linker (15 amino acids) [VL] linker (15 amino acids) [VH] linker (15 amino acids) [VL]

合成化學物連接子(化學交聯劑)為肽之交聯之中通常使用的交聯劑,例如N-羥基琥珀醯亞胺(NHS)、辛二酸二琥珀醯亞胺酯(DSS)、辛二酸二(硫琥珀醯亞胺基)酯(BS3)、二硫雙(琥珀醯亞胺基丙酸酯)(DSP)、二硫雙(硫琥珀醯亞胺基丙酸酯)(DTSSP)、乙二醇雙(琥珀醯亞胺基琥珀酸酯)(EGS)、乙二醇雙(硫琥珀醯亞胺基琥珀酸酯)(硫-EGS)、二琥珀醯亞胺基酒石酸鹽(DST)、二硫琥珀醯亞胺基酒石酸鹽(硫-DST))、雙[2-(琥珀醯亞胺氧羰基氧)乙基]碸(BSOCOES))、雙[2-(硫琥珀醯亞胺氧羰基氧)乙基]碸(硫-BSOCOES)等,該等交聯劑在市面上可購得。 Synthetic chemical linkers (chemical cross-linking agents) are commonly used cross-linking agents in the cross-linking of peptides, such as N-hydroxysuccinimide (NHS), disuccinimidyl suberate (DSS), Di (thiosuccinimide) suberate (BS 3 ), dithiobis (succinimide propionate) (DSP), dithiobis (thiosuccinimide propionate) ( DTSSP), ethylene glycol bis (succinimide iminosuccinate) (EGS), ethylene glycol bis (succinimide iminosuccinate) (thio-EGS), disuccinimide tartarate (DST), dithiosuccinimide imino tartrate (sulfur-DST)), bis [2- (succinimide oxycarbonyloxy) ethyl] fluorene (BSOCOES)), bis [2- (thiosuccinic acid) Imineoxycarbonyloxy) ethyl] fluorene (sulfur-BSOCOES), etc., such crosslinking agents are commercially available.

將4個抗體可變區域結合時,通常需要3個連接子,可全部使用相同的連接子,也可使用相異之連接子。 When four variable regions of an antibody are bound, three linkers are usually required. The same linker can be used for all or different linkers can be used.

又,sc(Fv)2之中,就構造構造異構物而言,例如存在單鏈雙功能抗體(diabody)型及二價(bivalent)scFv型。 Among the sc (Fv) 2, structural isomers include, for example, single-chain bifunctional antibody (diabody) type and bivalent scFv type.

sc(Fv)2以[可變區域1](連接子1)[可變區域2](連 接子2)[可變區域3](連接子3)[可變區域4]之順序排列時,本發明之中二價(bivalent)scFv型係指:具有可變區域1與可變區域2組裝且可變區域3與可變區域4組裝之狀態的構造之sc(Fv)2。本發明之中,單鏈雙功能抗體(diabody)係指:具有可變區域1與可變區域4組裝,且可變區域2與可變區域3組裝之狀態之構造的sc(Fv)2。 sc (Fv) 2 uses [variable region 1] (linker 1) [variable region 2] (connected Adaptor 2) [variable region 3] (linker 3) [variable region 4] is arranged in the order of bivalent scFv in the present invention: it has variable region 1 and variable region 2 Sc (Fv) 2 of the structure in which the variable region 3 and the variable region 4 are assembled. In the present invention, a single-chain bifunctional antibody (diabody) refers to sc (Fv) 2 having a structure in which variable region 1 and variable region 4 are assembled, and variable region 2 and variable region 3 are assembled.

單鏈雙功能抗體(diabody)例如具有圖12(b)右之構造之sc(Fv)2,二價(bivalent)scFv型例如具有圖12(b)左之構造之sc(Fv)2。 The single-chain bifunctional antibody (diabody) has, for example, sc (Fv) 2 having a structure on the right in FIG. 12 (b), and the bivalent scFv type has, for example, sc (Fv) 2 having a structure on the left in FIG. 12 (b).

sc(Fv)2究竟為單鏈雙功能抗體(diabody)型或二價(bivalent)scFv型哪一種構造可利用例如蛋白酶限定分解法來解析。如舉一例,可利用如以下之方法來解析。 Whether sc (Fv) 2 is a single-chain bifunctional antibody (diabody) type or a bivalent scFv type can be analyzed by, for example, a protease-limited decomposition method. For example, the following method can be used for analysis.

將sc(Fv)2之連接子部分使用可部分且限定分解之一種枯草桿菌蛋白酶subtilisin A,進行受檢sc(Fv)2之限定分解。 The subunit of sc (Fv) 2 was subtilisin A, a subtilisin protease that can be partially and limitedly decomposed to perform the limited decomposition of sc (Fv) 2.

為單鏈雙功能抗體(diabody)型之情形,由於VH與VL之間之交互作用,sc(Fv)2所具有之3個連接子之中,即使有哪一連接子切斷,分子量也觀察不到變化。 In the case of a single-chain bifunctional antibody (diabody) type, due to the interaction between VH and VL, among the three linkers of sc (Fv) 2, the molecular weight is observed even if any of the linkers is cut. No change.

另一方面,為二價(bivalent)scFv型之情形,如果中央之連接子切斷,會生成一半分子量之分子種類。 On the other hand, in the case of the bivalent scFv type, if the central linker is cut off, a molecular species with a half molecular weight will be generated.

因此,藉由解析反應產物,可區別二價(bivalent)scFv型與單鏈雙功能抗體(diabody)型。 Therefore, by analyzing the reaction product, a bivalent scFv type can be distinguished from a single-chain bifunctional antibody type.

反應產物可藉由例如凝膠過濾層析分析來解析。又,也可使用層析並依據峰部面積,對sc(Fv)2所包含二價 (bivalent)sc(Fv)2構造與單鏈雙功能抗體(diabody)構造之存在比例加以定量評價。 The reaction product can be analyzed by, for example, gel filtration chromatography analysis. Alternatively, depending on the area of the peak, chromatography can be used to determine the bivalence included in sc (Fv) 2. The ratio of (bivalent) sc (Fv) 2 structure to single-chain bifunctional antibody (diabody) structure was quantitatively evaluated.

本發明之組裝控制方法於關於上述sc(Fv)2,欲優先地取得所望之型、亦即,雙功能抗體(diabody)型與二價(bivalent)scFv型之中某一者時,為較佳可利用的。 When the assembly control method of the present invention is to obtain the desired sc (Fv) 2 preferentially, that is, one of a bifunctional antibody (diabody) type and a bivalent scFv type, it is more preferable. Best available.

更具體而言,當sc(Fv)2具有VH1-(連接子)-VL1-(連接子)-VH2-(連接子)-VL2之構造時,使用本發明之組裝控制方法,欲優先地取得二價(bivalent)scFv型之sc(Fv)2之情形,例如只要抑制VH1與VL2,及/或VH2與VL1之組裝即可。(舉一例來說,在VH1與VL2之形成界面導入變異,使胺基酸殘基成為帶同種電荷。) More specifically, when sc (Fv) 2 has a structure of VH1- (linker) -VL1- (linker) -VH2- (linker) -VL2, using the assembly control method of the present invention, it is preferred to obtain In the case of bivalent scFv-type sc (Fv) 2, for example, it is only necessary to suppress the assembly of VH1 and VL2, and / or VH2 and VL1. (For example, a mutation is introduced at the interface between VH1 and VL2, so that the amino acid residue becomes the same kind of charge.)

又,欲優先地取得單鏈雙功能抗體(diabody)型之sc(Fv)2時,只要抑制例如、VH1與VL1,及/或VH2與VL2之組裝即可。(舉一例來說,在VH1與VL1之形成界面導入變異,使胺基酸殘基成為帶同種電荷。) When sc (Fv) 2 of a single-chain bifunctional antibody (diabody) type is preferentially obtained, it is only necessary to inhibit the assembly of, for example, VH1 and VL1, and / or VH2 and VL2. (For example, a mutation is introduced at the interface between VH1 and VL1, so that the amino acid residue becomes the same kind of charge.)

又,sc(Fv)2為單專一性抗體(monospecific antibody)之情形亦可以同樣方式實施本發明。 When the sc (Fv) 2 is a monospecific antibody, the present invention can be implemented in the same manner.

又,除了該等技術以外,尚可將VH與VL之各功能區以雙硫鍵加以交聯(Clin Cancer Res.1996 Feb;2(2):245-52)。 Moreover, in addition to these techniques, the functional regions of VH and VL can also be cross-linked with disulfide bonds (Clin Cancer Res. 1996 Feb; 2 (2): 245-52).

藉由利用本發明之組裝控制方法,例如可有效率地製作具活性之抗體或多肽。就該活性而言,例如有結合活性、中和活性、細胞傷害活性、協同活性、拮抗活性、酵素活性等。協同活性係指藉由使抗體結合於受體等抗原,在細胞內進行信號傳遞達等,而誘導某些生理活性變化之活性。生理活 性例如:增殖活性、生存活性、分化活性、複製活性、膜輸送活性、結合活性、蛋白質分解活性、磷酸化/去磷酸化活性、氧化還原活性、轉移活性、核酸分解活性、脫水活性、細胞死亡誘導活性、細胞凋零(apotosis)誘導活性等,但不限於該等。 By using the assembly control method of the present invention, for example, an active antibody or polypeptide can be efficiently produced. Examples of the activity include binding activity, neutralizing activity, cytotoxic activity, synergistic activity, antagonistic activity, and enzyme activity. Synergistic activity refers to the activity that induces changes in certain physiological activities by binding antibodies to antigens such as receptors and carrying out signal transmission in cells. Physiological activity For example: proliferation activity, survival activity, differentiation activity, replication activity, membrane transport activity, binding activity, proteolytic activity, phosphorylation / dephosphorylation activity, redox activity, transfer activity, nucleic acid decomposition activity, dehydration activity, cell death Inducing activity, apotosis inducing activity, and the like are not limited thereto.

又,利用本發明方法,可有效率地製作認識所望抗原,或與所望受體結合之抗體或多肽。 In addition, by the method of the present invention, antibodies or polypeptides that recognize a desired antigen or bind to a desired receptor can be efficiently produced.

該抗原不特別限定,可為任意抗原。抗原之例例如有受體或其片段、癌抗原、MHC抗原、分化抗原等,不特別限於該等。 The antigen is not particularly limited, and may be any antigen. Examples of the antigen include, for example, a receptor or a fragment thereof, a cancer antigen, an MHC antigen, a differentiation antigen, and the like, and are not particularly limited to these.

又,就該受體之例而言,例如屬於以下受體家族之受體:造血因子受體家族、細胞素受體家族、酪胺酸激酶型受體家族、絲胺酸/蘇胺酸激酶型受體家族、TNF受體家族、G蛋白質共軛型受體家族、GPI固著子(anchor)型受體家族、酪胺酸磷解酶型受體家族、黏著因子家族、荷爾蒙受體家族等。屬於該等受體家族之受體及關於其特徴存在有多數文獻,例如:Cooke BA.,King RJB.,van der Molen HJ.ed.New Comprehesive Biochemistry Vol.18B"Hormones and their Actions Part II"pp.1-46(1988)Elsevier Science Publishers BV.,New York,USA、Patthy L.(1990)Cell,61:13-14.、Ullrich A.,et al.(1990)Cell,61:203-212.、Massagul J.(1992)Cell,69:1067-1070.、Miyajima A.,et al.(1992)Annu.Rev.Immunol.,10:295-331.、Taga T.and Kishimoto T.(1992)FASEB J.,7:3387-3396.、Fantl WI.,et al.(1993)Annu.Rev.Biochem.,62:453-481.、Smith CA.,et al.(1994)Cell,76:959-962.、Flower DR.(1999)Biochim.Biophys.Acta,1422:207-234.、宮坂昌之審訂,細胞工程別冊手冊系列「黏著因子手冊」(1994)(秀潤社、東京、日本)等。就屬於上述受體家族之具體受體而言,例如:人類或小鼠紅血球生成素(EPO)受體、人類或小鼠顆粒球群落(colony)刺激因子(G-CSF)受體、人類或小鼠血小板生成素(TPO)受體、人類或小鼠胰島素受體、人類或小鼠Flt-3配體受體、人類或小鼠血小板由來增殖因子(PDGF)受體、人類或小鼠干擾素(IFN)-α、β受體、人類或小鼠瘦體素(leptin)受體、人類或小鼠成長荷爾蒙(GH)受體、人類或小鼠介白素(IL)-10受體、人類或小鼠類胰島素增殖因子(IGF)-I受體、人類或小鼠白血病抑制因子(LIF)受體、人類或小鼠毛狀體神經營養因子(CNTF)受體等(hEPOR:Simon,S.et al.(1990)Blood 76,31-35.;mEPOR:D'Andrea,AD.Et al.(1989)Cell 57,277-285.;hG-CSFR:Fukunaga,R.et al.(1990)Proc.Natl.Acad.Sci.USA.87,8702-8706.;mG-CSFR:Fukunaga,R.et al.(1990)Cell 61,341-350.;hTPOR:Vigon,I.et al.(1992)89,5640-5644.;mTPOR:Skoda,RC.Et al.(1993)12,2645-2653.;hInsR:Ullrich,A.et al.(1985)Nature 313,756-761.;hFlt-3:Small,D.et al.(1994)Proc.Natl.Acad.Sci.USA.91,459-463.;hPDGFR:Gronwald,RGK.Et al.(1988)Proc.Natl.Acad.Sci.USA.85,3435-3439.;hIFNα/βR:Uze,G.et al.(1990)Cell 60,225-234.及Novick,D.et al.(1994)Cell 77,391-400.)。 Examples of the receptor include receptors belonging to the following receptor families: hematopoietic factor receptor family, cytokine receptor family, tyrosine kinase type receptor family, serine / threonine kinase Receptor family, TNF receptor family, G protein conjugate receptor family, GPI anchor receptor family, tyrosine phosphatase receptor family, adhesion factor family, hormone receptor family Wait. Receptors belonging to these receptor families and most of their literature exist, for example: Cooke BA., King RJB., Van der Molen HJ.ed. New Comprehesive Biochemistry Vol. 18B "Hormones and their Actions Part II" pp .1-46 (1988) Elsevier Science Publishers BV., New York, USA, Patthy L. (1990) Cell, 61: 13-14., Ullrich A., et al. (1990) Cell, 61: 203-212 ., Massagul J. (1992) Cell, 69: 1067-1070., Miyajima A., et al. (1992) Annu. Rev. Immunol., 10: 295-331., Taga T. and Kishimoto T. (1992 ) FASEB J., 7: 3387-3396., Fantl WI., Et al. (1993) Annu. Rev. Biochem., 62: 453-481., Smith CA., et al. (1994) Cell, 76: 959-962., Flower DR. (1999) Biochim. Biophys. Acta, 1422: 207-234., Review by Miyasaka Masaaki, Cell Engineering Special Booklet Series "Adhesion Factor Handbook" (1994) (Shurunsha, Tokyo, Japan) For specific receptors belonging to the aforementioned receptor family, for example: human or mouse erythropoietin (EPO) receptor, human or mouse colony stimulating factor (G-CSF) receptor, human or Mouse thrombopoietin (TPO) receptor, human or mouse insulin receptor, human or mouse Flt-3 ligand receptor, human or mouse platelet derived proliferation factor (PDGF) receptor, human or mouse interference (IFN) -α, β receptor, human or mouse leptin receptor, human or mouse growth hormone (GH) receptor, human or mouse interleukin (IL) -10 receptor , Human or mouse insulin-like proliferation factor (IGF) -I receptor, human or mouse leukemia inhibitory factor (LIF) receptor, human or mouse hair body neurotrophic factor (CNTF) receptor, etc. (hEPOR: Simon , S. et al. (1990) Blood 76, 31-35 .; mEPOR: D'Andrea, AD. Et al. (1989) Cell 57,277-285 .; hG-CSFR: Fukunaga, R. et al. (1990 ) Proc.Natl.Acad.Sci.USA.87,8702-8706 .; mG-CSFR: Fukuunaga, R. et al. (1990) Cell 61,341-350 .; hTPOR: Vigon, I.et al. (1992) 89,5640-5644 .; mTPOR: Skoda, RC.Et al. (1993) 12, 2645-2653 .; hInsR: Ullr ich, A. et al. (1985) Nature 313, 756-761 .; hFlt-3: Small, D. et al. (1994) Proc. Natl. Acad. Sci. USA. 91, 459-463 .; hPDGFR: Gronwald, RGK Et al. (1988) Proc. Natl. Acad. Sci. USA. 85, 3435-3439 .; hIFNα / βR: Uze, G. et al. (1990) Cell 60, 225-234. And Novik, D.et al (1994) Cell 77, 391-400.).

癌抗原為伴隨細胞惡質化而表現之抗原,也成為腫瘤專一性抗原。又,細胞癌化時在細胞表面或蛋白質分子上 出現的異常糖鏈也會成為癌抗原,特別稱為癌糖鏈抗原。癌抗原之例,例如:CA19-9、CA15-3、Serail SSEA-1(SLX)等。 Cancer antigens are antigens that appear with the deterioration of cells, and they also become tumor-specific antigens. Also, when a cell is cancerous, it is on the cell surface or on a protein molecule The abnormal sugar chains that appear also become cancer antigens, especially called cancer sugar chain antigens. Examples of cancer antigens include CA19-9, CA15-3, and Serail SSEA-1 (SLX).

MHC抗原大致區分為MHC第I類抗原及MHC第II類抗原,MHC第I類抗原包含HLA-A、-B、-C、-E、-F、-G、-H,MHC第II類抗原包含HLA-DR、-DQ、-DP。 MHC antigens are roughly divided into MHC class I antigens and MHC class II antigens. MHC class I antigens include HLA-A, -B, -C, -E, -F, -G, -H, and MHC class II antigens. Contains HLA-DR, -DQ, -DP.

分化抗原包含CD1、CD2、CD3、CD4、CD5、CD6、CD7、CD8、CD10、CD11a、CD11b、CD11c、CD13、CD14、CD15s、CD16、CD18、CD19、CD20、CD21、CD23、CD25、CD28、CD29、CD30、CD32、CD33、CD34、CD35、CD38、CD40、CD41a、CD41b、CD42a、CD42b、CD43,CD44、CD45,CD45RO、CD48、CD49a、CD49b、CD49c、CD49d、CD49e、CD49f、CD51、CD54、CD55、CD56、CD57、CD58、CD61、CD62E、CD62L、CD62P、CD64、CD69、CD71、CD73、CD95、CD102、CD106、CD122、CD126、CDw130等。 Differentiation antigens include CD1, CD2, CD3, CD4, CD5, CD6, CD7, CD8, CD10, CD11a, CD11b, CD11c, CD13, CD14, CD15s, CD16, CD18, CD19, CD20, CD21, CD23, CD25, CD28, CD29 , CD30, CD32, CD33, CD34, CD35, CD38, CD40, CD41a, CD41b, CD42a, CD42b, CD43, CD44, CD45, CD45RO, CD48, CD49a, CD49b, CD49c, CD49d, CD49e, CD49f, CD51, CD54, CD55 , CD56, CD57, CD58, CD61, CD62E, CD62L, CD62P, CD64, CD69, CD71, CD73, CD95, CD102, CD106, CD122, CD126, CDw130 and so on.

又,本發明提供以本發明方法使組裝受控制之多肽變異體或異種多聚體。亦即本發明係關於以本發明之組裝控制方法取得之多肽或異種多聚體。 The present invention also provides a polypeptide variant or heteromultimer whose assembly is controlled by the method of the present invention. That is, the present invention relates to a polypeptide or heteromultimer obtained by the assembly control method of the present invention.

本發明之較佳態樣為提供一種多肽變異體,該多肽內形成界面之胺基酸殘基有改變,以抑制原來多肽內之組裝。 A preferred aspect of the present invention is to provide a polypeptide variant in which the amino acid residues forming the interface in the polypeptide are changed to inhibit assembly in the original polypeptide.

又,本發明另一態樣之中提供一種異種多聚體,該多肽間形成界面之胺基酸殘基有改變,以抑制原來多肽間之組裝。 Furthermore, in another aspect of the present invention, a heteromultimer is provided. The amino acid residues forming the interface between the polypeptides are changed to inhibit the assembly between the original polypeptides.

本發明之中「原來之多肽」係指利用本發明方法 以組裝受控制之方式改變前之狀態的多肽。 In the present invention, "the original polypeptide" refers to the use of the method of the present invention. A polypeptide that changes its former state in a controlled manner.

本發明之上述多肽變異體之一例,例如:原多肽可形成2種構造構造異構物之變異體。又,上述異種多聚體之一例,例如:原多肽可形成2種以上多聚體之多聚體。 An example of the above-mentioned polypeptide variants of the present invention, for example, the original polypeptide can form two kinds of structural and structural isomers. In addition, as an example of the aforementioned heteromultimer, for example, the original polypeptide can form a multimer of two or more kinds of multimers.

又,利用本發明之上述組裝控制方法而使組裝受控制之多肽變異體或異種多聚體也包含於本發明。亦即,上述組裝控制方法之較佳態樣之中,組裝受到控制之多肽或異種多聚體也是本發明較佳態樣之一。 In addition, a polypeptide variant or heteromultimer whose assembly is controlled by using the assembly control method of the present invention is also included in the present invention. That is, among the preferred aspects of the above assembly control method, the controlled assembly of the polypeptide or heteromultimer is also one of the preferred aspects of the present invention.

又,本發明提供一種多肽或多種多聚體之組裝受到控制之多肽或多種多聚體之製造方法。 In addition, the present invention provides a method for manufacturing a polypeptide or a plurality of multimers whose assembly is controlled.

本發明製造方法之較佳態樣,提供一種多肽變異體之製造方法,係以多肽組裝受控制之方式使多肽內形成界面之胺基酸殘基具有變異之多肽製造方法,包含下列步驟:(a)將編碼為多肽內形成界面之胺基酸殘基的核酸自原核酸改變,使多肽內組裝受到抑制,並(b)培養寄主細胞使表現該核酸,及(c)自寄主細胞培養物將該多肽回收。 In a preferred aspect of the manufacturing method of the present invention, a method for manufacturing a polypeptide variant is provided, which is a method for manufacturing a polypeptide having a variation in amino acid residues forming an interface in the polypeptide in a controlled manner of polypeptide assembly, including the following steps: ( a) altering a nucleic acid encoding an amino acid residue forming an interface within a polypeptide from a pro-nucleic acid, thereby inhibiting internal assembly of the polypeptide, and (b) culturing the host cell to express the nucleic acid, and (c) from the host cell culture The polypeptide is recovered.

又,本發明製造方法之另一態樣,提供一種異種多聚體之製造方法,係以異種多聚體之組裝受控制之方式使多肽間形成界面之胺基酸殘基具有變異之異種多聚體之製造方法,包含下列步驟:(a)將編碼為多肽間形成界面之胺基酸殘基的核酸自原核酸改變,使多肽間之組裝受到抑制,並(b)培養寄主細胞使表現該核酸,及(c)自寄主細胞培養物將該異種多聚體回收。 Furthermore, in another aspect of the manufacturing method of the present invention, a method for manufacturing a heteromultimer is provided, in which the amino acid residues forming the interface between the polypeptides are mutated in a manner that controls the assembly of the heteromultimers. A method for producing a polymer includes the following steps: (a) changing a nucleic acid encoding an amino acid residue forming an interface between polypeptides from an original nucleic acid, thereby suppressing the assembly between the polypeptides, and (b) cultivating a host cell for expression The nucleic acid, and (c) the heteromultimer is recovered from the host cell culture.

又,利用本發明之上述組裝控制方法,以多肽組 裝受到抑制之方式,使編碼為多肽內(間)形成界面之胺基酸殘基之核酸自原核酸改變之步驟的方法也是本發明上述製造方法之較佳態樣之一。 Furthermore, using the assembly control method of the present invention, The method of suppressing the method to change the nucleic acid encoding the amino acid residue forming the interface between (in) the polypeptide from the original nucleic acid is also one of the preferred aspects of the above-mentioned manufacturing method of the present invention.

本發明上述方法之中「改變核酸」係指以對應於本發明之中「改變」而導入之胺基酸殘基之方式改變核酸。更具體而言,係指:就編碼為原來(改變前)之胺基酸殘基的核酸,改變成編碼為以改變而導入之胺基酸殘基之核酸。通常意指:對原來之核酸進行如至少使1個鹼基插入、缺失或取代之基因操作或變異處理而使成為編碼為目的胺基酸殘基之密碼子。亦即,將編碼為原胺基酸殘基之密碼子取代為編碼為因改變而導入之胺基酸殘基的密碼子。如該核酸之改變,該技術領域之人士之中可使用公知技術,例如部位專一性變異誘發法、PCR變異導入法等而適當實施。 "Altering a nucleic acid" in the above method of the present invention refers to altering a nucleic acid in a manner corresponding to an amino acid residue introduced corresponding to the "change" in the present invention. More specifically, it refers to a nucleic acid that encodes an amino acid residue that was originally (before alteration) changed to a nucleic acid that encodes an amino acid residue introduced by alteration. Generally, it means that the original nucleic acid is subjected to genetic manipulation or mutation treatment such as insertion, deletion or substitution of at least one base, so that it becomes a codon encoding an intended amino acid residue. That is, a codon encoded as an ortho amino acid residue is replaced with a codon encoded as an amino acid residue introduced as a result of the change. If the nucleic acid is changed, a person skilled in the art can use a known technique such as a site-specific mutation induction method, a PCR mutation introduction method, or the like to appropriately implement it.

又,本發明之中核酸通常被載持(插入)於適當載體並導入寄主細胞。該載體只要可安定地保持插入之核酸即不特別限定,例如寄主使用大腸菌則選殖用載體較佳為pBluescript載體(Stratagene社製)等,可利用市售之各種載體。為了生產本發明之多肽而使用載體之情形,尤以表現載體為有用的。表現載體只要是在試驗管內、大腸菌內、培養細胞內、生物個體內表現多肽之載體即不特別限制,例如如於試驗管內表現,較佳為pBEST載體(Promega社製)、於大腸菌則較佳為pET載體(Invitrogen社製)、於培養細胞則較佳為pME18S-FL3載體(GenBank Accession No.AB009864)、於生物個體則較佳為pME18S載體(Mol Cell Biol.8:466-472(1988))等。本發明之 DNA插入載體可依常法,例如利用使用限制酶部位之接合酶反應來進行(Current protocols in Molecular Biology edit.Ausubel et al.(1987)Publish.John Wiley & Sons.Section 11.4-11.11)。 In the present invention, the nucleic acid is usually carried (inserted) on an appropriate vector and introduced into a host cell. This vector is not particularly limited as long as it can stably retain the inserted nucleic acid. For example, if the host uses coliform, the selection vector is preferably a pBluescript vector (manufactured by Stratagene), and various commercially available vectors can be used. In the case where a carrier is used for producing the polypeptide of the present invention, it is particularly useful to express the carrier. The expression vector is not particularly limited as long as it is a vector that expresses a polypeptide in a test tube, coliform, cultured cell, or organism. For example, if it is expressed in a test tube, a pBEST vector (promega) is preferred. A pET vector (manufactured by Invitrogen) is preferred, a pME18S-FL3 vector (GenBank Accession No. AB009864) is preferred in cultured cells, and a pME18S vector (Mol Cell Biol. 8: 466-472 ( 1988)) and so on. The invention The DNA insertion vector can be carried out by a conventional method, for example, using a ligase reaction using a restriction enzyme site (Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Sons. Section 11.4-11.11).

上述寄主細胞不特別限定,可視目的使用各種寄主細胞。用於表現多肽之細胞,例如:細菌細胞(例:鏈球菌、葡萄球菌、大腸菌、鏈黴菌、枯草菌)、真菌細胞(例:酵母、麴菌)、昆蟲細胞(例:果蠅S2、斜紋夜蛾(Spodoptera)SF9)、動物細胞(例:CHO、COS、HeLa、C127、3T3、BHK、HEK293、Bowes黑色瘤(Melanoma)細胞)及植物細胞。對寄主細胞之載體導入,例如可利用磷酸鈣沉澱法、電脈衝穿孔法(Current protocols in Molecular Biology edit.Ausubel et al.(1987)Publish.John Wiley & Sons.Section 9.1-9.9)、脂質體(Lipofectamine)法(GIBCO-BRL社製)、微注射法等公知之方法進行。 The host cell is not particularly limited, and various host cells can be used depending on the purpose. Cells used to express peptides, such as bacterial cells (eg, streptococcus, staphylococcus, coliform, streptomyces, subtilis), fungal cells (eg, yeast, pinworm), insect cells (eg, Drosophila S2, Twill Spodoptera SF9), animal cells (for example: CHO, COS, HeLa, C127, 3T3, BHK, HEK293, Bowes Melanoma cells) and plant cells. For introduction of a vector into a host cell, for example, calcium phosphate precipitation method, electric pulse perforation method (Current protocols in Molecular Biology edit. Ausubel et al. (1987) Publish. John Wiley & Sons. Section 9.1-9.9), liposome ( Lipofectamine) method (manufactured by GIBCO-BRL), microinjection method and other known methods.

為了使寄主細胞之中表現之多肽分泌至微胞體之內腔、細胞周邊腔或細胞外之環境,可將適當之分泌信號嵌入目的多肽。該等信號對於目的多肽可為內因性也可為異種信號。 In order for the polypeptide expressed in the host cell to be secreted into the inner cavity of the microsomal body, the peripheral cavity of the cell or the extracellular environment, an appropriate secretion signal may be embedded in the polypeptide of interest. These signals can be endogenous or heterologous to the polypeptide of interest.

上述製造方法之中,多肽之回收當本發明之多肽分泌至培養基之情形,將培養基回收。當本發明之多肽產生於細胞內時,先將該細胞溶解之後將多肽回收。 In the above manufacturing method, the polypeptide is recovered when the polypeptide of the present invention is secreted into the culture medium. When the polypeptide of the present invention is produced in a cell, the cell is lysed before the polypeptide is recovered.

自重組細胞培養物將本發明之多肽回收並精製時,可利用包含硫酸銨或乙醇沉澱、酸萃取、陰離子或陽離子交換層析、磷酸纖維素層析、疏水性交互作用層析、親和層析、 羥基磷灰石層析及凝集素(lectin)層析之公知方法。 When the polypeptide of the present invention is recovered and purified from a recombinant cell culture, it can be used with ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, cellulose phosphate chromatography, hydrophobic interaction chromatography, affinity chromatography. , Well-known methods of hydroxyapatite chromatography and lectin chromatography.

又,本發明係關於一種組成物(藥劑),包含本發明之多肽變異體或本發明之異種多聚體及醫藥上可容許之擔體。 The present invention relates to a composition (medicine) comprising the polypeptide variant of the present invention or the heteromultimer of the present invention and a pharmaceutically acceptable carrier.

本發明之中,醫藥組成物係指通常用用於疾患之治療或預防或者檢查‧診斷之藥劑。 In the present invention, a medicinal composition refers to an agent that is generally used for the treatment or prevention or inspection and diagnosis of a disease.

本發明之醫藥組成物,該技術領域之人士可用公知之方法加以製劑化。例如,可以如下形式非經口的使用:水或其他藥學的可容許之液體形成之無菌性溶液或懸浮液劑之注射劑。例如可與藥理學上可容許的擔體或媒體,具體而言、滅菌水或生理食鹽水、植物油、乳化劑、懸浮劑、界面活性劑、安定劑、香味劑、賦形劑、載體、防腐劑、結合劑等適當組合,並以一般認可之製藥習慣要求之單位用量形態加以混合而製劑化。該等製劑之中,有效成分量係設定為可得到指示範圍之適當容量。 Those skilled in the art can prepare the pharmaceutical composition of the present invention by a known method. For example, it can be used parenterally in the form of a sterile solution or suspension of water or other pharmaceutically acceptable liquid for injection. For example, with pharmacologically acceptable carriers or media, specifically, sterilized water or physiological saline, vegetable oils, emulsifiers, suspending agents, surfactants, stabilizers, flavoring agents, excipients, carriers, preservatives Agents, binding agents, etc. are appropriately combined and formulated in the unit dosage form required by generally accepted pharmaceutical habits. Among these preparations, the amount of the active ingredient is set to an appropriate capacity to obtain the indicated range.

用於注射之無菌組成物可使用如注射用蒸餾水之載體,依照通常製劑習慣加以處方。 Sterile compositions for injection can be formulated using carriers such as distilled water for injection, in accordance with usual formulation practices.

注射用之水溶液,例如:生理食鹽水、葡萄糖或包含此外之輔助藥(例如D-山梨醇、D-甘露糖、D-甘露醇、氯化鈉)之等張液。也可併用適當之溶解輔助劑、例如醇(乙醇等)、多元醇(丙二醇、聚乙二醇等)、非離子性界面活性劑(聚山梨醇酯80(TM)、HCO-50等)。 Aqueous solutions for injection, for example: physiological saline, glucose or isotonic solutions containing other auxiliary drugs (such as D-sorbitol, D-mannose, D-mannitol, sodium chloride). Appropriate dissolution aids such as alcohols (such as ethanol), polyhydric alcohols (propylene glycol, polyethylene glycol, etc.), and nonionic surfactants (polysorbate 80 (TM), HCO-50, etc.) may be used in combination.

油性液例如可併用蔴油、大豆油,溶解輔助劑例如苯甲基苯甲酸酯及/或苄醇。又,也可配合緩衝劑(例如,磷酸鹽緩衝液及乙酸鈉緩衝液)、無痛化劑(例如、鹽酸普卡因 (procain))、安定劑(例如、苄醇及苯酚)、抗氧化劑。調製之注射液通常充填於適當的注射液瓶。 For the oily liquid, for example, sesame oil, soybean oil, and a dissolution aid such as benzyl benzoate and / or benzyl alcohol can be used in combination. In addition, buffering agents (e.g., phosphate buffer and sodium acetate buffer) and analgesics (e.g., procaine hydrochloride) may also be added. (procain)), stabilizers (eg, benzyl alcohol and phenol), antioxidants. The prepared injection solution is usually filled in a suitable injection solution bottle.

本發明之醫藥組成物較佳為非經口投予。例如可製成注射劑型、經鼻投予劑型、經肺投予劑型、經皮投予型之組成物。例如可以靜脈內注射、肌肉內注射、腹腔內注射、皮下注射等進行全身或局部的投予。 The pharmaceutical composition of the present invention is preferably administered orally. For example, the composition can be made into an injection form, a nasal administration form, a pulmonary administration form, or a transdermal administration form. For example, intravenous, intramuscular, intraperitoneal, and subcutaneous injections can be used for systemic or local administration.

投予方法可依照患者之年齡、症狀來適當選擇。含有抗體或編碼為抗體之聚核苷酸之醫藥組成物投予量,可設定為例如每次體重1kg為0.0001mg至1000mg之範圍。或例如每位患者0.001~100000mg之投予量,但本發明不一定限於該等數值。投予量及投予方法由於患者之體重、年齡、症狀等而變動,但只要是該技術領域之人士可考慮該等條件並設應適當之投予量及投予方法。 The administration method can be appropriately selected according to the age and symptoms of the patient. The dosage of the pharmaceutical composition containing the antibody or the polynucleotide encoding the antibody can be set, for example, in a range of 0.0001 mg to 1000 mg per 1 kg of body weight. Or, for example, a dose of 0.001 to 100,000 mg per patient, but the present invention is not necessarily limited to these values. The amount and method of administration vary depending on the patient's weight, age, symptoms, etc., as long as those in the technical field can consider these conditions and set the appropriate amount and method of administration.

又,視需要,本發明之多肽或異種多聚體可與其他之醫藥成分組合而製劑化。 If necessary, the polypeptide or heteromultimer of the present invention may be formulated by combining it with other pharmaceutical ingredients.

又,本發明提供編碼為本發明之多肽變異體或本發明之異種多聚體的核酸。再者,載持該核酸之載體也包含於本發明。 The present invention also provides a nucleic acid encoding a polypeptide variant of the present invention or a heteromultimer of the present invention. Furthermore, a vector carrying the nucleic acid is also included in the present invention.

再者,本發明提供具有上述核酸之寄主細胞。該寄主細胞不特別限定,例如:大腸菌或各種動物細胞等。寄主細胞可作為例如本發明之抗體或多肽製造或表現之生產系使用。用以多肽製造之生產系有體外(in vitro)及體內(in vivo)生產系。體外生產系例如有使用真核細胞之生產系及使用原核細胞之生產系。 Furthermore, the present invention provides a host cell having the above nucleic acid. The host cell is not particularly limited, and examples include coliform bacteria and various animal cells. The host cell can be used as a production line for producing or expressing the antibody or polypeptide of the present invention, for example. Production lines for peptide manufacturing include in vitro and in vivo production lines. The in vitro production system includes, for example, a production system using eukaryotic cells and a production system using prokaryotic cells.

可作為寄主細胞使用之真核細胞,例如:動物細胞、植物細胞、真菌細胞。動物細胞,哺乳類細胞例如CHO(J.Exp.Med.(1995)108:945)、COS、3T3、骨髓瘤、BHK(baby hamster kidney)、HeLa、Vero等;兩生類細胞例如:非洲爪蟾蜍卵母細胞(Valle et al.,Nature(1981)291:338-340);及昆蟲細胞例如:Sf9、Sf21、Tn5。本發明抗體之表現較佳為使用CHO-DG44、CHO-DX11B、COS7細胞、BHK細胞。動物細胞之中,以大量表現為目的時,尤佳為CHO細胞。對寄主細胞導入載體,例如可以如下方法進行:磷酸鈣法、DEAE葡聚糖法、使用陽離子性微脂體(liposome)DOTAP(Boehringer Mannheim製)之方法、電穿孔法、脂染(lipofection)等方法進行。 Eukaryotic cells that can be used as host cells, such as animal cells, plant cells, and fungal cells. Animal cells, mammalian cells such as CHO (J.Exp.Med. (1995) 108: 945), COS, 3T3, myeloma, BHK (baby hamster kidney), HeLa, Vero, etc .; amphiphilic cells such as Xenopus laevis eggs Mother cells (Valle et al., Nature (1981) 291: 338-340); and insect cells such as Sf9, Sf21, Tn5. For the performance of the antibody of the present invention, CHO-DG44, CHO-DX11B, COS7 cells, and BHK cells are preferably used. Among animal cells, CHO cells are particularly preferred for a large number of expressions. The introduction of a vector into a host cell can be performed by, for example, a calcium phosphate method, a DEAE glucan method, a method using a cationic liposome DOTAP (manufactured by Boehringer Mannheim), an electroporation method, and a lipofection method. Method.

植物細胞已知有例如以菸草(Nicotiana tabacum)由來之細胞作為蛋白質生產系,可將該細胞利用癒合組織培養方法來產生本發明之抗體。就真菌細胞而言,使用酵母,例如:糖化酵母(Saccharomyces)屬之細胞((Saccharomyces cerevisiae)、(Saccharomyces pombe)等)、及黴菌,例如麴菌(Aspergillus)屬之細胞((Aspergillus niger)等)之蛋白質表現系為公知,可利用為本發明之抗體產生之寄主。 As a plant cell, for example, a cell derived from Nicotiana tabacum is known as a protein production system, and the cell can be produced by using a healing tissue culture method to produce the antibody of the present invention. For fungal cells, yeasts are used, for example: cells of the genus Saccharomyces (Saccharomyces cerevisiae, Saccharomyces pombe, etc.), and molds, such as cells of the genus Aspergillus (Aspergillus niger), etc. The protein expression of) is well known and can be used as a host for the production of antibodies of the present invention.

使用原核細胞之情形,有使用細菌細胞之生產系。細菌細胞除了上述大腸菌(E.coli)以外,已知有使用枯草菌之生產系,可利用於本發明之抗體產生。 In the case of using prokaryotic cells, there is a production system using bacterial cells. Bacterial cells other than the aforementioned E. coli are known to use a subtilis production system and can be used for the production of antibodies of the present invention.

使用本發明之寄主細胞來產生抗體之情形,只要將以包含編碼為本發明抗體之聚核苷酸的表現載體進行形質轉換之寄主細胞加以培養,並使表現聚核苷酸即可。培養可依 照公知方法進行。例如,以動物細胞為寄主之情形、培養液可使用,例如:DMEM、MEM、RPMI1640、IMDM。此時,可併用FBS、胎牛血清(FCS)等血清補液,也可以無血清培養進行細胞培養。培養時之pH較佳為約6~8。培養通常於約30~40℃進行約15~200小時,視需要加入培養基之交換、通氣、攪拌。 In the case where the host cell of the present invention is used to generate an antibody, the host cell may be cultured with a expression vector containing a polynucleotide encoding the antibody of the present invention, and the polynucleotide may be expressed. Training According to a known method. For example, when animal cells are used as hosts, culture media can be used, such as: DMEM, MEM, RPMI1640, IMDM. In this case, serum rehydration such as FBS and fetal calf serum (FCS) may be used in combination, or cell culture may be performed in serum-free culture. The pH during culture is preferably about 6 to 8. The culture is usually carried out at about 30 to 40 ° C for about 15 to 200 hours, and the medium is added for exchange, aeration, and stirring as needed.

另一方面,於體內(in vivo)生產多肽之系,例如:使用動物之生產系或使用植物之生產系。於該等動物或植物之中導入目的聚核苷酸,並於動物或植物之體內使多肽產生並回收。本發明之中「寄主」包含該等動物、植物。 On the other hand, the system for producing polypeptides in vivo is, for example, an animal production system or a plant production system. The target polynucleotide is introduced into these animals or plants, and the polypeptide is produced and recovered in the animal or plant. The "host" in the present invention includes such animals and plants.

使用動物之情形,有使用哺乳類動物、昆蟲之生產系。哺乳類動物可使用山羊、豬、羊、小鼠、牛等(Vicki Glaser,SPECTRUM Biotechnology Applications(1993))。又,使用哺乳類動物之情形,可使用基因轉殖動物。 In the case of using animals, there are production systems using mammals and insects. As mammals, goats, pigs, sheep, mice, cattle, etc. can be used (Vicki Glaser, SPECTRUM Biotechnology Applications (1993)). When mammals are used, transgenic animals can be used.

例如,將編碼為本發明抗體之聚核苷酸與編碼為如山羊β酪蛋白之乳汁中固有產生之多肽的基因調製成融合基因。接著,將包含該融合基因之聚核苷酸片段注入山羊之胚胎,將該胚胎移殖到雌山羊。自收容胚之山羊生下的基因轉殖山羊或其子代產生之乳汁,可得到目的抗體。為了使基因轉殖山羊產生之包含抗體之乳汁量增加,也可對基因轉殖山羊投予適當的荷爾蒙(Ebert et al.,Bio/Technology(1994)12:699-702)。 For example, a polynucleotide encoding an antibody of the present invention and a gene encoding a polypeptide inherently produced in milk such as goat beta casein are modulated into a fusion gene. Next, a polynucleotide fragment containing the fusion gene is injected into a goat embryo, and the embryo is transferred to a female goat. The target antibody can be obtained from the milk produced by the transgenic goat or its offspring born from the embryo-contained goat. In order to increase the amount of milk containing antibodies produced by transgenic goats, appropriate hormones can also be administered to transgenic goats (Ebert et al., Bio / Technology (1994) 12: 699-702).

又,產生本發明抗體之昆蟲,例如可使用蠶。使用蠶之情形,藉由將插入有編碼為目的抗體之聚核苷酸的桿狀病毒感染蠶,可自蠶之體液得到目的抗體(Susumu et al.,Nature (1985)315:592-4)。 Moreover, the insect which produces the antibody of this invention can use silkworm, for example. When silkworms are used, baculoviruses inserted with a polynucleotide encoding the antibody of interest can be used to infect silkworms, and the antibodies of interest can be obtained from the silkworm body fluids (Susumu et al., Nature (1985) 315: 592-4).

再者,以植物用於本發明抗體產生之情形,可使用例如菸草。使用菸草之情形,將編碼為目的抗體之聚核苷酸插入於植物表現用載體,例如pMON 530,並將該載體導入於農桿菌(Agrobacterium tumefaciens)之細菌。使該細菌感染菸草,例如Nicotiana tabacum,可自該菸葉得到所望之抗體(Ma et al.,Eur.J.Immunol.(1994)24:131-8)。 Furthermore, in the case where a plant is used for the production of the antibody of the present invention, for example, tobacco can be used. When tobacco is used, a polynucleotide encoding an antibody of interest is inserted into a plant expression vector, such as pMON 530, and the vector is introduced into a bacterium of Agrobacterium tumefaciens. Infecting the bacteria with tobacco, such as Nicotiana tabacum, the desired antibodies can be obtained from the tobacco leaves (Ma et al., Eur. J. Immunol. (1994) 24: 131-8).

以該方式所得到之抗體可自寄主細胞內或細胞外(培養基、乳汁等)單離,而精製成實質為純且均勻之抗體。抗體之分離、精製使用通常多肽精製使用之分離、精製方法即可,無任何限定。例如可適當選擇層析管柱、過濾膜、超過濾、鹽析、溶劑沉澱、溶劑萃取、蒸餾、免疫沈降、SDS-聚丙烯醯胺凝膠電泳、等電點電泳法、透析、再結晶等並組合而將抗體分離、精製。 The antibody obtained in this way can be isolated from the inside or outside of the host cell (medium, milk, etc.), and purified into a substantially pure and uniform antibody. The isolation and purification of the antibody can be performed by any method generally used for purification of polypeptides, without any limitation. For example, chromatography columns, filtration membranes, ultrafiltration, salting out, solvent precipitation, solvent extraction, distillation, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, isoelectric point electrophoresis, dialysis, and recrystallization can be appropriately selected. The antibodies are separated and purified in combination.

層析例如有:親和層析、離子交換層析、疏水性層析、凝膠過濾、逆相層析、吸附層析等(Strategies for Protein Purification and Characterization:A Laboratory Course Manual.Ed Daniel R.Marshak et al.(1996)Cold Spring Harbor Laboratory Press)。該等層析可利用液相層析,例如HPLC、FPLC等液相層析來進行。親和層析使用之管柱例如有:PROTEIN A管柱、PROTEIN G管柱。例如、使用PROTEIN A之管柱有Hyper D、POROS、Sepharose F.F.(Pharmacia製)等。 Examples of chromatography include: affinity chromatography, ion exchange chromatography, hydrophobic chromatography, gel filtration, reverse phase chromatography, and adsorption chromatography (Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al. (1996) Cold Spring Harbor Laboratory Press). Such chromatography can be performed by liquid chromatography, for example, liquid chromatography such as HPLC or FPLC. Examples of affinity chromatography columns include: PROTEIN A column and PROTEIN G column. For example, a column using PROTEIN A includes Hyper D, POROS, Sepharose F.F. (manufactured by Pharmacia), and the like.

視需要,可藉由於抗體精製前或精製後使適當之蛋白質修飾酵素作用,任意地加以修飾或除去部分的肽。蛋白 質修飾酵素可使用例如:胰蛋白酶、凝乳蛋白酶(Chymotrpsin)、離胺酸末端肽酶、蛋白質激酶、葡萄糖氧化酶等。 If necessary, some peptides can be arbitrarily modified or removed due to the action of an appropriate protein-modifying enzyme before or after purification of the antibody. protein As the qualitative modification enzyme, for example, trypsin, Chymotrpsin, lysine terminal peptidase, protein kinase, glucose oxidase, and the like can be used.

如上述,包含:培養本發明之寄主細胞,並自該細胞培養物回收多肽之步驟之本發明之多肽變異體或異種多聚體製造方法,亦為本發明較佳態樣之一。 As described above, the method for producing a polypeptide variant or heteromultimer of the present invention including the steps of culturing the host cell of the present invention and recovering the polypeptide from the cell culture is also one of the preferred aspects of the present invention.

【實施例】 [Example]

以下,以實施例對本發明更具體的說明,但本發明不受限於該等實施例。 Hereinafter, the present invention will be described in more detail with examples, but the present invention is not limited to these examples.

[實施例1]對抗Factor IXa(F.IXa)之非中和抗體製作 [Example 1] Preparation of non-neutralizing antibodies against Factor IXa (F.IXa)

1-1.免疫及融合瘤製作 1-1. Immune and fusion tumor production

將BALB/c小鼠(雄、免疫開始時6週齡、日本Charles‧River)8頭及MRL/lpr小鼠(雄、免疫開始時6週齡、日本Charles‧River)5頭依如下方式以Factor IXaβ(Enzyme Research Laboratories,Inc.)免疫。初次免疫將以FCA(佛洛依德完全佐劑H37 Ra(Difco laboratories))乳膠化之Factor IXaβ進行40μg/head皮下投予。2週間後,將以FIA(佛洛依德不完全佐劑(Difco laboratories))乳膠化之Factor IXaβ進行40μg/head皮下投予。之後,以1週間隔進行追加免疫3~7次。對於Factor IXaβ之血清抗體價上升,以1-2所示ELISA(Enzyme linked immunosorbent assay)確認後,最終免疫以PBS(-)(不含鈣離子、鎂離子之磷酸緩衝液)稀釋Factor IXaβ以40μg/head進行靜脈內投予。最終免疫3日後,將小鼠脾臓細胞與小鼠骨髓瘤細胞P3X63Ag8U.1(稱為P3U1,ATCC CRL-1597)以使用 PEG1500(Roche Diagnostics)之常法進行細胞融合。將懸浮於包含10% FBS(Invitrogen)之RPMI1640培養基(Invitrogen)(以下稱為10%FBS/RPMI1640)之融合細胞接種於96井培養盤,並融合1、2、3、5日後,藉由取代為HAT選擇培養基(10%FBS/RPMI1640/2%HAT 50x concentrate(大日本製藥)/5% BM-Condimed H1(Roche Diagnostics)),進行融合瘤之選擇培養。使用融合後第8日或第9日採取之培養上清,以1-2所示ELISA測定對Factor IXa之結合活性,藉以選擇具有Factor IXa結合活性之融合瘤。接著,以5-3所示之方法測定對於Factor IXa酵素活性之中和活性,選擇不具有對Factor IXa之中和活性之融合瘤。融合瘤係在96井培養盤之中1個井接種1個細胞,進行2次極限稀釋而克隆化,樹立成產生抗Factor IXa抗體之融合瘤XB12。 Eight BALB / c mice (male, 6 weeks of age at the beginning of immunization, Charles‧River, Japan) and 5 MRL / lpr mice (male, 6 weeks of age at the beginning of immunization, Japanese Charles‧River) were divided as follows: Factor IXaβ (Enzyme Research Laboratories, Inc.) was immunized. For the first immunization, 40 μg / head was administered subcutaneously with FCA (Freud's complete adjuvant H37 Ra (Difco laboratories)) latexed Factor IXaβ. After 2 weeks, Factor IXaβ latexized with FIA (Difco laboratories) was administered subcutaneously at 40 μg / head. Thereafter, additional immunizations were performed 3 to 7 times at 1-week intervals. The serum antibody value of Factor IXaβ increased. After confirming with ELISA (Enzyme linked immunosorbent assay) shown in 1-2, the final immunization was diluted with PBS (-) (phosphate buffer solution without calcium and magnesium ions) to 40 μg. / head for intravenous administration. Three days after the final immunization, mouse spleen callus cells and mouse myeloma cells P3X63Ag8U.1 (referred to as P3U1, ATCC CRL-1597) were used PEG1500 (Roche Diagnostics) was used for cell fusion. Fusion cells suspended in RPMI1640 medium (Invitrogen) containing 10% FBS (Invitrogen) (hereinafter referred to as 10% FBS / RPMI1640) were inoculated into a 96-well culture plate and fused for 1, 2, 3, and 5 days, and then replaced by Select medium for HAT (10% FBS / RPMI1640 / 2% HAT 50x concentrate (Dai Nihon Pharmaceutical) / 5% BM-Condimed H1 (Roche Diagnostics)) for selective culture of fusion tumors. Using the culture supernatant taken on the 8th or 9th day after fusion, the binding activity to Factor IXa was determined by ELISA shown in 1-2, so as to select fusion tumors with Factor IXa binding activity. Next, the neutralizing activity against Factor IXa enzyme activity was measured by the method shown in 5-3, and fusion tumors were selected that did not have neutralizing activity against Factor IXa. The fusion tumor line was inoculated with 1 cell in one well of a 96-well culture plate, cloned by limiting dilution twice, and established as a fusion tumor XB12 that produced anti-Factor IXa antibodies.

1-2.Factor IXa ELISA 1-2.Factor IXa ELISA

將以被覆緩衝液(100mM碳酸氫鈉,pH 9.6,0.02%疊氮化鈉)稀釋為1μg/mL之Factor IXaβ,以100μL/well分注於Nunc-免疫盤(Nunc-ImmunoTM 96 MicroWellTM plates MaxiSorpTM(Nalge Nunc International)),於4℃溫育一晚。以包含Tween(R) 20之PBS(-)清洗3次後,以稀釋緩衝液(50mM Tris-HCl,pH8.1,1%牛血漿白蛋白(bovine serum albumin),1mM MgCl2,0.15M NaCl,0.05% Tween(R) 20,0.02%疊氮化鈉),使盤於室溫靜置2小時以進行封阻(blocking)。除去緩衝液後,於盤中將添加100μL/well以稀釋緩衝液稀釋之小鼠抗血清或融合瘤之培養上清,於室溫溫育1小時。將盤子進行3次清洗後,添加 以稀釋緩衝液稀釋為1/2000之鹼性磷解酶標記山羊抗小鼠IgG(H+L)(Zymed Laboratories)100μL/well,於室溫溫育1小時。將盤子清洗6次後,添加呈色基質Blue-PhosTM磷酸基質(Kirkegaad & Perry Laboratories)100μL/well,於室溫溫育20分鐘。添加Blue-PhosTM Stop Solution(Kirkegaad & Perry Laboratories)100μL/well後,以微平盤讀取儀(Microplate Reader)Model 3550(Bio-Rad Laboratories)測定595nm之吸光度。 Factor IXaβ diluted to 1 μg / mL with coating buffer (100 mM sodium bicarbonate, pH 9.6, 0.02% sodium azide) was dispensed at 100 μL / well on Nunc-Immuno 96 MicroWell plates MaxiSorp (TM) (Nalge Nunc International)) and incubated overnight at 4 ° C. After washing 3 times with PBS (-) containing Tween (R) 20, it was diluted with dilution buffer (50 mM Tris-HCl, pH 8.1, 1% bovine serum albumin, 1 mM MgCl 2 , 0.15 M NaCl , 0.05% Tween (R) 20, 0.02% sodium azide), and the plate was allowed to stand at room temperature for 2 hours for blocking. After removing the buffer, a culture supernatant of mouse antiserum or fusion tumor diluted with 100 μL / well of dilution buffer was added to the dish, and incubated at room temperature for 1 hour. After washing the plate 3 times, add 100 μL / well of alkaline phosphatase-labeled goat anti-mouse IgG (H + L) (Zymed Laboratories) diluted with dilution buffer to 1/2000, and incubate at room temperature for 1 hour. . After washing the plate 6 times, a coloring substrate Blue-Phos phosphate substrate (Kirkegaad & Perry Laboratories) 100 μL / well was added, and the plate was incubated at room temperature for 20 minutes. After adding 100 μL / well of Blue-Phos Stop Solution (Kirkegaad & Perry Laboratories), the absorbance at 595 nm was measured with a Microplate Reader Model 3550 (Bio-Rad Laboratories).

1-3.Factor IXa中和活性測定 1-3. Determination of Factor IXa neutralizing activity

將磷脂質(Sigma-Aldrich)以注射用蒸餾水溶解,施以超音波處理,以調製400μg/mL之磷脂質溶液。將包含0.1%牛血清白蛋白之Tris緩衝生理食鹽液(以下稱TBSB)40μL與30ng/mL Factor IXaβ(Enzyme Research Laboratories)10μL及400μg/mL磷脂質溶液5μL及包含100mM CaCl2、20mM MgCl2之TBSB 5μL與融合瘤培養上清10μL在96井盤中混合,並於室溫溫育1小時。於該混合溶液添加50μg/mL Factor X(Enzyme Research Laboratories)20μL及3U/mL Factor VIIIa(Amrican diagnostica)10μL,於室溫反應30分鐘。藉由在該等之中添加10μL之0.5M EDTA使反應停止。於該反應溶液之中添加50μL之S-2222溶液(Chromogenix),於室溫溫育30分鐘後,以微平盤讀取儀(Microplate Reader)Model 3550(Bio-Rad Laboratories,Inc.)測定在測定波長405nm、對照波長655nm之吸光度。 Phospholipid (Sigma-Aldrich) was dissolved in distilled water for injection and subjected to ultrasonic treatment to prepare a 400 μg / mL phospholipid solution. 40 μL of Tris buffered physiological saline solution (hereinafter referred to as TBSB) containing 0.1% bovine serum albumin and 10 μL of Factor IXaβ (Enzyme Research Laboratories) 10 μL and 5 μL of 400 μg / mL phospholipid solution and 100 μM CaCl 2 , 20 mM MgCl 2 5 μL of TBSB and 10 μL of the fusion tumor culture supernatant were mixed in a 96-well plate and incubated for 1 hour at room temperature. 20 μL of 50 μg / mL Factor X (Enzyme Research Laboratories) and 10 μL of 3U / mL Factor VIIIa (Amrican diagnostica) were added to the mixed solution, and the mixture was reacted at room temperature for 30 minutes. The reaction was stopped by adding 10 μL of 0.5M EDTA to these. 50 μL of S-2222 solution (Chromogenix) was added to the reaction solution, and the mixture was incubated at room temperature for 30 minutes, and then measured with a Microplate Reader Model 3550 (Bio-Rad Laboratories, Inc.). The absorbance at a wavelength of 405 nm and a control wavelength of 655 nm was measured.

[實施例2]對抗Factor X(F.X)之非中和抗體之製作 [Example 2] Production of non-neutralizing antibodies against Factor X (F.X)

2-1.免疫及融合瘤製作 2-1. Immune and fusion tumor production

將BALB/c小鼠(雄、免疫開始時6週齡、日本Charles‧ River)8頭及MRL/lpr小鼠(雄、免疫開始時6週齡、日本Charles‧River)5頭以Factor X(Enzyme Research Laboratories)依如下方式免疫。初次免疫以皮下投予以FCA乳膠化之Factor X40μg/head。2週後皮下投予以FIA乳膠化之Factor X 20或40μg/head。以後,每隔1週間隔進行追加免疫,合計進行3~6次。以2-2所示ELISA確認對抗Factor X之血清抗體價上升後,最終免疫以靜脈內投予稀釋於PBS(-)之Factor X 20或40μg/head。最終免疫3日後,將小鼠脾臓細胞與小鼠骨髓瘤細胞P3U1依照使用PEG1500之常法進行細胞融合。將懸浮於10%FBS/RPMI1640培養基之融合細胞接種於96井培養平盤,並藉由融合1、2、3、5日後取代為HAT選擇培養基,進行融合瘤之選擇培養。使用融合後第8日採取之培養上清,依照2-2所示ELISA,測定對於Factor X之結合活性。選擇具有Factor X結合活性之融合瘤,以2-3所示方法測定對Factor Xa之酵素活性的中和活性。將對於Factor Xa不具中和活性之融合瘤利用極限稀釋2次加以選殖,建立產生抗Factor X抗體之融合瘤SB04。 BALB / c mice (male, 6 weeks of age at the start of immunization, Japanese Charles‧ 8 mice and 5 MRL / lpr mice (male, 6 weeks old at the beginning of immunization, Charles · River, Japan) were immunized with Factor X (Enzyme Research Laboratories) as follows. For the first immunization, Factor X40μg / head was injected subcutaneously with FCA latex. Two weeks later, FIA latexed Factor X 20 or 40 μg / head was administered subcutaneously. Thereafter, additional immunizations were performed every 1 week, and a total of 3 to 6 times were performed. After confirming that the antibody value of the antibody against Factor X increased by ELISA shown in 2-2, the final immunization was intravenously administered to Factor X 20 or 40 μg / head diluted in PBS (-). Three days after the final immunization, the mouse spleen callus cells and mouse myeloma cells P3U1 were subjected to cell fusion according to a conventional method using PEG1500. Fusion cells suspended in 10% FBS / RPMI1640 medium were inoculated into 96-well culture plates and replaced with HAT selection medium after fusion for 1, 2, 3, and 5 days to perform selective culture of fusion tumors. Using the culture supernatant taken on the 8th day after fusion, the binding activity to Factor X was measured according to the ELISA shown in 2-2. A fusion tumor with Factor X-binding activity was selected, and the neutralizing activity on the enzyme activity of Factor Xa was determined by the method shown in 2-3. Fusion tumors with no neutralizing activity to Factor Xa were cloned by limiting dilution twice to establish a fusion tumor SB04 that produces anti-Factor X antibodies.

2-2.Factor X ELISA 2-2.Factor X ELISA

將以被覆緩衝液稀釋成1μg/mL之Factor X以100μL/well分注於Nunc-免疫盤後,於4℃溫育一晚。以含Tween(R) 20之PBS(-)清洗3次後,以稀釋緩衝液將平盤於室溫進行2小時封阻(blocking)。除去緩衝液後,於盤中添加以稀釋緩衝液稀釋之小鼠抗血清或融合瘤之培養上清,於室溫溫育1小時。將盤清洗3次後,添加以稀釋緩衝液稀釋成1/2000之鹼性磷解酶標記山羊抗小鼠IgG(H+L),於室溫溫育1小時。將盤清洗6 次後,添加呈色基質Blue-PhosTM磷酸基質(Kirkegaad & Perry Laboratories)100μL/well,於室溫溫育20分鐘。添加Blue-PhosTM停止溶液(Kirkegaad & Perry Laboratories)100μL/well後,以微平盤讀取儀(Microplate Reader)Model 3550(Bio-Rad Laboratories)測定595nm之吸光度。 Factor X diluted to 1 μg / mL with coating buffer was dispensed at 100 μL / well on a Nunc-immunized plate, and then incubated at 4 ° C. overnight. After washing three times with Tween (R) 20 in PBS (-), the plate was blocked with dilution buffer at room temperature for 2 hours. After the buffer solution was removed, a mouse antiserum or a fusion supernatant of the fusion tumor diluted with the dilution buffer was added to the plate, and the plate was incubated at room temperature for 1 hour. After washing the disc 3 times, alkaline phosphatase-labeled goat anti-mouse IgG (H + L) diluted to 1/2000 with a dilution buffer was added and incubated at room temperature for 1 hour. After washing the dish 6 times, a coloring matrix Blue-Phos TM phosphate matrix (Kirkegaad & Perry Laboratories) 100 μL / well was added, and the plate was incubated at room temperature for 20 minutes. After adding 100 μL / well of Blue-Phos Stop Solution (Kirkegaad & Perry Laboratories), the absorbance at 595 nm was measured using a Microplate Reader Model 3550 (Bio-Rad Laboratories).

2-3.Factor Xa中和活性測定 2-3. Determination of Factor Xa neutralizing activity

將包含以TBSB稀釋成1/5之融合瘤培養上清10μL與40μL之250pg/mL Factor Xa(Enzyme Research Laboratories)之TBCP(2.78mM CaCl2、22.2μM磷脂質(磷脂醯膽鹼:磷脂醯絲胺酸=75:25、Sigma-Aldrich)之TBSB混合,並於室溫溫育1小時。於混合溶液之中添加包含20μg/mL凝血原(Prothrombin)(Enzyme Research Laboratories)及100ng/mL活性化凝固第V因子(Factor Va(Haematologic Technologies))之TBCP 50μL,並於室溫反應10分鐘。添加0.5M EDTA10μL以使反應停止。於該反應溶液之中添加1mM S-2238溶液(Chromogenix)50μL,於室溫溫育30分鐘後,以微平盤讀取儀(Microplate Reader)Model 3550(Bio-Rad Laboratories)測定405nm之吸光度。 TBCP (2.78 mM CaCl 2 , 22.2 μM phospholipids (phospholipids, choline: phospholipid filaments) containing fused tumor culture supernatants 10 μL and 40 μL of 250 pg / mL Factor Xa (Enzyme Research Laboratories) diluted to 1/5 with TBSB TBSB (amino acid = 75: 25, Sigma-Aldrich) was mixed and incubated at room temperature for 1 hour. To the mixed solution was added 20 μg / mL prothrombin (Enzyme Research Laboratories) and 100 ng / mL for activation. 50 μL of TBCP of Factor V (Factor Va (Haematologic Technologies)) was coagulated and reacted for 10 minutes at room temperature. 10 μL of 0.5 M EDTA was added to stop the reaction. 50 μL of 1 mM S-2238 solution (Chromogenix) was added to the reaction solution, After incubating at room temperature for 30 minutes, the absorbance at 405 nm was measured using a Microplate Reader Model 3550 (Bio-Rad Laboratories).

[實施例3]嵌合雙專一性抗體表現載體之構建 [Example 3] Construction of chimeric bispecific antibody expression vector

3-1. 自融合瘤調製編碼為抗體可變區域之DNA片段 3-1. Self-fusion tumors modulate DNA fragments encoded as variable regions of antibodies

由產生抗F.IXa抗體之融合瘤XB12或者產生抗F.X抗體之融合瘤SB04,使用QIAGEN(R) RNeasy(R) Mini套組(QIAGEN)依照說明書記載之方法萃取總RNA。將總RNA溶解於40μL之滅菌水。以經過精製之RNA1~2μg為模板,使用 SuperScript cDNA合成系統(Invitrogen)依照說明書記載之方法,以RT-PCR法合成單鏈cDNA。 From fusion tumor XB12 producing anti-F.IXa antibody or fusion tumor SB04 producing anti-FX antibody, total RNA was extracted using QIAGEN (R) RNeasy (R) Mini Kit (QIAGEN) according to the method described in the instruction manual. Total RNA was dissolved in 40 μL of sterilized water. Using purified 1-2 μg of RNA as a template, a single-stranded cDNA was synthesized by RT-PCR using the SuperScript cDNA Synthesis System (Invitrogen) according to the method described in the instruction manual.

3-2. 抗體H鏈可變區域以PCR之放大及序列解析 3-2. Amplification and sequence analysis of variable region of antibody H chain by PCR

就小鼠抗體H鏈可變區域(VH)cDNA之放大用引子而言,準備Krebber等報告(J.Immunol.Methods 1997;201:35-55)之HB引子混合物及HF引子混合物。使用各0.5μL之100μM HB引子混合物及100μM HF引子混合物,調製反應液25μL(3-1之中調製之cDNA溶液2.5μl、KOD plus緩衝液(東洋紡織)、0.2mM dNTPs,1.5mM MgCl2,0.75單位DNA聚合酶KOD plus(東洋紡織))。PCR使用熱循環器GeneAmp PCR system 9700(Parkin Elmer),對應於cDNA片段放大之效率性,以條件A(98℃加熱3分鐘後,以98℃ 20秒、58℃ 20秒、72℃ 30秒構成之反應作為1回合,進行32回合)或條件B(94℃加熱3分鐘後,以94℃ 20秒、46℃ 20秒、68℃ 30秒構成之反應作為1回合,進行5回合,再者以94℃ 20秒、58℃ 20秒、72℃ 30秒構成之反應作為1回合,進行30回合)任一條件進行。PCR後,反應液供1%瓊脂凝膠電泳。將目的大小(約400bp)之放大片段使用QIAquick Gel Extraction套組(QIAGEN),以所附說明書記載之方法精製,並以滅菌水30μl溶出。各DNA片段之鹼基序列使用BigDye Terminator循環定序套組(Applied Biosystems),以DNA定序儀ABI PRISM 3100 Genetic Analyzer(Applied Biosystems),依照所附說明書記載之方法來決定。本方法所決定之序列群以解析軟體GENETYX-SV/RC Version 6.1(Genetyx)進行比較解析,並選擇具有相異序列者。 For primers for amplification of the mouse antibody H chain variable region (VH) cDNA, a mixture of HB primers and a mixture of HF primers reported by Krebber et al. (J. Immunol. Methods 1997; 201: 35-55) were prepared. Using 0.5 μL of each 100 μM HB primer mixture and 100 μM HF primer mixture, prepare 25 μL of reaction solution (2.5 μl of cDNA solution prepared in 3-1, KOD plus buffer (Toyobo), 0.2 mM dNTPs, 1.5 mM MgCl 2 , 0.75 unit DNA polymerase KOD plus (Toyobo)). The PCR uses a thermal cycler GeneAmp PCR system 9700 (Parkin Elmer), which corresponds to the efficiency of cDNA fragment amplification. Condition A (after heating at 98 ° C for 3 minutes, 98 ° C for 20 seconds, 58 ° C for 20 seconds, and 72 ° C for 30 seconds) The reaction was performed as 1 round for 32 rounds) or condition B (after heating at 94 ° C for 3 minutes, a reaction consisting of 94 ° C for 20 seconds, 46 ° C for 20 seconds, and 68 ° C for 30 seconds was taken as 1 round for 5 rounds, and then The reaction consisting of 94 ° C. for 20 seconds, 58 ° C. for 20 seconds, and 72 ° C. for 30 seconds was regarded as one round, and 30 rounds were performed). After PCR, the reaction solution was subjected to 1% agar gel electrophoresis. The amplified fragment of the desired size (about 400 bp) was purified using the QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the attached instruction manual, and dissolved in 30 μl of sterilized water. The base sequence of each DNA fragment was determined using a BigDye Terminator cycle sequencing kit (Applied Biosystems) and a DNA sequencer ABI PRISM 3100 Genetic Analyzer (Applied Biosystems) according to the method described in the attached specification. The sequence group determined by this method is compared and analyzed by analysis software GENETYX-SV / RC Version 6.1 (Genetyx), and those with different sequences are selected.

3-3.選殖用抗體可變區域DNA片段之調製 3-3. Modulation of DNA fragments in the variable region of an antibody for breeding

為了將選殖用限制酶Sfi I切斷部位附加於抗體可變區域放大片段之兩末端,進行以下操作。 In order to attach the Sfi I cutting site for selection to both ends of the variable region amplified fragment of the antibody, the following operations were performed.

為了將Sfi I切斷部位加成VH片段(Sfi I-VH)放大,準備引子HB之(Gly4Ser)2-連接子序列改變為具有Sfi I切斷部位之所示序列者(引子VH-5’末端)。使用各0.5μl之10μM序列專一性引子VH-5’末端及10μM引子scfor(J.Immunol.Methods 1997;201:35-55),調製反應液20μL(3-2調製之精製VH cDNA放大片段溶液1μl,KOD plus緩衝液(東洋紡織)、0.2mM dNTPs,1.5mM MgCl2,0.5單位DNA聚合酶KOD plus(東洋紡織))。PCR使用熱循環器GeneAmp PCR system 9700(Parkin Elmer),依照片段放大之效率性,以條件A(98℃加熱3分鐘後,以98℃ 20秒、58℃ 20秒、72℃ 30秒構成之反應作為1回合,進行32回合)或條件B(94℃加熱3分鐘後,以94℃ 20秒、46℃ 20秒、68℃ 30秒構成之反應作為1回合,進行5回合,再者以94℃ 20秒、58℃ 20秒、72℃ 30秒構成之反應作為1回合,進行30回合)任一條件進行。PCR後,將反應液供1%瓊脂凝膠電泳。將目的大小(約400bp)之放大片段使用QIAquick Gel Extraction套組(QIAGEN)依照所附說明書記載之方法精製,並以滅菌水30μL溶出。 In order to amplify the Sfi I cut site plus the VH fragment (Sfi I-VH), prepare the primer (HBy (Sly) Ser) 2-linker sequence of the primer HB to change the sequence with the Sfi I cut site (primer VH-5 ' End). Using 0.5 μl of each 10 μM sequence-specific primer VH-5 ′ end and 10 μM primer scfor (J. Immunol. Methods 1997; 201: 35-55), 20 μL of the reaction solution (3-2 prepared purified VH cDNA amplified fragment solution) was prepared. 1 μl, KOD plus buffer (Toyobo), 0.2mM dNTPs, 1.5mM MgCl 2 , 0.5 unit DNA polymerase KODplus (Toyobo)). For PCR, a thermal cycler GeneAmp PCR system 9700 (Parkin Elmer) was used. According to the efficiency of fragment amplification, the reaction was performed under condition A (heating at 98 ° C for 3 minutes, 98 ° C for 20 seconds, 58 ° C for 20 seconds, and 72 ° C for 30 seconds. 32 rounds as one round) or condition B (after heating at 94 ° C for 3 minutes, a reaction consisting of 94 ° C for 20 seconds, 46 ° C for 20 seconds, and 68 ° C for 30 seconds is taken as 1 round for 5 rounds, and then at 94 ° C The reaction consisting of 20 seconds, 58 ° C for 20 seconds, and 72 ° C for 30 seconds was performed as one round, and 30 rounds were performed). After PCR, the reaction solution was subjected to 1% agar gel electrophoresis. The amplified fragment of the target size (about 400 bp) was purified using a QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the attached instruction manual, and dissolved in 30 μL of sterilized water.

為了將小鼠抗體L鏈可變區域(VL)cDNA片段放大,首先準備Krebber等人之報告(J.Immunol.Methods 1997;201:35-55)記載之各0.5μL100μM LB引子混合物及100μM LF引子混合物,以調製反應液25μL(3-1所調製c-DNA溶液2.5μL, KOD plus緩衝液(東洋紡織)、0.2mM dNTPs,1.5mM MgCl2,0.75單位DNA聚合酶KOD plus(東洋紡織))。PCR使用熱循環器GeneAmp PCR system 9700(Parkin Elmer),依照片段放大之效率性,以如下條件進行:94℃加熱3分鐘後,以94℃ 20秒、46℃ 20秒、68℃ 30秒構成之反應作為1回合,進行5回合,再以94℃ 20秒、58℃ 20秒、72℃ 30秒構成之反應作為1回合,進行30回合。PCR後,反應液供1%瓊脂凝膠電泳。將目的大小(約400bp)之放大片段以QIAqucick Gel Extractio套組(QIAGEN)依照所附說明書記載之方法精製,並以滅菌水30μL溶出。該片段為在C末端上加成有引子LF由來之(Gly4Ser)3-連接子序列之狀態。為於該片段之C末端加成Sfi I切斷部位,準備將引子LF之(Gly4Ser)3-連接子序列改變為具有Sfi I切斷部位所示序列者(引子VL-3’末端)。為了將Sfi I切斷部位加成VL片段(Sfi I-VL)放大,使用各0.5μL之10μM VL-3’末端引子混合物及10μM scback引子,調製反應液20μL(精製VL cDNA放大片段溶液1μL,KOD plus緩衝液(東洋紡織)、0.2mM dNTPs,1.5mM MgCl2,0.5單元DNA聚合酶KOD plus(東洋紡織))。PCR使用熱循環器GeneAmp PCR system 9700(Parkin Elmer),以如下條件進行:94℃加熱3分鐘後,以94℃ 20秒、46℃ 20秒、68℃ 30秒構成之反應作為1回合,進行5回合,再以94℃ 20秒、58℃ 20秒、72℃ 30秒構成之反應作為1回合,進行30回合。。PCR後,反應液供1%瓊脂凝膠電泳。將目的大小(約400bp)之放大片段使用QIAquick Gel Extraction套組(QIAGEN),以所附說明 書記載之方法精製,並以滅菌水30μL溶出。 In order to amplify the mouse antibody L chain variable region (VL) cDNA fragment, first prepare 0.5 μL of each 100 μM LB primer mix and 100 μM LF primer described in the report of Krebber et al. (J. Immunol. Methods 1997; 201: 35-55) 25 μL of the reaction mixture (2.5 μL of c-DNA solution prepared by 3-1, KOD plus buffer (Toyobo), 0.2mM dNTPs, 1.5mM MgCl 2 , 0.75 unit DNA polymerase KOD plus (Toyobo)) . The PCR was performed using a thermal cycler GeneAmp PCR system 9700 (Parkin Elmer). According to the efficiency of the fragment amplification, the following conditions were used: 94 ° C for 3 minutes, 94 ° C for 20 seconds, 46 ° C for 20 seconds, and 68 ° C for 30 seconds. The reaction was performed as 1 round, and 5 rounds were performed, and a reaction consisting of 94 ° C for 20 seconds, 58 ° C for 20 seconds, and 72 ° C for 30 seconds was taken as 1 round for 30 rounds. After PCR, the reaction solution was subjected to 1% agar gel electrophoresis. Amplified fragments of the desired size (about 400 bp) were purified using a QIAqucick Gel Extractio kit (QIAGEN) according to the method described in the attached instruction manual, and dissolved in 30 μL of sterilized water. This fragment is a state obtained by adding a primer (LF) from the LF (Gly4Ser) 3-linker sequence to the C-terminus. In order to add an Sfi I cut site to the C-terminus of this fragment, it was prepared to change the (Gly4Ser) 3-linker sequence of the primer LF to have the sequence shown in the Sfi I cut site (primer VL-3 'end). In order to amplify the Sfi I cut site addition VL fragment (Sfi I-VL), use 0.5 μL of each 10 μM VL-3 ′ terminal primer mixture and 10 μM scback primer to prepare 20 μL of reaction solution (1 μL of purified VL cDNA amplified fragment solution, KOD plus buffer (Toyobo), 0.2mM dNTPs, 1.5mM MgCl 2 , 0.5 unit DNA polymerase KOD plus (Toyobo)). The PCR was performed using a thermal cycler GeneAmp PCR system 9700 (Parkin Elmer) under the following conditions: After heating at 94 ° C for 3 minutes, a reaction consisting of 94 ° C for 20 seconds, 46 ° C for 20 seconds, and 68 ° C for 30 seconds was performed as a round, and 5 cycles were performed. For the round, a reaction consisting of 94 ° C for 20 seconds, 58 ° C for 20 seconds, and 72 ° C for 30 seconds was taken as one round, and 30 rounds were performed. . After PCR, the reaction solution was subjected to 1% agar gel electrophoresis. Amplified fragments of the desired size (about 400 bp) were purified using the QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the attached instruction manual, and dissolved in 30 μL of sterilized water.

精製Sfi I-VH及Sfi I-VL片段以Sfi I(Takarabio)依所附說明書記載之方法調製反應液,於50℃進行一晚消化。之後,將反應液使用QIAquick PCR Purification套組(QIAGEN)依所附說明書記載之方法精製,並以該套組所附之緩衝液EB 30μL溶出。 The purified Sfi I-VH and Sfi I-VL fragments were prepared by Sfi I (Takarabio) according to the method described in the attached instruction manual, and digested overnight at 50 ° C. Thereafter, the reaction solution was purified using a QIAquick PCR Purification Kit (QIAGEN) according to the method described in the attached instruction manual, and was dissolved in 30 μL of the buffer solution EB attached to the kit.

3-4.人類IgG4-小鼠嵌合雙專一性IgG抗體表現用質體 3-4. Human IgG4-mouse chimeric bispecific IgG antibody expression plastids

產生目的雙專一性IgG抗體時,為了形成各H鏈之異分子,參考IgG1之突起進入空隙(knobs-into-holes)技術(非專利文獻3),製作對IgG4之CH3部分之胺基酸取代體。a型(IgG4γa)為Y349C、T366W取代體,b型(IgG4γb)為E356C、T366S、L368A、Y407V之取代體。再者,在兩取代體之鉸鏈區域亦導入取代(-ppcpScp-->-ppcpPcp-)。依照本技術,雖大部分得到異質體,但是L鏈不限於此,不必要抗體分子之生成可能會影響之後活性測定。因此,本方法為了使分別表現具有各專一性之抗體分子單臂(稱為HL分子)之細胞內,有效率地製作目的型雙專一性IgG抗體,就對應於各HL分子之表現載體而言,係使用以相異藥劑所誘導者。 In order to generate a bispecific IgG antibody of interest, in order to form hetero molecules of each H chain, refer to the knobs-into-holes technology of IgG1 (Non-Patent Document 3) to produce an amino acid substitute for the CH3 portion of IgG4 . Type a (IgG4γa) is a substitute for Y349C and T366W, and type b (IgG4γb) is a substitute for E356C, T366S, L368A, and Y407V. Furthermore, substitutions (-ppcpScp->-ppcpPcp-) were also introduced in the hinge region of the two substituents. According to the present technology, although most heterogeneous bodies are obtained, the L chain is not limited to this, and the generation of unnecessary antibody molecules may affect the subsequent activity measurement. Therefore, in order to efficiently produce a target-specific bispecific IgG antibody in a cell that expresses one arm (called an HL molecule) of each specific antibody molecule separately, this method is an expression carrier corresponding to each HL molecule. , Is induced by the use of different agents.

就抗體分子單臂(簡便上稱為右臂HL分子)之表現用,製作在四環黴素誘導型載體pcDNA4(Invitrogen)上嵌入有H鏈至L鏈各區域,也就是說在動物細胞用信號序列(IL3ss)(Proc.Natl.Acad.Sci.USA.1984;81:1075)之下游嵌入有適當之小鼠抗體可變區域(VH至VL)及人類IgG4γa不變區 域(序列編號:9)至κ不變區域(序列編號:10)者(pcDNA4-g4H至pcDNA4-g4L)。首先,將pcDNA4以存在於其多重選殖部位之限制酶切斷部位Eco RV及Not I(Takarabio)消化。將具有適當抗體可變區域之嵌合雙專一性抗體右臂H鏈至L鏈表現單元(各約1.6kb至約1.0kb)以Xho I(Takarabio)消化之後,以QIAquick PCR Purification套組(QIAGEN)依所附說明書記載之方法精製,並使用DNA聚合酶KOD(東洋紡織)依所附說明書記載之反應液組成使於72℃反應10分鐘,使末端平滑化。將該平滑化末端片段以QIAquick PCR Purification套組(QIAGEN)依所附說明書記載之方法精製,並以Not I(Takarabio)消化。該Not I-鈍端片段(各約1.6kb至1.0kb)及以該Eco RV-Not I消化之pcDNA4使用Ligation High(東洋紡織)依所附說明書記載之方法進行連結反應。以該反應液將大腸菌DH5α株(Competent high DH5α(東洋紡織))形質轉換。所得到之安皮西林耐性選殖體使用QIAprep Spin Miniprep套組(QIAGEN)而單離各質體DNA。 For the expression of the single arm of the antibody molecule (referred to as the right arm HL molecule for short), the tetracycline-inducible vector pcDNA4 (Invitrogen) was inserted to embed the H chain to L chain regions, that is, used in animal cells A suitable mouse antibody variable region (VH to VL) and a human IgG4γa constant region are embedded downstream of the signal sequence (IL3ss) (Proc. Natl. Acad. Sci. USA. 1984; 81: 1075) Domain (sequence number: 9) to the κ constant region (sequence number: 10) (pcDNA4-g4H to pcDNA4-g4L). First, pcDNA4 was digested with Eco RV and Not I (Takarabio), a restriction enzyme cleaving site present in its multiple selection site. Chimeric bispecific antibodies with appropriate antibody variable regions of the right arm H chain to L chain expression units (about 1.6kb to about 1.0kb each) were digested with Xho I (Takarabio), and then QIAquick PCR Purification Kit (QIAGEN ) Purified in accordance with the method described in the attached specification, and reacted at 72 ° C. for 10 minutes using the DNA polymerase KOD (Toyobo) according to the composition of the reaction solution described in the attached instruction to smooth the ends. This smoothed-end fragment was purified by the QIAquick PCR Purification Kit (QIAGEN) according to the method described in the attached instruction manual, and digested with Not I (Takarabio). The Not I-blunt-end fragments (approximately 1.6 kb to 1.0 kb each) and pcDNA4 digested with the Eco RV-Not I were subjected to a ligation reaction using Ligation High (Toyobo) according to the method described in the attached specification. The reaction solution was used to transform the E. coli DH5α strain (Competent high DH5α (Toyobo)) into shape. The obtained ampicillin-resistant colonies were isolated from each plastid DNA using the QIAprep Spin Miniprep Kit (QIAGEN).

就另一單臂(簡便上稱為左臂HL分子),依前述方法製作在蛻皮激素類似體誘導型載體pIND(Invitrogen)中嵌入H鏈至L鏈各該區域,也就是說在動物細胞用信號序列(IL3ss)(EMBO.J.1987;6:2939)之下游嵌入有適當之小鼠抗體可變區域(VH至VL)及人類IgG4γb不變區域(序列編號:11)至κ不變區域者(pIND-g4H至pIND-g4L),並單離各質體DNA。 For the other single arm (referred to simply as the left arm HL molecule), the H chain was inserted into the region of the L chain in the ecdysone analog-inducible vector pIND (Invitrogen) according to the method described above, that is, for animal cells. A suitable mouse antibody variable region (VH to VL) and a human IgG4γb invariant region (sequence number: 11) to a κ invariant region are embedded downstream of the signal sequence (IL3ss) (EMBO.J.1987; 6: 2939). (PIND-g4H to pIND-g4L) and isolate each plastid DNA.

3-5.雙專一性抗體表現載體構建 3-5. Construction of a bispecific antibody expression vector

將3-4調製之四環黴素誘導型表現質體(pcDNA4-g4H至 pcDNA4-g4L)以Sfi I消化,並將反應液供1%瓊脂凝膠電泳。將除去原有抗體可變區域部分(VH至VL)之片段(約5kb)以QIAquick Gel Extraction套組(QIAGEN)依照所附說明書記載方法精製,並以滅菌水30μL溶出。將該片段與各自對應之於3-3調製之Sfi I消化抗F.IXa抗體XB12由來Sfi I-VH至Sfi I-VL片段以Quick Ligation套組(New England Biolabs)依所附說明書記載之方法進行連結反應。以該反應液對大腸菌DH5α株(Competent high DH5α(東洋紡織))形質轉換。又,自3-4調製之Sfi I消化蛻皮激素類似體誘導型表現質體(pIND-g4H至pIND-g4L),以與上述同樣手法將除去抗體可變區域部分(VH至VL)之片段及各對應之3-3所調製之Sfi I消化抗F.X抗體SB04由來Sfi I-VH至Sfi I-VL片段以同樣手法嵌入。 Tetracycline-inducible plastids (pcDNA4-g4H to 3-4 modulation) pcDNA4-g4L) was digested with Sfi I, and the reaction solution was subjected to 1% agar gel electrophoresis. A fragment (approximately 5 kb) from which the variable region portion (VH to VL) of the original antibody was removed was purified by a QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the attached instruction manual, and was dissolved in 30 μL of sterilized water. This fragment and Sfi I-digested anti-F.IXa antibody XB12 derived from 3-3 modulation were derived from Sfi I-VH to Sfi I-VL fragments in the Quick Ligation Kit (New England Biolabs) according to the method described in the attached instruction sheet. Perform a linking reaction. The reaction solution was used to transform the coliform DH5α strain (Competent high DH5α (Toyobo)). In addition, Sfi I prepared from 3-4 digested ecdysone-like inducible expression plastids (pIND-g4H to pIND-g4L), and the fragments of the variable region portion (VH to VL) of the antibody were removed in the same manner as above. Sfi I-VH to Sfi I-VL fragments derived from Sfi I-digested anti-FX antibody SB04 prepared by the corresponding 3-3 were embedded in the same way.

各DNA片段之鹼基序列使用BigDye Terminator循環定序套組(Applied Biosystems),以DNA定序儀ABI PRISM 3100 Genetic Analyzer(Applied Biosystems)依所附說明書記載之方法決定。本方法所決定之序列群以解析軟體GENETYX-SV/RC Version 6.1(Genetyx)解析。 The base sequence of each DNA fragment was determined using a BigDye Terminator cycle sequencing kit (Applied Biosystems), and a DNA sequencer ABI PRISM 3100 Genetic Analyzer (Applied Biosystems) according to the method described in the attached specification. The sequence group determined by this method is analyzed by the analysis software GENETYX-SV / RC Version 6.1 (Genetyx).

由該目的選殖體,使用QIAprep Spin Miniprep套組(QIAGEN)將各質體DNA單離,並溶解於100μL滅菌水。抗F.IXa抗體嵌合H鏈表現載體、抗F.IXa抗體嵌合L鏈表現載體、抗F.X抗體嵌合H鏈表現載體及抗F.X抗體嵌合L鏈表現載體各命名為pcDNA4-g4 XB12H、pcDNA4-g4 XB12L、pIND-g4 SB04H及pIND-g4 SB04L。 From this colony, the plastid DNA was isolated using a QIAprep Spin Miniprep kit (QIAGEN) and dissolved in 100 μL of sterilized water. Anti-F.IXa antibody chimeric H chain expression vector, anti-F.IXa antibody chimeric L chain expression vector, anti-FX antibody chimeric H chain expression vector, and anti-FX antibody chimeric L chain expression vector were named pcDNA4-g4 XB12H , PcDNA4-g4 XB12L, pIND-g4 SB04H and pIND-g4 SB04L.

[實施例4]嵌合雙專一性抗體之製作 [Example 4] Preparation of chimeric bispecific antibodies

4-1. DNA溶液之調製 4-1. Preparation of DNA solution

抗體右臂HL分子表現用載體(pcDNA4-g4 XB12H及pcDNA4-g4 XB12L)以四環黴素進行表現誘導。為了於不存在四環黴素之狀況下完全地抑制表現,要求編碼為Tet抑制子之質體pcDNA6/TR(Invitrogen)。又,抗體左臂HL分子表現用載體(pIND-g4 SB04H及pIND-g4 SB04L)以昆蟲荷爾蒙蛻皮激素類似體(ponasterone A)進行表現誘導。此時,要求編碼為與ponasterone A反應並進行誘導之蛻皮激素受體及視黃醇X受體之質體pVgRXR(Invitrogen)。因此,調製用以對動物細胞轉染之共計6種質體DNA混合液。為調製細胞培養液10mL,使用pcDNA4-g4 XB12H、pcDNA4-g4 XB12L、pIND-g4 SB04H及pIND-g4 SB04L各3μg、pcDNA6/TR及pVgRXR各18μg。 The HL molecule expression vectors for the right arm of the antibody (pcDNA4-g4 XB12H and pcDNA4-g4 XB12L) were induced with tetracycline. In order to completely suppress the expression in the absence of tetracycline, plastid pcDNA6 / TR (Invitrogen) encoding a Tet repressor is required. The vectors for expressing the HL molecule of the left arm of the antibody (pIND-g4 SB04H and pIND-g4 SB04L) were induced by the expression of insect hormone ecdysone analog (ponasterone A). At this time, ecdysone receptors and retinol X receptors that are coded to react with and induce ponasterone A are required. PVgRXR (Invitrogen). Therefore, a total of six plastid DNA mixed solutions for transfecting animal cells were prepared. To prepare 10 mL of cell culture fluid, pcDNA4-g4 XB12H, pcDNA4-g4 XB12L, pIND-g4 SB04H and pIND-g4 SB04L were each 3 μg, and pcDNA6 / TR and pVgRXR were each 18 μg.

4-2. 動物細胞之轉染 4-2. Transfection of animal cells

將人類胎兒腎癌細胞由來HEK293H株(Invitrogen)懸浮於含10%FCS(MOREGATE)之DMEM培養基(Invitrogen),以5×105個/mL之細胞密度接種於黏著細胞用培養皿(直徑10cm,CORNING)各皿10mL,放置於CO2培養箱(37℃、5% CO2)內培養一晝夜。將4-1調製之質體DNA混合液加入轉染試藥、Lipofectamine 2000(Invitrogen)75.8μL與Opti-MEM I培養基(Invitrogen)2708μL之混合液,於室溫靜置20分鐘後投入各井之細胞,於CO2培養箱(37℃、5% CO2)培養4~5小時。 HEK293H strain (Invitrogen) derived from human fetal kidney cancer cells was suspended in DMEM medium (Invitrogen) containing 10% FCS (MOREGATE), and inoculated to a culture dish for adherent cells at a cell density of 5 × 10 5 cells / mL (10 cm in diameter, CORNING) 10 mL of each dish, placed in a CO 2 incubator (37 ° C, 5% CO 2 ) and cultured for one day and night. Add the 4-1 prepared plastid DNA mixture to the transfection reagent, 75.8 μL of Lipofectamine 2000 (Invitrogen) and 2708 μL of Opti-MEM I medium (Invitrogen), and leave it at room temperature for 20 minutes and put it into each well. The cells were cultured in a CO 2 incubator (37 ° C., 5% CO 2 ) for 4 to 5 hours.

4-3. 雙專一性IgG抗體之表現誘導 4-3. Induction of expression of bispecific IgG antibodies

將自前項方式經過轉染之細胞培養液中吸走培養基,投入含1μg/mL四環黴素(和光純藥工業)之10mL CHO-S-SFM-II (Invitrogen)培養基,於CO2培養箱(37℃、5% CO2)內培養1日,進行抗體右臂HL分子之第一次表現誘導。之後,將培養基吸引除去,再以10mL CHO-S-SFM-II培養基清洗後,投入含5μM之ponasterone A(Invitrogen)之10mL CHO-S-SFM-II培養基,於CO2培養箱(37℃、5% CO2)內培養3日,進行抗體左臂HL分子之第二次表現誘導,使雙專一性IgG抗體分泌至培養基中。將培養上清回收後,以離心分離(約2000g、5分鐘、室溫)將細胞除去,再通過0.22μm濾膜MILLEX(R)-GV(Millipore)滅菌。該樣本於4℃保存至使用為止。 Aspirate the medium from the transfected cell culture solution from the previous method, and put 10 mL of CHO-S-SFM-II (Invitrogen) medium containing 1 μg / mL tetracycline (Wako Pure Chemical Industries) into a CO 2 incubator. (37 ° C, 5% CO 2 ) was cultured for 1 day, and the first expression induction of the HL molecule in the right arm of the antibody was performed. After that, the culture medium was removed by suction, and then washed with 10 mL of CHO-S-SFM-II medium, and then 10 mL of CHO-S-SFM-II medium containing 5 μM of ponasterone A (Invitrogen) was put in a CO 2 incubator (37 ° C, 5% CO 2 ) was cultured for 3 days, and the second expression induction of the HL molecule of the left arm of the antibody was performed to secrete the bispecific IgG antibody into the culture medium. After the culture supernatant was recovered, the cells were removed by centrifugation (about 2000 g, 5 minutes, room temperature), and sterilized by passing through a 0.22 μm filter MILLEX (R) -GV (Millipore). The sample was stored at 4 ° C until use.

4-4.抗體精製 4-4. Antibody purification

於實施例4-3之方法所得到之10mL之培養上清中添加100μL rProtein A SepharoseTM Fast Flow(Amersham Biosciences),於4℃進行4小時以上倒轉混合。將該溶液移到0.22μm之過濾杯Ultrafree(R)-MC(Millipore),以含0.01% Tween(R) 20之TBS 500μL做3次清洗後,將rProtein A SepharoseTM樹脂懸浮於含100μL 0.01% Tween(R) 20之10mM HCl,pH2.0,並靜置2分鐘之後,使抗體溶出。立即加入5μL之1M Tris-HCl,pH8.0使中和。 100 μL rProtein A Sepharose Fast Flow (Amersham Biosciences) was added to 10 mL of the culture supernatant obtained in the method of Example 4-3, and the mixture was inverted and mixed at 4 ° C. for more than 4 hours. The solution was transferred to a 0.22 μm filter cup Ultrafree (R) -MC (Millipore), and washed three times with 500 μL of TBS containing 0.01% Tween (R) 20, and then the rProtein A Sepharose TM resin was suspended in 0.01% containing 100 μL Tween (R) 20 10 mM HCl, pH 2.0, and allowed to stand for 2 minutes to elute the antibody. Immediately add 5 μL of 1M Tris-HCl, pH 8.0 to neutralize.

4-5.人類IgG濃度之定量 4-5. Quantification of human IgG concentration

將山羊抗人類IgG(Biosource International)以被覆緩衝液調製成1μg/mL,並固定化於Nunc-免疫盤(Nunc)。以稀釋緩衝液(D.B.)進行封阻處理後,添加使用D.B.適當稀釋之培養上清樣本。又,用以計算抗體濃度之標準,係同樣地添加自2000ng/mL起以3倍以D.B.系列稀釋11階段之人類IgG4(人類型化 抗TF抗體、參照WO 99/51743)。3次清洗後,使山羊抗人類IgG、鹼性磷解酶(Biosource International)反應。5次清洗後,以Sigma 104(R)磷解酶基質(Sigma-Aldrich)作為基質使呈色,以吸光度讀取儀Model 3550(Bio-Rad Laboratories),測定參照波長655nm及405nm之吸光度。使用Microplate Manager III(Bio-Rad Laboretories)軟體,由標準校正曲線計算培養上清中之人類IgG濃度。 Goat anti-human IgG (Biosource International) was prepared to 1 μg / mL with a coating buffer, and immobilized on a Nunc-immunity plate (Nunc). After blocking treatment with dilution buffer (DB), a culture supernatant sample appropriately diluted with DB is added. In addition, the standard used to calculate the antibody concentration was similarly added to human IgG4 at 11 stages in a DB series diluted three times from 2000 ng / mL (human-type anti-TF antibody, see WO 99/51743). After 3 washes, goat anti-human IgG and alkaline phosphatase (Biosource International) were reacted. After 5 washes, coloring was performed using Sigma 104 (R) phosphorolytic enzyme matrix (Sigma-Aldrich) as a matrix, and absorbance was measured at a reference wavelength of 655 nm and 405 nm using an absorbance reader Model 3550 (Bio-Rad Laboratories). Microplate Manager III (Bio-Rad Laboretories) software was used to calculate the human IgG concentration in the culture supernatant from the standard calibration curve.

[實施例5]血漿凝固分析 [Example 5] Analysis of plasma coagulation

對明瞭是否為對血友病A血液凝固能力有效之雙專一性抗體,探討該抗體對於使用Factor VIII缺乏血漿之活性化部分血栓形成素時間(APTT)之影響。將各種濃度之抗體溶液50μL、Factor VIII缺乏血漿(Biomerieux)50μL及APTT試藥(Dade Behring)50μL之混合液於37℃加溫3分鐘。凝固反應藉由將20mM CaCl2(Dade Behring)50μL加人該混合液而開始。測定自連接CR-A(Amelung)之KC10A(Amelung)至到達凝固之時間。 To determine whether it is a bispecific antibody that is effective for the blood coagulation ability of hemophilia A, the effect of this antibody on the thromboxin time (APTT) of the activated fraction of Factor VIII-deficient plasma was investigated. A mixture of 50 μL of antibody solution of various concentrations, 50 μL of Factor VIII-deficient plasma (Biomerieux), and 50 μL of APTT reagent (Dade Behring) was heated at 37 ° C. for 3 minutes. The coagulation reaction was started by adding 50 μL of 20 mM CaCl 2 (Dade Behring) to the mixture. The time from the connection of KC10A (Amelung) of CR-A (Amelung) to the coagulation was measured.

使用Factor VIII缺乏血漿之凝固時間定為0%、正常血漿之凝固時間定為100%時製作之校正曲線,自添加雙專一性抗體時之凝固時間計算雙專一性抗體之Factor VIII類似活性(%)。 Using a calibration curve made when the clotting time of Factor VIII-deficient plasma was set to 0% and the clotting time of normal plasma was set to 100%, the similar activity of the factor VIII of the bispecific antibody was calculated from the coagulation time of the addition of the bispecific antibody (% ).

[實施例6]雙專一性抗體之人類化 [Example 6] Humanization of bispecific antibodies

就血液凝固時間之縮短效果最高之抗FactorIXa抗體XB12及抗FactorX抗體SB04,以如下方式實施人類化。 The anti-FactorIXa antibody XB12 and the anti-FactorX antibody SB04, which have the fastest reduction in blood clotting time, are humanized as follows.

6-1.人類抗體之相同性檢索 6-1. Identity search of human antibodies

以被一般公開之Kabat資料庫(ftp://ftp.ebi.ac.uk/pub/databases/kabat/)及IMGT資料庫(http://imgt.cines.fr/)取得人類抗體胺基酸序列資料,並使用構建之資料庫分成小鼠XB12-H鏈可變區域、小鼠XB12-L鏈可變區域、小鼠SB04-H鏈可變區域、小鼠SB04-L鏈可變區進行相同性檢索。其結果,由於確認與以下所示人類抗體序列具有高相同性,故使用於人類化抗體之框架區域(以下稱FR)。 Obtain human antibody amino acids from the generally published Kabat database (ftp: //ftp.ebi.ac.uk/pub/databases/kabat/) and IMGT database (http://imgt.cines.fr/) Sequence data and use the constructed database to divide into mouse XB12-H chain variable region, mouse XB12-L chain variable region, mouse SB04-H chain variable region, and mouse SB04-L chain variable region Identity Retrieval. As a result, it was confirmed that they have high identity with the human antibody sequences shown below, and therefore were used as a framework region of humanized antibodies (hereinafter referred to as FR).

(1)XB12-H鏈可變區域:KABATID-020619(Kabat資料庫) (1) XB12-H chain variable region: KABATID-020619 (Kabat database)

(Mariette等,Arthritis Rheum.1993;36:1315-1324) (Mariette et al., Arthritis Rheum. 1993; 36: 1315-1324)

(2)XB12-L鏈可變區域:EMBL Accession No.X61642(IMGT資料庫) (2) XB12-L chain variable region: EMBL Accession No. X61642 (IMGT database)

(Mark等,J Mol Biol.1991;222:581-597.) (Mark et al., J Mol Biol. 1991; 222: 581-597.)

(3)SB04-H鏈可變區域:KABATID-025255(Kabat資料庫) (3) SB04-H chain variable region: KABATID-025255 (Kabat database)

(Demaison等,Immunogetetics 1995;42:342-352) (Demaison et al., Immunogetetics 1995; 42: 342-352)

(4)SB04-L鏈可變區域:EMBL Accession No.AB064111(IMGT資料庫) (4) SB04-L chain variable region: EMBL Accession No. AB064111 (IMGT database)

(未公開資料) (Unpublished information)

製作在(1)-(4)之人類抗體FR中移植有各小鼠抗體之互補性抗原決定區域(以下稱CDR)的人類化抗體。 Humanized antibodies in which the complementary epitope regions (hereinafter referred to as CDRs) of the respective mouse antibodies were transplanted into the human antibody FRs (1) to (4) were prepared.

又,使用NCBI所一般公開之相同性檢索網站(http://www.ncbi.nlm.nih.gov/BLAST/),檢索與(1)-(4)人類抗體之相同性高之人類抗體分泌信號序列。使用檢索得到以下所示分泌信號序列。 In addition, using the identity search website (http://www.ncbi.nlm.nih.gov/BLAST/) generally published by the NCBI to search for human antibody secretions with high identity to (1)-(4) human antibodies Signal sequence. Using the search, the secretion signal sequence shown below was obtained.

(1)XB12-H鏈可變區域:GenBank Accession No.AF062120 (1) XB12-H chain variable region: GenBank Accession No. AF062120

(2)XB12-L鏈可變區域:GenBank Accession No.M74019 (2) XB12-L chain variable region: GenBank Accession No. M74019

(3)SB04-H鏈可變區域:GenBank Accession No.BC019337 (3) SB04-H chain variable region: GenBank Accession No. BC019337

(4)SB04-L鏈可變區域:GenBank Accession No.AY204756 (4) SB04-L chain variable region: GenBank Accession No. AY204756

6-2.人類化抗體基因表現載體之構建 6-2. Construction of humanized antibody gene expression vector

於編碼為自分泌信號序列至抗體可變區域之胺基酸序列之鹼基序列之中,交互地製作12條3’末端約20base左右黏合之50base左右之合成寡DNA。再者製作:黏合於抗體可變區域基因之5’末端並具有XhoI切斷序列之引子,與黏合於抗體可變區域基因之3’末端且具有SfiI切斷序列之引子。 From the base sequence encoding the amino acid sequence of the autocrine signal sequence to the variable region of the antibody, twelve synthetic oligo DNAs of about 50 bases with 3 bases of about 20 bases are alternately made. Furthermore, a primer is attached to the 5 'end of the antibody variable region gene and has a XhoI cut sequence, and a primer is attached to the 3' end of the antibody variable region gene and has a SfiI cut sequence.

將調製成2.5μM之合成寡DNA以各1μL混合,加入1x TaKaRa Ex Taq緩衝液、0.4mM dNTPs、0.5單元TaKaRa Ex Taq(皆為寶酒造),調製反應液48μL。於94℃保溫5分鐘後,將由94℃ 2分鐘、55℃ 2分鐘、72℃ 2分鐘構成之反應進行2回合,實施各合成寡DNA之組合及伸長反應。其次,添加黏合於抗體基因之5’末端及3’末端之引子(各10μM)1μL,進行由94℃ 30秒、55℃ 30秒、72℃ 1分鐘構成之反應35回合,於72℃反應5分鐘,將抗體可變區域基因放大。PCR後,將反應液全量供1%瓊脂凝膠電泳。將目的大小(約400bp)之放大片段使用QIAquick Gel Extraction套組(QIAGEN),以所附說明書記載之方法精製,並以滅菌水30μl溶出。將該片段使用pGEM-T Easy Vector Systems(Promega)依所附說明書記載之方法進行選殖。各DNA片段之鹼基序列使用BigDye Terminator循環定序套組(Applied Biosystems),以DNA定序儀ABI PRISM 3700 DNA Sequencer(Applied Biosystems)依所附說明書記載之方法來定序。 The synthetic oligo DNA prepared into 2.5 μM was mixed with 1 μL each, and 1 × TaKaRa Ex Taq buffer, 0.4 mM dNTPs, 0.5 units of TaKaRa Ex Taq (both manufactured by Takara Shuzo) were added to prepare 48 μL of the reaction solution. After 5 minutes of incubation at 94 ° C, a reaction consisting of 94 ° C for 2 minutes, 55 ° C for 2 minutes, and 72 ° C for 2 minutes was performed for 2 rounds, and a combination of each synthetic oligo DNA and an elongation reaction were performed. Next, 1 μL of primers (10 μM each) adhered to the 5 ′ end and the 3 ′ end of the antibody gene were added, and a reaction consisting of 94 ° C for 30 seconds, 55 ° C for 30 seconds, and 72 ° C for 1 minute was performed for 35 rounds, and the reaction was performed at 72 ° C for 5 minutes. Minutes to amplify the antibody variable region genes. After PCR, the entire amount of the reaction solution was subjected to 1% agar gel electrophoresis. The amplified fragment of the desired size (about 400 bp) was purified using the QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the attached instruction manual, and dissolved in 30 μl of sterilized water. This fragment was cloned using pGEM-T Easy Vector Systems (Promega) according to the method described in the attached instruction sheet. The base sequence of each DNA fragment was applied using the BigDye Terminator cycle sequencing kit (Applied Biosystems), and the DNA sequencer ABI PRISM 3700 DNA Sequencer (Applied Biosystems) were sequenced according to the methods described in the attached instructions.

將確認為正確人類化抗體可變區域基因序列之質體以EcoRI及SfiI消化之後,將反應液供1%瓊脂凝膠電泳。將目的大小(約400bp)之DNA片段使用QIAquick Gel Extraction套組(QIAGEN),依所附說明書記載之方法精製,以滅菌水30μl溶出。又,將實施例3-3製作之四環黴素誘導型表現質體(pcDNA4-g4H、pcDNA4-g4L)及蛻皮激素類似體誘導型表現質體(pIND-g4H、pIND-g4L)以EcoRI及SfiI消化後,將含抗體不變區域之片段(約5kb)使用QIAquick Gel Extraction套組(QIAGEN),依所附說明書記載之方法精製,並以滅菌水30μl溶出。將以EcoRI及SfiI消化之人類化XB12抗體基因片段(H鏈可變區域或L鏈可變區域)及以EcoRI及SfiI消化之四環黴素誘導型表現質體(pcDNA4-g4H、pcDNA4-g4L),以Rapid DNA Ligation套組(Roche Diagnostics)依所附說明書記載之方法進行連結反應。又,將以EcoRI及SfiI消化之人類化SB04抗體基因片段(H鏈可變區域或L鏈可變區域)及以EcoRI及SfiI消化之蛻皮激素類似體誘導型表現質體(pIND-g4H、pIND-g4L)使用Rapid DNA Ligation套組(Roche Diagnostics)依所附說明書記載之方法進行連結反應。使用各反應液之一部分進行大腸菌DH5α株(東洋紡織)之形質轉換。 After the plastids confirmed as the correct humanized antibody variable region gene sequence were digested with EcoRI and SfiI, the reaction solution was subjected to 1% agarose gel electrophoresis. A DNA fragment of the desired size (about 400 bp) was purified using a QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the attached instruction manual, and dissolved in 30 μl of sterilized water. In addition, the tetracycline-inducible plastids (pcDNA4-g4H, pcDNA4-g4L) and ecdysone analog-inducible plastids (pIND-g4H, pIND-g4L) prepared in Example 3-3 were prepared using EcoRI and After SfiI digestion, a fragment (about 5 kb) containing an antibody-invariant region was purified using a QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the attached instruction manual, and dissolved in 30 μl of sterilized water. Humanized XB12 antibody gene fragment (H chain variable region or L chain variable region) digested with EcoRI and SfiI and tetracycline-inducible expression plastids (pcDNA4-g4H, pcDNA4-g4L) digested with EcoRI and SfiI ), A Rapid DNA Ligation Kit (Roche Diagnostics) was used to perform the ligation reaction according to the method described in the attached instruction sheet. In addition, humanized SB04 antibody gene fragments (H chain variable region or L chain variable region) digested with EcoRI and SfiI and ecdysone analog-inducible expression plastids (pIND-g4H, pIND -g4L) The Rapid DNA Ligation Kit (Roche Diagnostics) was used to perform the ligation reaction according to the method described in the attached instruction sheet. Shape conversion of E. coli DH5α strain (Toyobo) was performed using a part of each reaction solution.

又,為了以非雙專一性抗體之通常人類化抗體之形式表現,以如下方式製作表現載體。將在雞β肌動蛋白(actin)促進子之pCAGGS(Niwa et al.1991 Gene,108:193-199.)中插入有野生型抗體不變區域之質體(pCAG-g4H、pCAG-gκ)以 XhoI及SfiI消化,製作插入有將上述雙專一性抗體表現載體以XhoI及SfiI消化而回收之人類化XB12抗體基因片段(H鏈可變區域或L鏈可變區域)或人類化SB04抗體基因片段(H鏈可變區域或L鏈可變區域)之表現質體。DNA連結反應使用Rapid DNA Ligation套組(Roche Diagnostics),進行大腸菌DH5α株(東洋紡織)之形質轉換。 In addition, in order to express a non-bispecific antibody as a normal humanized antibody, a expression vector was prepared as follows. PCAGGS (Niwa et al. 1991 Gene, 108: 193-199.) With chicken beta actin promoter inserted into plastids (pCAG-g4H, pCAG-gκ) with invariant regions of wild-type antibodies To XhoI and SfiI digestion, and a humanized XB12 antibody gene fragment (H chain variable region or L chain variable region) or humanized SB04 antibody gene fragment prepared by inserting the above-mentioned bispecific antibody expression vector and digested with XhoI and SfiI was inserted (H-chain variable region or L-chain variable region). For the DNA ligation reaction, the Rapid DNA Ligation Kit (Roche Diagnostics) was used to transform the coliform DH5α strain (Toyobo).

6-3.人類化雙專一性抗體之調製 6-3. Modulation of humanized bispecific antibodies

使用4種人類化雙專一性抗體表現載體及pcDNA6/TR、pVgRXR,以實施例4-2、4-3所示方法進行對HEK293H之基因導入及表現誘導。再者,以實施例4-5、4-6所示方法進行抗體精製及抗體濃度之定量。 Using four humanized bispecific antibody expression vectors and pcDNA6 / TR, pVgRXR, gene introduction and expression induction of HEK293H were performed by the methods shown in Examples 4-2, 4-3. Furthermore, antibody purification and antibody concentration were quantified by the methods shown in Examples 4-5 and 4-6.

6-4.人類化抗體之調製 6-4. Modulation of humanized antibodies

為了使非雙專一性抗體之通常人類化抗體表現,使用實施例6-3製作之人類化H鏈抗體表現載體及人類化L鏈抗體表現載體依實施例4-2所示方法對HEK293H進行基因導入。基因導入後添加10mL之CHO-S-SFM-II培養基(Invitrogen)及除去並清洗後,再添加10mL之CHO-S-SFM-II,於CO2培養箱(37℃、5% CO2)內培養3日,使人類化抗體分泌。 In order to express the normal humanized antibody of a non-bispecific antibody, the humanized H chain antibody expression vector and the humanized L chain antibody expression vector prepared in Example 6-3 were used to gene HEK293H according to the method shown in Example 4-2. Import. After gene introduction, 10 mL of CHO-S-SFM-II medium (Invitrogen) was added, and after removing and washing, 10 mL of CHO-S-SFM-II was added and placed in a CO 2 incubator (37 ° C, 5% CO 2 ). After 3 days of culture, humanized antibodies were secreted.

6-5.人類化雙專一性抗體之活性評價及抗體序列之改變 6-5. Evaluation of the activity of humanized bispecific antibodies and changes in antibody sequences

為了評價所調製之人類化雙專一性抗體及嵌合雙專一性抗體(XB12/SB04)之血漿凝固能力,依照實施例5之方法,使用F.VIII缺乏血漿探討抗體對APTT之影響。對於血液凝固能力低之人類化雙專一性抗體,以活性上升為目標來改變人類抗 體FR之胺基酸。又,對於擔心熱安定性低等之XB12抗體VH之CDR3的半胱胺酸殘基也改變為丙胺酸殘基。具體而言,使用QuikChange點突變套組(Stratagene)依所附說明書記載之方法在人類化抗體可變區域導入變異。藉由反複進行FR序列之胺基酸改變及血液凝固能力之評價,取得與XB12/SB04具有同等活性之人類化雙專一性抗體(人類化XB12抗體(VH:hXB12f-A,VL:hXBVL)/人類化SB04抗體(VH:hSB04e,VL:hSBVL-F3f)。各抗體可變區域序列以如下序列編號表示。 In order to evaluate the plasma coagulation ability of the prepared humanized bispecific antibody and chimeric bispecific antibody (XB12 / SB04), the effect of antibody on APTT was investigated using F.VIII-deficient plasma according to the method of Example 5. For humanized bispecific antibodies with low blood coagulation ability, aim at increasing activity to change human resistance The amino acid of the body FR. Furthermore, the cysteine residue of CDR3 of the XB12 antibody VH, which is concerned about low thermal stability, was also changed to alanine residue. Specifically, a mutation was introduced into the variable region of a humanized antibody using the QuikChange point mutation kit (Stratagene) according to the method described in the attached specification. By repeatedly evaluating the amino acid changes and blood coagulation ability of the FR sequence, a humanized bispecific antibody (humanized XB12 antibody (VH: hXB12f-A, VL: hXBVL)) having the same activity as XB12 / SB04 was obtained / Humanized SB04 antibody (VH: hSB04e, VL: hSBVL-F3f). The sequence of the variable region of each antibody is represented by the following sequence number.

(1)人類化XB12抗體VH(hXB12f-A)序列編號:1(鹼基序列)、序列編號:2(胺基酸序列) (1) Humanized XB12 antibody VH (hXB12f-A) sequence number: 1 (base sequence), sequence number: 2 (amino acid sequence)

(2)人類化XB12抗體VL(hXBVL)序列編號:3(鹼基序列)、序列編號:4(胺基酸序列) (2) Humanized XB12 antibody VL (hXBVL) sequence number: 3 (base sequence), sequence number: 4 (amino acid sequence)

(3)人類化SB04抗體VH(hSB04e)序列編號:5(鹼基序列)、序列編號:6(胺基酸序列) (3) Humanized SB04 antibody VH (hSB04e) sequence number: 5 (base sequence), sequence number: 6 (amino acid sequence)

(4)人類化SB04抗體VL(hSBVL-F3f)序列編號:7(鹼基序列)、序列編號:8(胺基酸序列) (4) Humanized SB04 antibody VL (hSBVL-F3f) sequence number: 7 (base sequence), sequence number: 8 (amino acid sequence)

[實施例7]人類化抗體之模式化(modeling) [Example 7] Modeling of humanized antibodies

為了確認人類化SB04抗體之VH與VL之界面之胺基酸殘基,使用MOE軟體(Chemical Computing Group Inc.),以相同度模擬器製作抗體Fv區域模型。VH與VL之界面中,H39及L38之胺基酸都是谷醯胺(Gln),確認兩殘基之側鏈形成氫鍵(圖1(A))。又,H45與L44之胺基酸各為白胺酸(Leu)及脯胺酸(Pro),確認兩殘基之側鏈非常近,且形成疏水性核(圖1(B))。該等2位置之胺基酸殘基已有報告在人類抗體之中為高 保守性的(Vargas-Madrazo E et al.J.Mol.Recognit.2003,16:113-120)。H39、L38、H45、L44等抗體之編號參考Kabat等人之文獻(Kabat EA et al.1991.Sequences of Proteins of Immunological Interest.NIH)。 In order to confirm the amino acid residues at the interface between VH and VL of humanized SB04 antibody, MOE software (Chemical Computing Group Inc.) was used to make an antibody Fv region model with the same degree simulator. In the interface between VH and VL, the amino acids of H39 and L38 are both glutamine (Gln), and it is confirmed that the side chains of the two residues form hydrogen bonds (Fig. 1 (A)). In addition, the amino acids of H45 and L44 were leucine (Leu) and proline (Pro), and it was confirmed that the side chains of the two residues were very close and formed a hydrophobic core (Fig. 1 (B)). These 2-position amino acid residues have been reported to be high in human antibodies Conservative (Vargas-Madrazo E et al. J. Mol. Recognit. 2003, 16: 113-120). For the numbers of H39, L38, H45, L44 and other antibodies, refer to the literature of Kabat et al. (Kabat EA et al. 1991. Sequences of Proteins of Immunological Interest. NIH).

[實施例8]H39、L38之胺基酸經過改變之人類化抗體之製作及評價 [Example 8] Preparation and evaluation of modified humanized antibodies of amino acids of H39 and L38

8-1.H39及L38經過改變之抗體表現載體之構建 8-1. Construction of modified antibody expression vectors for H39 and L38

以抑制人類化XB12之H鏈與人類化SB04之L鏈之組裝的方式,依據實施例7之見解取代人類化XB12 H鏈之H39之谷醯胺與人類化SB04 L鏈之L38之谷醯胺。具體而言,以抑制谷醯胺側鏈氫鍵而產生電荷斥力之方式,將兩胺基酸(H39、L38)取代為側鏈帶正電荷之離胺酸(Lys)或精胺酸(Arg)、側鏈帶負電荷之谷胺酸(Glu)或天冬醯胺酸(Asp)。人類化抗體基因之取代使用QuikChange點突變套組(Stratagene)依所附說明書記載之方法導入變異。胺基酸被取代之各人類化抗體基因片段插入於實施例6-2使用之雙專一性抗體表現載體或通常之抗體表現載體。 By inhibiting the assembly of the humanized XB12 H chain and the humanized SB04 L chain, the glutamine in humanized XB12 H chain and the glutamine in L38 of humanized SB04 L chain were replaced in accordance with the findings of Example 7. . Specifically, the two amino acids (H39, L38) are replaced with a positively charged lysine (Lys) or arginine (Arg ), Glutamic acid (Glu) or aspartic acid (Asp) with negatively charged side chains. The humanized antibody gene was replaced with a QuikChange point mutation kit (Stratagene) according to the method described in the attached instruction sheet to introduce mutations. Each amino acid-substituted humanized antibody gene fragment was inserted into the bispecific antibody expression vector or the usual antibody expression vector used in Example 6-2.

8-2.組裝控制評價用抗體之調製及組裝控制評價 8-2. Preparation of antibodies for assembly control evaluation and evaluation of assembly control

為了評價H鏈與L鏈之組裝控制,將製作之人類化XB12 H鏈(H39改變)、人類化SB04 L鏈(L38改變)、野生型人類化XB12 L鏈等3種抗體使用表現載體,以實施例4-2所示方法對HEK293H進行基因導入,使培養上清中分泌抗體。再者,以實施例4-5、4-6所示方法實施抗體精製及抗體濃度之定量。 In order to evaluate the assembly control of H chain and L chain, three kinds of antibodies including humanized XB12 H chain (H39 change), humanized SB04 L chain (L38 change), and wild type humanized XB12 L chain were used as expression vectors. The method shown in Example 4-2 was used to introduce genes into HEK293H to secrete antibodies in the culture supernatant. Furthermore, antibody purification and antibody concentration quantification were performed by the methods shown in Examples 4-5 and 4-6.

將精製抗體200ng於樣本緩衝液(TEFCO)中進行 還原處理,注入14% SDS-PAGE mini凝膠(TEFCO),進行電泳。電泳後,浸泡於含10%甲醇之7%乙酸溶液30分鐘進行固定處理,並於SYPRO(R)Ruby蛋白凝膠染色液(BIO-RAD)浸泡一晝夜進行染色。其次,於含10%甲醇之7%乙酸溶液浸泡1小時進行脫色處理,使用螢光偵測裝置FluorImagerSI(Amersham Biosciences)進行影像解析,取得影像。使用所得到之影像,以ImageQuant ver4.2(Amersham Biosciences)計算H鏈及L鏈譜帶之螢光強度。 200 ng of purified antibody was reduced in a sample buffer (TEFCO), injected into a 14% SDS-PAGE mini gel (TEFCO), and electrophoresed. After electrophoresis, immerse in a 7% acetic acid solution containing 10% methanol for 30 minutes for fixation, and immerse in SYPRO (R) Ruby protein gel staining solution (BIO-RAD) for day and night for staining. Next, immerse in a 7% acetic acid solution containing 10% methanol for 1 hour for decolorization, and use a fluorescence detection device FluorImagerSI (Amersham Biosciences) to perform image analysis to obtain an image. Using the obtained images, the fluorescence intensities of the H-chain and L-chain bands were calculated using ImageQuant ver4.2 (Amersham Biosciences).

結果如圖2所示。使用算出之螢光強度強度值,將目的XB12-L鏈之比例(%)以「XB12-L鏈/L鏈總量(XB12-L鏈+SB04-L鏈)x 100」算出。確認了:人類化XB12 H鏈(H39)及人類化SB04 L鏈(L38)之胺基酸為野生型谷醯胺(Gln)之情形為50%,相對於此,取代H39及L38之情形之中,人類化XB12 L鏈比例上升,取代為谷胺酸(Glu)之之情形,為82%,上升了1.6倍。 The results are shown in Figure 2. Using the calculated fluorescence intensity intensity value, the ratio (%) of the target XB12-L chain is calculated as "XB12-L chain / L chain total (XB12-L chain + SB04-L chain) x 100". It was confirmed that the case where the amino acid of the humanized XB12 H chain (H39) and the humanized SB04 L chain (L38) was wild-type glutamine (Gln) was 50%, compared to the case where the H39 and L38 were replaced In the case of humanized XB12 L chain, the ratio of glutamic acid (Glu) was 82%, a 1.6-fold increase.

8-3.凝固活性評價用之雙專一性抗體之調製與凝固活性評價 8-3. Preparation of bispecific antibodies for evaluation of coagulation activity and evaluation of coagulation activity

為評價凝固活性,使用製作之人類化XB12 H鏈(H39改變)及人類化SB04 L鏈(L38改變)雙專一性抗體表現載體及野生型人類化XB12 L鏈及人類化SB04 H鏈雙專一性抗體表現載體、pcDNA6/TR、pVgRXR,以實施例4-2、4-3所示方法進行對HEK293H之基因導入及表現誘導。再者,以實施例4-5、4-6所示方法實施抗體精製及抗體濃度之定量。 In order to evaluate the coagulation activity, the humanized XB12 H chain (H39 change) and humanized SB04 L chain (L38 change) bispecific antibody expression vector and wild type humanized XB12 L chain and humanized SB04 H chain were used. The antibody expression vector, pcDNA6 / TR, and pVgRXR were introduced into HEK293H by the method shown in Examples 4-2, 4-3, and expression induction was performed. Furthermore, antibody purification and antibody concentration quantification were performed by the methods shown in Examples 4-5 and 4-6.

凝固活性之評價以實施例5所示方法實施。結果如圖3所 示。於組裝控制評價之中比例上升到達82%之谷胺酸(Glu:E)改變抗體之中,與野生型比較,確認呈現同等以上凝固活性。 Evaluation of the coagulation activity was performed by the method shown in Example 5. The results are shown in Figure 3. Show. Among the glutamate (Glu: E) -modified antibodies whose proportion increased to 82% in the evaluation of assembly control, it was confirmed that they exhibited the same or more coagulation activity as compared with the wild type.

8-4.結合活性評價用抗體之調製 8-4. Preparation of antibodies for binding activity evaluation

為評價與FactorIXa及FactorX之結合活性,將人類化XB12H鏈(H39改變)及野生型人類化XB12 L鏈抗體表現載體或野生型人類化SB04 H鏈及人類化SB04 L鏈(L38改變)抗體使用表現載體,以實施例4-2所示方法對HEK293H進行基因導入,使抗體分泌於培養上清中。再者,以實施例4-5、4-6所示方法實施抗體精製及抗體濃度之定量。 In order to evaluate the binding activity with FactorIXa and FactorX, humanized XB12H chain (modified H39) and wild-type humanized XB12 L chain antibody expression vectors or wild-type humanized SB04 H chain and humanized SB04 L chain (modified L38) antibody were used The expression vector was introduced into HEK293H by the method shown in Example 4-2, and the antibody was secreted into the culture supernatant. Furthermore, antibody purification and antibody concentration quantification were performed by the methods shown in Examples 4-5 and 4-6.

對於FactorIXa及FactorX之結合活性之評價以實施例1-2、2-2所示方法實施。結果如圖4、圖5所示。確認了即使取代H39及L38之胺基酸,結合活性也沒有變化。 The evaluation of the binding activity of FactorIXa and FactorX was performed by the methods shown in Examples 1-2 and 2-2. The results are shown in Figures 4 and 5. It was confirmed that the binding activity did not change even when the amino acids of H39 and L38 were substituted.

由以上結果,暗示藉由改變XB12 H鏈之H39及SB04 L鏈之L38,可於不使對抗原之結合活性、代替FactoVIII之凝固活性等生物活性降低的狀態,使目的雙專一性抗體之比例上升。僅在多肽中一位置導入胺基酸變異,便使機能不降低而控制組裝之例,包含突起與空隙之方法也沒有報導至此程度,可稱為首度的見解。 From the above results, it is suggested that by changing the H39 of the XB12 H chain and L38 of the SB04 L chain, the biological activity such as the binding activity to the antigen and the coagulation activity instead of FactoVIII can be reduced, and the ratio of the target bispecific antibody can be made. rise. For example, the introduction of amino acid mutations at only one position in a polypeptide allows the assembly to be controlled without degradation. The method including protrusions and voids has not been reported to this extent, and it can be called the first insight.

[實施例9]L44之胺基酸經過改變之人類化抗體之製作及評價 [Example 9] Preparation and evaluation of modified humanized antibody of amino acid of L44

9-1.L44經過改變之抗體表現載體之構建 9-1. Construction of L44 modified antibody expression vector

以抑制人類化XB12之H鏈與人類化SB04之L鏈組裝之方式,依據實施例7之見解將人類化SB04 L鏈之L44之脯胺酸取代為側鏈帶電荷之胺基酸。具體而言,將於VH與VL界 面存在疏水性核之脯胺酸取代為側鏈帶正電荷之離胺酸(Lys)或精胺酸(Arg)、側鏈帶負電荷之谷胺酸(Glu)或天冬醯胺酸(Asp)。人類化抗體基因之取代使用QuikChange點突變套組(Stratagene),依所附說明書記載之方法導入變異。胺基酸被取代之各人類化抗體基因片段被插入實施例6-2使用之雙專一性抗體表現載體或通常之抗體表現載體。 By inhibiting the assembly of the humanized XB12 H chain and the humanized SB04 L chain, the proline acid of the humanized SB04 L chain L44 was replaced with a side chain charged amino acid according to the findings of Example 7. Specifically, the VH and VL boundaries Proline acid with a hydrophobic core on the surface is replaced with lysine (Arg) or arginine (Arg) with a positive charge in the side chain, glutamine (Glu) or aspartic acid (Glu) with a negative charge in the side chain Asp). The humanized antibody gene was replaced with a QuikChange point mutation kit (Stratagene), and mutations were introduced according to the method described in the attached specification. The amino acid-substituted humanized antibody gene fragment was inserted into the bispecific antibody expression vector or the usual antibody expression vector used in Example 6-2.

9-2.組裝控制評價用抗體之調製及組裝控制評價 9-2. Preparation of antibodies for assembly control evaluation and evaluation of assembly control

為評價H鏈與L鏈之組裝控制,使用製作之人類化SB04 L鏈(L44改變)、野生型人類化XB12 H鏈、野生型人類化XB12 L鏈等3種抗體表現載體,以實施例4-2所示方法對HEK293H進行基因導入,使抗體分泌於培養上清中。再者,以實施例4-5、4-6所示方法實施抗體精製及抗體濃度之定量。 In order to evaluate the assembly control of the H chain and the L chain, three kinds of antibody expression vectors such as humanized SB04 L chain (L44 change), wild-type humanized XB12 H chain, and wild-type humanized XB12 L chain were used. Example 4 was used. The method shown in -2 was used to introduce genes into HEK293H to secrete antibodies into the culture supernatant. Furthermore, antibody purification and antibody concentration quantification were performed by the methods shown in Examples 4-5 and 4-6.

將精製抗體200ng於樣本緩衝液(TEFCO)中進行還原處理,注入14% SDS-PAGE mini凝膠(TEFCO),進行電泳。電泳後,浸泡於含10%甲醇之7%乙酸溶液30分鐘進行固定處理,並於SYPRO(R)Ruby蛋白凝膠染色液(BIO-RAD)浸泡一晝夜進行染色。其次,於含10%甲醇之7%乙酸溶液浸泡1小時進行脫色處理,使用螢光偵測裝置FluorImagerSI(Amersham Biosciences)進行影像解析,取得影像。使用所得到之影像,以ImageQuant ver4.2(Amersham Biosciences)計算H鏈及L鏈譜帶之螢光強度。 200 ng of purified antibody was reduced in a sample buffer (TEFCO), injected into a 14% SDS-PAGE mini gel (TEFCO), and electrophoresed. After electrophoresis, immerse in a 7% acetic acid solution containing 10% methanol for 30 minutes for fixation, and immerse in SYPRO (R) Ruby protein gel staining solution (BIO-RAD) for day and night for staining. Next, immerse in a 7% acetic acid solution containing 10% methanol for 1 hour for decolorization, and use a fluorescence detection device FluorImagerSI (Amersham Biosciences) to perform image analysis to obtain an image. Using the obtained images, the fluorescence intensities of the H-chain and L-chain bands were calculated using ImageQuant ver4.2 (Amersham Biosciences).

結果如圖6所示。使用計算之螢光強度強度值,以「XB12-L鏈/L鏈總量(XB12-L鏈+SB04-L鏈)x 100」計算目的之XB12-L鏈之比例(%)。確認:人類化SB04 L鏈(L44)之 胺基酸為野生型脯胺酸(Pro)之情形為47%,相對於此,取代L44之情形,人類化XB12 L鏈之比例上升,為86-90%,上升了1.8-1.9倍。 The results are shown in Figure 6. Using the calculated fluorescence intensity intensity value, use the "XB12-L chain / L chain total (XB12-L chain + SB04-L chain) x 100" to calculate the proportion (%) of the target XB12-L chain. Confirmation: Humanized SB04 L-chain (L44) In the case where the amino acid is wild-type proline (Pro), 47%, in contrast, in the case of replacing L44, the proportion of the humanized XB12 L chain increased by 86-90%, which increased by 1.8-1.9 times.

9-3.凝固活性評價用之雙專一性抗體之調製及凝固活性評價 9-3. Preparation of Bispecific Antibodies for Evaluation of Coagulation Activity and Evaluation of Coagulation Activity

為評價凝固活性,使用製作之人類化SB04 L鏈(L44改變)雙專一性抗體表現載體及野生型之人類化XB12 H鏈、人類化XB12 L鏈及人類化SB04 H鏈雙專一性抗體表現載體、pcDNA6/TR、pVgRXR,以實施例4-2、4-3所示方法進行對HEK293H之基因導入及表現誘導。再者,以實施例4-5、4-6所示方法實施抗體精製及抗體濃度之定量。 To evaluate the coagulation activity, the humanized SB04 L chain (L44 altered) bispecific antibody expression vector and the wild-type humanized XB12 H chain, humanized XB12 L chain, and humanized SB04 H chain bispecific antibody expression vector were used. , PcDNA6 / TR, and pVgRXR, gene introduction and expression induction of HEK293H were performed by the methods shown in Examples 4-2, 4-3. Furthermore, antibody purification and antibody concentration quantification were performed by the methods shown in Examples 4-5 and 4-6.

凝固活性之評價以實施例5所示方法實施。結果如圖7所示。確認:組裝控制評價中比例上升之所有改變抗體之中,呈現較野生型之凝固活性為高的凝固活性。 Evaluation of the coagulation activity was performed by the method shown in Example 5. The results are shown in Figure 7. It was confirmed that among all the modified antibodies whose proportion was increased in the evaluation of assembly control, the coagulation activity was higher than that of the wild type.

9-4.結合活性評價用抗體之調製 9-4. Preparation of antibodies for binding activity evaluation

為評價對FactorX之結合活性,使用野生型人類化SB04 H鏈及人類化SB04 L鏈(L44改變)抗體表現載體,以實施例4-2所示方法對HEK293H進行基因導入,使抗體分泌於培養上清中。再者,以實施例4-6所示方法實施培養上清中之抗體濃度之定量。 In order to evaluate the binding activity to FactorX, a wild-type humanized SB04 H chain and a humanized SB04 L chain (L44 altered) antibody expression vector were used to introduce the gene into HEK293H by the method shown in Example 4-2, so that the antibody was secreted in culture. Supernatant. In addition, the antibody concentration in the culture supernatant was quantified by the method shown in Example 4-6.

對FactorX之結合活性之評價使用培養上清以實施例2-2所示方法實施。結果如圖8所示。確認即使取代L44之胺基酸,結合活性也沒有變化。 Evaluation of the binding activity of FactorX was performed using the culture supernatant by the method shown in Example 2-2. The results are shown in Figure 8. It was confirmed that the binding activity did not change even if the amino acid of L44 was substituted.

由以上結果,暗示藉由將SB04 L鏈之L44一位置 之胺基酸改變,可於不降低對抗原之結合活性、代替FactoVIII之凝固活性等生物活性,而使目的雙專一性抗體之比例上升。僅在多肽中一位置導入胺基酸變異,便能使機能不低下而控制組裝之例,包含突起與空隙之方法也沒有報導至此程度,可稱為首見的。 From the above results, it is implied that by placing L44 of the SB04 L chain in a position The change of amino acid can increase the proportion of the target bispecific antibody without reducing the biological activity such as the binding activity to the antigen and replacing the coagulation activity of FactoVIII. An example in which amino acid mutation is introduced only at one position in the polypeptide can control the assembly without inferior function. The method including protrusions and voids has not been reported to this extent, and it can be called the first.

[實施例10]H39、L38之胺基酸及L44之胺基酸經過改變之人類化抗體之製作與評價 [Example 10] Preparation and evaluation of modified humanized antibodies of amino acids of H39 and L38 and amino acids of L44

10-1.H39、L38之胺基酸及L44經過改變之抗體表現載體之構建 10-1. Construction of modified antibody expression vectors for H39, L38 amino acids and L44

以抑制人類化XB12之H鏈與人類化SB04之L鏈組裝之方式,依據實施例8及9之見解將人類化XB12 H鏈之H39及人類化SB04 L鏈之L38及L44取代為側鏈帶電荷之胺基酸。具體而言,將人類化XB12 H鏈之H39及人類化SB04 L鏈之L38兩胺基酸取代為實施例8之中最有效果之谷胺酸(Glu),並將存在於人類化SB04 L鏈之L44之脯胺酸取代為側鏈帶正電荷之離胺酸(Lys)或精胺酸(Arg)、側鏈帶負電荷之谷胺酸(Glu)或天冬醯胺酸(Asp)。人類化抗體基因之取代使用QuikChange點突變套組(Stratagene),依所附說明書記載之方法導入變異。胺基酸被取代之各人類化抗體基因片段被插入實施例6-2使用之雙專一性抗體表現載體或通常之抗體表現載體。 By inhibiting the assembly of the humanized XB12 H chain and the humanized SB04 L chain, the humanized XB12 H chain and the humanized SB04 L chain L38 and L44 were replaced with side chain bands according to the findings of Examples 8 and 9. Charged amino acid. Specifically, H39 of the humanized XB12 H chain and L38 of the humanized SB04 L chain were replaced with the most effective glutamic acid (Glu) in Example 8, and will be present in the humanized SB04 L The proline acid of L44 of the chain is replaced with lysine (Arg) or arginine (Arg) with a positive charge on the side chain, glutamine (Glu) or aspartic acid (Asp) with a negative charge on the side chain . The humanized antibody gene was replaced with a QuikChange point mutation kit (Stratagene), and mutations were introduced according to the method described in the attached specification. The amino acid-substituted humanized antibody gene fragment was inserted into the bispecific antibody expression vector or the usual antibody expression vector used in Example 6-2.

10-2.組裝控制評價用抗體之調製及組裝控制評價 10-2. Preparation of antibodies for assembly control evaluation and evaluation of assembly control

為評價H鏈與L鏈之組裝控制,使用變異型人類化SB04 L鏈、變異型人類化XB12 H鏈、野生型人類化XB12 L鏈3種 抗體表現載體,以實施例4-2所示方法對HEK293H進行基因導入,使抗體分泌於培養上清中。再者,以實施例4-5、4-6所示方法實施抗體精製及抗體濃度之定量。 In order to evaluate the assembly control of H chain and L chain, three types of humanized SB04 L chain, humanized XB12 H chain and wild type XB12 L chain were used. The antibody expression vector was introduced into HEK293H by the method shown in Example 4-2, and the antibody was secreted in the culture supernatant. Furthermore, antibody purification and antibody concentration quantification were performed by the methods shown in Examples 4-5 and 4-6.

將精製抗體200ng於樣本緩衝液(TEFCO)中進行還原處理,注入14% SDS-PAGE mini凝膠(TEFCO),進行電泳。電泳後,浸泡於含10%甲醇之7%乙酸溶液30分鐘進行固定處理,並於SYPRO(R)Ruby蛋白凝膠染色液(BIO-RAD)浸泡一晝夜進行染色。其次,於含10%甲醇之7%乙酸溶液浸泡1小時進行脫色處理,使用螢光偵測裝置FluorImagerSI(Amersham Biosciences)進行影像解析,取得影像。使用所得到之影像,以ImageQuant ver4.2(Amersham Biosciences)計算H鏈及L鏈譜帶之螢光強度。 200 ng of purified antibody was reduced in a sample buffer (TEFCO), injected into a 14% SDS-PAGE mini gel (TEFCO), and electrophoresed. After electrophoresis, immerse in a 7% acetic acid solution containing 10% methanol for 30 minutes for fixation, and immerse in SYPRO (R) Ruby protein gel staining solution (BIO-RAD) for day and night for staining. Next, immerse in a 7% acetic acid solution containing 10% methanol for 1 hour for decolorization, and use a fluorescence detection device FluorImagerSI (Amersham Biosciences) to perform image analysis to obtain an image. Using the obtained images, the fluorescence intensities of the H-chain and L-chain bands were calculated using ImageQuant ver4.2 (Amersham Biosciences).

結果如圖9所示。使用算出之螢光強度強度值,將目的XB12-L鏈之比例(%)以「XB12-L鏈/L鏈總量(XB12-L鏈+SB04-L鏈)x 100」算出。確認了:人類化XB12 H鏈(H39)及人類化SB04 L鏈(L38)之兩胺基酸改變為谷胺酸(Glu)、人類化SB04 L鏈(L44)為野生型之脯胺酸(Pro)之情形為82%,人類化XB12 H鏈(H39)及人類化SB04 L鏈(L38)之兩胺基酸改變谷胺酸(Glu)且取代L44之情形,人類化XB12 L鏈之比例上升至94-96%。該比例之提高,比實施例9之中單獨取代L44之86-90%為高。 The results are shown in Figure 9. Using the calculated fluorescence intensity intensity value, the ratio (%) of the target XB12-L chain is calculated as "XB12-L chain / L chain total (XB12-L chain + SB04-L chain) x 100". It was confirmed that the diamino acids of humanized XB12 H chain (H39) and humanized SB04 L chain (L38) were changed to glutamic acid (Glu), and the humanized SB04 L chain (L44) was wild-type proline ( Pro) is 82%, the ratio of humanized XB12 L chain to humanized XB12 H chain (H39) and humanized SB04 L chain (L38) is changed to glutamic acid (Glu) and replaced by L44. It rose to 94-96%. The increase of this ratio is higher than 86-90% of L44 alone in Example 9.

10-3.凝固活性評價用之雙專一性抗體之調製及凝固活性評價 10-3. Preparation of bispecific antibodies for evaluation of coagulation activity and evaluation of coagulation activity

為評價凝固活性,使用製作之變異型人類化XB12 H鏈、 人類化XB12 L鏈及人類化SB04 H鏈雙專一性抗體表現載體與野生型人類化XB12 H鏈、人類化XB12 L鏈及人類化SB04 H鏈雙專一性抗體表現載體、pcDNA6/TR、pVgRXR,以實施例4-2、4-3所示方法進行對HEK293H之基因導入及表現誘導。再者,以實施例4-5、4-6所示方法實施抗體精製及抗體濃度之定量。 In order to evaluate the coagulation activity, a modified humanized XB12 H chain was used, Humanized XB12 L chain and humanized SB04 H chain bispecific antibody expression vector and wild type humanized XB12 H chain, humanized XB12 L chain and humanized SB04 H chain bispecific antibody expression vector, pcDNA6 / TR, pVgRXR, Gene introduction and expression induction of HEK293H were performed by the methods shown in Examples 4-2 and 4-3. Furthermore, antibody purification and antibody concentration quantification were performed by the methods shown in Examples 4-5 and 4-6.

凝固活性之評價依實施例5所示方法實施。結果如圖10所示。組裝控制評價中比例上升之所有改變抗體之中,確認與野生型之凝固活性呈現同等之凝固活性。 Evaluation of the coagulation activity was performed according to the method shown in Example 5. The results are shown in Figure 10. Among all the modified antibodies whose proportion was increased in the evaluation of assembly control, it was confirmed that the coagulation activity was equivalent to that of the wild type.

10-4.結合活性評價用抗體之調製 10-4. Preparation of antibodies for binding activity evaluation

為評價對FactorX之結合活性,使用野生型人類化SB04 H鏈及變異型人類化SB04 L鏈抗體表現載體,依實施例4-2所示方法對HEK293H進行基因導入,使抗體分泌於培養上清中。再者,以實施例4-6所示方法實施培養上清中之抗體濃度之定量。 In order to evaluate the binding activity to FactorX, using wild-type humanized SB04 H chain and variant humanized SB04 L-chain antibody expression vectors, HEK293H gene was introduced according to the method shown in Example 4-2, and the antibody was secreted in the culture supernatant. in. In addition, the antibody concentration in the culture supernatant was quantified by the method shown in Example 4-6.

對FactorX之結合活性之評價使用培養上清以實施例2-2所示方法實施。結果如圖11所示。確認了即使取代L38及L44兩胺基酸,結合活性也沒有變化。 Evaluation of the binding activity of FactorX was performed using the culture supernatant by the method shown in Example 2-2. The results are shown in Figure 11. It was confirmed that even when the L38 and L44 diamino acids were substituted, the binding activity did not change.

由以上結果,暗示藉由改變XB12 H鏈之H39及SB04 L鏈之L38,L44之胺基酸,可不使對抗原之結合活性、代替FactoVIII之凝固活性等生物活性降低,而使目的雙專一性抗體之比例上升。確認雙專一性抗體之比例由於增加界面之胺基酸改變之數目而上升。 From the above results, it is suggested that by changing the amino acids of H39 of the XB12 H chain and L38 and L44 of the SB04 L chain, the biological activity such as binding activity to the antigen and coagulation activity instead of Facto VIII can be reduced, and the purpose is dual specificity. The proportion of antibodies has increased. It was confirmed that the proportion of bispecific antibodies was increased by increasing the number of amino acid changes at the interface.

[實施例11]hVB22B u2-wz4 sc(Fv)2之構造構造異 構物分離、構造決定 [Example 11] The structure of hVB22B u2-wz4 sc (Fv) 2 is different Structure separation, structure decision

11-1. 人類化抗人類Mpl抗體hVB22B u2-wz4 sc(Fv)2之製作 11-1. Production of humanized anti-human Mpl antibody hVB22B u2-wz4 sc (Fv) 2

人類化抗Mpl抗體hVB22B u2-wz4 sc(Fv)2(以下u2-wz4)之製作方法表示於WO2005/56604。該基因係使用編碼為連接子序列(GlyGlyGlyGlySer)x3之鹼基序列,使帶有由VH-連接子序列-VL-連接子序列-VH-連接子序列-VL構成之鹼基序列(參照序列編號:12;WO2005/56604之序列編號:286)的方式以PCR法製作。確認基因之鹼基序列後,將DNA片段選殖於表現載體pCXND3並構建表現載體,藉由對CHO-DG44細胞進行基因導入,製作安定表現細胞株。具體而言,將表現載體(20μg)與懸浮於PBS之CHO-DG44細胞(1×107細胞/mL)0.75mL混合者於冰上冷卻10分鐘,移到小玻璃管後,使用Gene Pulser Xcell(BioRad)施以1.5kV、25μFD電容之脈衝。於室溫經過10分鐘之回復期間後,將經過電穿孔處理之細胞加入含500μg/mL Geneticin(Invitrogen)之CHO-S-SFMII培養基(Invitrogen)並選擇,建立u2-wz4產生CHO細胞株。 The method for preparing humanized anti-Mpl antibody hVB22B u2-wz4 sc (Fv) 2 (hereinafter u2-wz4) is shown in WO2005 / 56604. This gene line uses a base sequence encoded as a linker sequence (GlyGlyGlyGlySer) x3, so that it has a base sequence consisting of VH-linker sequence-VL-linker sequence-VH-linker sequence-VL (see sequence number : 12; WO2005 / 56604 sequence number: 286). After confirming the base sequence of the gene, the DNA fragment was cloned into the expression vector pCXND3 to construct a expression vector, and gene expression was introduced into CHO-DG44 cells to produce stable expression cell lines. Specifically, a mixture of expression vector (20 μg) and 0.75 mL of CHO-DG44 cells (1 × 10 7 cells / mL) suspended in PBS was cooled on ice for 10 minutes, transferred to a small glass tube, and then Gene Pulser Xcell was used. (BioRad) A pulse of 1.5 kV and a capacitance of 25 μFD was applied. After a recovery period of 10 minutes at room temperature, the electroporated cells were added to CHO-S-SFMII medium (Invitrogen) containing 500 μg / mL Geneticin (Invitrogen) and selected to establish a u2-wz4-producing CHO cell line.

人類化抗體hVB22B u2-wz4 sc(Fv)2由於未加成Flag標記(tag),故自培養上清之精製利用認識之抗原決定基MG10(人類Mpl胺基酸序列之Gln213至Ala231)及GST融合蛋白質進行。MG10與GST融合蛋白質之精製係使用谷胱甘肽Sepharose 4B(Amersham Biosciences社製),依照製造商的使用說明進行精製。再者,將精製之MG10與GST融合蛋白質依照製造商的使用說明,固定於HiTrap NHS-活化HP(Amersham Biosciences社製),製作親和管柱。使人類化抗體hVB22B u2-wz4 sc(Fv)2表現CHO細胞之培養上清流過MG10-GST融合蛋白質固定化管柱,使人類化抗體hVB22B u2-wz4 sc(Fv)2吸附,並以100mM甘胺酸-HCl(pH 3.5)、0.01% Tween80溶出。將溶出畫分立即以1M Tris-HCl(pH 7.4)中和,使用HiLoad 16/60 Superdex200pg(Amersham Biosciences社製)進行凝膠過濾層析,進行單體之精製。凝膠過濾層析之緩衝液使用20mM檸檬酸緩衝液(pH 7.5)、300mM NaCl、0.01% Tween 80。 The humanized antibody hVB22B u2-wz4 sc (Fv) 2 does not have a flag added, so purification from the culture supernatant uses the epitope MG10 (Gln213 to Ala231 of the human Mpl amino acid sequence) and GST Fusion protein. MG10 and GST fusion proteins were purified using glutathione Sepharose 4B (manufactured by Amersham Biosciences), and were purified according to the manufacturer's instructions. Furthermore, the purified MG10 and GST fusion proteins were fixed to HiTrap NHS-activated HP (Amersham) according to the manufacturer's instructions. (Manufactured by Biosciences) to produce affinity columns. The humanized antibody hVB22B u2-wz4 sc (Fv) 2 expresses the culture supernatant of CHO cells and flows through the MG10-GST fusion protein immobilization column, and the humanized antibody hVB22B u2-wz4 sc (Fv) 2 is adsorbed, and the humanized antibody is adsorbed at 100 mM glycan. Amino acid-HCl (pH 3.5), 0.01% Tween80 was dissolved. The dissolution fraction was immediately neutralized with 1 M Tris-HCl (pH 7.4), and gel filtration chromatography was performed using HiLoad 16/60 Superdex 200 pg (manufactured by Amersham Biosciences) to purify the monomer. The buffer of gel filtration chromatography used 20 mM citric acid buffer (pH 7.5), 300 mM NaCl, 0.01% Tween 80.

2-2. hVB22B u2-wz4 sc(Fv)2之構造構造異構物之分離、精製 2-2. Isolation and purification of structural isomers of hVB22B u2-wz4 sc (Fv) 2

由於hVB22B u2-wz4 sc(Fv)2為具有VH1-連接子-VL2-連接子-VH3-連接子-VL4之序列之sc(Fv)2,藉由與VB22B sc(Fv)2同樣地進行Fv(VH、VL間為非共價鍵之分子)之組合,可認為存在VH1與VL2、VH3與VL4各形成Fv之二價scFv型,與VH1與VL4、VH2與VL3各形成Fv之單鏈雙功能抗體型2種構造構造異構物(圖12)。 Since hVB22B u2-wz4 sc (Fv) 2 having VH 1 - linker -VL 2 - linker -VH 3 - -VL sc linker sequences of 4 (Fv) 2, and by VB22B sc (Fv) 2 Similarly, the combination of Fv (molecules that are non-covalent bonds between VH and VL) can be considered to exist as VH 1 and VL 2 , VH 3 and VL 4 each forming a bivalent scFv type of Fv, and VH 1 and VL 4 , VH 2 and VL 3 each form a single-chain bifunctional antibody-type two structural isomers of Fv (FIG. 12).

對hVB22B u2-wz4 sc(Fv)2之構造構造異構物之分離加以探討,結果暗示使用陽離子交換層析BioAssist S(TOSOH),以下述溶離條件可將hVB22B u2-wz4 sc(Fv)2之各種成分分離。 The separation of structural and structural isomers of hVB22B u2-wz4 sc (Fv) 2 was discussed. The results suggest that the use of cation exchange chromatography BioAssist S (TOSOH) can be used to separate hVB22B u2-wz4 sc (Fv) 2 Various ingredients are separated.

移動相A:20mM磷酸鈉,pH 7.5 Mobile phase A: 20 mM sodium phosphate, pH 7.5

移動相B:20mM磷酸鈉,500mM NaCl,pH 7.5 Mobile phase B: 20mM sodium phosphate, 500mM NaCl, pH 7.5

流速:0.8ml/min Flow rate: 0.8ml / min

梯度:B 0%→B 35%(30min) Gradient: B 0% → B 35% (30min)

以上述條件,hVB22B u2-wz4 sc(Fv)2被分離為2個峰部。得到圖13所示之層析圖,自滯留時間短之峰部依序命名為peak1、peak2。 Under the above conditions, hVB22B u2-wz4 sc (Fv) 2 was separated into two peaks. The chromatogram shown in FIG. 13 is obtained, and the peaks with a short residence time are named peak1 and peak2 in this order.

對peak1及peak2,使用Q-TOF型質量分析計(Q Tof Ultima,Micro Mass)進行分子量之測定。Q-TOF以灌流(infusion)將試料溶液導入,將所得到之多價離子圖譜(+)利用附屬軟體(MassLynx)進行影像強化處理(Deconvolution),結果得到peak1之分子量53768Da、peak2之分子量為53769Da。由此可知peak1與peak2具有相同之分子量。 For peak1 and peak2, molecular weights were measured using a Q-TOF type mass analyzer (Q Tof Ultima, Micro Mass). Q-TOF introduced the sample solution by infusion. The obtained polyvalent ion spectrum (+) was subjected to image enhancement processing (Deconvolution) using the attached software (MassLynx). . It can be seen that peak1 and peak2 have the same molecular weight.

對peak1及peak2進行肽輿圖分析(mapping)。還原變性、羧基甲基化後,使用胰蛋白酶分解成肽片段,以逆相層析(YMC-Pack-ODS)得到肽輿圖。比較peak1與peak2之肽輿圖,由於圖14所示peak1與peak2之輿圖之圖案相同,因此可得知胺基酸一次構造為相同。 Peptide mapping was performed on peak1 and peak2. After reduction denaturation and carboxymethylation, trypsin was used to decompose the peptide fragments, and peptide maps were obtained by reverse phase chromatography (YMC-Pack-ODS). Comparing the peptide maps of peak1 and peak2, since the patterns of the maps of peak1 and peak2 shown in FIG. 14 are the same, it can be known that the primary amino acid structures are the same.

hVB22B u2-wz4 sc(Fv)2未有糖鏈加成且peak1與peak2以TOF-MASS測定之分子量相同、peak1與peak2之輿圖圖案相同,因此,可得知peak1與peak2為具有彼此相異立體構造之構造異構物(conformational isomer)。 hVB22B u2-wz4 sc (Fv) 2 has no sugar chain addition, and the molecular weights of peak1 and peak2 measured by TOF-MASS are the same, and the map patterns of peak1 and peak2 are the same. Therefore, it can be known that peak1 and peak2 have mutually different stereograms. Structural isomer.

hVB22B u2-wz4 sc(Fv)2由於為具有VH1-連接子-VL2-連接子-VH3-連接子-VL4序列之sc(Fv)2,如圖12所示,構造藉由Fv(VH、VL間為非共價鍵之分子)之組合,存在有VH1與VL2、VH3與VL4各形成Fv之二價scFv型,及VH1與VL4、VH2與VL3各形成Fv之單鏈雙功能抗體型2種構造異構物,peak1及peak2可認為是二價scFv型與單鏈雙功能抗體 型之中某一構造。 hVB22B u2-wz4 sc (Fv) 2 Since having VH 1 - linker -VL 2 - linker -VH 3 - linker sequences -VL 4 sc (Fv) 2, as shown, configured by Fv 12 (VH and VL are non-covalently bonded molecules), there are bivalent scFv types of VH 1 and VL 2 , VH 3 and VL 4 each forming Fv, and VH 1 and VL 4 , VH 2 and VL 3 Each of the two structural isomers of the single-chain bifunctional antibody type that forms Fv, peak1 and peak2 can be considered to be one of the structures of the bivalent scFv type and the single-chain bifunctional antibody type.

就鑑定2種構造異構物之分析法而言,發現了蛋白酶限定分解法。sc(Fv)2之連接子部分由於為比較自由之構造,因此被認為對蛋白酶之耐性低,使用一種蛋白酶subtilisin A,以如下條件使peak1及peak2及hVB22B u2-wz4 sc(Fv)2(peak1:peak2~1:4)反應。 As for the analysis method for identifying two structural isomers, a protease-limited decomposition method was found. The linker portion of sc (Fv) 2 is considered to have a low resistance to proteases because it has a relatively free structure. Using a protease subtilisin A, peak1 and peak2 and hVB22B u2-wz4 sc (Fv) 2 (peak1 : Peak2 ~ 1: 4) response.

20mM檸檬酸鈉,150mM NaCl,pH 7.5 20mM sodium citrate, 150mM NaCl, pH 7.5

hVB22B u2-wz4 sc(Fv)2 peak1或peak2:0.15mg/mL hVB22B u2-wz4 sc (Fv) 2 peak1 or peak2: 0.15mg / mL

Subtilisin A:10μg/mL Subtilisin A: 10 μg / mL

37℃,30min 37 ℃, 30min

反應後,使用Phastgel Homogeneous 12.5%,進行還原SDS-PAGE。其結果如圖15所示,hVB22B u2-wz4 sc(Fv)2 bulk、peak1、peak2皆顯示同樣的譜帶圖案。可得知:將hVB22B u2-wz4 sc(Fv)2之3位置之連接子部分切斷而得到各片段之專一性譜帶,因此藉由使用上述反應條件,可將hVB22B u2-wz4 sc(Fv)2之連接子部分部分且限定的分解。 After the reaction, Phastgel Homogeneous 12.5% was used for reduction SDS-PAGE. As a result, as shown in FIG. 15, hVB22B u2-wz4 sc (Fv) 2 bulk, peak1, and peak2 all showed the same band pattern. It can be known that the three-position linker of hVB22B u2-wz4 sc (Fv) 2 is cut to obtain the specific band of each fragment. Therefore, by using the above reaction conditions, hVB22B u2-wz4 sc (Fv ) The partial and limited decomposition of the linker part of 2.

於二價scFv型與單鏈雙功能抗體型之構造中,當發生3個之中一個連接子位置切斷之情形,如圖16所示,於未變性狀態,於VH與VL之間為非共價鍵結合之單鏈雙功能抗體型構造之中,即使3個中某一連接子切斷,也看不出分子量之變化,但於二價scFv型之中,如果中央之連接子切斷,會產生一半分子量之分子種類。因此,以上述反應條件部分的將連接子切斷,以hVB22B u2-wz4 sc(Fv)2團塊(bulk)、peak1、peak2以TSK SuperSW2000(TOSOH)進行凝膠過濾層析 分析。凝膠過濾層析以如下條件進行。 In the structure of the bivalent scFv type and the single chain bifunctional antibody type, when one of the three linker positions is cut off, as shown in FIG. 16, in the undenatured state, it is not between VH and VL. In the covalently bonded single-chain bifunctional antibody-type structure, even if one of the three linkers is broken, the molecular weight does not change, but in the bivalent scFv type, if the central linker is broken Will produce half molecular weight molecular species. Therefore, the linker was partially cut off with the above reaction conditions, and gel filtration chromatography was performed with hVB22B u2-wz4 sc (Fv) 2 bulk, peak1, and peak2 using TSK SuperSW2000 (TOSOH). analysis. Gel filtration chromatography was performed under the following conditions.

移動相:DPBS(-)pH7.4 Mobile phase: DPBS (-) pH7.4

流速:0.2ml/min Flow rate: 0.2ml / min

其結果如圖17所示,peak2之中確認完全沒有低分子量之峰部,相對於此,peak1之中確認有低分子量(約一半分子量)之峰部。peak1與peak2之混合物hVB22B u2-wz4 sc(Fv)2團塊確認有相當於peak1存在比例之量之低分子量峰部。因此,由本結果鑑定:peak1為二價scFv型,peak2為單鏈雙功能抗體型。 As a result, as shown in FIG. 17, it is confirmed that there is no peak portion of low molecular weight in peak2, whereas a peak portion of low molecular weight (about half molecular weight) is confirmed in peak1. The mixture hVB22B u2-wz4 sc (Fv) 2 of peak1 and peak2 was confirmed to have low molecular weight peaks in an amount corresponding to the proportion of peak1. Therefore, it is identified from this result that peak1 is a bivalent scFv type and peak2 is a single chain bifunctional antibody type.

[實施例12]VH/VL界面變異型sc(Fv)2之製作、構造異構物分析及鑑定 [Example 12] Preparation of VH / VL interface variant sc (Fv) 2, analysis and identification of structural isomers

12-1. VH/VL界面變異型sc(Fv)2之製作 12-1. Production of VH / VL interface variant sc (Fv) 2

將利用改變VH/VL界面之組裝控制應用於低分子化抗體sc(Fv)2,為了確認是否能控制sc(Fv)2構造異構物形成,以如下方法製作VH/VL界面變異型sc(Fv)2。 The assembly control using changing VH / VL interface was applied to low-molecular-weight antibody sc (Fv) 2. In order to confirm whether the formation of sc (Fv) 2 structural isomers could be controlled, a VH / VL interface variant sc ( Fv) 2.

將u2-wz4之形成VH/VL界面之胺基酸VH之39位(參照序列編號:13之胺基酸序列之中39位;WO2005/56604之序列編號:289)之Gln與VL之38位(參照序列編號:14之胺基酸序列之中43位;WO2005/56604之序列編號:289)的Gln以如下方式改變。首先,製作VH1之39位之Gln(基因密碼子CAG)改為Glu(基因密碼子GAG)、VL2之38位之Gln(基因密碼子CAG)改為Glu(基因密碼子GAG)、VH3之39位之Gln(基因密碼子CAG)改為Lys(基因密碼子AAG)、VL4之38位之Gln(基因密碼子CAG)改為Lys(基因密碼子AAG)之基因 hVB22B u2-wz4(v1)sc(Fv)2(以下v1、鹼基序列以序列編號:15,以該鹼基序列所編碼之胺基酸序列以序列編號:16表示)。再者,製作:VH1之39位之Gln(基因密碼子CAG)改為Glu(基因密碼子GAG)、VL2之38位之Gln(基因密碼子CAG)改為Lys(基因密碼子AAG)、VH3之39位之Gln(基因密碼子CAG)改為Lys(基因密碼子AAG)、VL4之38位之Gln(基因密碼子CAG)改為Glu(基因密碼子GAG)之基因hVB22B u2-wz4(v3)sc(Fv)2(以下,v3、鹼基序列以序列編號:17、該鹼基序列所編碼之胺基酸序列以序列編號:18表示)。基因之改變使用QuikChange點突變套組(STRATAGENE社製)依照製造商之使用說明,導入點突變。確認各基因之鹼基序列後,將DNA片段選殖於表現載體pCXND3並構建表現載體,藉由於CHO-DG44細胞導入基因,製作安定表現細胞株。以實施例11所示方法建立v1產生CHO細胞株及v3產生CHO細胞株。 The 39th position of the amino acid VH of u2-wz4 forming the VH / VL interface (refer to the 39th position in the amino acid sequence of 13; the sequence number of WO2005 / 56604: 289) (Refer to SEQ ID NO: 43 in the amino acid sequence of 14; WO2005 / 56604 SEQ ID: 289) Gln was changed as follows. First, make Gln (gene codon CAG) at position 39 of VH1 to Glu (gene codon GAG), Gln (gene codon CAG) at position 38 of VL2 to Glu (gene codon GAG) and VH3 39 Gln (gene codon CAG) to Lys (gene codon AAG), VL4 38 Gln (gene codon CAG) to Lys (gene codon AAG) gene hVB22B u2-wz4 (v1) sc (Fv) 2 (the following v1, the base sequence is represented by the sequence number: 15, and the amino acid sequence encoded by the base sequence is represented by the sequence number: 16). Furthermore, the production was: Gln (gene codon CAG) at position 39 of VH1 was changed to Glu (gene codon GAG), and Gln (gene codon CAG) at position 38 of VL2 was changed to Lys (gene codon AAG) and VH3 The 39th Gln (gene codon CAG) was changed to Lys (gene codon AAG), the VL4 38th Gln (gene codon CAG) was changed to Glu (gene codon GAG) gene hVB22B u2-wz4 (v3 ) sc (Fv) 2 (hereinafter, v3, the base sequence is represented by the sequence number: 17, and the amino acid sequence encoded by the base sequence is represented by the sequence number: 18). For genetic changes, QuikChange point mutation kits (manufactured by STRATAGENE) were used to introduce point mutations according to the manufacturer's instructions. After confirming the base sequence of each gene, a DNA fragment was cloned into the expression vector pCXND3 to construct a expression vector, and a stable expression cell line was produced by introducing genes into CHO-DG44 cells. The v1-producing CHO cell line and v3-producing CHO cell line were established by the method shown in Example 11.

變異體v1、v3以實施例11所示方法,使用MG10-GST融合蛋白質固定化管柱進行單體分子精製。由圖18所示凝膠過濾層析之結果可得知,變異體v1、v3在培養上清中二聚物以上之凝集體少,單體比例與改變前之u2-wz4之59%比較,v1為89%、v3為77%,是上升的。推測變異體v1、v3藉由VH/VL界面胺基酸之改變,由於電荷斥力而抑制不當的組裝,而促進較佳組裝。由以上,本組裝控制成功地有效率地表現單體分子。 The variants v1 and v3 were purified by the method shown in Example 11 using a MG10-GST fusion protein-immobilized column. From the results of the gel filtration chromatography shown in FIG. 18, it can be seen that the mutants v1 and v3 have less aggregates than the dimer in the culture supernatant, and the monomer ratio is compared with 59% of u2-wz4 before the change. v1 was 89% and v3 was 77%. It is speculated that the variants v1 and v3 promote the better assembly by inhibiting improper assembly due to charge repulsion due to the amino acid change at the VH / VL interface. From the above, the present assembly control successfully and efficiently represents monomer molecules.

12-2. VH/VL界面變異型sc(Fv)2之構造異構物分析及鑑定 12-2. Analysis and identification of structural isomers of VH / VL interface variant sc (Fv) 2

對所得到之VH/VL界面變異體v1、v3及未變異體u2-wz4之構造異構物存在比以陽離子交換層析及等電點電泳分析。又,以蛋白酶限定分解法實施構造鑑定。 The existence ratios of the structural isomers of the obtained VH / VL interface variants v1, v3, and the non-variant u2-wz4 were analyzed by cation exchange chromatography and isoelectric point electrophoresis. In addition, structural identification was performed by a protease-limited decomposition method.

陽離子交換層析依以下實施。 Cation exchange chromatography was performed as follows.

管柱:TSK-gel Bioassist S,4.6mmψ×50mm(TOSOH社製) Column: TSK-gel Bioassist S, 4.6mmψ × 50mm (manufactured by TOSOH)

流速:0.8mL/min Flow rate: 0.8mL / min

偵測波長:220nm Detection wavelength: 220nm

溶出條件: Dissolution conditions:

溶出液A:20mmol/L磷酸緩衝液(pH 7.0) Dissolution A: 20mmol / L phosphate buffer (pH 7.0)

溶出液B:20mmol/L磷酸緩衝液/500mmol/L NaCl(pH 7.0) Eluent B: 20mmol / L phosphate buffer / 500mmol / L NaCl (pH 7.0)

梯度: gradient:

等電點電泳依以下實施。將PhastGel乾燥IEF凝膠(Amersham Biosciences社製)用以下凝膠膨潤液膨潤30分鐘以上。將試料加入先膨潤之凝膠,以PhastSystem依如下電泳條件電泳。電泳後,於20% TCA溶液浸泡30分鐘後,以miliQ水清洗5分鐘×3次以上,並依照試料之蛋白質濃度進行 Coomassie染色或銀染色。Coomassie染色之染色液使用含0.1% CuSO4(w/v)之0.02% CBB進行染色,並以含10%乙酸之30%甲醇脫色。銀染色使用銀染色套組,使用蛋白質(Amersham Biosciences社製),以套組所附之標準使用方法進行染色。 Isoelectric point electrophoresis was performed as follows. PhastGel dry IEF gel (manufactured by Amersham Biosciences) was swollen with the following gel swelling liquid for 30 minutes or more. The sample was added to the pre-swelled gel and electrophoresed using PhastSystem under the following electrophoretic conditions. After electrophoresis, soak in a 20% TCA solution for 30 minutes, and then wash with miliQ water for 5 minutes × 3 times, and perform Coomassie staining or silver staining according to the protein concentration of the sample. Coomassie's stain was stained with 0.02% CBB containing 0.1% CuSO 4 (w / v) and decolorized with 30% methanol containing 10% acetic acid. For silver staining, a silver staining kit was used, and proteins (manufactured by Amersham Biosciences) were used, and staining was performed using the standard method of use attached to the kit.

<凝膠膨潤液> <Gel swelling liquid>

<電泳程式> <Electrophoresis program>

以蛋白酶限定分解法進行之構造鑑定依如下條件實施。使用subtilisin A,以如下條件使u2-wz4精製peak1與u2-wz4精製peak2及變異體v1與變異體v3反應。 The structural identification by the protease-limited decomposition method was performed under the following conditions. Using subtilisin A, u2-wz4 refined peak1 and u2-wz4 refined peak2, and variant v1 and variant v3 were reacted under the following conditions.

20mM檸檬酸鈉,150mM NaCl,pH 7.5 20mM sodium citrate, 150mM NaCl, pH 7.5

hVB22B u2-wz4 sc(Fv)2 peak1或peak2:0.15mg/mL hVB22B u2-wz4 sc (Fv) 2 peak1 or peak2: 0.15mg / mL

Subtilisin A:10μg/mL Subtilisin A: 10 μg / mL

37℃,30min 37 ℃, 30min

將所得到之反應液利用凝膠過濾層析以如下條件分析。 The obtained reaction solution was analyzed by gel filtration chromatography under the following conditions.

管柱:TSKgel Super2000sw(TOSOH) Column: TSKgel Super2000sw (TOSOH)

溶出液:50mM磷酸鈉,300mM KCl,pH 7.0 Dissolution: 50mM sodium phosphate, 300mM KCl, pH 7.0

流速:0.2ml/min Flow rate: 0.2ml / min

偵測:220nm Detection: 220nm

由圖19及圖20所示陽離子交換層析與等電點電泳之構造異構物分析結果,可得知:u2-wz4以24%二價scFv型、76%單鏈雙功能抗體型之兩構造異構物混合物的方式表現,相對於此,變異體v1為100%單鏈雙功能抗體型之構造異構物的方式表現,變異體v3為100%二價scFv型之構造異構物之方式表現。又如圖21所示,由蛋白酶限定分解之結果也顯示:變異體v3可觀察到與u2-wz4精製peak1同樣低分子之峰部,變異體v1可觀察到與u2-wz4精製peak2同樣低分子之峰部。因此,變異體v1以單鏈雙功能抗體型構造異構物之方式表現,變異體v3以二價scFv型構造異構物之方式表現。 From the analysis results of the structural isomers of cation exchange chromatography and isoelectric point electrophoresis shown in Fig. 19 and Fig. 20, it can be known that u2-wz4 uses two types of 24% bivalent scFv type and 76% single chain bifunctional antibody type. The method of constructing a mixture of isomers is shown. In contrast, the variant v1 is a method of 100% single-chain bifunctional antibody-type structure isomers. The variant v3 is a 100% of a bivalent scFv-type structure isomers. Way performance. As shown in Figure 21, the results of the protease-limited decomposition also showed that the same low-molecular peaks as those of u2-wz4 refined peak1 can be observed in variant v3, and the same low-molecular peaks as that of u2-wz4 refined peak2 can be observed in variant v3. The peak. Therefore, variant v1 is expressed as a single-chain bifunctional antibody-type structural isomer, and variant v3 is expressed as a bivalent scFv-type structural isomer.

[實施例13]VH/VL界面變異型sc(Fv)2之活性評價及安定性評價 [Example 13] VH / VL interface variant sc (Fv) 2 activity evaluation and stability evaluation

13-1. VH/VL界面變異型sc(Fv)2之生物活性評價 13-1. Evaluation of biological activity of VH / VL interface variant sc (Fv) 2

抗人類Mpl抗體VB22B sc(Fv)2在文獻(Blood 2005;105:562-566)之中報告呈現TPO類似協同活性。因此,對使用顯示TPO依存性增殖之BaF3-human Mpl或BaF3-monkey Mpl分離之構造異構物之TPO類似協同活性進行評價。 The anti-human Mpl antibody VB22B sc (Fv) 2 was reported in the literature (Blood 2005; 105: 562-566) to exhibit TPO-like synergistic activity. Therefore, TPO-like synergistic activity using structural isoforms isolated using BaF3-human Mpl or BaF3-monkey Mpl showing TPO-dependent proliferation was evaluated.

將各細胞以含1%胎牛血清(Invitrogen)之RPMI1640(Invitrogen)清洗2次後,懸浮於含10%胎牛血清之RPMI1640,使成為4 x 105cells/mL,並以60μL/well分注 於96井盤。分配rhTPO(R&D)或構造異構物樣本之濃度,在各井加入40μL,於37℃、5% CO2條件下進行24小時培養。以10μL/well加入WST-8試藥(細胞計數試劑SF、Nacalai Tesque),之後緊接著使用Benchmark Plus測定450nm之吸光度(對照655nm),培養2小時後,再度測定450nm之吸光度(對照655nm)。由於WST-8試藥對應於活細胞數顯現450nm之呈色反應,故以2小時之吸光度變化為指標來評價TPO類似協同活性。 After of RPMI1640 (Invitrogen) cells each containing 1% fetal bovine serum (Invitrogen) of washed twice, resuspended in fetal calf serum containing 10% of of RPMI1640, so that became 4 x 10 5 cells / mL, and at 60μL / well min Note on 96-well plate. The concentration of rhTPO (R & D) or structural isomer samples was distributed, 40 μL was added to each well, and cultured at 37 ° C and 5% CO 2 for 24 hours. WST-8 reagent (cell counting reagent SF, Nacalai Tesque) was added at 10 μL / well, and then the absorbance at 450 nm (control 655 nm) was measured using Benchmark Plus. After 2 hours of incubation, the absorbance at 450 nm (control 655 nm) was measured again. Since the WST-8 reagent corresponds to a color reaction of 450 nm in the number of living cells, the change in absorbance at 2 hours was used as an indicator to evaluate the similar synergistic activity of TPO.

使用經過精製之VB22B sc(Fv)2之構造異構物,評價BaF3-human Mpl、BaF3-monkey Mpl之中TPO類似協同活性,結果各如圖17所示。比較peak1與peak2之構造異構物之協同活性,可得知peak2顯著呈現較高的活性。此暗示:抗Mpl抗體sc(Fv)2為發揮TPO類似協同活性,必需採取單鏈雙功能抗體之構造。 Using purified structural isomers of VB22B sc (Fv) 2, the similar synergistic activities of TPO among BaF3-human Mpl and BaF3-monkey Mpl were evaluated, and the results are shown in FIG. 17. Comparing the synergistic activities of the structural isomers of peak1 and peak2, it can be seen that peak2 shows significantly higher activity. This suggests that the anti-Mpl antibody sc (Fv) 2 must adopt the structure of a single chain bifunctional antibody in order to exert similar synergistic activity of TPO.

依照實施例1所示方法,進行VH/VL界面變異體v1及v3之協同活性之評價。協同活性在構造異構物間差異很大,如圖12所示,單鏈雙功能抗體構造之peak2顯示非常高之協同活性,相對於此,二價scFv構造之peak1之活性極低。如圖22所示,變異體v1與peak2顯示同等活性,變異體v3與peak1顯示大致同等之活性。由以上,確認了:生物活性之中亦為變異體v1形成單鏈雙功能抗體構造、變異體v3形成二價scFv構造。 The synergistic activity of VH / VL interface variants v1 and v3 was evaluated according to the method shown in Example 1. The synergistic activity varies greatly among structural isomers. As shown in FIG. 12, the peak2 of the single-chain bifunctional antibody structure shows a very high synergistic activity. In contrast, the activity of the peak1 of the bivalent scFv structure is extremely low. As shown in FIG. 22, the variants v1 and peak2 showed equivalent activity, and the variants v3 and peak1 showed approximately the same activity. From the above, it was confirmed that among the biological activities, the variant v1 forms a single-chain bifunctional antibody structure and the variant v3 forms a bivalent scFv structure.

13-2. VH/VL界面變異型sc(Fv)2之安定性評價 13-2. Stability Evaluation of VH / VL Interface Variant sc (Fv) 2

就u2-wz4精製peak1及u2-wz4精製peak2及變異體v1 與變異體v3之安定性評價而言,使用微差掃描型熱量測定(Differential Scanning Calorimetry)依如下條件測定變性中間溫度(Tm值)。 Refine peak1 for u2-wz4 and refine peak2 for u2-wz4 and variant v1 For evaluation of the stability of the variant v3, a denaturation intermediate temperature (Tm value) was measured using a differential scanning calorimetry under the following conditions.

DSC:N-DSCII(Applied Thermodynamics社製) DSC: N-DSCII (Applied Thermodynamics)

溶液條件:20mM檸檬酸鈉,300mM NaCl,pH 7.0 Solution conditions: 20 mM sodium citrate, 300 mM NaCl, pH 7.0

蛋白質濃度:0.1mg/mL Protein concentration: 0.1mg / mL

掃描速度:1℃/分 Scanning speed: 1 ° C / min

各DSC測定之結果如圖23所示。可得知:u2-wz4精製peak2與變異體v1之Tm值與未變異體大致同等,安定性為同等。u2-wz4精製peak1與變異體v3顯示,變異體v3安定性稍低。使用knobs-into-hole技術之方法進行之界面控制之中,有人報告:例如IgG之CH3功能區之異組裝之中,未改變CH3功能區之Tm值為80.4℃,相對於此,改變CH3功能區之Tm值為69.4℃,Tm值大幅降低且安定性降低(Acta Pharmacol Sin.2005 26(6):649-58)。相對於此,確認了本發明可不降低安定性而控制組裝。 The results of each DSC measurement are shown in FIG. 23. It can be known that the Tm values of u2-wz4 refined peak2 and the mutant v1 are approximately the same as those of the non-mutant, and the stability is the same. u2-wz4 refined peak1 and variant v3 showed that the stability of variant v3 was slightly lower. In the interface control using the knobs-into-hole technology, it was reported that, for example, in the different assembly of the CH3 functional region of IgG, the Tm value of the CH3 functional region was not changed to 80.4 ° C. In contrast, the CH3 function was changed. The Tm value of the zone is 69.4 ° C, the Tm value is greatly reduced and the stability is reduced (Acta Pharmacol Sin. 2005 26 (6): 649-58). In contrast, it was confirmed that the present invention can control the assembly without reducing the stability.

接著,就u2-wz4精製peak1與u2-wz4精製peak2及VH/VL界面變異體變異體v1與變異體v3之安定性評價而言,以如下條件實施以熱加速試驗進行之安定性評價。 Next, regarding the stability evaluation of u2-wz4 refined peak1 and u2-wz4 refined peak2 and VH / VL interface variant mutants v1 and v3, the stability evaluation by thermal acceleration test was performed under the following conditions.

<熱加速條件> <Thermal acceleration conditions>

溶液條件:20mM檸檬酸鈉,pH 6.0 Solution conditions: 20mM sodium citrate, pH 6.0

蛋白質濃度:0.25mg/mL Protein concentration: 0.25mg / mL

加速條件:40℃-6day,12day Acceleration conditions: 40 ℃ -6day, 12day

熱加速樣本以凝膠過濾層析及陽離子交換層析依 如下條件分析。 Thermally accelerated samples were analyzed by gel filtration chromatography and cation exchange chromatography. The following conditions are analyzed.

如圖24所示,以凝膠過濾層析分析之結果,確認:u2-wz4精製peak2與變異體v1之單體殘存率大致同等,對組裝化之安定性大致同等。又,u2-wz4精製peak1與變異體v3之單體殘存率也大致同等,可得知兩構造異構物之中對組裝化之安定性大致同等。 As shown in FIG. 24, the results of gel filtration chromatography analysis confirmed that the residual monomer ratios of the u2-wz4 refined peak2 and the variant v1 were approximately the same, and the stability of assembly was approximately the same. In addition, the residual monomer ratios of u2-wz4 refined peak1 and variant v3 are also approximately the same, and it can be seen that the stability of assembly among the two structural isomers is approximately the same.

如圖25所示,陽離子交換層析分析之結果可得知:未變異體之精製peak1由於異構化反應而異構化為peak2,未變異體精製peak2由於異構化反應而異構化為peak1,相對於此,VH/VL界面變異體v1與v3在熱加速後也不發生異構化反應。藉由應用VH/VL界面之改變,除了能100%之狀態僅表現2種構造異構物之一之構造異構物,而且所得到之各構造異構物不發生異構化反應可安定保存。 As shown in Figure 25, the results of cation exchange chromatography analysis show that the refined peak1 of the non-variant isomerizes to peak2 due to the isomerization reaction, and the refined peak2 of the unmutated isomerized to the isomerization reaction due to the isomerization reaction. Peak1, in contrast, the VH / VL interface variants v1 and v3 do not undergo isomerization after thermal acceleration. By applying the change of VH / VL interface, besides being able to show only one of the two structural isomers in a state of 100%, the obtained structural isomers can be stored stably without isomerization reaction. .

本實施例之中,發現:藉由使用應用於v1及v3之VH/VL界面改變,可使2種構造異構物之中僅其中之一構造異構物以100%存在之狀態表現。就為了得到目的構造之單鏈抗體之VH/VL界面控制而言,已知有使用突起進入空隙(knobs-into-hole)技術來控制雙專一性抗體(Bispecific diabody)之(Protein Sci.1997 Apr;6(4):781-8,Remodeling domain interfaces to enhance heterodimer formation.,Zhu Z,Presta LG,Zapata G,Carter P.)。該方法據報告係藉由改變在VH/VL界面之合計4位置之胺基酸而使目的異二聚物構造之形成率上升至72%~92%。相對於此,本發明藉由改變4位置胺基酸,成功地在不使熱安定性及構造異構物之安定性降低之下,取得100 %比例之目的構造。 In this example, it was found that by using the VH / VL interface changes applied to v1 and v3, only one of the two structural isomers can be represented in a state where 100% exists. For the purpose of controlling the VH / VL interface of a single-chain antibody constructed for the purpose, it is known to use a knob-into-hole technique to control a bispecific antibody (Protein Sci. 1997 Apr 6 (4): 781-8, Remodeling domain interfaces to enhance heterodimer formation., Zhu Z, Presta LG, Zapata G, Carter P.). This method is reported to increase the formation rate of the target heterodimer structure to 72% to 92% by changing the amino acids at the total 4 positions of the VH / VL interface. In contrast, the present invention succeeded in obtaining 100 by reducing the thermal stability and the stability of structural isomers by changing the 4-position amino acid. Structure for the purpose of% ratio.

[實施例14]具混合L鏈之雙專一性抗體之人類化 [Example 14] Humanization of a bispecific antibody with a mixed L chain

關於血液凝固時間之縮短效果最高之抗FactorIXa抗體A69-VH、抗FactorX抗體B26-VH、混合L鏈(BBA)之組合構成之雙專一性抗體(特願2005-112514),以如下方式實施人類化。 About the bispecific antibody composed of a combination of an anti-FactorIXa antibody A69-VH, an anti-FactorX antibody B26-VH, and a mixed L chain (BBA), which has the highest effect of shortening blood clotting time, humans are implemented as follows: Into.

14-1.人類抗體之相同性檢索 14-1. Identical Search of Human Antibodies

以被一般公開之Kabat資料庫(ftp://ftp.ebi.ac.uk/pub/databases/kabat/)及IMGT資料庫(http://imgt.cines.fr/)取得人類抗體胺基酸序列資料,並使用構建之資料庫分成小鼠A69-H鏈可變區域(胺基酸序列:序列編號:57)、小鼠B26-H鏈可變區域(胺基酸序列:序列編號:58)、小鼠BBA-L鏈可變區域(胺基酸序列:序列編號:59)進行相同性檢索。其結果由於確認與以下所示人類抗體序列具高度相同性,故使用於人類化抗體之框架區域(以下稱FR)。 Obtain human antibody amino acids from the generally published Kabat database (ftp: //ftp.ebi.ac.uk/pub/databases/kabat/) and IMGT database (http://imgt.cines.fr/) Sequence data and use the constructed database to divide into mouse A69-H chain variable regions (amino acid sequence: sequence number: 57), mouse B26-H chain variable regions (amino acid sequence: sequence number: 58 ). The mouse BBA-L chain variable region (amino acid sequence: sequence number: 59) was searched for identity. As a result, it was confirmed that they have a high degree of identity with the human antibody sequence shown below, so they were used in the framework region of humanized antibodies (hereinafter referred to as FR).

(1)A69-H鏈可變區域:KABATID-000064(Kabat Database) (1) A69-H chain variable region: KABATID-000064 (Kabat Database)

(Kipps等,J Clin Invest.1991;87:2087-2096) (Kipps et al., J Clin Invest. 1991; 87: 2087-2096)

(2)B26-H鏈可變區域:EMBL Accession No.AB063872(IMGT Database) (2) B26-H chain variable region: EMBL Accession No. AB063872 (IMGT Database)

(Unpublished data) (Unpublished data)

(3)BBA-L鏈可變區域:KABATID-024300(Kabat Database) (3) Variable region of BBA-L chain: KABATID-024300 (Kabat Database)

(Welschof等,J Immunol Method.1995;179:203-214) (Welschof et al., J Immunol Method. 1995; 179: 203-214)

製作在(1)-(3)之人類抗體FR中移植有各小鼠抗體之互補性抗原決定區域(以下、CDR)的人類化抗體。 A humanized antibody in which the complementary epitope (hereinafter, CDR) of each mouse antibody was transplanted into the human antibody FR of (1) to (3) was prepared.

又,使用NCBI所一般公開之相同性檢索網站 (http://www.ncbi.nlm.nih.gov/BLAST/),檢索與(1)-(3)人類抗體之相同性高之人類抗體分泌信號序列。使用檢索所得到之以下所示分泌信號序列。 In addition, we use the same search sites that are generally published by NCBI. (http://www.ncbi.nlm.nih.gov/BLAST/), search for human antibody secretion signal sequences with high identity to (1)-(3) human antibodies. The secretion signal sequence shown below was obtained using the search.

(1)A69-H鏈可變區域:GenBank Accession No.AF062257 (1) A69-H chain variable region: GenBank Accession No. AF062257

(2)B26-H鏈可變區域:GenBank Accession No.AAC18248 (2) B26-H chain variable region: GenBank Accession No. AAC18248

(3)BBA-L鏈可變區域:GenBank Accession No.AAA59100 (3) BBA-L chain variable region: GenBank Accession No. AAA59100

14-2.人類化抗體基因表現載體之構建 14-2. Construction of humanized antibody gene expression vector

於編碼為自分泌信號序列至抗體可變區域之胺基酸序列之鹼基序列之中,製作12條交互地3’末端約20base左右黏合之50base左右之合成寡DNA。再者製作黏合於抗體可變區域基因之5’末端並具有XhoI切斷序列之引子,與黏合於抗體可變區域基因之3’末端且具有SfiI切斷序列並編碼為內子(intron)序列之5’末端序列之引子。 From the base sequence encoding the amino acid sequence encoding the autocrine signal sequence to the variable region of the antibody, twelve synthetic oligo DNAs of about 50 bases which are alternately bonded at about 20 bases at the 3 'end are made. Furthermore, a primer that is adhered to the 5 'end of the antibody variable region gene and has an XhoI cut sequence, and a primer that is adhered to the 3' end of the antibody variable region gene and has a SfiI cut sequence and is encoded as an intron sequence 5 'terminal sequence primer.

將調製成2.5μM之合成寡DNA以各1μL混合,加入1x TaKaRa Ex Taq緩衝液、0.4mM dNTPs、0.5單元TaKaRa Ex Taq(皆為寶酒造),調製反應液48μL。於94℃保溫5分鐘後,將由94℃ 2分鐘、55℃ 2分鐘、72℃ 2分鐘構成之反應進行2回合,實施各合成寡DNA之組合及伸長反應。其次,添加黏合於抗體基因之5’末端及3’末端之引子(各10μM)1μL,進行由94℃ 30秒、55℃ 30秒、72℃ 1分鐘構成之反應35回合,於72℃反應5分鐘,將抗體可變區域基因放大。將反應液全量供1%瓊脂凝膠電泳。將目的大小(約400bp)之放大片段使用QIAquick Gel Extraction套組(QIAGEN),以所附說明書記載之方法精製,並以滅菌水30μl 溶出。將該片段使用pGEM-T Easy Vector Systems(Promega)依所附說明書記載之方法進行選殖。各DNA片段之鹼基序列使用BigDye Terminator循環定序套組(Applied Biosystems),以DNA定序儀ABI PRISM 3730xL DNA Sequencer(Applied Biosystems)依所附說明書記載之方法來定序。 The synthetic oligo DNA prepared into 2.5 μM was mixed with 1 μL each, and 1 × TaKaRa Ex Taq buffer, 0.4 mM dNTPs, 0.5 units of TaKaRa Ex Taq (both manufactured by Takara Shuzo) were added to prepare 48 μL of the reaction solution. After 5 minutes of incubation at 94 ° C, a reaction consisting of 94 ° C for 2 minutes, 55 ° C for 2 minutes, and 72 ° C for 2 minutes was performed for 2 rounds, and a combination of each synthetic oligo DNA and an elongation reaction were performed. Next, 1 μL of primers (10 μM each) adhered to the 5 ′ end and the 3 ′ end of the antibody gene were added, and a reaction consisting of 94 ° C for 30 seconds, 55 ° C for 30 seconds, and 72 ° C for 1 minute was performed for 35 rounds, and the reaction was performed at 72 ° C for 5 minutes. Minutes to amplify the antibody variable region genes. The entire amount of the reaction solution was subjected to 1% agar gel electrophoresis. The amplified fragment of the target size (about 400bp) was purified using the QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the attached manual, and 30 μl of sterilized water was used. Dissolve. This fragment was cloned using pGEM-T Easy Vector Systems (Promega) according to the method described in the attached instruction sheet. The base sequence of each DNA fragment was sequenced using a BigDye Terminator cycle sequencing kit (Applied Biosystems) and a DNA sequencer ABI PRISM 3730xL DNA Sequencer (Applied Biosystems) according to the method described in the attached specification.

將確認為正確人類化抗體可變區域基因序列之H鏈可變區域片段插入質體以XhoI及SfiI消化,將L鏈可變區域片段插入質體以EcoRI消化後,將反應液供1%瓊脂凝膠電泳。將目的大小(約400bp)之DNA片段以QIAquick Gel Extraction套組(QIAGEN)依所附說明書記載之方法精製,並以滅菌水30μl溶出。之後,製作如下方式之動物細胞用表現載體。為了使H鏈優先地表現成異組合IgG4,參考IgG1之knobs-into-hole技術(非專利文獻3)使用對IgG4之CH3部分之胺基酸取代體。再者為促進H鏈之二聚物形成,於鉸鏈也導入胺基酸取代(-ppcpScp-→-ppcpPcp-)。在具有雞β肌動蛋白促進子之pCAGGS(Niwa et al.1991 Gene,108:193-199.)中插入有取代為Y349C、T366W之不變區域基因的表現載體之中,插入人類化A69 H鏈可變區域抗體基因片段,製作人類化A69H鏈表現載體。又,在pCAGGS中嵌入有取代為E356C、T366S、L368A、Y407V之不變區域基因的表現載體中,插入人類化B26 H鏈可變區域抗體基因片段,製作人類化B26H鏈表現載體。又,將在pCAGGS插入有野生型抗體L鏈不變區域之質體(pCAG-gκDNA)以EcoRI消化,製作插入有人類化BBA L鏈可變區域抗體基因片段之表現載體。連結反應使用Rapid DNA Ligation套組(Roche Diagnostics),並將大腸菌DH5α株(東洋紡織)進行形質轉換。 The H chain variable region fragment confirmed to be the correct humanized antibody variable region gene sequence was inserted into the plastids and digested with XhoI and SfiI. The L chain variable region fragment was inserted into the plastids and digested with EcoRI. The reaction solution was supplied to 1% agar. Gel electrophoresis. A DNA fragment of the target size (about 400 bp) was purified by a QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the attached instruction manual, and was dissolved in 30 μl of sterilized water. Then, an expression vector for animal cells was prepared as follows. In order to preferentially express the H chain as a heterocombined IgG4, the Knobs-into-hole technology of IgG1 (Non-Patent Document 3) is used to substitute an amino acid substitute for the CH3 portion of IgG4. Furthermore, in order to promote the formation of the dimer of the H chain, an amino acid substitution (-ppcpScp- → -ppcpPcp-) was also introduced into the hinge. Humanized A69 H was inserted into a pCAGGS (Niwa et al. 1991 Gene, 108: 193-199.) Expression gene with a constant region of Y349C and T366W inserted into pCAGGS (Niwa et al. 1991 Gene, 108: 193-199.). Chain variable region antibody gene fragment to make a humanized A69H chain expression vector. A humanized B26 H chain variable region antibody gene fragment was inserted into a pCAGGS expression vector in which the genes of the invariant regions of E356C, T366S, L368A, and Y407V were substituted, and a humanized B26H chain expression vector was produced. In addition, a plastid (pCAG-gκDNA) in which the wild-type antibody L chain invariant region was inserted into pCAGGS was digested with EcoRI to prepare a expression vector into which a humanized BBA L chain variable region antibody gene fragment was inserted. Ligation reaction using Rapid DNA Ligation kit (Roche Diagnostics), and the E. coli DH5α strain (Toyobo) was transformed.

14-3.人類化雙專一性抗體之調製 14-3. Modulation of humanized bispecific antibodies

人類化雙專一性抗體之表現使用實施例4-2記載之方法或以下方法進行。將人類胎兒腎癌細胞由來HEK293H株(Invitrogen)懸浮於含10%FCS(Invitrogen)之DMEM培養基(Invitrogen),以5~6×105個/mL之細胞密度各接種10mL至黏著細胞用培養皿(直徑10cm,CORNING)之各皿,於CO2培養箱(37℃、5% CO2)內培養一晝夜後,吸去培養基,添加6.9mL CHO-S-SFM-II(Invitrogen)培養基。將14-2調製之質體DNA混合液(合計13.8μg)與1μg/mL聚乙烯亞胺(Polyethylenimine)(Polysciences Inc.)20.7μL與CHO-S-SFMII培養基690μL混合,於室溫10分鐘靜置後投入各皿之細胞,於CO2培養箱(37℃、5% CO2)內培養4~5小時。之後,添加6.9mL之CHO-S-SFM-II培養基,於CO2培養箱內培養3日。將培養上清回收後,離心分離(約2000g、5分鐘、室溫)除去細胞,再通過0.22μm濾膜MILLEX(R)-GV(Millipore)以滅菌。該樣本保存於4℃至使用為止。 The expression of humanized bispecific antibodies was performed using the method described in Example 4-2 or the following method. HEK293H strain (Invitrogen) derived from human fetal kidney cancer cells was suspended in DMEM medium (Invitrogen) containing 10% FCS (Invitrogen), and 10 mL each was seeded at a cell density of 5 to 6 × 10 5 cells / mL to a petri dish for adherent cells (10 cm in diameter, CORNING), each dish was cultured in a CO 2 incubator (37 ° C., 5% CO 2 ) for one day and night, and then the medium was aspirated, and 6.9 mL of CHO-S-SFM-II (Invitrogen) medium was added. Mix 20.7 μL of 1-2 μg / mL Polyethylenimine (Polysciences Inc.) with 1-2 μL of plastid DNA mixed solution (total 13.8 μg) and mix with 690 μL of CHO-S-SFMII medium. After placement, the cells in each dish were placed in a CO 2 incubator (37 ° C, 5% CO 2 ) for 4 to 5 hours. Thereafter, 6.9 mL of CHO-S-SFM-II medium was added and cultured in a CO 2 incubator for 3 days. After the culture supernatant was recovered, the cells were removed by centrifugation (about 2000 g, 5 minutes, room temperature), and passed through a 0.22 μm filter MILLEX (R) -GV (Millipore) for sterilization. The samples were stored at 4 ° C until use.

接著,以實施例4-4所示方法進行抗體精製及實施例4-5所示方法或以下所示方法實施抗體濃度之定量。使用BIAcore3000(BIACORE),將ProteinA固定於感應器晶片CM5(BIACORE)。具體而言,依照製造商使用說明,在活性化之感應器晶片使以10mM乙酸鈉水溶液(pH 4.0,BIACORE)稀釋為50μg/mL之ProteinA溶液以5μL/分反應30分鐘,之後 實施封阻操作,而製作ProteinA固定化感應器晶片。使用該感應器晶片,使用BIAcore Q測定培養上清及精製品之濃度。感應器晶片之固定及濃度測定使用HBS-EP緩衝液(BIACORE)。又,濃度測定時之標準品使用以HBS-EP緩衝液自2000ng/mL分6階段以2倍系列稀釋之人類IgG4(人類型化抗TF抗體,參照WO 99/51743)。 Next, antibody purification was performed by the method shown in Example 4-4, and antibody concentration was quantified by the method shown in Example 4-5 or the method shown below. Using BIAcore3000 (BIACORE), ProteinA was fixed to the sensor chip CM5 (BIACORE). Specifically, according to the manufacturer's instructions, the activated sensor chip was reacted with a protein A solution diluted to 50 μg / mL with a 10 mM sodium acetate aqueous solution (pH 4.0, BIACORE) at 5 μL / min for 30 minutes. A blocking operation is performed to make a ProteinA immobilized sensor chip. Using this sensor chip, the concentration of the culture supernatant and refined product was measured using BIAcore Q. HBS-EP buffer solution (BIACORE) was used for the sensor chip fixing and concentration measurement. In addition, as a standard for concentration measurement, human IgG4 (human-type anti-TF antibody, refer to WO 99/51743) was used, which was diluted in a 2-fold series in 6 stages from 2000 ng / mL in HBS-EP buffer.

14-4.人類化雙專一性抗體之活性評價及抗體序列之改變 14-4. Evaluation of the activity of humanized bispecific antibodies and changes in antibody sequences

為了評價所調製之人類化雙專一性抗體及嵌合雙專一性抗體(A69/B26/BBA)之血漿凝固能力,依照實施例5之方法,使用F.VIII缺乏血漿探討抗體對APTT之影響。對於血液凝固能力低的人類化雙專一性抗體,以活性上升為目標來改變人類抗體FR之胺基酸。又,表現分泌時會表現人類化A69/人類化BBA抗體、人類化B26/人類化BBA抗體、人類化A69/人類化B26/人類化BBA雙專一性抗體3種抗體,但為將該3種抗體分離,僅精製雙專一性抗體,進行使人類化A69 H鏈可變區域等電點下降,使人類化B26 H鏈可變區域等電點上升之胺基酸改變。具體而言,使用QuikChange點突變套組(Stratagene),以所附說明書記載之方法於人類化抗體可變區域導入變異。將確認為目的人類化抗體可變區域基因序列之H鏈可變區域片段插入質體以XhoI及SfiI消化、L鏈可變區域片段插入質體以EcoRI消化後,將反應液供1%瓊脂凝膠電泳。將目的大小(約400bp)之DNA片段使用QIAquick Gel Extraction套組(QIAGEN),以所附說明書記載之方法精製、以滅菌水30μl溶 出。之後,以實施例14-2所示方法,製作動物細胞用表現載體。以實施例14-3所示方法調製人類化雙專一性抗體,以實施例5所示方法評價血液凝固活性。 In order to evaluate the plasma coagulation ability of the prepared humanized bispecific antibodies and chimeric bispecific antibodies (A69 / B26 / BBA), the effect of antibodies on APTT was investigated using F.VIII-deficient plasma according to the method of Example 5. For humanized bispecific antibodies with low blood coagulation ability, the amino acid of human antibody FR is changed with the aim of increasing activity. Furthermore, when expressing secretion, three types of antibodies, namely humanized A69 / humanized BBA antibody, humanized B26 / humanized BBA antibody, humanized A69 / humanized B26 / humanized BBA, were expressed. Isolation of the antibody, only purification of the bispecific antibody, the amino acid change that decreases the isoelectric point of the humanized A69 H chain variable region, and the rise of the isoelectric point of the humanized B26 H chain variable region. Specifically, a QuikChange point mutation kit (Stratagene) was used to introduce mutations into the variable region of a humanized antibody by the method described in the attached specification. The H chain variable region fragment of the humanized antibody variable region gene sequence identified as the target was inserted into the plastids and digested with XhoI and SfiI, and the L chain variable region fragment was inserted into the plastids and digested with EcoRI. The reaction solution was subjected to 1% agar coagulation. Gel electrophoresis. A DNA fragment of the desired size (about 400 bp) was purified using the QIAquick Gel Extraction Kit (QIAGEN) by the method described in the attached instruction manual and dissolved in 30 μl of sterilized water. Out. Thereafter, the expression vector for animal cells was prepared by the method shown in Example 14-2. The humanized bispecific antibody was prepared by the method shown in Example 14-3, and the blood coagulation activity was evaluated by the method shown in Example 5.

反複FR序列之胺基酸改變及血液凝固能力之評價,取得與嵌合雙專一性抗體(A69/B26/BBA)具同等活性之人類化雙專一性抗體(人類化A69(hA69-PFL)/人類化B26(hB26-PF)/人類化BBA(hAL-AQ))(圖26)。各抗體可變區域序列如以下序列編號所示。 Evaluation of the amino acid changes and blood clotting ability of the repeated FR sequence, and a humanized bispecific antibody (humanized A69 (hA69-PFL) /) with the same activity as the chimeric bispecific antibody (A69 / B26 / BBA) was obtained. Humanized B26 (hB26-PF) / Humanized BBA (hAL-AQ)) (Figure 26). The sequence of the variable region of each antibody is shown in the following sequence numbers.

(1)人類化A69抗體VH(hA69-PFL)序列編號:19(鹼基序列)、序列編號:20(胺基酸序列) (1) Humanized A69 antibody VH (hA69-PFL) sequence number: 19 (base sequence), sequence number: 20 (amino acid sequence)

(2)人類化B26抗體VH(hB26-PF)序列編號:21(鹼基序列)、序列編號:22(胺基酸序列) (2) Humanized B26 antibody VH (hB26-PF) sequence number: 21 (base sequence), sequence number: 22 (amino acid sequence)

(3)人類化BBA抗體VL(hAL-AQ)序列編號:23(鹼基序列)、序列編號:24(胺基酸序列) (3) Humanized BBA antibody VL (hAL-AQ) sequence number: 23 (base sequence), sequence number: 24 (amino acid sequence)

[實施例15]為提高雙專一性抗體之形成效率向上之不變區域之胺基酸改變位置選定 [Example 15] Amino acid change positions were selected in order to improve the formation efficiency of the bispecific antibody in the upward-constant region

以改變存在於不變區域CH3界面之胺基酸,利用電荷斥力而提高異二聚物雙專一性抗體之形成效率為目標,進行探討。首先,利用CH3區域之結晶構造(Protein Data bank、PDB code 1OQX),尋討CH3同二聚物形成時形成靜電交互作用之配對胺基酸。其結果發現:於CH3同二聚物形成時之界面中,H鏈356號與439號、357號與370號、399號與409號3個對(編號為EU編號(Kabat EA et al.1991.Sequences of Proteins of Immunological Interest.NIH))各具正電荷及負電荷且有靜電 交互作用,並選擇為改變位置。改變方法考慮藉由對成為配對之正電荷與負電荷胺基酸之電荷加以取代改變,來促進異二聚物之形成。本控制原理如圖27所示。又,吾人也嘗試同時在CH3界面導入雙硫鍵之改變。改變之胺基酸位置整理如表1。 The aim is to change the amino acid existing at the CH3 interface in the constant region and use charge repulsion to increase the formation efficiency of heterodimeric bispecific antibodies. First, using the crystal structure of the CH3 region (Protein Data bank, PDB code 1OQX), the paired amino acids that form electrostatic interactions when CH3 and dimers are formed are explored. As a result, it was found that in the interface when the CH3 homodimer was formed, three pairs of H chains 356 and 439, 357 and 370, 399 and 409 (numbered as EU number (Kabat EA et al. 1991) .Sequences of Proteins of Immunological Interest.NIH)) have positive and negative charges and have static electricity Interact and choose to change position. The method of change is considered to promote the formation of heterodimers by substituting and changing the charge of the positive charge and the negative charge amino acid that become a pair. This control principle is shown in Figure 27. In addition, I also tried to introduce changes in the disulfide bond at the CH3 interface. The modified amino acid positions are summarized in Table 1.

[實施例16]人類化雙專一性抗體之不變區域CH3界面之胺基酸改變 [Example 16] Amino acid changes at the CH3 interface of the invariant region of a humanized bispecific antibody

為了將實施例15所選定之H鏈不變區域CH3界面之胺基酸改變,進行如下操作。將以人類IgG1及人類IgG4之H鏈不變區域基因為模板而編碼為H鏈不變區域之N末端側之2個胺基酸(Ala-Ser)的鹼基序列與設計為成為NheI認識序列(GCTAGC)之5’末端引子在3’末端黏合,並使用設計為帶有NotI認識部位之引子將各H鏈不變區域以PCR放大,製作將pBluescriptKS+載體(東洋紡織)以NheI,NotI(皆為寶酒造)消化之載體連結之pBCH(含IgG1不變區域基因)及pBCH4(含IgG4不變區域基因)。使用與人類化A69抗體及人類化B26抗體之H鏈可變區域之5’末端鹼基序列為互補且具有可札克序列(CCACC)及EcoRI認識序列之引子與具有NheI認識序列之3’末端鹼基序列使用引子進行PCR,將所得到之PCR產物以EcoRI及NheI(皆為寶酒造)消化並插入pBCH或pBCH4並與可變區域及不變區域連結。接著,為了改變存在於H鏈不變區域之CH3界面之胺基酸,使用QuikChange點突變套組(Stratagene),以所附說明書記載之方法在H鏈不變區域導入變異。將確認為目的H鏈不變區域基因序列之H鏈基因片段插入質體以EcoRI及NotI(皆為寶酒造)消化後,反應液供1%瓊脂 凝膠電泳。將目的大小(約1400bp)之H鏈基因片段使用QIAquick Gel Extraction套組(QIAGEN),以所附說明書記載之方法精製,以滅菌水30μl溶出。之後,插入以EcoRI及NotI消化之pCAGGS,並製作表現質體。關於人類化雙專一性抗體之調製,依照實施例14-3所示方法進行。改變之胺基酸位置整理如表1。表1中之改變位置編號採用EU編號(Kabat EA et al.1991.Sequences of Proteins of Immunological Interest.NIH)。改變位置編號前之字母為改變前之胺基酸之單字母代號,改變位置編號後之字母為改變後胺基酸之單字母代號。 In order to change the amino acid at the CH3 interface of the H chain invariant region selected in Example 15, the following operations were performed. The base sequence of the two amino acids (Ala-Ser) encoding the N-terminal side of the H-chain invariant region using the genes of the H-chain invariant region of human IgG1 and human IgG4 as templates is designed to be a NheI recognition sequence (GCTAGC) The 5 'end primers are glued at the 3' end, and each H chain invariant region is amplified by PCR using a primer designed with a NotI recognition site, and the pBluescriptKS + vector (Toyobo) is made with NheI, NotI (both PBCH (containing IgG1 invariant region genes) and pBCH4 (containing IgG4 invariant region genes) digested by vector. Use primers that are complementary to the 5 'terminal base sequence of the H chain variable region of the humanized A69 antibody and humanized B26 antibody and have the Zacquick sequence (CCACC) and EcoRI recognition sequence and the 3' end with the NheI recognition sequence The base sequence was subjected to PCR using primers, and the obtained PCR product was digested with EcoRI and NheI (both made by Takara Shuji), inserted into pBCH or pBCH4, and linked to the variable region and the constant region. Next, in order to change the amino acid present at the CH3 interface of the H chain invariant region, a mutation was introduced into the H chain invariant region using the QuikChange point mutation kit (Stratagene) by the method described in the attached specification. The H chain gene fragment identified as the gene sequence of the H chain invariant region of interest was inserted into plastids and digested with EcoRI and NotI (both made by Takara Shuji), and the reaction solution was supplied with 1% agar Gel electrophoresis. The H-chain gene fragment of the target size (about 1400 bp) was purified using the QIAquick Gel Extraction Kit (QIAGEN) according to the method described in the attached instruction manual, and dissolved in 30 μl of sterilized water. Then, pCAGGS digested with EcoRI and NotI was inserted, and expression plastids were produced. The preparation of humanized bispecific antibodies was performed according to the method shown in Example 14-3. The modified amino acid positions are summarized in Table 1. The change position number in Table 1 uses the EU number (Kabat EA et al. 1991. Sequences of Proteins of Immunological Interest. NIH). The letter before changing the position number is the single letter code of the amino acid before the change, and the letter after changing the position number is the single letter code of the amino acid after the change.

上述表中,KiH表示使用非專利文獻3之突起進入空隙(Knobs-into-holes)技術之變異體。 In the above table, KiH indicates a variant using the Knobs-into-holes technique of Non-Patent Document 3.

[實施例17]CH3界面改變之雙專一性抗體(IgG4型)之形成效率及安定性之評價 [Example 17] Evaluation of formation efficiency and stability of a bispecific antibody (IgG4 type) with a changed CH3 interface

關於IgG4型之野生型、KiH、s1、s2、s3、w1、w2、 w3、s1C、s2C、s3C、w3C、w3C2,以陽離子交換層析(IEX)進行分析,評價雙專一性抗體(以下稱BiAb)形成效率。陽離子交換層析分析條件如下,計算人類化A69抗體之同二聚物A-Homo、人類化A69抗體與人類化B26抗體之異二聚物BiAb、人類化B26抗體之同二聚物B-Homo之峰部面積比。 About IgG4 wild type, KiH, s1, s2, s3, w1, w2 w3, s1C, s2C, s3C, w3C, and w3C2 were analyzed by cation exchange chromatography (IEX) to evaluate the formation efficiency of bispecific antibodies (hereinafter referred to as BiAb). The cation exchange chromatography analysis conditions are as follows. The homodimer A-Homo of humanized A69 antibody, the heterodimer BiAb of humanized A69 antibody and humanized B26 antibody, and the homodimer B-Homo of humanized B26 antibody were calculated. Peak area ratio.

管柱:ProPac WCX-10,4×250mm,(Dionex) Column: ProPac WCX-10, 4 × 250mm, (Dionex)

移動相:A:10mmol/L NaH2PO4/Na2HPO4,pH 6.25 Mobile phase: A: 10mmol / L NaH 2 PO 4 / Na 2 HPO 4 , pH 6.25

B:10mmol/L NaH2PO4/Na2HPO4,500mmol/L NaCl,pH 6.25 B: 10mmol / L NaH 2 PO 4 / Na 2 HPO 4 , 500mmol / L NaCl, pH 6.25

流速:1.0mL/min Flow rate: 1.0mL / min

梯度:10%B(5min)→(40min)→60%B→(5min)→100%B(5min) Gradient: 10% B (5min) → (40min) → 60% B → (5min) → 100% B (5min)

偵測:220nm Detection: 220nm

關於野生型、KiH、s2、s3、s1C、s2C、s3C、w3C、w3C2,藉由在上述IEX分析時分取BiAb峰部,進行BiAb精製。將BiAb畫分以Amicon Ultra,MWCO 10000(Millipore)濃縮後,以20mM乙酸鈉、150mM NaCl、pH 6.0於冷處進行一晚透析,之後回收,將BiAb濃度統一為0.1mg/mL,各分注2管小玻璃瓶,作為起始及60℃-1週,進行60℃-1週之安定性試驗。以凝膠過濾層析(SEC)進行分析,計算單體峰部殘存率(60℃-1週樣本之單體峰部面積/起始樣本之單體峰部面積×100)。凝膠過濾層析分析條件如下。 Regarding wild type, KiH, s2, s3, s1C, s2C, s3C, w3C, and w3C2, the BiAb peaks were fractionated during the IEX analysis, and BiAb was purified. The BiAb fractions were concentrated with Amicon Ultra, MWCO 10000 (Millipore), and dialysis was performed overnight in a cold place with 20 mM sodium acetate, 150 mM NaCl, pH 6.0, and then recovered, and the concentration of BiAb was unified to 0.1 mg / mL. Two vials were used as the starting point, and the stability test was performed at 60 ° C for 1 week and at 60 ° C for 1 week. The analysis was performed by gel filtration chromatography (SEC), and the monomer peak residual ratio was calculated (the area of the monomer peak of the sample at 60 ° C. for 1 week / the area of the monomer peak of the starting sample × 100). The gel filtration chromatography analysis conditions are as follows.

管柱:Super3000(TOSOH) Column: Super3000 (TOSOH)

移動相:50mM磷酸鈉,300mM KCl,pH 7.0 Mobile phase: 50mM sodium phosphate, 300mM KCl, pH 7.0

流速:0.2ml/min Flow rate: 0.2ml / min

偵測:220nm Detection: 220nm

IgG4型之野生型、s1、s2、s3、w1之IEX層析圖如圖28,野生型、KiH、s1、s2、s3、w1、w2、w3、s1C、s2C、s3C、w3C、w3C2之A-Homo,BiAb,B-Homo之形成比例如圖29所示。又,60℃-1週後之單體殘存率如圖30所示。 The IEX chromatograms of IgG4 wild type, s1, s2, s3, and w1 are shown in Figure 28. The formation ratios of -Homo, BiAb, and B-Homo are shown in Figure 29. In addition, the residual monomer ratio after 60 ° C for 1 week is shown in Fig. 30.

本實施例之中發現之CH3界面變異體如圖28、圖29所示,與野生型比較,目的BiAb形成效率皆大幅提高。由於CH3位於不變區域,自天然胺基酸加以改變之情形,由抗原性之觀點,希望改變位置較少。KiH施以合計6位置之改變:用以導入突起與空隙共兩H鏈計4位置之改變,雙硫鍵導入2位置改變。故可如圖29所示,得到高BiAb形成效率。但是,由圖30所示安定性試驗之結果,熱安定性與野生型比較,儘管導入了雙硫鍵,仍然大幅下降。為了將抗體開發成醫療用醫藥品,需要安定製劑,故希望熱安定性較高。 The CH3 interface variants found in this example are shown in Figs. 28 and 29. Compared with the wild type, the target BiAb formation efficiency is greatly improved. Since CH3 is located in the invariant region, since the natural amino acid is changed, from the viewpoint of antigenicity, it is desirable to change the position less. KiH applies a total of 6 position changes: used to introduce a total of 4 positions of the two H-chain meters, and disulfide bond introduction 2 positions. Therefore, as shown in FIG. 29, a high BiAb formation efficiency can be obtained. However, from the results of the stability test shown in FIG. 30, the thermal stability was significantly decreased in comparison with the wild type even though a disulfide bond was introduced. In order to develop antibodies into medical drugs, a sizing agent is required, and therefore high thermal stability is desired.

另一方面,本實施例之中發現之CH3界面變異體,與野生型比較,目的BiAb形成效率皆成功地大幅提高。該等變異體之中,例如、s2、s3、w1、w2、w3、s1C藉由較KiH(6位置改變)的改變少,為合計2位置或者4位置之改變,可得到90%以上之高BiAb形成效率,可認為抗原性之風險較小。又,由圖30所示安定性試驗之結果,變異體之中,例如,s2、s3、w3、w3C、w3C2具有90%以上之高BiAb形成效率且具有較KiH為高之熱安定性(單體殘存率高),且 s3、s2c、s3C、w3C、w3C2具有較野生型更高之熱安定性,對開發安定之醫藥品製劑為有用的。 On the other hand, compared with the wild-type CH3 interface variants found in this example, the target BiAb formation efficiency was successfully greatly improved. Among these variants, for example, s2, s3, w1, w2, w3, and s1C have less changes than KiH (6 position change). For a total of 2 or 4 position changes, a height of more than 90% can be obtained. The efficiency of BiAb formation is considered to be a small risk of antigenicity. Moreover, from the results of the stability test shown in FIG. 30, among the variants, for example, s2, s3, w3, w3C, and w3C2 have a high BiAb formation efficiency of 90% or more, and have higher thermal stability than KiH (single Body survival rate is high), and s3, s2c, s3C, w3C, and w3C2 have higher thermal stability than wild type, and are useful for developing stable pharmaceutical preparations.

本實施例之中發現:藉由將CH3界面之中H鏈356號、357號、370號、399號、409號、439號之胺基酸改變而導入因電荷而生之分子斥力,可使目的BiAb形成效率大幅提高。又,藉由該等之單獨、組合及雙硫鍵之導入,可以較KiH為少之改變使BiAb形成效率大幅提高,且比KiH之安定性高,且較野生型為高熱安定性且BiAb形成效率大幅地提高。 In this example, it was found that by changing the amino acids in the H chain Nos. 356, 357, 370, 399, 409, 439, and 439 in the CH3 interface and introducing a molecular repulsion force generated by the charge, the Objective BiAb formation efficiency is greatly improved. In addition, through the introduction of these separate, combined, and disulfide bonds, BiAb formation efficiency can be greatly improved with fewer changes than KiH, and it has higher stability than KiH, and has higher thermal stability and BiAb formation than wild type. Significantly improved efficiency.

[實施例18]CH3界面經過改變之雙專一性抗體之凝固活性評價 [Example 18] Evaluation of coagulation activity of a bispecific antibody with a modified CH3 interface

使用實施例16之中精製之CH3界面經過改變之IgG4型雙專一性抗體(s1、s2、s3、w1、w2、w3),依照實施例5所示方法進行凝固活性之評價。由於即使將圖31所示不變區域CH3界面之胺基酸改變,凝固活性也沒有變化,因此表示CH3界面之胺基酸改變不會影響與抗原之反應有關之可變區域之構造。 Using the purified IgG4-type bispecific antibody (s1, s2, s3, w1, w2, w3) whose CH3 interface was modified in Example 16, the coagulation activity was evaluated according to the method shown in Example 5. Since the coagulation activity does not change even if the amino acid at the CH3 interface of the constant region shown in FIG. 31 is changed, it means that the amino acid change at the CH3 interface does not affect the structure of the variable region related to the reaction of the antigen.

[實施例19]CH3界面經過改變之雙專一性抗體(IgG1型)之形成效率評價 [Example 19] Evaluation of the formation efficiency of a bispecific antibody (IgG1 type) with a modified CH3 interface

關於IgG1型之野生型、KiH、w1、w2、w3,以陽離子交換層析(IEX)進行分析,評價BiAb形成效率。陽離子交換層析分析條件如下,計算人類化A69抗體之同二聚物A-Homo、人類化A69抗體與人類化B26抗體之異二聚物BiAb、人類化B26抗體之同二聚物B-Homo之峰部面積比。 The wild type, KiH, w1, w2, and w3 of the IgG1 type were analyzed by cation exchange chromatography (IEX) to evaluate the efficiency of BiAb formation. The cation exchange chromatography analysis conditions are as follows. The homodimer A-Homo of humanized A69 antibody, the heterodimer BiAb of humanized A69 antibody and humanized B26 antibody, and the homodimer B-Homo of humanized B26 antibody were calculated. Peak area ratio.

管柱:ProPac WCX-10,4×250mm,(Dionex) Column: ProPac WCX-10, 4 × 250mm, (Dionex)

移動相:A:10mmol/L NaH2PO4/Na2HPO4,pH 6.25 Mobile phase: A: 10mmol / L NaH 2 PO 4 / Na 2 HPO 4 , pH 6.25

B:10mmol/L NaH2PO4/Na2HPO4,500mmol/L NaCl,pH 6.25 B: 10mmol / L NaH 2 PO 4 / Na 2 HPO 4 , 500mmol / L NaCl, pH 6.25

流速:1.0mL/min Flow rate: 1.0mL / min

梯度:10%B(5min)→(40min)→60%B→(5min)→100%B(5min) Gradient: 10% B (5min) → (40min) → 60% B → (5min) → 100% B (5min)

偵測:220nm Detection: 220nm

IgG1型之野生型、KiH、w1、w2、w3之A-Homo、BiAb、B-Homo之形成比例如圖32所示。與IgG4型同樣地,與野生型比較,目的BiAb形成效率皆大幅地上升。與IgG4型同樣地,藉由比KiH為少之4位置改變,得到90%以上之高BiAb形成效率,可認為抗原性之風險性較小。本實施例之中發現:將CH3界面之中H鏈356號、357號、370號、399號、409號、439號胺基酸改變之方法不僅是抗體不變區域之次型為IgG4,也適用於IgG1,可用在所有IgG抗體。 The formation ratios of IgG1 type wild type, KiH, w1, w2, w3 A-Homo, BiAb, and B-Homo are shown in FIG. 32. As with the IgG4 type, compared with the wild type, the target BiAb formation efficiency is significantly increased. Similar to the IgG4 type, it is considered that the risk of antigenicity is small by obtaining a high BiAb formation efficiency of 90% or more by changing 4 positions less than KiH. In this example, it was found that the method of changing the amino acids in the H chain 356, 357, 370, 399, 409, and 439 in the CH3 interface is not only the subtype of the constant region of the antibody is IgG4, but also Suitable for IgG1 and can be used for all IgG antibodies.

【產業上之可利用性】 [Industrial availability]

於本發明之方法之中,由於胺基酸取代數為少數即可,能不使原多肽之構造‧機能(活性)變化而控制組裝,有用性非常高。又,對抗原性之影響也小。 In the method of the present invention, since the number of amino acid substitutions is small, it is possible to control the assembly without changing the structure and function (activity) of the original polypeptide, which is very useful. In addition, the effect on antigenicity is small.

藉由使用本發明之方法,可有效率地得到實際保持活性之雙專一性抗體。 By using the method of the present invention, a bispecific antibody that actually retains activity can be efficiently obtained.

<110> CHUGAI SEIYAKU KABUSHIKI KAISHA <110> CHUGAI SEIYAKU KABUSHIKI KAISHA

<120> Method for preparing desired molecules comprising polypeptides by inhibiting interaction between the polypeptides <120> Method for preparing desired molecules comprising polypeptides by inhibiting interaction between the polypeptides

<130> C1-A0415Y1-TW <130> C1-A0415Y1-TW

<150> JP 2005-101105 <150> JP 2005-101105

<151> 2005-03-31 <151> 2005-03-31

<150> JP 2005-378266 <150> JP 2005-378266

<151> 2005-12-28 <151> 2005-12-28

<160> 59 <160> 59

<170> PatentIn version 3.3 <170> PatentIn version 3.3

<210> 1 <210> 1

<211> 423 <211> 423

<212> DNA <212> DNA

<213> Artificial <213> Artificial

<220> <220>

<223> an artificially synthesized sequence <223> an artificially synthesized sequence

<400> 1 <400> 1

<210> 2 <210> 2

<211> 115 <211> 115

<212> PRT <212> PRT

<213> Artificial <213> Artificial

<220> <220>

<223> an artificially synthesized sequence <223> an artificially synthesized sequence

<400> 2 <400> 2

<210> 3 <210> 3

<211> 384 <211> 384

<212> DNA <212> DNA

<213> Artificial <213> Artificial

<220> <220>

<223> an artificially synthesized sequence <223> an artificially synthesized sequence

<400> 3 <400> 3

<210> 4 <210> 4

<211> 106 <211> 106

<212> PRT <212> PRT

<213> Artificial <213> Artificial

<220> <220>

<223> an artificially synthesized sequence <223> an artificially synthesized sequence

<400> 4 <400> 4

<210> 5 <210> 5

<211> 443 <211> 443

<212> DNA <212> DNA

<213> Artificial <213> Artificial

<220> <220>

<223> an artificially synthesized sequence <223> an artificially synthesized sequence

<400> 5 <400> 5

<210> 6 <210> 6

<211> 123 <211> 123

<212> PRT <212> PRT

<213> Artificial <213> Artificial

<220> <220>

<223> an artificially synthesized sequence <223> an artificially synthesized sequence

<400> 6 <400> 6

<210> 7 <210> 7

<211> 399 <211> 399

<212> DNA <212> DNA

<213> Artificial <213> Artificial

<220> <220>

<223> an artificially synthesized sequence <223> an artificially synthesized sequence

<400> 7 <400> 7

<210> 8 <210> 8

<211> 113 <211> 113

<212> PRT <212> PRT

<213> Artificial <213> Artificial

<220> <220>

<223> an artificially synthesized sequence <223> an artificially synthesized sequence

<400> 8 <400> 8

<210> 9 <210> 9

<211> 327 <211> 327

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 9 <400> 9

<210> 10 <210> 10

<211> 107 <211> 107

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 10 <400> 10

<210> 11 <210> 11

<211> 327 <211> 327

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 11 <400> 11

<210> 12 <210> 12

<211> 1572 <211> 1572

<212> DNA <212> DNA

<213> Homo sapiens <213> Homo sapiens

<400> 12 <400> 12

<210> 13 <210> 13

<211> 118 <211> 118

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 13 <400> 13

<210> 14 <210> 14

<211> 112 <211> 112

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 14 <400> 14

<210> 15 <210> 15

<211> 1572 <211> 1572

<212> DNA <212> DNA

<213> Artificial <213> Artificial

<220> <220>

<223> an artificially synthesized sequence <223> an artificially synthesized sequence

<400> 15 <400> 15

<210> 16 <210> 16

<211> 524 <211> 524

<212> PRT <212> PRT

<213> Artificial <213> Artificial

<220> <220>

<223> an artificially synthesized sequence <223> an artificially synthesized sequence

<400> 16 <400> 16

<210> 17 <210> 17

<211> 1572 <211> 1572

<212> DNA <212> DNA

<213> Artificial <213> Artificial

<220> <220>

<223> an artificially synthesized sequence <223> an artificially synthesized sequence

<400> 17 <400> 17

<210> 18 <210> 18

<211> 524 <211> 524

<212> PRT <212> PRT

<213> Artificial <213> Artificial

<220> <220>

<223> an artificially synthesized sequence <223> an artificially synthesized sequence

<400> 18 <400> 18

<210> 19 <210> 19

<211> 411 <211> 411

<212> DNA <212> DNA

<213> Homo sapiens <213> Homo sapiens

<400> 19 <400> 19

<210> 20 <210> 20

<211> 137 <211> 137

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 20 <400> 20

<210> 21 <210> 21

<211> 414 <211> 414

<212> DNA <212> DNA

<213> Homo sapiens <213> Homo sapiens

<400> 21 <400> 21

<210> 22 <210> 22

<211> 138 <211> 138

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 22 <400> 22

<210> 23 <210> 23

<211> 384 <211> 384

<212> DNA <212> DNA

<213> Homo sapiens <213> Homo sapiens

<400> 23 <400> 23

<210> 24 <210> 24

<211> 128 <211> 128

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 24 <400> 24

<210> 25 <210> 25

<211> 327 <211> 327

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 25 <400> 25

<210> 26 <210> 26

<211> 327 <211> 327

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 26 <400> 26

<210> 27 <210> 27

<211> 327 <211> 327

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 27 <400> 27

<210> 28 <210> 28

<211> 327 <211> 327

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 28 <400> 28

<210> 29 <210> 29

<211> 327 <211> 327

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 29 <400> 29

<210> 30 <210> 30

<211> 327 <211> 327

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 30 <400> 30

<210> 31 <210> 31

<211> 327 <211> 327

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 31 <400> 31

<210> 32 <210> 32

<211> 327 <211> 327

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 32 <400> 32

<210> 33 <210> 33

<211> 327 <211> 327

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 33 <400> 33

<210> 34 <210> 34

<211> 327 <211> 327

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 34 <400> 34

<210> 35 <210> 35

<211> 327 <211> 327

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 35 <400> 35

<210> 36 <210> 36

<211> 327 <211> 327

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 36 <400> 36

<210> 37 <210> 37

<211> 327 <211> 327

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 37 <400> 37

<210> 38 <210> 38

<211> 327 <211> 327

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 38 <400> 38

<210> 39 <210> 39

<211> 327 <211> 327

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 39 <400> 39

<210> 40 <210> 40

<211> 327 <211> 327

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 40 <400> 40

<210> 41 <210> 41

<211> 327 <211> 327

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 41 <400> 41

<210> 42 <210> 42

<211> 327 <211> 327

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 42 <400> 42

<210> 43 <210> 43

<211> 327 <211> 327

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 43 <400> 43

<210> 44 <210> 44

<211> 327 <211> 327

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 44 <400> 44

<210> 45 <210> 45

<211> 327 <211> 327

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 45 <400> 45

<210> 46 <210> 46

<211> 327 <211> 327

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 46 <400> 46

<210> 47 <210> 47

<211> 327 <211> 327

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 47 <400> 47

<210> 48 <210> 48

<211> 330 <211> 330

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 48 <400> 48

<210> 49 <210> 49

<211> 330 <211> 330

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 49 <400> 49

<210> 50 <210> 50

<211> 330 <211> 330

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 50 <400> 50

<210> 51 <210> 51

<211> 330 <211> 330

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 51 <400> 51

<210> 52 <210> 52

<211> 330 <211> 330

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 52 <400> 52

<210> 53 <210> 53

<211> 330 <211> 330

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 53 <400> 53

<210> 54 <210> 54

<211> 330 <211> 330

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 54 <400> 54

<210> 55 <210> 55

<211> 330 <211> 330

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 55 <400> 55

<210> 56 <210> 56

<211> 330 <211> 330

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 56 <400> 56

<210> 57 <210> 57

<211> 119 <211> 119

<212> PRT <212> PRT

<213> Mus musculus <213> Mus musculus

<400> 57 <400> 57

<210> 58 <210> 58

<211> 120 <211> 120

<212> PRT <212> PRT

<213> Mus musculus <213> Mus musculus

<400> 58 <400> 58

<210> 59 <210> 59

<211> 107 <211> 107

<212> PRT <212> PRT

<213> Homo sapiens <213> Homo sapiens

<400> 59 <400> 59

Claims (10)

一種多肽變異體之製造方法,係使存在於VH與VL內之界面的胺基酸殘基具有變異而控制多肽組裝,包括(a)於形成2種以上構造異構物之多肽之中,改變存在於VH與VL內之界面的胺基酸殘基的編碼核酸,其係以使不希望之形成1種以上構造異構物之多肽內部組裝受到抑制之方式改變原核酸,(b)培養寄主細胞使該核酸表現,(c)自寄主細胞培養物中回收該多肽,其中該多肽係將2個以上重鏈可變區域及2個以上輕鏈可變區域以連接子結合之單鏈多肽,又其中該步驟(a)之改變係將原核酸置換,使形成界面之2個殘基以上的胺基酸殘基改變為同種之正電荷的方式,其於該界面導入一胺基酸殘基之變異,形成該界面之2個殘基以上之胺基酸殘基為由於重鏈及輕鏈FR2區域上之胺基酸殘基的群組所選擇之至少1組的胺基酸殘基的群組,於此,該胺基酸殘基的群組為由以下(i)與(ii)的群組所選擇之至少1組的胺基酸殘基的群組:(i)重鏈可變區域上之Kabat編號為39之胺基酸殘基與輕鏈可變區上之Kabat編號為38之胺基酸殘基;(ii)重鏈可變區域上之Kabat編號為45之胺基酸殘基與輕鏈可變區上之Kabat編號為44之胺基酸殘基,其中該導入之胺基酸殘基為選擇自由離胺酸(K)、精胺酸(R)與組胺酸(H)所組成之群組。A method for manufacturing a polypeptide variant is to mutate amino acid residues existing at the interface between VH and VL to control the assembly of the polypeptide, including (a) changing the polypeptide forming two or more structural isomers to change Nucleic acid encoding an amino acid residue existing at the interface between VH and VL, which changes the original nucleic acid in a manner that inhibits the internal assembly of polypeptides that undesirably form more than one structural isomer, (b) cultivates the host The cell expresses the nucleic acid, (c) recovering the polypeptide from the host cell culture, wherein the polypeptide is a single-chain polypeptide in which two or more heavy chain variable regions and two or more light chain variable regions are bound by a linker, In addition, the change of step (a) is a method in which the original nucleic acid is replaced to change the amino acid residues of the two or more residues forming the interface to the same positive charge, and an amino acid residue is introduced into the interface. The amino acid residues that form two or more residues at the interface are at least one group of amino acid residues selected due to the group of amino acid residues on the heavy and light chain FR2 regions. Group, where the group of amino acid residues is the following (i) and (ii) The group of at least one amino acid residue selected from the group: (i) the Kabat number 39 on the variable region of the heavy chain and the Kabat number on the variable region of the light chain are 38 amino acid residues; (ii) Kabat number 45 amino acid residues on the heavy chain variable region and 44 amino acid residues Kabat number 44 on the light chain variable region, wherein the introduction The amino acid residues are selected from the group consisting of free lysine (K), arginine (R) and histidine (H). 一種異種多聚體(heteromultimer)之製造方法,係使形成多肽間界面之胺基酸殘基具有變異而控制異種多聚體之組裝,包括:(a)於形成2種以上多聚體之異種多聚體之中改變形成多肽間界面之胺基酸殘基的編碼核酸,其係以使不希望之形成1種以上多聚體之多肽間之組裝受抑制之方式改變原核酸,(b)培養寄主細胞使該核酸使表現,(c)自寄主細胞培養物中回收該異種多聚體,其中,該異種多聚體係包含2種以上重鏈可變區域之多重專一性抗體,又其中該步驟(a)之改變係將原核酸置換,使形成界面之2個殘基以上的胺基酸殘基改變為同種之正電荷的方式,其於該界面導入一胺基酸殘基之變異,形成該界面之2個殘基以上之胺基酸殘基為由下述之(1)~(3)所選擇之至少一組之胺基酸殘基的群組:(1)於重鏈及輕鏈FR2區域上之胺基酸殘基的群組,為由以下(i)與(ii)的群組所選擇之至少1組的胺基酸殘基的群組:(i)重鏈可變區域上之Kabat編號為39之胺基酸殘基與輕鏈可變區上之Kabat編號為38之胺基酸殘基;(ii)重鏈可變區域上之Kabat編號為45之胺基酸殘基與輕鏈可變區上之Kabat編號為44之胺基酸殘基;以及(2)包含於來自人類IgG-型之重鏈CH3領域中之胺基酸殘基的群組,由以下(i)~(iii)的群組所選擇之至少1組的胺基酸殘基組:(i)包含於重鏈CH3區域之胺基酸殘基,EU編號為356及439之胺基酸殘基;(ii)包含於重鏈CH3區域之胺基酸殘基,EU編號為357及370之胺基酸殘基;(iii)包含於重鏈CH3區域之胺基酸殘基,EU編號為399及409之胺基酸殘基:(3)重鏈CH1區域上之Kabat編號為221之胺基酸殘基與輕鏈CL區域上之Kabat編號為123之胺基酸殘基,其中該導入之胺基酸殘基為選擇自由離胺酸(K)、精胺酸(R)與組胺酸(H)所組成之群組。A method for manufacturing heteromultimers is to make mutations in amino acid residues forming the interface between polypeptides to control the assembly of heteromultimers, including: (a) forming heterogeneous species of two or more multimers Nucleic acid-encoding nucleic acid in a multimer that changes the amino acid residues that form the interface between polypeptides is to alter the original nucleic acid in a manner that inhibits the assembly between polypeptides that undesirably form more than one polymer, (b) Culturing a host cell to express the nucleic acid, and (c) recovering the heteromultimer from the host cell culture, wherein the heteromultimer system includes multiple specific antibodies of two or more heavy chain variable regions, and wherein The change of step (a) is a method in which the original nucleic acid is replaced to change the amino acid residues of the two or more residues forming the interface to the same kind of positive charge, which introduces a mutation of an amino acid residue into the interface. The amino acid residues with more than 2 residues forming the interface are a group of amino acid residues selected from at least one group of (1) to (3) below: (1) in the heavy chain and The group of amino acid residues on the FR2 region of the light chain is selected by the following groups (i) and (ii) Group of at least one amino acid residue: (i) amino acid residue with Kabat number 39 on the variable region of the heavy chain and amino acid residue with Kabat number 38 on the variable region of the light chain Residues; (ii) amino acid residues with Kabat number 45 on the variable region of the heavy chain and amino acid residues with Kabat number 44 on the variable region of the light chain; and (2) contained in human origin The group of amino acid residues in the IgG-type heavy chain CH3 domain is at least one group of amino acid residue groups selected from the following groups (i) to (iii): (i) is included in Amino acid residues in heavy chain CH3 region, amino acid residues with EU numbers 356 and 439; (ii) Amino acid residues included in heavy chain CH3 region, EU number with 357 and 370 amino acid residues Residues; (iii) amino acid residues included in the CH3 region of the heavy chain, amino acid residues of EU numbers 399 and 409: (3) amino acid residues of Kabat number 221 on the heavy chain CH1 region Kabat numbered 123 amino acid residues on the CL region of the light chain and light chain, wherein the introduced amino acid residues are selected from free amino acids (K), arginine (R) and histidine (H ). 如申請專利範圍第2項所述之異種多聚體之製造方法,其中該異種多聚體為一雙專一性抗體。The method for manufacturing a heteromultimer as described in item 2 of the scope of patent application, wherein the heteromultimer is a pair of specific antibodies. 一種多肽變異體,係改變形成該多肽內界面之胺基酸殘基,以抑制可形成2種以上構造異構物之原來多肽內之不希望之形成1種以上構造異構物之原來多肽內的組裝,其中該多肽係將2個以上重鏈可變區域及2個以上輕鏈可變區域以連接子結合之單鏈多肽,又其中形成該多肽內之界面之胺基酸殘基的改變,為形成界面之2個殘基以上的胺基酸殘基以同種之正電荷之方式將於該界面中之胺基酸殘基置換,形成該界面之2個殘基以上之胺基酸殘基為由於重鏈及輕鏈FR2區域上之胺基酸殘基的群組所選擇之至少1組的胺基酸殘基的群組,於此,該胺基酸殘基的群組為由以下(i)與(ii)的群組所選擇之至少1組的胺基酸殘基的群組:(i)重鏈可變區域上之Kabat編號為39之胺基酸殘基與輕鏈可變區上之Kabat編號為38之胺基酸殘基;(ii)重鏈可變區域上之Kabat編號為45之胺基酸殘基與輕鏈可變區上之Kabat編號為44之胺基酸殘基,其中該導入之胺基酸殘基為選擇自由離胺酸(K)、精胺酸(R)與組胺酸(H)所組成之群組。A polypeptide variant that changes the amino acid residues that form the internal interface of the polypeptide to inhibit undesired formation of the original polypeptide that can form two or more structural isomers. Assembly, in which the polypeptide is a single-chain polypeptide that combines two or more heavy chain variable regions and two or more light chain variable regions with a linker, and wherein the amino acid residues forming the interface within the polypeptide are changed In order to form an amino acid residue with more than 2 residues at the interface, the amino acid residues at the interface will be replaced with the same kind of positive charge to form an amino acid residue with more than 2 residues at the interface. The group is at least one group of amino acid residues selected due to the group of amino acid residues on the FR2 region of the heavy and light chains. Here, the group of amino acid residues is given by The group of at least one amino acid residue selected from the following groups (i) and (ii): (i) the amino acid residue with a Kabat number 39 on the variable region of the heavy chain and the light chain Kabat numbered 38 amino acid residues on the variable region; (ii) Kabat numbered 45 amino acid residues on the variable region of the heavy chain and light The amino acid residue with Kabat number 44 on the variable region of the chain, the introduced amino acid residue is selected from free lysine (K), arginine (R) and histidine (H) Groups of people. 一種異種多聚體,係改變形成該多肽間界面之胺基酸殘基,以抑制可形成2種以上多聚體之原來多肽間之不希望之形成1種以上多聚體之原來多肽的組裝,其中該異種多聚體係包含2種以上重鏈可變區域之多重專一性抗體,又其中形成該多肽間之界面之胺基酸殘基的改變,為形成界面之2個殘基以上的胺基酸殘基以同種之正電荷之方式將於該界面中之胺基酸殘基置換,形成該界面之2個殘基以上之胺基酸殘基為由顯示於下述之(1)~(3)中之胺基酸殘基之組所選擇之至少一組之胺基酸的組:(1)於重鏈及與輕鏈FR2區域上之胺基酸殘基的群組,為由以下(i)與(ii)的群組所選擇之至少1組的胺基酸殘基的群組:(i)重鏈可變區域上之Kabat編號為39之胺基酸殘基與輕鏈可變區上之Kabat編號為38之胺基酸殘基;(ii)重鏈可變區域上之Kabat編號為45之胺基酸殘基與輕鏈可變區上之Kabat編號為44之胺基酸殘基;以及(2)包含於來自人類IgG-型之重鏈CH3領域中之胺基酸殘基的群組,由以下(i)~(iii)的群組所選擇之至少1組的胺基酸殘基組:(i)包含於重鏈CH3區域之胺基酸殘基,EU編號為356及439之胺基酸殘基;(ii)包含於重鏈CH3區域之胺基酸殘基,EU編號為357及370之胺基酸殘基;(iii)包含於重鏈CH3區域之胺基酸殘基,EU編號為399及409之胺基酸殘基:(3)重鏈CH1區域上之Kabat編號為221之胺基酸殘基與輕鏈CL區域上之Kabat編號為123之胺基酸殘基,其中該導入之胺基酸殘基為選擇自由離胺酸(K)、精胺酸(R)與組胺酸(H)所組成之群組。A heteromultimer that changes the amino acid residues that form the interface between the polypeptides to inhibit the undesired assembly of the original polypeptide that forms one or more polymers between the original polypeptides that can form two or more polymers Wherein the heteromultimeric system includes multiple specific antibodies of two or more heavy chain variable regions, and wherein the amino acid residues forming the interface between the polypeptides are changed to form amines having more than 2 residues at the interface The amino acid residues will be replaced with amino acid residues in the interface with the same kind of positive charge to form amino acid residues with more than 2 residues in the interface. The reason is shown in (1) below. (3) the group of amino acid residues in the group of at least one group of amino acids selected: (1) the group of amino acid residues on the heavy and light chain FR2 regions, The group of at least one amino acid residue selected from the following groups (i) and (ii): (i) the amino acid residue with a Kabat number 39 on the variable region of the heavy chain and the light chain Kabat numbered 38 amino acid residues on the variable region; (ii) Kabat numbered 45 amino acid residues on the heavy chain variable region and Kabat on the light chain variable region The amino acid residue No. 44; and (2) the group of amino acid residues included in the heavy chain CH3 domain from human IgG-type, which is represented by the following groups (i) to (iii) Selected at least one group of amino acid residues: (i) amino acid residues included in the CH3 region of the heavy chain, amino acid residues of EU numbers 356 and 439; (ii) included in the heavy chain CH3 Amino acid residues in the region, EU residues of 357 and 370; (iii) Amino acid residues in the heavy chain CH3 region, EU residues of 399 and 409: (3) Amino acid residue with Kabat number 221 on the CH1 region of the heavy chain and 123 amino acid residue with Kabat number 123 on the CL region of the light chain, wherein the introduced amino acid residue is a selective free ion A group of amino acids (K), arginine (R) and histidine (H). 如申請專利範圍第5項所述之異種多聚體,其中該異種多聚體為一雙專一性抗體。The heteromultimer as described in item 5 of the scope of patent application, wherein the heteromultimer is a pair of specific antibodies. 一種組成物,包含申請專利範圍第4項之多肽變異體或申請專利範圍第5項之異種多聚體,及醫藥上可容許的載體。A composition comprises a polypeptide variant according to claim 4 or a heteromultimer according to claim 5 and a pharmaceutically acceptable carrier. 一種核酸,編碼為申請專利範圍第4項之多肽變異體或申請專利範圍第5項之異種多聚體。A nucleic acid that encodes a polypeptide variant of claim 4 or a heteromultimer of claim 5. 一種寄主細胞,具有申請專利範圍第8項之核酸。A host cell having a nucleic acid having the scope of patent application No. 8. 一種如申請專利範圍第4項之多肽變異體或申請專利範圍第5項之異種多聚體之製造方法,包括:培養申請專利範圍第9項之寄主細胞、自細胞培養物將多肽回收。A method for manufacturing a polypeptide variant as claimed in item 4 of the patent application or a heteromultimer as claimed in item 5 of the patent application, comprising: culturing host cells in the application for item 9 of the patent application, and recovering the polypeptide from the cell culture.
TW105116065A 2005-03-31 2006-03-31 Method for controlling controlled assembly of polypeptide TWI671403B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-101105 2005-03-31
JP2005101105 2005-03-31
JP2005378266 2005-12-28
JP2005-378266 2005-12-28

Publications (2)

Publication Number Publication Date
TW201631154A TW201631154A (en) 2016-09-01
TWI671403B true TWI671403B (en) 2019-09-11

Family

ID=37073456

Family Applications (2)

Application Number Title Priority Date Filing Date
TW095111601A TWI544076B (en) 2005-03-31 2006-03-31 A method of manufacturing a polypeptide that controls assembly
TW105116065A TWI671403B (en) 2005-03-31 2006-03-31 Method for controlling controlled assembly of polypeptide

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW095111601A TWI544076B (en) 2005-03-31 2006-03-31 A method of manufacturing a polypeptide that controls assembly

Country Status (12)

Country Link
US (3) US10011858B2 (en)
EP (3) EP3623473A1 (en)
JP (2) JP5620626B2 (en)
KR (1) KR101374454B1 (en)
CN (1) CN101198698B (en)
AU (1) AU2006232287B2 (en)
CA (1) CA2603408C (en)
DK (1) DK3050963T3 (en)
ES (1) ES2592271T3 (en)
HK (1) HK1114878A1 (en)
TW (2) TWI544076B (en)
WO (1) WO2006106905A1 (en)

Families Citing this family (714)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7754208B2 (en) 2001-01-17 2010-07-13 Trubion Pharmaceuticals, Inc. Binding domain-immunoglobulin fusion proteins
CA2965865C (en) 2002-07-18 2021-10-19 Merus N.V. Recombinant production of mixtures of antibodies
USRE47770E1 (en) 2002-07-18 2019-12-17 Merus N.V. Recombinant production of mixtures of antibodies
JP4794301B2 (en) 2003-06-11 2011-10-19 中外製薬株式会社 Antibody production method
WO2005035753A1 (en) 2003-10-10 2005-04-21 Chugai Seiyaku Kabushiki Kaisha Double specific antibodies substituting for functional protein
JPWO2005056602A1 (en) * 2003-12-12 2008-03-06 中外製薬株式会社 Screening method for modified antibodies having agonist activity
TW200530269A (en) * 2003-12-12 2005-09-16 Chugai Pharmaceutical Co Ltd Anti-Mpl antibodies
WO2005056605A1 (en) * 2003-12-12 2005-06-23 Chugai Seiyaku Kabushiki Kaisha Modified antibodies recognizing trimer receptor or higher
US9493569B2 (en) * 2005-03-31 2016-11-15 Chugai Seiyaku Kabushiki Kaisha Structural isomers of sc(Fv)2
ES2592271T3 (en) 2005-03-31 2016-11-29 Chugai Seiyaku Kabushiki Kaisha Polypeptide production methods by regulating the association of polypeptides
EP1876236B9 (en) * 2005-04-08 2015-02-25 Chugai Seiyaku Kabushiki Kaisha Antibody substituting for function of blood coagulation factor viii
AU2006256041B2 (en) * 2005-06-10 2012-03-29 Chugai Seiyaku Kabushiki Kaisha Stabilizer for protein preparation comprising meglumine and use thereof
JP5085322B2 (en) 2005-06-10 2012-11-28 中外製薬株式会社 Pharmaceutical composition containing sc (Fv) 2
DK2298815T3 (en) 2005-07-25 2015-06-15 Emergent Product Dev Seattle B-CELL REDUCTION USING CD37 SPECIFIC AND CD20 SPECIFIC BINDING MOLECULES
DK1999154T3 (en) * 2006-03-24 2012-12-03 Merck Patent Gmbh MANUFACTURED HETERODIMERED PROTEIN DOMAINS
JP5624276B2 (en) 2006-03-31 2014-11-12 中外製薬株式会社 Methods for controlling blood kinetics of antibodies
CN105177091A (en) * 2006-03-31 2015-12-23 中外制药株式会社 Antibody modification method for purifying bispecific antibody
CA2654317A1 (en) 2006-06-12 2007-12-21 Trubion Pharmaceuticals, Inc. Single-chain multivalent binding proteins with effector function
HUE028379T2 (en) 2006-09-29 2016-12-28 Oncomed Pharm Inc Compositions and methods for diagnosing and treating cancer
ES2667863T3 (en) 2007-03-29 2018-05-14 Genmab A/S Bispecific antibodies and their production methods
CA2688275A1 (en) * 2007-05-31 2008-12-04 Genmab A/S Stable igg4 antibodies
AR068563A1 (en) 2007-09-26 2009-11-18 Chugai Pharmaceutical Co Ltd CONSTANT MUTANT ANTIBODY REGION
EP4368721A2 (en) 2007-09-26 2024-05-15 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in cdr
DK2236604T3 (en) 2007-12-05 2016-10-03 Chugai Pharmaceutical Co Ltd The anti-NR10 antibody and use thereof
US8227577B2 (en) * 2007-12-21 2012-07-24 Hoffman-La Roche Inc. Bivalent, bispecific antibodies
US20090162359A1 (en) 2007-12-21 2009-06-25 Christian Klein Bivalent, bispecific antibodies
US8242247B2 (en) 2007-12-21 2012-08-14 Hoffmann-La Roche Inc. Bivalent, bispecific antibodies
US9266967B2 (en) 2007-12-21 2016-02-23 Hoffmann-La Roche, Inc. Bivalent, bispecific antibodies
PT2235064E (en) * 2008-01-07 2016-03-01 Amgen Inc Method for making antibody fc-heterodimeric molecules using electrostatic steering effects
MY195714A (en) * 2008-04-11 2023-02-07 Chugai Pharmaceutical Co Ltd Antigen-Binding Molecule Capable of Binding to Two or More Antigen Molecules Repeatedly
NZ621443A (en) 2008-04-11 2015-09-25 Emergent Product Dev Seattle Cd37 immunotherapeutic and combination with bifunctional chemotherapeutic thereof
TWI440469B (en) * 2008-09-26 2014-06-11 Chugai Pharmaceutical Co Ltd Improved antibody molecules
US8268314B2 (en) 2008-10-08 2012-09-18 Hoffmann-La Roche Inc. Bispecific anti-VEGF/anti-ANG-2 antibodies
EP2409991B1 (en) 2009-03-19 2017-05-03 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
TWI544077B (en) 2009-03-19 2016-08-01 Chugai Pharmaceutical Co Ltd Antibody constant region change body
WO2010112194A1 (en) 2009-04-02 2010-10-07 F. Hoffmann-La Roche Ag Antigen-binding polypeptides and multispecific antibodies comprising them
WO2010112193A1 (en) 2009-04-02 2010-10-07 Roche Glycart Ag Multispecific antibodies comprising full length antibodies and single chain fab fragments
ES2537100T3 (en) 2009-04-07 2015-06-02 Roche Glycart Ag Trivalent bispecific antibodies
CA2757531A1 (en) 2009-04-07 2010-10-14 Roche Glycart Ag Bispecific anti-erbb-3/anti-c-met antibodies
MX2011010158A (en) 2009-04-07 2011-10-17 Roche Glycart Ag Bispecific anti-erbb-2/anti-c-met antibodies.
CN102459346B (en) * 2009-04-27 2016-10-26 昂考梅德药品有限公司 The method manufacturing heteromultimers molecule
WO2010136172A1 (en) * 2009-05-27 2010-12-02 F. Hoffmann-La Roche Ag Tri- or tetraspecific antibodies
US9676845B2 (en) 2009-06-16 2017-06-13 Hoffmann-La Roche, Inc. Bispecific antigen binding proteins
US8703132B2 (en) * 2009-06-18 2014-04-22 Hoffmann-La Roche, Inc. Bispecific, tetravalent antigen binding proteins
US9493578B2 (en) 2009-09-02 2016-11-15 Xencor, Inc. Compositions and methods for simultaneous bivalent and monovalent co-engagement of antigens
SG10201408401RA (en) 2009-09-16 2015-01-29 Genentech Inc Coiled coil and/or tether containing protein complexes and uses thereof
EP2481752B1 (en) 2009-09-24 2016-11-09 Chugai Seiyaku Kabushiki Kaisha Modified antibody constant regions
KR101508043B1 (en) 2009-09-29 2015-04-06 로슈 글리카트 아게 Bispecific death receptor agonistic antibodies
US8883145B2 (en) 2009-10-16 2014-11-11 Oncomed Pharmaceuticals, Inc. Methods of treatment with DLL4 antagonists and an anti-hypertensive agent
WO2011063348A1 (en) * 2009-11-23 2011-05-26 Amgen Inc. Monomeric antibody fc
ES2777901T3 (en) * 2009-12-25 2020-08-06 Chugai Pharmaceutical Co Ltd Polypeptide Modification Method to Purify Polypeptide Multimers
CN102712769B (en) 2010-01-29 2014-12-03 东丽株式会社 Polylactic acid-based resin sheet
JP5889181B2 (en) 2010-03-04 2016-03-22 中外製薬株式会社 Antibody constant region variants
TW201138821A (en) 2010-03-26 2011-11-16 Roche Glycart Ag Bispecific antibodies
AR080794A1 (en) 2010-03-26 2012-05-09 Hoffmann La Roche BIVING SPECIFIC ANTIBODIES ANTI-VEGF / ANTI-ANG-2
AU2016219622A1 (en) * 2010-04-20 2016-09-15 Genmab A/S Heterodimeric antibody FC-containing proteins and methods for production thereof
AU2013203221B2 (en) * 2010-04-20 2016-06-02 Genmab A/S Heterodimeric antibody FC-containing proteins and methods for production thereof
JP2019048814A (en) * 2010-04-20 2019-03-28 ゲンマブ エー/エス Heterodimeric antibody fc-containing proteins and methods for producing such proteins
EA201201435A1 (en) 2010-04-20 2013-04-30 Генмаб А/С HETERODIMERNY ANTIBODY-Fc-CONTAINING PROTEINS AND METHODS FOR THEIR RECEIVING
EP2569337A1 (en) 2010-05-14 2013-03-20 Rinat Neuroscience Corp. Heterodimeric proteins and methods for producing and purifying them
CA2800785C (en) 2010-05-27 2019-09-24 Genmab A/S Monoclonal antibodies against her2
DK3029066T3 (en) 2010-07-29 2019-05-20 Xencor Inc ANTIBODIES WITH MODIFIED ISOELECTRIC ITEMS
BR112013001847A2 (en) 2010-08-24 2016-05-31 Hoffmann La Roche bispecific antibody, method of preparation of bispecific antibody, trivalent bispecific antibody, methods and pharmaceutical composition
CA2807269A1 (en) 2010-08-24 2012-03-01 Roche Glycart Ag Activatable bispecific antibodies
US8551479B2 (en) 2010-09-10 2013-10-08 Oncomed Pharmaceuticals, Inc. Methods for treating melanoma
MX352929B (en) * 2010-11-05 2017-12-13 Zymeworks Inc Stable heterodimeric antibody design with mutations in the fc domain.
TWI452136B (en) 2010-11-17 2014-09-11 中外製藥股份有限公司 A multiple specific antigen-binding molecule that replaces the function of Factor VIII in blood coagulation
US20130245233A1 (en) 2010-11-24 2013-09-19 Ming Lei Multispecific Molecules
KR102385507B1 (en) 2010-11-30 2022-04-12 추가이 세이야쿠 가부시키가이샤 Antigen-binding molecule capable of binding to plurality of antigen molecules repeatedly
ES2693232T3 (en) 2010-11-30 2018-12-10 Chugai Seiyaku Kabushiki Kaisha Therapeutic agent that induces cytotoxicity
WO2012085111A1 (en) 2010-12-23 2012-06-28 F. Hoffmann-La Roche Ag Polypeptide-polynucleotide-complex and its use in targeted effector moiety delivery
CA2827923C (en) 2011-02-25 2021-11-23 Chugai Seiyaku Kabushiki Kaisha Fc.gamma.riib-specific fc antibody
AR085404A1 (en) 2011-02-28 2013-09-25 Hoffmann La Roche PROTEINS OF UNION TO ANTIGEN
BR112013020338A2 (en) 2011-02-28 2016-10-18 Hoffmann La Roche monovalent antigen binding protein, pharmaceutical composition, use of monovalent antigen binding protein, method for treating a patient in need of therapy, method for preparing a monovalent antigen binding protein, nucleic acid, vector and cell hostess
DK2681245T3 (en) 2011-03-03 2018-08-13 Zymeworks Inc MULTIVALENT HEAT-MULTIMED SCAFFOLD DESIGN AND CONSTRUCTIONS
DK2698431T3 (en) 2011-03-30 2020-11-30 Chugai Pharmaceutical Co Ltd Maintenance of antigen-binding molecules in blood plasma and method of modifying immunogenicity
CN103796677B (en) 2011-04-20 2019-08-16 健玛保 For the bispecific antibody of HER2 and CD3
AU2012258637B2 (en) 2011-05-24 2017-07-20 Zyngenia, Inc. Multivalent and monovalent multispecific complexes and their uses
CN109517059B (en) 2011-06-30 2023-03-28 中外制药株式会社 Heterodimerised polypeptides
UA117901C2 (en) 2011-07-06 2018-10-25 Ґенмаб Б.В. Antibody variants and uses thereof
KR101870555B1 (en) 2011-08-23 2018-06-22 로슈 글리카트 아게 Bispecific antibodies specific for t-cell activating antigens and a tumor antigen and methods of use
GB201116092D0 (en) 2011-09-16 2011-11-02 Bioceros B V Antibodies and uses thereof
CA2845147A1 (en) 2011-09-23 2013-03-28 Roche Glycart Ag Bispecific anti-egfr/anti igf-1r antibodies
TWI583699B (en) 2011-09-23 2017-05-21 安可美德藥物股份有限公司 Vegf/dll4 binding agents and uses thereof
CA2791109C (en) 2011-09-26 2021-02-16 Merus B.V. Generation of binding molecules
WO2013047748A1 (en) 2011-09-30 2013-04-04 中外製薬株式会社 Antigen-binding molecule promoting disappearance of antigens having plurality of biological activities
TW201326209A (en) 2011-09-30 2013-07-01 Chugai Pharmaceutical Co Ltd Therapeutic antigen-binding molecule with a FcRn-binding domain that promotes antigen clearance
US10851178B2 (en) 2011-10-10 2020-12-01 Xencor, Inc. Heterodimeric human IgG1 polypeptides with isoelectric point modifications
LT2771364T (en) 2011-10-27 2019-09-10 Genmab A/S Production of heterodimeric proteins
BR112014010257A2 (en) * 2011-10-31 2017-04-18 Chugai Pharmaceutical Co Ltd antigen binding molecule having regulated conjugation between heavy and light chains
PT2773671T (en) 2011-11-04 2021-12-14 Zymeworks Inc Stable heterodimeric antibody design with mutations in the fc domain
RU2739792C1 (en) 2011-11-30 2020-12-28 Чугаи Сейяку Кабусики Кайся Carrier containing a drug into a cell for forming an immune complex
BR112014019116B1 (en) 2012-02-03 2024-01-23 F.Hoffmann-La Roche Ag KIT, ANTIBODY MOLECULES AND USE OF AN ANTIBODY MOLECULE
EP2812357B1 (en) 2012-02-10 2020-11-04 F.Hoffmann-La Roche Ag Single-chain antibodies and other heteromultimers
SG11201405137QA (en) 2012-02-24 2014-12-30 Chugai Pharmaceutical Co Ltd ANTIGEN-BINDING MOLECULE FOR PROMOTING DISAPPEARANCE OF ANTIGEN VIA FcγRIIB
SG11201406238UA (en) 2012-04-05 2014-10-30 Hoffmann La Roche Bispecific antibodies against human tweak and human il17 and uses thereof
KR102171431B1 (en) 2012-04-20 2020-10-30 메뤼스 엔.페. Methods and means for the production of Ig-like molecules
US9212227B2 (en) 2012-04-30 2015-12-15 Janssen Biotech, Inc. ST2L antibody antagonists for the treatment of ST2L-mediated inflammatory pulmonary conditions
MX2019001355A (en) 2012-05-10 2023-01-17 Bioatla Llc Multi-specific monoclonal antibodies.
WO2013174873A1 (en) 2012-05-24 2013-11-28 F. Hoffmann-La Roche Ag Multispecific antibodies
TWI766939B (en) 2012-05-30 2022-06-11 日商中外製藥股份有限公司 target tissue-specific antigen binding molecule
WO2013187495A1 (en) 2012-06-14 2013-12-19 中外製薬株式会社 ANTIGEN-BINDING MOLECULE CONTAINING MODIFIED Fc REGION
WO2014004586A1 (en) 2012-06-25 2014-01-03 Zymeworks Inc. Process and methods for efficient manufacturing of highly pure asymmetric antibodies in mammalian cells
EP2867253B1 (en) 2012-06-27 2016-09-14 F. Hoffmann-La Roche AG Method for selection and production of tailor-made highly selective and multi-specific targeting entities containing at least two different binding entities and uses thereof
BR112014028368A2 (en) 2012-06-27 2017-11-14 Hoffmann La Roche method of producing antibody fc region conjugate, antibody fc region conjugate and pharmaceutical formulation
ES2600154T3 (en) 2012-07-04 2017-02-07 F. Hoffmann-La Roche Ag Anti-theophylline antibodies and methods of use
EP2870180A1 (en) 2012-07-04 2015-05-13 F. Hoffmann-La Roche AG Anti-biotin antibodies and methods of use
BR112014029403A2 (en) 2012-07-04 2018-10-09 F. Hoffmann-La Roche Ag conjugates, antibody and pharmaceutical formulation
EP3632462A1 (en) 2012-07-06 2020-04-08 Genmab B.V. Dimeric protein with triple mutations
US11180572B2 (en) 2012-07-06 2021-11-23 Genmab B.V. Dimeric protein with triple mutations
WO2014009465A1 (en) 2012-07-13 2014-01-16 Roche Glycart Ag Bispecific anti-vegf/anti-ang-2 antibodies and their use in the treatment of ocular vascular diseases
JP6498601B2 (en) 2012-07-13 2019-04-10 ザイムワークス,インコーポレイテッド Multivalent heteromultimeric scaffold designs and constructs
CN102851338A (en) * 2012-07-25 2013-01-02 苏州康宁杰瑞生物科技有限公司 Method for preparing homodimer protein mixture by using charge repulsive interaction
KR102273985B1 (en) 2012-08-24 2021-07-06 추가이 세이야쿠 가부시키가이샤 FcγRIIb-specific Fc region variant
KR101963231B1 (en) 2012-09-11 2019-03-28 삼성전자주식회사 Protein complex for preparing bispecific antibodies and method using thereof
CA2889681C (en) 2012-09-27 2023-04-11 Merus B.V. Bispecific igg antibodies as t cell engagers
JP6581505B2 (en) 2012-10-03 2019-09-25 ザイムワークス,インコーポレイテッド Methods for quantifying heavy and light chain polypeptide pairs
CN104704004B (en) 2012-10-08 2019-12-31 罗切格利卡特公司 Fc-free antibodies comprising two Fab fragments and methods of use
CA2889638A1 (en) 2012-10-31 2014-05-08 Oncomed Pharmaceuticals, Inc. Methods and monitoring of treatment with a dll4 antagonist
US10344099B2 (en) 2012-11-05 2019-07-09 Zenyaku Kogyo Kabushikikaisha Antibody and antibody composition production method
UY35148A (en) * 2012-11-21 2014-05-30 Amgen Inc HETERODIMERIC IMMUNOGLOBULINS
CN104955838B (en) 2012-11-21 2021-02-02 詹森生物科技公司 Bispecific EGFR/c-Met antibodies
US9914785B2 (en) 2012-11-28 2018-03-13 Zymeworks Inc. Engineered immunoglobulin heavy chain-light chain pairs and uses thereof
CA2893562C (en) * 2012-11-28 2023-09-12 Zymeworks Inc. Engineered immunoglobulin heavy chain-light chain pairs and uses thereof
DK2940135T5 (en) 2012-12-27 2021-09-20 Chugai Pharmaceutical Co Ltd Heterodimerized polypeptide
EA201500741A1 (en) 2013-01-10 2016-01-29 Генмаб Б.В. HUMAN FG IGG1 OPTIONS AND THEIR APPLICATION
US11053316B2 (en) 2013-01-14 2021-07-06 Xencor, Inc. Optimized antibody variable regions
US10487155B2 (en) 2013-01-14 2019-11-26 Xencor, Inc. Heterodimeric proteins
US9701759B2 (en) 2013-01-14 2017-07-11 Xencor, Inc. Heterodimeric proteins
US9605084B2 (en) 2013-03-15 2017-03-28 Xencor, Inc. Heterodimeric proteins
DK2943511T3 (en) 2013-01-14 2019-10-21 Xencor Inc NEW HETERODIMERIC PROTEINS
US10968276B2 (en) 2013-03-12 2021-04-06 Xencor, Inc. Optimized anti-CD3 variable regions
US10131710B2 (en) 2013-01-14 2018-11-20 Xencor, Inc. Optimized antibody variable regions
US9738722B2 (en) 2013-01-15 2017-08-22 Xencor, Inc. Rapid clearance of antigen complexes using novel antibodies
EP2762496A1 (en) 2013-02-05 2014-08-06 EngMab AG Method for the selection of antibodies against BCMA
US10077315B2 (en) 2013-02-05 2018-09-18 Engmab Sàrl Bispecific antibodies against CD3 and BCMA
EP2762497A1 (en) 2013-02-05 2014-08-06 EngMab AG Bispecific antibodies against CD3epsilon and BCMA
JP2016509014A (en) 2013-02-08 2016-03-24 ステムセントリックス, インコーポレイテッド New multispecific construct
EA201891502A1 (en) 2013-02-26 2018-12-28 Роше Гликарт Аг BISPECIFIC ANTIGENSIVE-BONDING MOLECULES ACTIVATING T-CELLS
RU2015140915A (en) 2013-02-26 2017-04-03 Роше Гликарт Аг BSPECIFIC ANTI-BINDING MOLECULES ACTIVATING T-CELLS
EP3486255A3 (en) 2013-03-13 2019-11-13 Ibentrus Inc. Protein in which electrical interaction is introduced within hydrophobic interaction site and preparation method therefor
US9168300B2 (en) 2013-03-14 2015-10-27 Oncomed Pharmaceuticals, Inc. MET-binding agents and uses thereof
EP2968541A4 (en) 2013-03-15 2017-02-08 Zyngenia, Inc. Multivalent and monovalent multispecific complexes and their uses
US10106624B2 (en) 2013-03-15 2018-10-23 Xencor, Inc. Heterodimeric proteins
US10519242B2 (en) 2013-03-15 2019-12-31 Xencor, Inc. Targeting regulatory T cells with heterodimeric proteins
CA3093606A1 (en) 2013-03-15 2014-09-18 Xencor, Inc. Heterodimeric proteins for induction of t cells
MX366124B (en) 2013-03-15 2019-06-27 Janssen Biotech Inc Interferon alpha and omega antibody antagonists.
US10858417B2 (en) 2013-03-15 2020-12-08 Xencor, Inc. Heterodimeric proteins
ES2821753T3 (en) 2013-03-15 2021-04-27 Lilly Co Eli Fab and bispecific antibody production procedures
MD4633B1 (en) 2013-03-18 2019-06-30 Biocerox Products B.V. Humanized anti-CD134 (OX40) antibodies and uses thereof
CN113621057A (en) 2013-04-02 2021-11-09 中外制药株式会社 Fc region variants
UA118028C2 (en) 2013-04-03 2018-11-12 Рош Глікарт Аг Bispecific antibodies specific for fap and dr5, antibodies specific for dr5 and methods of use
JP2016522168A (en) * 2013-04-05 2016-07-28 ジェネンテック, インコーポレイテッド Anti-IL-4 antibody and bispecific antibody and use thereof
EP2789630A1 (en) 2013-04-09 2014-10-15 EngMab AG Bispecific antibodies against CD3e and ROR1
TWI653243B (en) 2013-04-29 2019-03-11 赫孚孟拉羅股份公司 Anti-IGF-1R antibody against FcRn binding and use thereof for treating vascular eye diseases
SG10201800492PA (en) 2013-04-29 2018-03-28 Hoffmann La Roche Human fcrn-binding modified antibodies and methods of use
CN105164157B (en) 2013-04-29 2024-05-28 豪夫迈·罗氏有限公司 Modified asymmetric antibodies to FC-receptor binding and methods of use
US9879081B2 (en) 2013-06-25 2018-01-30 Samsung Electronics Co., Ltd. Protein complex, bispecific antibody including the protein complex, and method of preparation thereof
NZ715896A (en) 2013-07-05 2022-02-25 Genmab As Humanized or chimeric cd3 antibodies
SG11201602261VA (en) * 2013-09-27 2016-04-28 Chugai Pharmaceutical Co Ltd Method for producing polypeptide heteromultimer
MX2016003617A (en) 2013-09-30 2016-07-21 Chugai Pharmaceutical Co Ltd Method for producing antigen-binding molecule using modified helper phage.
MX2016003593A (en) 2013-10-11 2016-06-02 Hoffmann La Roche Multispecific domain exchanged common variable light chain antibodies.
WO2015069865A1 (en) 2013-11-06 2015-05-14 Janssen Biotech, Inc. Anti-ccl17 antibodies
EP3070168A4 (en) 2013-11-11 2017-06-28 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing modified antibody variable region
TW202043467A (en) 2013-12-04 2020-12-01 日商中外製藥股份有限公司 Antigen-binding molecules, the antigen-binding activity of which varies according to the concentration of compounds, and libraries of said molecules
IL302303A (en) 2013-12-17 2023-06-01 Genentech Inc Anti-cd3 antibodies and methods of use
AU2014368696A1 (en) 2013-12-20 2016-06-02 F. Hoffmann-La Roche Ag Humanized anti-Tau(pS422) antibodies and methods of use
RU2682754C2 (en) 2014-01-03 2019-03-21 Ф. Хоффманн-Ля Рош Аг Covalent bonded polypeptide toxin and antibody conjugates
CN105899540B (en) 2014-01-03 2020-02-07 豪夫迈·罗氏有限公司 Bispecific anti-hapten/anti-blood-brain barrier receptor antibodies, complexes thereof and their use as blood-brain barrier shuttles
CN105873615B (en) 2014-01-03 2020-12-25 豪夫迈·罗氏有限公司 Covalently linked helicar-anti-helicar antibody conjugates and uses thereof
CN111057147B (en) 2014-01-06 2023-11-10 豪夫迈·罗氏有限公司 Monovalent blood brain barrier shuttle module
KR20160107190A (en) 2014-01-15 2016-09-13 에프. 호프만-라 로슈 아게 Fc-region variants with modified fcrn- and maintained protein a-binding properties
JP6778110B2 (en) 2014-01-15 2020-10-28 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Fc region variant with improved protein A binding
JOP20200094A1 (en) 2014-01-24 2017-06-16 Dana Farber Cancer Inst Inc Antibody molecules to pd-1 and uses thereof
JOP20200096A1 (en) 2014-01-31 2017-06-16 Children’S Medical Center Corp Antibody molecules to tim-3 and uses thereof
US9732154B2 (en) 2014-02-28 2017-08-15 Janssen Biotech, Inc. Anti-CD38 antibodies for treatment of acute lymphoblastic leukemia
AU2015223567B2 (en) 2014-02-28 2020-09-10 Merus N.V. Antibody that binds ErbB-2 and ErbB-3
NZ724013A (en) 2014-02-28 2019-11-29 Merus Nv Antibodies that bind egfr and erbb3
BR122024001145A2 (en) 2014-03-14 2024-02-27 Novartis Ag ISOLATED ANTIBODY MOLECULE CAPABLE OF BINDING TO LAG-3, ITS PRODUCTION METHOD, PHARMACEUTICAL COMPOSITION, NUCLEIC ACIDS, EXPRESSION VECTOR, METHOD FOR DETECTION OF LAG-3 IN A BIOLOGICAL SAMPLE, AND USE OF SAID ANTIBODY MOLECULE AND COMPOSITION
EP3593812A3 (en) 2014-03-15 2020-05-27 Novartis AG Treatment of cancer using chimeric antigen receptor
KR20230022270A (en) 2014-03-28 2023-02-14 젠코어 인코포레이티드 Bispecific antibodies that bind to cd38 and cd3
UA117289C2 (en) 2014-04-02 2018-07-10 Ф. Хоффманн-Ля Рош Аг Multispecific antibodies
SG11201608054YA (en) 2014-04-02 2016-10-28 Hoffmann La Roche Method for detecting multispecific antibody light chain mispairing
ES2900898T3 (en) 2014-04-07 2022-03-18 Chugai Pharmaceutical Co Ltd Bispecific immunoactivating antibodies
EP4299595A3 (en) 2014-05-02 2024-03-13 Momenta Pharmaceuticals, Inc. Compositions and methods related to engineered fc constructs
WO2015174439A1 (en) 2014-05-13 2015-11-19 中外製薬株式会社 T cell-redirected antigen-binding molecule for cells having immunosuppression function
MX2016015459A (en) 2014-05-28 2017-12-14 Zymeworks Inc Modified antigen binding polypeptide constructs and uses thereof.
KR20210047355A (en) 2014-06-03 2021-04-29 엑스바이오테크 인코포레이티드 Compositions and methods for treating and preventing staphylococcus aureus infections
TWI713453B (en) 2014-06-23 2020-12-21 美商健生生物科技公司 Interferon alpha and omega antibody antagonists
AR100978A1 (en) 2014-06-26 2016-11-16 Hoffmann La Roche ANTI-Tau HUMANIZED ANTIBODY BRAIN LAUNCHERS (pS422) AND USES OF THE SAME
MX2016015280A (en) 2014-06-26 2017-03-03 Hoffmann La Roche Anti-brdu antibodies and methods of use.
CN107074948B (en) 2014-07-11 2022-01-28 根马布股份公司 Antibodies that bind AXL
BR112017001242A2 (en) 2014-07-21 2017-12-05 Novartis Ag cancer treatment using a cd33 chimeric antigen receptor
JP2017528433A (en) 2014-07-21 2017-09-28 ノバルティス アーゲー Low immunoenhancing dose of mTOR inhibitor and CAR combination
MX2017001011A (en) 2014-07-21 2018-05-28 Novartis Ag Treatment of cancer using humanized anti-bcma chimeric antigen receptor.
US11542488B2 (en) 2014-07-21 2023-01-03 Novartis Ag Sortase synthesized chimeric antigen receptors
US20170209492A1 (en) 2014-07-31 2017-07-27 Novartis Ag Subset-optimized chimeric antigen receptor-containing t-cells
EA038958B1 (en) 2014-08-04 2021-11-15 Ф. Хоффманн-Ля Рош Аг Bispecific t cell activating antigen binding molecules
EP2982692A1 (en) * 2014-08-04 2016-02-10 EngMab AG Bispecific antibodies against CD3epsilon and BCMA
CA2958200A1 (en) 2014-08-14 2016-02-18 Novartis Ag Treatment of cancer using a gfr alpha-4 chimeric antigen receptor
BR112017003104A2 (en) 2014-08-19 2017-12-05 Novartis Ag cancer treatment using an anti-cd123 chimeric antigen receptor
PL3189081T3 (en) 2014-09-05 2020-10-05 Janssen Pharmaceutica Nv Cd123 binding agents and uses thereof
EA035979B1 (en) 2014-09-09 2020-09-08 Янссен Байотек, Инк. Combination therapies with anti-cd38 antibodies
TW201625690A (en) 2014-09-12 2016-07-16 建南德克公司 Anti-CLL-1 antibodies and immunoconjugates
AR101875A1 (en) 2014-09-15 2017-01-18 Amgen Inc ANTIGENS, BI-SPECIFIC UNION PROTEIN OF THE ANTI-CGRP RECEIVER / PAC1 RECEIVER AND USES OF THE SAME
CN114621969A (en) 2014-09-17 2022-06-14 诺华股份有限公司 Targeted cytotoxic cells with chimeric receptors for adoptive immunotherapy
MA40764A (en) 2014-09-26 2017-08-01 Chugai Pharmaceutical Co Ltd THERAPEUTIC AGENT INDUCING CYTOTOXICITY
TWI700300B (en) 2014-09-26 2020-08-01 日商中外製藥股份有限公司 Antibodies that neutralize substances with the function of FVIII coagulation factor (FVIII)
TWI701435B (en) 2014-09-26 2020-08-11 日商中外製藥股份有限公司 Method to determine the reactivity of FVIII
ES2850325T3 (en) 2014-10-09 2021-08-27 Engmab Sarl Bispecific antibodies against CD3epsilon and ROR1
CR20170143A (en) 2014-10-14 2017-06-19 Dana Farber Cancer Inst Inc ANTIBODY MOLECULES THAT JOIN PD-L1 AND USES OF THE SAME
CN107530419B (en) 2014-10-31 2021-05-18 昂考梅德药品有限公司 Combination therapy for treating disease
KR20170076697A (en) 2014-11-06 2017-07-04 에프. 호프만-라 로슈 아게 Fc-region variants with modified fcrn- and protein a-binding properties
ES2749383T3 (en) 2014-11-06 2020-03-20 Hoffmann La Roche Variants of the Fc Region with Modified FcRn Binding and Methods of Use
JP7125248B2 (en) 2014-11-11 2022-08-24 中外製薬株式会社 Libraries of antigen-binding molecules containing altered antibody variable regions
EP3023437A1 (en) 2014-11-20 2016-05-25 EngMab AG Bispecific antibodies against CD3epsilon and BCMA
MY192999A (en) 2014-11-20 2022-09-20 Hoffmann La Roche Combination therapy of t cell activating bispecific antigen binding molecules and pd-1 axis binding antagonists
AU2015353416C1 (en) 2014-11-26 2022-01-27 Xencor, Inc. Heterodimeric antibodies that bind CD3 and CD38
US10259887B2 (en) 2014-11-26 2019-04-16 Xencor, Inc. Heterodimeric antibodies that bind CD3 and tumor antigens
IL252480B2 (en) 2014-11-26 2023-12-01 Xencor Inc Heterodimeric antibodies that bind cd3 and tumor antigens
JP6721590B2 (en) 2014-12-03 2020-07-15 エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft Multispecific antibody
US20180334490A1 (en) 2014-12-03 2018-11-22 Qilong H. Wu Methods for b cell preconditioning in car therapy
EP3233907B1 (en) 2014-12-19 2021-03-03 Genmab A/S Rodent bispecific heterodimeric proteins
MA41294A (en) 2014-12-19 2017-11-08 Chugai Pharmaceutical Co Ltd ANTI-MYOSTATIN ANTIBODIES, POLYPEPTIDES CONTAINING FC REGION VARIANTS, AND METHODS OF USE
HUE056489T2 (en) 2014-12-19 2022-02-28 Chugai Pharmaceutical Co Ltd Anti-c5 antibodies and methods of use
US10428155B2 (en) 2014-12-22 2019-10-01 Xencor, Inc. Trispecific antibodies
MA41375A (en) 2015-01-22 2017-11-28 Lilly Co Eli BISPECIFIC IGG ANTIBODIES AND THEIR PREPARATION PROCESSES
EP3253778A1 (en) 2015-02-05 2017-12-13 Chugai Seiyaku Kabushiki Kaisha Antibodies comprising an ion concentration dependent antigen-binding domain, fc region variants, il-8-binding antibodies, and uses therof
KR101892883B1 (en) 2015-02-27 2018-10-05 추가이 세이야쿠 가부시키가이샤 Composition for treating il-6-related diseases
WO2016141387A1 (en) 2015-03-05 2016-09-09 Xencor, Inc. Modulation of t cells with bispecific antibodies and fc fusions
US11142587B2 (en) 2015-04-01 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide hetero-oligomer
CN114958764A (en) 2015-04-08 2022-08-30 诺华股份有限公司 CD20 therapy, CD22 therapy, and combination therapy with CD19 Chimeric Antigen Receptor (CAR) -expressing cells
AU2016248817A1 (en) 2015-04-17 2017-08-17 F. Hoffmann-La Roche Ag Combination therapy with coagulation factors and multispecific antibodies
EP3286211A1 (en) 2015-04-23 2018-02-28 Novartis AG Treatment of cancer using chimeric antigen receptor and protein kinase a blocker
CA2985125A1 (en) 2015-05-06 2016-11-10 Janssen Biotech, Inc. Prostate specific membrane antigen (psma) bispecific binding agents and uses thereof
CA2986594A1 (en) 2015-05-20 2016-11-24 Tufts Medical Center, Inc. Anti-cd38 antibodies for treatment of light chain amyloidosis and other cd38-positive hematological malignancies
TW201718647A (en) 2015-06-16 2017-06-01 建南德克公司 Anti-CLL-1 antibodies and methods of use
PL3310814T3 (en) 2015-06-16 2023-12-11 F. Hoffmann-La Roche Ag Humanized and affinity matured antibodies to fcrh5 and methods of use
CN107708734B (en) 2015-06-22 2022-01-11 詹森生物科技公司 Combination therapy of heme malignancies with anti-CD 38 antibodies and survivin inhibitors
EP3313441B1 (en) 2015-06-24 2024-02-21 Janssen Biotech, Inc. Immune modulation and treatment of solid tumors with antibodies that specifically bind cd38
CN107810196B (en) 2015-06-24 2021-11-05 豪夫迈·罗氏有限公司 Humanized anti-Tau (pS422) antibodies and methods of use
US20180201693A1 (en) 2015-07-09 2018-07-19 Genmab A/S Bispecific and multispecific antibodies and method for isolation of such
JP7010811B2 (en) 2015-07-10 2022-02-10 メルス ナムローゼ フェンノートシャップ Human CD3 binding antibody
HUE049072T2 (en) 2015-07-10 2020-09-28 Genmab As Axl-specific antibody-drug conjugates for cancer treatment
EP3322727A1 (en) 2015-07-15 2018-05-23 Genmab A/S Humanized or chimeric cd3 antibodies
EP3878465A1 (en) 2015-07-29 2021-09-15 Novartis AG Combination therapies comprising antibody molecules to tim-3
EP3317301B1 (en) 2015-07-29 2021-04-07 Novartis AG Combination therapies comprising antibody molecules to lag-3
PL3331910T3 (en) 2015-08-03 2020-05-18 Engmab Sàrl Monoclonal antibodies against human b cell maturation antigen (bcma)
ES2944982T3 (en) 2015-08-05 2023-06-27 Janssen Biotech Inc Anti-CD154 antibodies and methods of using them
CA2995754A1 (en) 2015-08-17 2017-02-23 Janssen Pharmaceutica Nv Anti-bcma antibodies, bispecific antigen binding molecules that bind bcma and cd3, and uses thereof
US11352426B2 (en) 2015-09-21 2022-06-07 Aptevo Research And Development Llc CD3 binding polypeptides
CA2999160A1 (en) 2015-09-23 2017-03-30 Oncomed Pharmaceuticals, Inc. Methods and compositions for treatment of cancer
JP2018529351A (en) 2015-09-30 2018-10-11 ヤンセン バイオテツク,インコーポレーテツド Antagonist antibodies that specifically bind to human CD40 and methods of use
AR106188A1 (en) 2015-10-01 2017-12-20 Hoffmann La Roche ANTI-CD19 HUMANIZED HUMAN ANTIBODIES AND METHODS OF USE
WO2017055391A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Bispecific t cell activating antigen binding molecules binding mesothelin and cd3
WO2017055385A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xgd2 bispecific t cell activating antigen binding molecules
CN108139394B (en) 2015-10-02 2020-10-30 豪夫迈·罗氏有限公司 Cell-based FRET assay for determining simultaneous binding
EP3356409A2 (en) 2015-10-02 2018-08-08 H. Hoffnabb-La Roche Ag Bispecific t cell activating antigen binding molecules
WO2017055392A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xcd44v6 bispecific t cell activating antigen binding molecules
WO2017055393A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xtim-3 bispecific t cell activating antigen binding molecules
EP3150636A1 (en) 2015-10-02 2017-04-05 F. Hoffmann-La Roche AG Tetravalent multispecific antibodies
EP3150637A1 (en) 2015-10-02 2017-04-05 F. Hoffmann-La Roche AG Multispecific antibodies
JP7044700B2 (en) 2015-10-02 2022-03-30 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Bispecific anti-CEAXCD3 T cell activating antigen binding molecule
WO2017055395A1 (en) 2015-10-02 2017-04-06 F. Hoffmann-La Roche Ag Anti-cd3xrob04 bispecific t cell activating antigen binding molecules
CR20180161A (en) 2015-10-02 2018-05-25 Hoffmann La Roche Bispecific Antibodies for PD1 and TIM3
EP3356407B1 (en) 2015-10-02 2021-11-03 F. Hoffmann-La Roche AG Bispecific anti-cd19xcd3 t cell activating antigen binding molecules
RU2018116846A (en) 2015-10-08 2019-11-08 Займворкс Инк. ANTIGEN-BINDING POLYEPEPTIDE CONSTRUCTIONS CONTAINING THE LIGHT CAPPA AND LAMBDA CHAINS AND THEIR APPLICATIONS
RU2767209C2 (en) 2015-10-23 2022-03-16 Еурека Терапьютикс, Инк. Chimeric antibody/t-cell receptor structures and their applications
MX2018004988A (en) 2015-10-23 2018-11-09 Merus Nv Binding molecules that inhibit cancer growth.
AU2016344665C1 (en) 2015-10-29 2023-07-27 F. Hoffmann-La Roche Ag Anti-variant Fc-region antibodies and methods of use
KR20180072820A (en) 2015-11-02 2018-06-29 얀센 파마슈티카 엔.브이. A bispecific antigen binding molecule that binds to an anti-IL1RAP antibody, IL1RAP and CD3,
KR20180067693A (en) 2015-11-03 2018-06-20 얀센 바이오테크 인코포레이티드 Subcutaneous preparations of anti-CD38 antibodies and uses thereof
EA201891093A1 (en) 2015-11-03 2018-10-31 Янссен Байотек, Инк. ANTIBODIES SPECIFICALLY BINDING PD-1 AND THEIR APPLICATION
JP6925278B2 (en) 2015-11-18 2021-08-25 中外製薬株式会社 Method of enhancing humoral immune response
WO2017086367A1 (en) 2015-11-18 2017-05-26 中外製薬株式会社 Combination therapy using t cell redirection antigen binding molecule against cell having immunosuppressing function
US11623957B2 (en) 2015-12-07 2023-04-11 Xencor, Inc. Heterodimeric antibodies that bind CD3 and PSMA
EP3387015B1 (en) 2015-12-09 2021-10-27 F. Hoffmann-La Roche AG Type ii anti-cd20 antibody for reducing formation of anti-drug antibodies
EP3178848A1 (en) 2015-12-09 2017-06-14 F. Hoffmann-La Roche AG Type ii anti-cd20 antibody for reducing formation of anti-drug antibodies
CR20180365A (en) 2015-12-16 2018-09-28 Amgen Inc PROTEINS OF UNION TO THE ANTI-TL1A / ANTI-TNF-a BISPECTIVE ANTIGEN AND ITS USES
EP3389712B1 (en) 2015-12-17 2024-04-10 Novartis AG Antibody molecules to pd-1 and uses thereof
CN108713027A (en) 2015-12-17 2018-10-26 詹森生物科技公司 Specifically bind the antibody and application thereof of HLA-DR
CA3007421A1 (en) 2015-12-17 2017-06-22 Novartis Ag Combination of c-met inhibitor with antibody molecule to pd-1 and uses thereof
EP3395835B1 (en) 2015-12-25 2021-02-03 Chugai Seiyaku Kabushiki Kaisha Antibody having enhanced activity, and method for modifying same
WO2017110981A1 (en) 2015-12-25 2017-06-29 Chugai Seiyaku Kabushiki Kaisha Anti-myostatin antibodies and methods of use
AU2016381992B2 (en) 2015-12-28 2024-01-04 Chugai Seiyaku Kabushiki Kaisha Method for promoting efficiency of purification of Fc region-containing polypeptide
CN106661117B (en) * 2015-12-30 2020-11-17 深圳先进技术研究院 IgG hybrid anti-TNF alpha and IL-17A bispecific antibodies
CA3006529A1 (en) 2016-01-08 2017-07-13 F. Hoffmann-La Roche Ag Methods of treating cea-positive cancers using pd-1 axis binding antagonists and anti-cea/anti-cd3 bispecific antibodies
ES2847155T3 (en) 2016-01-21 2021-08-02 Novartis Ag Multispecific molecules targeting CLL-1
SG11201807489PA (en) 2016-03-04 2018-09-27 Novartis Ag Cells expressing multiple chimeric antigen receptor (car) molecules and uses therefore
MX2018010988A (en) 2016-03-14 2019-01-21 Chugai Pharmaceutical Co Ltd Cell injury inducing therapeutic drug for use in cancer therapy.
CA3016563A1 (en) 2016-03-21 2017-09-28 Elstar Therapeutics, Inc. Multispecific and multifunctional molecules and uses thereof
UA127308C2 (en) 2016-03-22 2023-07-19 Ф. Хоффманн-Ля Рош Аг Protease-activated t cell bispecific molecules
EP3432924A1 (en) 2016-03-23 2019-01-30 Novartis AG Cell secreted minibodies and uses thereof
IL310729A (en) 2016-04-15 2024-04-01 Alpine Immune Sciences Inc Cd80 variant immunomodulatory proteins and uses thereof
IL262321B1 (en) 2016-04-15 2024-05-01 Novartis Ag Compositions and methods for selective protein expression
SG11201808457PA (en) 2016-04-15 2018-10-30 Alpine Immune Sciences Inc Icos ligand variant immunomodulatory proteins and uses thereof
CN116515757A (en) 2016-04-20 2023-08-01 瑞泽恩制药公司 Compositions and methods based on the use of expression enhancing loci for the production of antibodies
CN109071633B (en) 2016-04-20 2022-11-18 瑞泽恩制药公司 Compositions and methods based on the use of expression enhancing loci for the production of antibodies
CR20180509A (en) 2016-05-02 2019-02-15 Hoffmann La Roche CONTORSBODY - A BIND OF DIANA MONOCATENARY
AU2017272109A1 (en) 2016-05-23 2019-01-17 Momenta Pharmaceuticals, Inc. Compositions and methods related to engineered Fc constructs
US20210177896A1 (en) 2016-06-02 2021-06-17 Novartis Ag Therapeutic regimens for chimeric antigen receptor (car)- expressing cells
EP3252078A1 (en) 2016-06-02 2017-12-06 F. Hoffmann-La Roche AG Type ii anti-cd20 antibody and anti-cd20/cd3 bispecific antibody for treatment of cancer
TW201902512A (en) 2016-06-02 2019-01-16 瑞士商赫孚孟拉羅股份公司 treatment method
RU2022104399A (en) 2016-06-14 2022-05-05 Ксенкор, Инк. BISPECIFIC ANTIBODIES-CHECKPOINT INHIBITORS
EP3474895A1 (en) 2016-06-28 2019-05-01 UMC Utrecht Holding B.V. TREATMENT OF IgE-MEDIATED DISEASES WITH ANTIBODIES THAT SPECIFICALLY BIND CD38
MX2018016265A (en) 2016-06-28 2019-07-04 Xencor Inc Heterodimeric antibodies that bind somatostatin receptor 2.
WO2018007314A1 (en) 2016-07-04 2018-01-11 F. Hoffmann-La Roche Ag Novel antibody format
EP3484922A1 (en) 2016-07-14 2019-05-22 Genmab A/S Multispecific antibodies against cd40 and cd137
EP3484455A2 (en) 2016-07-15 2019-05-22 Novartis AG Treatment and prevention of cytokine release syndrome using a chimeric antigen receptor in combination with a kinase inhibitor
TWI781108B (en) 2016-07-20 2022-10-21 比利時商健生藥品公司 Anti- gprc5d antibodies, bispecific antigen binding molecules that bind gprc5d and cd3, and uses thereof
KR20190034588A (en) 2016-07-28 2019-04-02 노파르티스 아게 Combination therapy of chimeric antigen receptor and PD-1 inhibitor
WO2018022945A1 (en) 2016-07-28 2018-02-01 Alpine Immune Sciences, Inc. Cd112 variant immunomodulatory proteins and uses thereof
EP3491013A1 (en) 2016-07-28 2019-06-05 Alpine Immune Sciences, Inc. Cd155 variant immunomodulatory proteins and uses thereof
KR20190036551A (en) 2016-08-01 2019-04-04 노파르티스 아게 Treatment of Cancer Using Chimeric Antigen Receptors in Combination with Inhibitors of PRO-M2 Macrophage Molecules
AU2017305073B2 (en) 2016-08-05 2024-02-01 Chugai Seiyaku Kabushiki Kaisha Composition for prevention or treatment of IL-8 related diseases
SG11201900746RA (en) 2016-08-12 2019-02-27 Janssen Biotech Inc Engineered antibodies and other fc-domain containing molecules with enhanced agonism and effector functions
KR102554331B1 (en) 2016-08-12 2023-07-10 얀센 바이오테크 인코포레이티드 Fc engineered anti-TNFR superfamily member antibodies with enhanced agonistic activity and methods of use thereof
US10793632B2 (en) 2016-08-30 2020-10-06 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
MA46200A (en) 2016-09-06 2019-07-17 Chugai Pharmaceutical Co Ltd METHODS FOR USING A BISPECIFIC ANTIBODY WHICH RECOGNIZES COAGULATION FACTOR IX AND / OR COAGULATION FACTOR IX ACTIVATED AND COAGULATION FACTOR X AND / OR COAGULATION FACTOR X ACTIVATED
EP3519820B1 (en) 2016-09-30 2020-12-09 H. Hoffnabb-La Roche Ag Spr-based dual-binding assay for the functional analysis of multispecific molecules
ES2897217T3 (en) 2016-09-30 2022-02-28 Hoffmann La Roche Bispecific antibodies against p95HER2
MX2019003886A (en) 2016-10-07 2019-08-05 Novartis Ag Chimeric antigen receptors for the treatment of cancer.
PE20191034A1 (en) 2016-10-14 2019-08-05 Xencor Inc BISPECIFIC HETERODIMERIC FUSION PROTEINS CONTAINING FC IL-15 / IL-15R FUSION PROTEINS AND PD-1 ANTIBODY FRAGMENTS
JOP20190097A1 (en) 2016-10-27 2019-04-28 Janssen Pharmaceutica Nv Immunoglobulins and uses thereof
EP3535291A1 (en) 2016-11-01 2019-09-11 Genmab B.V. Polypeptide variants and uses thereof
JP7267914B2 (en) 2016-11-02 2023-05-02 エンクマフ エスアーエールエル Bispecific antibodies to BCMA and CD3 and immunotherapeutic agents used in combination to treat multiple myeloma
JP2020503260A (en) 2016-11-15 2020-01-30 ジェネンテック, インコーポレイテッド Administration for treatment with anti-CD20 / anti-CD3 bispecific antibodies
TW201829463A (en) 2016-11-18 2018-08-16 瑞士商赫孚孟拉羅股份公司 Anti-hla-g antibodies and use thereof
CR20190297A (en) 2016-11-23 2019-11-01 Bioverativ Therapeutics Inc Mono- and bispecific antibodies binding to coagulation factor ix and coagulation factor x
MA46959A (en) 2016-12-02 2019-10-09 Juno Therapeutics Inc MODIFIED B CELLS AND RELATED COMPOSITIONS AND METHODS
US11129906B1 (en) 2016-12-07 2021-09-28 David Gordon Bermudes Chimeric protein toxins for expression by therapeutic bacteria
WO2018122053A1 (en) 2016-12-29 2018-07-05 F. Hoffmann-La Roche Ag Anti-angiopoietin-2 antibody formulation
AU2018205808A1 (en) 2017-01-06 2019-07-25 Momenta Pharmaceuticals, Inc. Compositions and methods related to engineered Fc constructs
US11535662B2 (en) 2017-01-26 2022-12-27 Novartis Ag CD28 compositions and methods for chimeric antigen receptor therapy
US20200181277A1 (en) 2017-02-10 2020-06-11 Genmab B.V. Polypeptide variants and uses thereof
US20200291089A1 (en) 2017-02-16 2020-09-17 Elstar Therapeutics, Inc. Multifunctional molecules comprising a trimeric ligand and uses thereof
WO2018155611A1 (en) 2017-02-24 2018-08-30 中外製薬株式会社 Pharmaceutical composition, antigen-binding molecules, treatment method, and screening method
US11685776B2 (en) 2017-03-02 2023-06-27 Novartis Ag Engineered heterodimeric proteins
WO2018162749A1 (en) 2017-03-09 2018-09-13 Genmab A/S Antibodies against pd-l1
JP7021245B2 (en) 2017-03-10 2022-02-16 エフ.ホフマン-ラ ロシュ アーゲー Methods for Producing Multispecific Antibodies
JP2020509776A (en) 2017-03-16 2020-04-02 アルパイン イミューン サイエンシズ インコーポレイテッド PD-L1 variant immunomodulatory proteins and uses thereof
SG11201907769XA (en) 2017-03-16 2019-09-27 Alpine Immune Sciences Inc Cd80 variant immunomodulatory proteins and uses thereof
EP3596115A1 (en) 2017-03-16 2020-01-22 Alpine Immune Sciences, Inc. Pd-l2 variant immunomodulatory proteins and uses thereof
WO2018182422A1 (en) 2017-03-31 2018-10-04 Merus N.V. Erbb-2 and erbb3 binding bispecific antibodies for use in the treatment f cells that have an nrg1 fusion gene
JP7330942B2 (en) 2017-03-31 2023-08-22 ジェンマブ ホールディング ビー.ブイ. Bispecific Anti-CD37 Antibodies, Monoclonal Anti-CD37 Antibodies, and Methods of Using Them
JP7209298B2 (en) 2017-03-31 2023-01-20 公立大学法人奈良県立医科大学 A pharmaceutical composition used for the prevention and/or treatment of blood coagulation factor IX disorders, containing a multispecific antigen-binding molecule that substitutes for the function of blood coagulation factor VIII
JP2020515637A (en) 2017-04-03 2020-05-28 オンコロジー、インコーポレイテッド Method for treating cancer using PS targeting antibody with immunotumor agent
WO2018184966A1 (en) 2017-04-03 2018-10-11 F. Hoffmann-La Roche Ag Antibodies binding to steap-1
ES2928718T3 (en) 2017-04-03 2022-11-22 Hoffmann La Roche Immunoconjugates of an anti-PD-1 antibody with a mutant IL-2 or with IL-15
CN110382525B (en) 2017-04-03 2023-10-20 豪夫迈·罗氏有限公司 Immunoconjugates
JP2020516638A (en) 2017-04-13 2020-06-11 エフ・ホフマン−ラ・ロシュ・アクチェンゲゼルシャフト Interleukin 2 immunoconjugates, CD40 agonists, and optional PD-1 axis binding antagonists for use in a method of treating cancer
JP2020517287A (en) 2017-04-26 2020-06-18 ユーリカ セラピューティックス, インコーポレイテッド Chimeric antibody/T cell receptor constructs and uses thereof
WO2018201051A1 (en) 2017-04-28 2018-11-01 Novartis Ag Bcma-targeting agent, and combination therapy with a gamma secretase inhibitor
US20200055948A1 (en) 2017-04-28 2020-02-20 Novartis Ag Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor
JP7185884B2 (en) 2017-05-02 2022-12-08 国立研究開発法人国立精神・神経医療研究センター METHOD FOR PREDICTING AND DETERMINING THERAPEUTIC EFFECT OF IL-6 AND NEUTROPHIL-RELATED DISEASE
JP2020522254A (en) 2017-05-31 2020-07-30 エルスター セラピューティクス, インコーポレイテッド Multispecific molecules that bind myeloproliferative leukemia (MPL) proteins and uses thereof
MX2019014577A (en) 2017-06-05 2020-07-29 Janssen Biotech Inc Antibodies that specifically bind pd-1 and methods of use.
JP2020522266A (en) 2017-06-05 2020-07-30 ヤンセン バイオテツク,インコーポレーテツド Engineered multispecific antibodies and other multimeric proteins with asymmetric mutations in the CH2-CH3 region
US20200247897A1 (en) 2017-06-07 2020-08-06 Genmab B.V. Therapeutic antibodies based on mutated igg hexamers
UY37758A (en) 2017-06-12 2019-01-31 Novartis Ag METHOD OF MANUFACTURING OF BIESPECTIFIC ANTIBODIES, BISPECTIFIC ANTIBODIES AND THERAPEUTIC USE OF SUCH ANTIBODIES
SG11201912473PA (en) 2017-06-22 2020-01-30 Novartis Ag Antibody molecules to cd73 and uses thereof
GB201709970D0 (en) 2017-06-22 2017-08-09 Kymab Ltd Bispecific antigen-binding molecules
EP3645037A1 (en) 2017-06-27 2020-05-06 Novartis AG Dosage regimens for anti-tim-3 antibodies and uses thereof
CN111132733A (en) 2017-06-30 2020-05-08 Xencor股份有限公司 Targeted heterodimeric Fc fusion proteins containing IL-15/IL-15R α and an antigen binding domain
AR112603A1 (en) 2017-07-10 2019-11-20 Lilly Co Eli BIS SPECIFIC ANTIBODIES CONTROL POINT INHIBITORS
EP3652209A2 (en) 2017-07-11 2020-05-20 Compass Therapeutics LLC Agonist antibodies that bind human cd137 and uses thereof
WO2019018730A1 (en) 2017-07-20 2019-01-24 Novartis Ag Dosage regimens of anti-lag-3 antibodies and uses thereof
BR112020001944A2 (en) 2017-08-04 2020-08-04 Genmab A/S binding agent, nucleic acid, expression vector, cell, composition, methods for treating a disease and for producing a bispecific antibody, using a binding agent, and anti-idiotypic antibody.
SG11202001050PA (en) 2017-08-09 2020-03-30 Merus Nv Antibodies that bind egfr and cmet
WO2019035938A1 (en) 2017-08-16 2019-02-21 Elstar Therapeutics, Inc. Multispecific molecules that bind to bcma and uses thereof
CN111108202A (en) 2017-09-29 2020-05-05 中外制药株式会社 Multispecific antigen-binding molecules with coagulation Factor VIII (FVIII) cofactor functional replacement activity and pharmaceutical preparations containing said molecules as active ingredient
KR20200074137A (en) 2017-10-10 2020-06-24 알파인 이뮨 사이언시즈, 인코포레이티드 CTLA-4 variant immunomodulatory protein and uses thereof
TW201925223A (en) 2017-10-18 2019-07-01 美商艾爾潘免疫科學有限公司 Variant ICOS ligand immunomodulatory proteins and related compositions and methods
AU2018353420A1 (en) 2017-10-20 2020-04-16 F. Hoffmann-La Roche Ag Method for generating multispecific antibodies from monospecific antibodies
CA3078676A1 (en) 2017-10-30 2019-05-09 F. Hoffmann-La Roche Ag Method for in vivo generation of multispecific antibodies from monospecific antibodies
US11718679B2 (en) 2017-10-31 2023-08-08 Compass Therapeutics Llc CD137 antibodies and PD-1 antagonists and uses thereof
CR20200171A (en) 2017-11-01 2020-06-14 Hoffmann La Roche Bispecific 2+1 contorsbodies
WO2019086499A1 (en) 2017-11-01 2019-05-09 F. Hoffmann-La Roche Ag Novel tnf family ligand trimer-containing antigen binding molecules
WO2019086394A1 (en) 2017-11-01 2019-05-09 F. Hoffmann-La Roche Ag The compbody - a multivalent target binder
CN111278856A (en) 2017-11-01 2020-06-12 豪夫迈·罗氏有限公司 TriFab-Comtes
JP2021502100A (en) 2017-11-08 2021-01-28 ゼンコア インコーポレイテッド Bispecific and monospecific antibodies using novel anti-PD-1 sequences
US10981992B2 (en) 2017-11-08 2021-04-20 Xencor, Inc. Bispecific immunomodulatory antibodies that bind costimulatory and checkpoint receptors
RU2020119578A (en) 2017-11-16 2021-12-17 Новартис Аг COMBINED THERAPIES
WO2019100052A2 (en) 2017-11-20 2019-05-23 Compass Therapeutics Llc Cd137 antibodies and tumor antigen-targeting antibodies and uses thereof
TW201938194A (en) 2017-12-05 2019-10-01 日商中外製藥股份有限公司 Antigen-binding molecule comprising altered antibody variable region binding CD3 and CD137
MX2020006322A (en) 2017-12-19 2020-09-18 Xencor Inc Engineered il-2 fc fusion proteins.
US11192957B2 (en) 2017-12-21 2021-12-07 Hoffmann-La Roche Inc. Antibodies binding to HLA-A2/WT1
JP7074859B2 (en) 2017-12-22 2022-05-24 エフ.ホフマン-ラ ロシュ アーゲー Method of depletion of light chain mismatched antibody variants by hydrophobic interaction chromatography
CN109957026A (en) * 2017-12-22 2019-07-02 成都恩沐生物科技有限公司 Covalent multi-specificity antibody
US11667713B2 (en) 2017-12-28 2023-06-06 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
US20230101432A1 (en) 2018-01-03 2023-03-30 Alpine Immune Sciences, Inc. Multi-domain immunomodulatory proteins and methods of use thereof
JP2021510740A (en) 2018-01-24 2021-04-30 ゲンマブ ビー.ブイ. Polypeptide variants and their uses
EP3746116A1 (en) 2018-01-31 2020-12-09 Novartis AG Combination therapy using a chimeric antigen receptor
TW202311746A (en) * 2018-02-02 2023-03-16 美商再生元醫藥公司 System and method for characterizing protein dimerization
SG11202006712XA (en) 2018-02-06 2020-08-28 Hoffmann La Roche Treatment of ophthalmologic diseases
EP3749361A1 (en) 2018-02-08 2020-12-16 F. Hoffmann-La Roche AG Bispecific antigen-binding molecules and methods of use
TWI829667B (en) 2018-02-09 2024-01-21 瑞士商赫孚孟拉羅股份公司 Antibodies binding to gprc5d
WO2019160007A1 (en) 2018-02-14 2019-08-22 中外製薬株式会社 Antigen-binding molecule and combination
EP3762406A2 (en) 2018-03-09 2021-01-13 Askgene Pharma, Inc. Cytokine prodrugs
JP7209008B2 (en) 2018-03-12 2023-01-19 ジェンマブ エー/エス antibody
US20210238280A1 (en) 2018-03-14 2021-08-05 Elstar Therapeutics, Inc. Multifunctional molecules that bind to calreticulin and uses thereof
US20210009711A1 (en) 2018-03-14 2021-01-14 Elstar Therapeutics, Inc. Multifunctional molecules and uses thereof
WO2019195623A2 (en) 2018-04-04 2019-10-10 Xencor, Inc. Heterodimeric antibodies that bind fibroblast activation protein
US20210147547A1 (en) 2018-04-13 2021-05-20 Novartis Ag Dosage Regimens For Anti-Pd-L1 Antibodies And Uses Thereof
AR115052A1 (en) 2018-04-18 2020-11-25 Hoffmann La Roche MULTI-SPECIFIC ANTIBODIES AND THE USE OF THEM
JP2021520829A (en) 2018-04-18 2021-08-26 ゼンコア インコーポレイテッド TIM-3 targeted heterodimer fusion protein containing IL-15 / IL-15RA Fc fusion protein and TIM-3 antigen binding domain
SG11202010163QA (en) 2018-04-18 2020-11-27 Xencor Inc Pd-1 targeted heterodimeric fusion proteins containing il-15/il-15ra fc-fusion proteins and pd-1 antigen binding domains and uses thereof
EP3784351A1 (en) 2018-04-27 2021-03-03 Novartis AG Car t cell therapies with enhanced efficacy
CN112839958A (en) 2018-05-03 2021-05-25 根马布私人有限公司 Antibody variant combinations and uses thereof
CA3100005A1 (en) 2018-05-14 2019-11-21 Werewolf Therapeutics, Inc. Activatable cytokine polypeptides and methods of use thereof
EP3794024B1 (en) 2018-05-14 2023-05-10 Werewolf Therapeutics, Inc. Activatable interleukin-2 polypeptides and methods of use thereof
EP3793599A1 (en) 2018-05-16 2021-03-24 Janssen Biotech, Inc. Bcma/cd3 and gprdc5d/cd3 bispecific antibodies for use in cancer therapy
US20200109195A1 (en) 2018-05-21 2020-04-09 Compass Therapeutics Llc Compositions and methods for enhancing the killing of target cells by nk cells
WO2019226658A1 (en) 2018-05-21 2019-11-28 Compass Therapeutics Llc Multispecific antigen-binding compositions and methods of use
EA202092830A1 (en) 2018-05-23 2021-04-08 Селджин Корпорейшн ANTIPROLIFERATIVE COMPOUNDS AND SPECIFIC ANTIBODIES TO BCMA AND CD3 FOR COMBINED USE
EP3802608A2 (en) 2018-05-24 2021-04-14 Janssen Biotech, Inc. Anti-cd3 antibodies and uses thereof
AU2019274657A1 (en) 2018-05-24 2020-12-10 Janssen Biotech, Inc. PSMA binding agents and uses thereof
WO2019224713A2 (en) 2018-05-24 2019-11-28 Janssen Biotech, Inc. Monospecific and multispecific anti-tmeff2 antibodies and there uses
JOP20190116A1 (en) 2018-05-24 2019-11-24 Janssen Biotech Inc Anti-cd33 antibodies, anti-cd33/anti-cd3 bispecific antibodies and uses thereof
WO2019227003A1 (en) 2018-05-25 2019-11-28 Novartis Ag Combination therapy with chimeric antigen receptor (car) therapies
US20210214459A1 (en) 2018-05-31 2021-07-15 Novartis Ag Antibody molecules to cd73 and uses thereof
TW202016136A (en) 2018-06-01 2020-05-01 瑞士商諾華公司 Binding molecules against bcma and uses thereof
CA3101019A1 (en) 2018-06-01 2019-12-05 Compugen Ltd Anti-pvrig/anti-tigit bispecific antibodies and methods of use
JP7370322B2 (en) 2018-06-04 2023-10-27 中外製薬株式会社 How to detect complexes
CA3100724A1 (en) 2018-06-13 2019-12-19 Novartis Ag B-cell maturation antigen protein (bcma) chimeric antigen receptors and uses thereof
WO2019241758A1 (en) 2018-06-15 2019-12-19 Alpine Immune Sciences, Inc. Pd-1 variant immunomodulatory proteins and uses thereof
MA52969A (en) 2018-06-19 2021-04-28 Atarga Llc ANTIBODY MOLECULES BOUND TO COMPONENT 5 COMPONENT AND THEIR USES
JPWO2019244973A1 (en) 2018-06-20 2021-07-08 中外製薬株式会社 Methods and Compositions for Activating the Immune Response to Target Cells
EP3810194A1 (en) 2018-06-22 2021-04-28 Genmab Holding B.V. Anti-cd37 antibodies and anti-cd20 antibodies, compositions and methods of use thereof
CN112955465A (en) 2018-07-03 2021-06-11 马伦戈治疗公司 anti-TCR antibody molecules and uses thereof
AR116109A1 (en) 2018-07-10 2021-03-31 Novartis Ag DERIVATIVES OF 3- (5-AMINO-1-OXOISOINDOLIN-2-IL) PIPERIDINE-2,6-DIONA AND USES OF THE SAME
EP3820890A1 (en) 2018-07-13 2021-05-19 Genmab A/S Trogocytosis-mediated therapy using cd38 antibodies
WO2020012036A1 (en) 2018-07-13 2020-01-16 Genmab A/S Variants of cd38 antibody and uses thereof
CN112534052A (en) 2018-07-25 2021-03-19 奥美药业有限公司 Novel IL-21 prodrugs and methods of use
WO2020021465A1 (en) 2018-07-25 2020-01-30 Advanced Accelerator Applications (Italy) S.R.L. Method of treatment of neuroendocrine tumors
US20210188957A1 (en) 2018-08-29 2021-06-24 Chugai Seiyaku Kabushiki Kaisha Antibody half-molecule, and method for inhibiting homodimer formation of antibody half-molecule
GB2576914A (en) 2018-09-06 2020-03-11 Kymab Ltd Antigen-binding molecules comprising unpaired variable domains produced in mammals
WO2020068774A1 (en) 2018-09-24 2020-04-02 The Medical College Of Wisconsin, Inc. System and method for the development of cd30 bispecific antibodies for immunotherapy of cd30+ malignancies
CN113286812A (en) 2018-09-27 2021-08-20 西里欧发展公司 Masked cytokine polypeptides
SG11202103192RA (en) 2018-10-03 2021-04-29 Xencor Inc Il-12 heterodimeric fc-fusion proteins
MA53812A (en) 2018-10-04 2021-08-11 Genmab Holding B V PHARMACEUTICAL COMPOSITIONS COMPRISING BISPECIFIC ANTI-CD37 ANTIBODIES
EP3864047A2 (en) 2018-10-12 2021-08-18 Xencor, Inc. Pd-1 targeted il-15/il-15ralpha fc fusion proteins and uses in combination therapies thereof
EP3873519A1 (en) 2018-10-29 2021-09-08 F. Hoffmann-La Roche AG Antibody formulation
JP2022512875A (en) 2018-11-06 2022-02-07 ゲンマブ エー/エス Antibody preparation
JP2022507253A (en) 2018-11-13 2022-01-18 コンパス セラピューティクス リミテッド ライアビリティ カンパニー Multispecific binding constructs for checkpoint molecules and their use
WO2020113141A2 (en) 2018-11-30 2020-06-04 Alpine Immune Sciences, Inc. Cd86 variant immunomodulatory proteins and uses thereof
WO2020115115A1 (en) 2018-12-05 2020-06-11 Morphosys Ag Multispecific antigen-binding molecules
GB201820687D0 (en) 2018-12-19 2019-01-30 Kymab Ltd Antagonists
CA3123356A1 (en) 2018-12-20 2020-06-25 Novartis Ag Combinations of a hdm2-p53 interaction inhibitor and a bcl2 inhibitor and their use for treating cancer
US11618776B2 (en) 2018-12-20 2023-04-04 Xencor, Inc. Targeted heterodimeric Fc fusion proteins containing IL-15/IL-15RA and NKG2D antigen binding domains
EP3897637A1 (en) 2018-12-20 2021-10-27 Novartis AG Dosing regimen and pharmaceutical combination comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
MX2021007307A (en) 2018-12-21 2021-07-07 Hoffmann La Roche Antibodies binding to cd3.
JP2022515770A (en) 2018-12-21 2022-02-22 カイマブ・リミテッド FIXa x FX bispecific antibody with common light chain
EP3902823A1 (en) 2018-12-24 2021-11-03 Sanofi Multispecific binding proteins with mutant fab domains
WO2020136060A1 (en) 2018-12-28 2020-07-02 F. Hoffmann-La Roche Ag A peptide-mhc-i-antibody fusion protein for therapeutic use in a patient with amplified immune response
TW202043256A (en) 2019-01-10 2020-12-01 美商健生生物科技公司 Prostate neoantigens and their uses
BR112021013903A2 (en) 2019-01-15 2021-09-21 Janssen Biotech, Inc. COMPOSITIONS AND METHODS OF ANTI-TNF ANTIBODIES FOR THE TREATMENT OF JUVENILE IDIOPATHIC ARTHRITIS
BR112021013824A2 (en) 2019-01-18 2021-12-14 Janssen Biotech Inc gprc5d chimeric antigen receptors and cells expressing the same
CA3127748A1 (en) 2019-01-23 2020-07-30 Janssen Biotech, Inc. Anti-tnf antibody compositions for use in methods for the treatment of psoriatic arthritis
US10871640B2 (en) 2019-02-15 2020-12-22 Perkinelmer Cellular Technologies Germany Gmbh Methods and systems for automated imaging of three-dimensional objects
EP3924055B1 (en) 2019-02-15 2024-04-03 Novartis AG Substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
US20220144807A1 (en) 2019-02-15 2022-05-12 Novartis Ag 3-(1-oxo-5-(piperidin-4-yl)isoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
AU2020224681A1 (en) 2019-02-21 2021-09-16 Marengo Therapeutics, Inc. Antibody molecules that bind to NKp30 and uses thereof
JP2022521751A (en) 2019-02-21 2022-04-12 マレンゴ・セラピューティクス,インコーポレーテッド Anti-TCR antibody molecule and its use
EP3927746A1 (en) 2019-02-21 2021-12-29 Marengo Therapeutics, Inc. Multifunctional molecules that bind to calreticulin and uses thereof
AU2020224680A1 (en) 2019-02-21 2021-09-16 Marengo Therapeutics, Inc. Multifunctional molecules that bind to T cells and uses thereof to treat autoimmune disorders
JP2022523197A (en) 2019-02-21 2022-04-21 マレンゴ・セラピューティクス,インコーポレーテッド Multifunctional molecules that bind to T cell-related cancer cells and their use
EP3927371A1 (en) 2019-02-22 2021-12-29 Novartis AG Combination therapies of egfrviii chimeric antigen receptors and pd-1 inhibitors
MX2021010265A (en) 2019-02-26 2021-09-23 Janssen Biotech Inc Combination therapies and patient stratification with bispecific anti-egfr/c-met antibodies.
WO2020180726A1 (en) 2019-03-01 2020-09-10 Xencor, Inc. Heterodimeric antibodies that bind enpp3 and cd3
WO2020183245A2 (en) 2019-03-11 2020-09-17 Janssen Pharmaceutica Nv ANTI-Vβ17/ANTI-CD123 BISPECIFIC ANTIBODIES
CN113840838A (en) 2019-03-14 2021-12-24 詹森生物科技公司 Methods of manufacture of compositions for the production of anti-TNF antibodies
CN113825769A (en) 2019-03-14 2021-12-21 詹森生物科技公司 Methods for producing anti-TNF antibody compositions
EP3938384A4 (en) 2019-03-14 2022-12-28 Janssen Biotech, Inc. Manufacturing methods for producing anti-il12/il23 antibody compositions
JP2022524860A (en) 2019-03-14 2022-05-10 ヤンセン バイオテツク,インコーポレーテツド Methods for Producing Anti-TNF Antibody Compositions
US20220153875A1 (en) 2019-03-19 2022-05-19 Chugai Seiyaku Kabushiki Kaisha Antigen-binding molecule containing antigen-binding domain of which binding activity to antigen is changed depending on mta, and library for obtaining said antigen-binding domain
WO2020200944A1 (en) 2019-03-29 2020-10-08 F. Hoffmann-La Roche Ag Method for generating avid-binding multispecific antibodies
SG11202110732XA (en) 2019-03-29 2021-10-28 Atarga Llc Anti fgf23 antibody
JP7249432B2 (en) 2019-03-29 2023-03-30 エフ. ホフマン-ラ ロシュ アーゲー SPR-based binding assays for functional analysis of multivalent molecules
WO2020212947A1 (en) 2019-04-19 2020-10-22 Janssen Biotech, Inc. Methods of treating prostate cancer with an anti- psma/cd3 antibody
BR112021021210A2 (en) 2019-04-25 2021-12-21 Hoffmann La Roche Set of polypeptides, method for generating a heterodimeric polypeptide, first heterodimeric precursor polypeptide, second heterodimeric precursor polypeptide, and pharmaceutical composition
KR20220005031A (en) 2019-04-25 2022-01-12 에프. 호프만-라 로슈 아게 Production of Antibody-Derived Polypeptides by Polypeptide Chain Exchange
CA3132494A1 (en) 2019-04-25 2020-10-29 Ulrich Brinkmann Therapeutic multispecific polypeptides activated by polypeptide chain exchange
CA3139508A1 (en) 2019-05-08 2020-11-12 Janssen Biotech, Inc. Materials and methods for modulating t cell mediated immunity
US20220315661A1 (en) 2019-05-09 2022-10-06 Genmab B.V. Dosage regimens for a combination of anti-dr5 antibodies for use in treating cancer
CN113811770A (en) 2019-05-13 2021-12-17 豪夫迈·罗氏有限公司 Interference-suppressing pharmacokinetic immunoassay
WO2020230091A1 (en) 2019-05-14 2020-11-19 Janssen Biotech, Inc. Combination therapies with bispecific anti-egfr/c-met antibodies and third generation egfr tyrosine kinase inhibitors
SG11202112541RA (en) 2019-05-14 2021-12-30 Werewolf Therapeutics Inc Separation moieties and methods and use thereof
WO2020236797A1 (en) 2019-05-21 2020-11-26 Novartis Ag Variant cd58 domains and uses thereof
EP3972998A1 (en) 2019-05-21 2022-03-30 Novartis AG Cd19 binding molecules and uses thereof
WO2020236795A2 (en) 2019-05-21 2020-11-26 Novartis Ag Trispecific binding molecules against bcma and uses thereof
EP3976648A1 (en) 2019-06-03 2022-04-06 Janssen Biotech, Inc. Anti-tnf antibody compositions, and methods for the treatment of psoriatic arthritis
MX2021014433A (en) 2019-06-05 2022-03-11 Chugai Pharmaceutical Co Ltd Antibody cleavage site-binding molecule.
CA3141626A1 (en) 2019-06-12 2020-12-17 AskGene Pharma, Inc. Novel il-15 prodrugs and methods of use thereof
CA3140297A1 (en) 2019-06-19 2020-12-24 Simon Auslaender Method for the generation of a protein expressing cell by targeted integration using cre mrna
AU2020306672B2 (en) 2019-06-26 2023-08-24 F. Hoffmann-La Roche Ag Mammalian cell lines with SIRT-1 gene knockout
CN114051500A (en) 2019-07-02 2022-02-15 豪夫迈·罗氏有限公司 Immunoconjugates comprising interleukin-2 mutants and anti-CD 8 antibodies
AU2020309958A1 (en) 2019-07-10 2021-12-23 Chugai Seiyaku Kabushiki Kaisha Claudin-6 binding molecules and uses thereof
BR112022000145A2 (en) 2019-07-12 2022-02-22 Janssen Pharmaceutica Nv Liaison agents and uses thereof
AR119393A1 (en) 2019-07-15 2021-12-15 Hoffmann La Roche ANTIBODIES THAT BIND NKG2D
WO2021011673A2 (en) 2019-07-16 2021-01-21 Ming Jin Neutralizing anti-amyloid beta antibodies for the treatment of alzheimer's disease
KR20220040483A (en) 2019-07-26 2022-03-30 얀센 바이오테크 인코포레이티드 Proteins comprising kallikrein-associated peptidase 2 antigen binding domains and uses thereof
EP4003526A2 (en) 2019-07-31 2022-06-01 F. Hoffmann-La Roche AG Antibodies binding to gprc5d
GB201910900D0 (en) 2019-07-31 2019-09-11 Scancell Ltd Modified fc-regions to enhance functional affinity of antibodies and antigen binding fragments thereof
EP4004045A1 (en) 2019-07-31 2022-06-01 F. Hoffmann-La Roche AG Antibodies binding to gprc5d
AU2020327000A1 (en) 2019-08-08 2022-03-31 Regeneron Pharmaceuticals, Inc. Novel antigen binding molecule formats
EP4013775A1 (en) 2019-08-12 2022-06-22 Askgene Pharma, Inc. Il-2 fusion proteins that preferentially bind il-2ralpha
WO2021030657A1 (en) 2019-08-15 2021-02-18 Janssen Biotech, Inc. Materials and methods for improved single chain variable fragments
EP4017594A1 (en) 2019-08-21 2022-06-29 Askgene Pharma, Inc. Novel il-21 prodrugs and methods of use thereof
US20220356221A1 (en) 2019-09-28 2022-11-10 AskGene Pharma, Inc. Cytokine prodrugs and dual-prodrugs
TW202128757A (en) 2019-10-11 2021-08-01 美商建南德克公司 Pd-1 targeted il-15/il-15ralpha fc fusion proteins with improved properties
MX2022004769A (en) 2019-10-21 2022-05-16 Novartis Ag Tim-3 inhibitors and uses thereof.
BR112022007376A2 (en) 2019-10-21 2022-07-05 Novartis Ag COMBINATION THERAPIES WITH VENETOCLAX AND TIM-3 INHIBITORS
US20210130477A1 (en) 2019-11-05 2021-05-06 Regeneron Pharmaceuticals, Inc. N-TERMINAL scFv MULTISPECIFIC BINDING MOLECULES
JP2023500701A (en) 2019-11-06 2023-01-10 ジェンマブ ビー.ブイ. Antibody variant combinations and uses thereof
EP4061837A1 (en) 2019-11-18 2022-09-28 Janssen Biotech, Inc. Anti-cd79 chimeric antigen receptors, car-t cells, and uses thereof
EP4065158A2 (en) 2019-11-26 2022-10-05 Novartis AG Chimeric antigen receptors binding bcma and cd19 and uses thereof
JP2023506750A (en) 2019-12-11 2023-02-20 シラグ・ゲーエムベーハー・インターナショナル Multispecific binding molecules comprising LTBR and EDB binding domains and uses thereof
WO2021122733A1 (en) 2019-12-18 2021-06-24 F. Hoffmann-La Roche Ag Bispecific anti-ccl2 antibodies
CA3161390A1 (en) 2019-12-18 2021-06-24 Tina WEINZIERL Antibodies binding to hla-a2/mage-a4
TW202135858A (en) 2019-12-20 2021-10-01 瑞士商諾華公司 USES OF ANTI-TGFβ ANTIBODIES AND CHECKPOINT INHIBITORS FOR THE TREATMENT OF PROLIFERATIVE DISEASES
TW202136316A (en) 2019-12-20 2021-10-01 美商再生元醫藥公司 Novel il2 agonists and methods of use thereof
IL294226A (en) 2019-12-27 2022-08-01 Chugai Pharmaceutical Co Ltd Anti-ctla-4 antibody and use thereof
WO2021136772A1 (en) 2020-01-02 2021-07-08 F. Hoffmann-La Roche Ag Method for determining the amount of a therapeutic antibody in the brain
WO2021138407A2 (en) 2020-01-03 2021-07-08 Marengo Therapeutics, Inc. Multifunctional molecules that bind to cd33 and uses thereof
CA3165927A1 (en) 2020-01-11 2021-07-15 AskGene Pharma, Inc. Novel masked cytokines and methods of use thereof
PE20230113A1 (en) 2020-01-16 2023-01-27 Genmab As FORMULATIONS OF ANTI-CD38 ANTIBODIES AND USES THEREOF
EP4090762A1 (en) 2020-01-17 2022-11-23 Becton, Dickinson and Company Methods and compositions for single cell secretomics
WO2021144657A1 (en) 2020-01-17 2021-07-22 Novartis Ag Combination comprising a tim-3 inhibitor and a hypomethylating agent for use in treating myelodysplastic syndrome or chronic myelomonocytic leukemia
IL272194A (en) 2020-01-22 2021-07-29 Yeda Res & Dev Multispecific antibodies for use in treating diseases
IL272389A (en) 2020-01-30 2021-08-31 Yeda Res & Dev Articles of manufacture comprising anti pd-l1 antibodies and their use in therapy
KR20220144377A (en) 2020-01-30 2022-10-26 우모자 바이오파마 인코포레이티드 Bispecific transduction promoter
WO2021155916A1 (en) 2020-02-04 2021-08-12 BioNTech SE Treatment involving antigen vaccination and binding agents binding to pd-l1 and cd137
TW202144389A (en) 2020-02-14 2021-12-01 美商健生生物科技公司 Neoantigens expressed in multiple myeloma and their uses
TW202144388A (en) 2020-02-14 2021-12-01 美商健生生物科技公司 Neoantigens expressed in ovarian cancer and their uses
JP2023515211A (en) 2020-02-27 2023-04-12 ノバルティス アーゲー Method for producing chimeric antigen receptor-expressing cells
EP4233895A3 (en) 2020-03-13 2023-09-27 Janssen Biotech, Inc. Materials and methods for binding siglec-3/cd33
WO2021185934A1 (en) 2020-03-18 2021-09-23 Genmab A/S Antibodies binding to b7h4
WO2021190980A1 (en) 2020-03-22 2021-09-30 Quadrucept Bio Limited Multimers for viral strain evolution
US20230128499A1 (en) 2020-03-27 2023-04-27 Novartis Ag Bispecific combination therapy for treating proliferative diseases and autoimmune diseases
TW202204407A (en) 2020-03-30 2022-02-01 國立大學法人三重大學 bispecific antibody
MX2022012091A (en) 2020-03-31 2022-10-13 Chugai Pharmaceutical Co Ltd Dll3-targeting multispecific antigen-binding molecules and uses thereof.
CN115335410A (en) 2020-03-31 2022-11-11 中外制药株式会社 Method for producing multispecific antigen-binding molecules
MX2022012541A (en) 2020-04-15 2022-11-07 Hoffmann La Roche Immunoconjugates.
AU2021257848A1 (en) 2020-04-15 2022-12-01 Voyager Therapeutics, Inc. Tau binding compounds
AU2021255126A1 (en) 2020-04-16 2022-12-15 Janssen Biotech, Inc. Systems, materials, and methods for reversed-phase high performance liquid chromatography (RP-HPLC) for monitoring formation of multi-specific molecules
GB202005879D0 (en) 2020-04-22 2020-06-03 Petmedix Ltd Heterodimeric proteins
EP4139363A1 (en) 2020-04-24 2023-03-01 Marengo Therapeutics, Inc. Multifunctional molecules that bind to t cell related cancer cells and uses thereof
CN113563473A (en) 2020-04-29 2021-10-29 三生国健药业(上海)股份有限公司 Tetravalent bispecific antibody, preparation method and application thereof
CN115803027A (en) 2020-04-30 2023-03-14 百时美施贵宝公司 Methods of treating cytokine-related adverse events
JP2023523794A (en) 2020-05-01 2023-06-07 ノバルティス アーゲー engineered immunoglobulin
BR112022022433A2 (en) 2020-05-08 2022-12-13 Alpine Immune Sciences Inc INHIBITORY IMMUNOMODULATORY PROTEINS APRIL AND BAFF AND METHODS OF THEIR USE
JP2023524149A (en) 2020-05-08 2023-06-08 ジェンマブ エー/エス Bispecific antibodies against CD3 and CD20
EP4149628A1 (en) 2020-05-11 2023-03-22 Janssen Biotech, Inc. Methods for treating multiple myeloma
US20230181712A1 (en) 2020-05-11 2023-06-15 Hoffmann-La Roche Inc. Combination therapy with modified pbmcs and an immunoconjugate
KR20230009430A (en) 2020-05-12 2023-01-17 리제너론 파아마슈티컬스, 인크. Novel IL10 agonists and methods of their use
US11919956B2 (en) 2020-05-14 2024-03-05 Xencor, Inc. Heterodimeric antibodies that bind prostate specific membrane antigen (PSMA) and CD3
EP4155405A1 (en) 2020-05-22 2023-03-29 Chugai Seiyaku Kabushiki Kaisha Antibody for neutralizing substance having coagulation factor viii (f.viii) function-substituting activity
MX2022014938A (en) 2020-05-27 2023-03-06 Janssen Biotech Inc Proteins comprising cd3 antigen binding domains and uses thereof.
GB202008860D0 (en) 2020-06-11 2020-07-29 Univ Oxford Innovation Ltd BTLA antibodies
TW202219065A (en) 2020-06-19 2022-05-16 瑞士商赫孚孟拉羅股份公司 Immune activating Fc domain binding molecules
CR20220639A (en) 2020-06-19 2023-02-17 Hoffmann La Roche Antibodies binding to cd3 and folr1
CR20220628A (en) 2020-06-19 2023-01-24 Hoffmann La Roche Antibodies binding to cd3
KR20230025672A (en) 2020-06-19 2023-02-22 에프. 호프만-라 로슈 아게 Antibodies that bind to CD3 and CD19
WO2021255146A1 (en) 2020-06-19 2021-12-23 F. Hoffmann-La Roche Ag Antibodies binding to cd3 and cea
AU2021297099A1 (en) 2020-06-23 2023-01-05 Novartis Ag Dosing regimen comprising 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives
CN116323664A (en) 2020-07-16 2023-06-23 诺华股份有限公司 Anti-beta-cytokine antibodies, fragments thereof, and multispecific binding molecules
JP2023534726A (en) 2020-07-23 2023-08-10 ジェンマブ ビー.ブイ. Combining anti-DR5 antibodies with immunomodulatory imide drugs for use in treating multiple myeloma
WO2022026592A2 (en) 2020-07-28 2022-02-03 Celltas Bio, Inc. Antibody molecules to coronavirus and uses thereof
EP4188439A2 (en) 2020-07-29 2023-06-07 Janssen Biotech, Inc. Proteins comprising hla-g antigen binding domains and their uses
TW202220677A (en) 2020-07-31 2022-06-01 日商中外製藥股份有限公司 Pharmaceutical composition comprising cell expressing chimeric receptor
WO2022029573A1 (en) 2020-08-03 2022-02-10 Novartis Ag Heteroaryl substituted 3-(1-oxoisoindolin-2-yl)piperidine-2,6-dione derivatives and uses thereof
KR20230065256A (en) 2020-08-06 2023-05-11 비온테크 에스이 Binding agent for coronavirus S protein
MX2023001962A (en) 2020-08-19 2023-04-26 Xencor Inc Anti-cd28 and/or anti-b7h3 compositions.
EP4204096A2 (en) 2020-08-26 2023-07-05 Marengo Therapeutics, Inc. Antibody molecules that bind to nkp30 and uses thereof
CA3190755A1 (en) 2020-08-26 2022-03-03 Andreas Loew Multifunctional molecules that bind to calreticulin and uses thereof
JP2023540248A (en) 2020-08-26 2023-09-22 マレンゴ・セラピューティクス,インコーポレーテッド How to detect TRBC1 or TRBC2
US20230416371A1 (en) 2020-08-28 2023-12-28 Chugai Seiyaku Kabushiki Kaisha Heterodimer fc polypeptide
US20230338587A1 (en) 2020-08-31 2023-10-26 Advanced Accelerator Applications International Sa Method of treating psma-expressing cancers
US20230321285A1 (en) 2020-08-31 2023-10-12 Advanced Accelerator Applications International Sa Method of treating psma-expressing cancers
IL300835A (en) 2020-09-02 2023-04-01 Genmab As Antibody therapy
KR20230066393A (en) 2020-09-10 2023-05-15 젠맵 에이/에스 Bispecific antibodies to CD3 and CD20 in combination therapy to treat follicular lymphoma
BR112023004319A2 (en) 2020-09-10 2023-04-04 Genmab As METHOD TO TREAT DIFFUSE LARGE B-CELL LYMPHOMA
WO2022053653A1 (en) 2020-09-10 2022-03-17 Genmab A/S Bispecific antibodies against cd3 and cd20 for treating chronic lymphocytic leukemia
KR20230066581A (en) 2020-09-10 2023-05-16 젠맵 에이/에스 Bispecific antibodies to CD3 and CD20 in combination therapy for the treatment of diffuse large B-cell lymphoma
CA3189883A1 (en) 2020-09-10 2022-03-17 Brian Elliott Bispecific antibody against cd3 and cd20 in combination therapy for treating follicular lymphoma
AU2021340232A1 (en) 2020-09-10 2023-04-13 Genmab A/S Bispecific antibody against CD3 and CD20 in combination therapy for treating diffuse large B-cell lymphoma
JP2023540796A (en) 2020-09-11 2023-09-26 ヤンセン バイオテツク,インコーポレーテツド Methods and compositions for modulating beta chain-mediated immunity
JP2023544254A (en) 2020-09-14 2023-10-23 ストロ バイオファーマ, インコーポレイテッド Large-scale antibody production method using cell-free protein synthesis system
KR20230068415A (en) 2020-09-24 2023-05-17 에프. 호프만-라 로슈 아게 Mammalian cell lines with gene knockouts
EP4221742A1 (en) 2020-10-02 2023-08-09 Genmab A/S Antibodies capable of binding to ror2 and bispecific antibodies binding to ror2 and cd3
CA3198590A1 (en) 2020-10-13 2022-04-21 Rajkumar Ganesan Bioengineered t cell mediated immunity, materials and other methods for modulating cluster of differentiation iv &/or viii
CA3199319A1 (en) 2020-10-22 2022-04-28 Janssen Biotech, Inc. Proteins comprising delta-like ligand 3 (dll3) antigen binding domains and their uses
JP2023550287A (en) 2020-11-02 2023-12-01 アトララス・インコーポレイテッド SAP FC fusion protein and method of use
CA3199839A1 (en) 2020-11-06 2022-05-12 Novartis Ag Anti-cd19 agent and b cell targeting agent combination therapy for treating b cell malignancies
MX2023005353A (en) 2020-11-06 2023-05-22 Novartis Ag Cd19 binding molecules and uses thereof.
WO2022100613A1 (en) 2020-11-10 2022-05-19 上海齐鲁制药研究中心有限公司 Bispecific antibody for claudin 18a2 and cd3 and application of bispecific antibody
WO2022104061A1 (en) 2020-11-13 2022-05-19 Novartis Ag Combination therapies with chimeric antigen receptor (car)-expressing cells
IL303656A (en) 2020-12-17 2023-08-01 Hoffmann La Roche Anti-hla-g antibodies and use thereof
EP4263595A1 (en) 2020-12-18 2023-10-25 F. Hoffmann-La Roche AG Precursor proteins and kit for targeted therapy
WO2022136140A1 (en) 2020-12-22 2022-06-30 F. Hoffmann-La Roche Ag Oligonucleotides targeting xbp1
IL304067A (en) 2021-01-06 2023-08-01 Hoffmann La Roche Combination therapy employing a pd1-lag3 bispecific antibody and a cd20 t cell bispecific antibody
WO2022148853A1 (en) 2021-01-11 2022-07-14 F. Hoffmann-La Roche Ag Immunoconjugates
EP4277707A1 (en) 2021-01-14 2023-11-22 Askgene Pharma, Inc. Interferon prodrugs and methods of making and using the same
EP4284838A2 (en) 2021-01-28 2023-12-06 Janssen Biotech, Inc. Psma binding proteins and uses thereof
EP4284510A1 (en) 2021-01-29 2023-12-06 Novartis AG Dosage regimes for anti-cd73 and anti-entpd2 antibodies and uses thereof
WO2022165443A1 (en) 2021-02-01 2022-08-04 AskGene Pharma, Inc. Chimeric molecules comprising an il-10 or tgf-beta agonist polypeptide
CA3211163A1 (en) 2021-02-16 2022-08-25 Janssen Pharmaceutica Nv Trispecific antibody targeting bcma, gprc5d, and cd3
CA3211114A1 (en) 2021-02-16 2022-08-25 Janssen Biotech, Inc. Materials and methods for enhanced linker targeting
WO2022178103A1 (en) 2021-02-17 2022-08-25 AskGene Pharma, Inc. Il-2 receptor beta subunit mutants
EP4295154A1 (en) 2021-02-18 2023-12-27 F. Hoffmann-La Roche AG Method for resolving complex, multistep antibody interactions
WO2022184659A1 (en) 2021-03-01 2022-09-09 Quadrucept Bio Limited Antibody domains & multimers
BR112023018278A2 (en) 2021-03-09 2023-10-31 Janssen Biotech Inc TREATMENT OF CANCERS WITHOUT EGFR ACTIVATING MUTATIONS
WO2022192403A1 (en) 2021-03-09 2022-09-15 Xencor, Inc. Heterodimeric antibodies that bind cd3 and cldn6
EP4305065A1 (en) 2021-03-10 2024-01-17 Xencor, Inc. Heterodimeric antibodies that bind cd3 and gpc3
US20240150484A1 (en) 2021-03-12 2024-05-09 Genmab A/S Non-activating antibody variants
IL306103A (en) 2021-03-24 2023-11-01 Janssen Biotech Inc Antibody targeting cd22 and cd79b
KR20230160874A (en) 2021-03-24 2023-11-24 얀센 바이오테크 인코포레이티드 Trispecific antibody targeting CD79b, CD20 and CD3
JP2024510777A (en) 2021-03-24 2024-03-11 ヤンセン バイオテツク,インコーポレーテツド Proteins containing CD3 antigen binding domain and uses thereof
EP4317175A1 (en) 2021-03-31 2024-02-07 Jiangsu Hengrui Pharmaceuticals Co., Ltd. Truncated taci polypeptide and fusion protein and use thereof
TW202304979A (en) 2021-04-07 2023-02-01 瑞士商諾華公司 USES OF ANTI-TGFβ ANTIBODIES AND OTHER THERAPEUTIC AGENTS FOR THE TREATMENT OF PROLIFERATIVE DISEASES
AU2022255506A1 (en) 2021-04-08 2023-11-09 Marengo Therapeutics, Inc. Multifunctional molecules binding to tcr and uses thereof
JP2024514802A (en) 2021-04-22 2024-04-03 広東菲鵬制▲薬▼股▲ふん▼有限公司 Bispecific multifunctional fusion polypeptides
CA3213632A1 (en) 2021-04-30 2022-11-03 F. Hoffmann-La Roche Ag Dosing for combination treatment with anti-cd20/anti-cd3 bispecific antibody and anti-cd79b antibody drug conjugate
CA3217803A1 (en) 2021-04-30 2022-11-03 F. Hoffmann-La Roche Ag Dosing for treatment with anti-cd20/anti-cd3 bispecific antibody
US20220372168A1 (en) 2021-05-04 2022-11-24 Regeneron Pharmaceuticals, Inc. Multispecific fgf21 receptor agonists and their uses
CN117597365A (en) 2021-05-04 2024-02-23 再生元制药公司 Multispecific FGF21 receptor agonist and application thereof
KR20240019124A (en) 2021-05-07 2024-02-14 알파인 이뮨 사이언시즈, 인코포레이티드 Administration and treatment method of TACI-FC fusion immunoregulatory protein
AU2022268652A1 (en) 2021-05-07 2023-10-05 Genmab A/S PHARMACEUTICAL COMPOSITIONS COMPRISING BISPECIFIC ANTIBODIES BINDING TO B7H4 and CD3
EP4339207A1 (en) 2021-05-12 2024-03-20 Jiangsu Hengrui Pharmaceuticals Co., Ltd. Antigen binding molecule specifically binding to rankl and ngf, and medical use thereof
EP4339213A1 (en) 2021-05-14 2024-03-20 Jiangsu Hengrui Pharmaceuticals Co., Ltd. Antigen-binding molecule
AR125874A1 (en) 2021-05-18 2023-08-23 Novartis Ag COMBINATION THERAPIES
TW202309094A (en) 2021-05-18 2023-03-01 美商健生生物科技公司 Methods for identifying cancer patients for combination treatment
CA3221735A1 (en) 2021-06-18 2022-12-22 F. Hoffmann-La Roche Ag Bispecific anti-ccl2 antibodies
WO2022268740A1 (en) 2021-06-21 2022-12-29 Genmab A/S Combination dosage regime of cd137 and pd-l1 binding agents
IL308134A (en) 2021-06-22 2023-12-01 Novartis Ag Bispecific antibodies for use in treatment of hidradenitis suppurativa
BR112023022992A2 (en) 2021-06-25 2024-01-23 Chugai Pharmaceutical Co Ltd ANTI-CTLA-4 ANTIBODY
IL308633A (en) 2021-06-25 2024-01-01 Chugai Pharmaceutical Co Ltd Use of anti-ctla-4 antibody
IL309071A (en) 2021-07-02 2024-02-01 Genentech Inc Methods and compositions for treating cancer
EP4367138A1 (en) 2021-07-09 2024-05-15 Janssen Biotech, Inc. Manufacturing methods for producing anti-il12/il23 antibody compositions
WO2023281462A1 (en) 2021-07-09 2023-01-12 Janssen Biotech, Inc. Manufacturing methods for producing anti-tnf antibody compositions
IL309996A (en) 2021-07-09 2024-03-01 Janssen Biotech Inc Manufacturing methods for producing anti-tnf antibody compositions
EP4372001A1 (en) 2021-07-14 2024-05-22 Jiangsu Hengrui Pharmaceuticals Co., Ltd. Antigen-binding molecule specifically binding to hgfr and egfr, and pharmaceutical use thereof
EP4373862A1 (en) * 2021-07-19 2024-05-29 Chugai Seiyaku Kabushiki Kaisha Protease-mediated target specific cytokine delivery using fusion polypeptide
US20230051304A1 (en) 2021-07-19 2023-02-16 Regeneron Pharmaceuticals, Inc. Il12 receptor agonists and methods of use thereof
CN117730102A (en) 2021-07-22 2024-03-19 豪夫迈·罗氏有限公司 Heterodimeric Fc domain antibodies
CA3227537A1 (en) 2021-07-27 2023-02-02 Morphosys Ag Combinations of antigen binding molecules
AU2022317820A1 (en) 2021-07-28 2023-12-14 F. Hoffmann-La Roche Ag Methods and compositions for treating cancer
CA3226428A1 (en) 2021-08-02 2023-02-09 Hangzhou Unogen Biotech, Ltd Anti-cd38 antibodies, anti-cd3 antibodies, and bispecific antibodies, and uses thereof
WO2023015169A1 (en) 2021-08-02 2023-02-09 Tavotek Biotech (Suzhou) Ltd Anti-cdh17 monoclonal and bispecific antibodies and uses thereof
TW202322846A (en) 2021-08-16 2023-06-16 美商再生元醫藥公司 Novel il27 receptor agonists and methods of use thereof
PE20240883A1 (en) 2021-09-06 2024-04-24 Genmab As ANTIBODIES CAPABLE OF BINDING CD27, VARIANTS AND USES THEREOF
KR20240055002A (en) 2021-09-13 2024-04-26 얀센 바이오테크 인코포레이티드 CD33 x Vδ2 multispecific antibody for cancer treatment
IL286430A (en) 2021-09-14 2023-04-01 Yeda Res & Dev Multispecific antibodies for use in treating diseases
WO2023044483A2 (en) 2021-09-20 2023-03-23 Voyager Therapeutics, Inc. Compositions and methods for the treatment of her2 positive cancer
CA3232472A1 (en) 2021-09-23 2023-03-30 Jiangsu Hengrui Pharmaceuticals Co., Ltd. Anti-klb antibodies and uses
WO2023046322A1 (en) 2021-09-24 2023-03-30 Janssen Pharmaceutica Nv Proteins comprising cd20 binding domains, and uses thereof
WO2023053282A1 (en) 2021-09-29 2023-04-06 中外製薬株式会社 Cytotoxicity-inducing therapeutic agent for use in treatment of cancer
US20230227553A1 (en) * 2021-09-29 2023-07-20 Modex Therapeutics Antigen binding polypeptides, antigen binding polypeptide complexes and methods of use thereof
TW202323304A (en) 2021-09-30 2023-06-16 大陸商江蘇恆瑞醫藥股份有限公司 Anti-il23 antibody fusion protein and uses thereof
AR127298A1 (en) 2021-10-08 2024-01-10 Genmab As ANTIBODIES THAT BIND CD30 AND CD3
AR127269A1 (en) 2021-10-08 2024-01-03 Chugai Pharmaceutical Co Ltd ANTI-HLA-DQ2.5 ANTIBODY FORMULATION
WO2023062048A1 (en) 2021-10-14 2023-04-20 F. Hoffmann-La Roche Ag Alternative pd1-il7v immunoconjugates for the treatment of cancer
CA3234731A1 (en) 2021-10-14 2023-04-20 F. Hoffmann-La Roche Ag New interleukin-7 immunoconjugates
WO2023069888A1 (en) 2021-10-18 2023-04-27 Tavotek Biotherapeutics (Hong Kong) Limited ANTI-EGFR ANTIBODIES, ANTI-cMET ANTIBODIES, ANTI-VEGF ANTIBODIES, MULTISPECIFIC ANTIBODIES, AND USES THEREOF
WO2023073599A1 (en) 2021-10-28 2023-05-04 Novartis Ag Engineered fc variants
CA3237038A1 (en) 2021-11-01 2023-05-04 Janssen Biotech, Inc. Compositions and methods for the modulation of beta chain-mediated immunity
TW202334223A (en) 2021-11-11 2023-09-01 美商再生元醫藥公司 Cd20-pd1 binding molecules and methods of use thereof
WO2023092004A1 (en) 2021-11-17 2023-05-25 Voyager Therapeutics, Inc. Compositions and methods for the treatment of tau-related disorders
WO2023089587A1 (en) 2021-11-22 2023-05-25 Janssen Biotech, Inc. Compositions comprising enhanced multispecific binding agents for an immune response
WO2023094282A1 (en) 2021-11-25 2023-06-01 F. Hoffmann-La Roche Ag Quantification of low amounts of antibody sideproducts
US20230183360A1 (en) 2021-12-09 2023-06-15 Janssen Biotech, Inc. Use of Amivantamab to Treat Colorectal Cancer
AR127887A1 (en) 2021-12-10 2024-03-06 Hoffmann La Roche ANTIBODIES THAT BIND CD3 AND PLAP
WO2023129974A1 (en) 2021-12-29 2023-07-06 Bristol-Myers Squibb Company Generation of landing pad cell lines
US20230295348A1 (en) 2022-01-24 2023-09-21 Novimmune Sa Composition and methods for the selective activation of cytokine signaling pathways
WO2023144306A1 (en) 2022-01-28 2023-08-03 Genmab A/S Bispecific antibody against cd3 and cd20 in combination therapy for treating diffuse large b-cell lymphoma
US20230241211A1 (en) 2022-01-28 2023-08-03 Genmab A/S Bispecific antibody against cd3 and cd20 in combination therapy for treating diffuse large b-cell lymphoma
TW202342057A (en) 2022-02-07 2023-11-01 美商健生生物科技公司 Methods for reducing infusion-related reactions in patients treated with egfr/met bispecific antibodies
TW202342548A (en) 2022-02-07 2023-11-01 美商威特拉公司 Anti-idiotype antibody molecules and uses thereof
US20240002544A1 (en) 2022-03-07 2024-01-04 Novimmune Sa Cd28 bispecific antibodies for targeted t cell activation
WO2023174925A1 (en) 2022-03-14 2023-09-21 Novimmune Sa Bispecific gpc3xcd28 and gpc3xcd3 antibodies and their combination for targeted killing of gpc3 positive malignant cells
WO2023174521A1 (en) 2022-03-15 2023-09-21 Genmab A/S Binding agents binding to epcam and cd137
TW202346365A (en) 2022-03-23 2023-12-01 瑞士商赫孚孟拉羅股份公司 Combination treatment of an anti-cd20/anti-cd3 bispecific antibody and chemotherapy
WO2023192850A1 (en) 2022-03-29 2023-10-05 Ngm Biopharmaceuticals, Inc. Ilt3 and cd3 binding agents and methods of use thereof
WO2023198839A2 (en) 2022-04-13 2023-10-19 Genmab A/S Bispecific antibodies against cd3 and cd20
JP2024517042A (en) 2022-04-13 2024-04-19 エフ・ホフマン-ラ・ロシュ・アクチェンゲゼルシャフト Pharmaceutical compositions and methods of use of anti-CD20/anti-CD3 bispecific antibodies
WO2023202967A1 (en) 2022-04-19 2023-10-26 F. Hoffmann-La Roche Ag Improved production cells
WO2023209568A1 (en) 2022-04-26 2023-11-02 Novartis Ag Multispecific antibodies targeting il-13 and il-18
WO2023220647A1 (en) 2022-05-11 2023-11-16 Regeneron Pharmaceuticals, Inc. Multispecific binding molecule proproteins and uses thereof
WO2023218051A1 (en) 2022-05-12 2023-11-16 Genmab A/S Binding agents capable of binding to cd27 in combination therapy
WO2023218046A1 (en) 2022-05-12 2023-11-16 Genmab A/S Binding agents capable of binding to cd27 in combination therapy
WO2023220695A2 (en) 2022-05-13 2023-11-16 Voyager Therapeutics, Inc. Compositions and methods for the treatment of her2 positive cancer
WO2023230594A1 (en) 2022-05-27 2023-11-30 Regeneron Pharmaceuticals, Inc. Interleukin-2 proproteins and uses thereof
WO2023232961A1 (en) 2022-06-03 2023-12-07 F. Hoffmann-La Roche Ag Improved production cells
WO2023235848A1 (en) 2022-06-04 2023-12-07 Regeneron Pharmaceuticals, Inc. Interleukin-2 proproteins and uses thereof
WO2024003837A1 (en) 2022-06-30 2024-01-04 Janssen Biotech, Inc. Use of anti-egfr/anti-met antibody to treat gastric or esophageal cancer
WO2024020429A1 (en) 2022-07-22 2024-01-25 Lyell Immunopharma, Inc. Immune cell therapy
WO2024030976A2 (en) 2022-08-03 2024-02-08 Voyager Therapeutics, Inc. Compositions and methods for crossing the blood brain barrier
WO2024040247A1 (en) 2022-08-18 2024-02-22 Regeneron Pharmaceuticals, Inc. Interferon proproteins and uses thereof
US20240067691A1 (en) 2022-08-18 2024-02-29 Regeneron Pharmaceuticals, Inc. Interferon receptor agonists and uses thereof
WO2024059739A1 (en) 2022-09-15 2024-03-21 Voyager Therapeutics, Inc. Tau binding compounds
WO2024077018A2 (en) 2022-10-04 2024-04-11 Alpine Immune Sciences, Inc. Methods and uses of taci-fc fusion immunomodulatory protein
WO2024079015A1 (en) 2022-10-10 2024-04-18 F. Hoffmann-La Roche Ag Combination therapy of a gprc5d tcb and imids
WO2024079010A1 (en) 2022-10-10 2024-04-18 F. Hoffmann-La Roche Ag Combination therapy of a gprc5d tcb and cd38 antibodies
WO2024079009A1 (en) 2022-10-10 2024-04-18 F. Hoffmann-La Roche Ag Combination therapy of a gprc5d tcb and proteasome inhibitors
WO2024079069A1 (en) 2022-10-12 2024-04-18 F. Hoffmann-La Roche Ag Method for classifying cells
WO2024084052A1 (en) 2022-10-21 2024-04-25 Novimmune Sa Pd-l1xcd28 bispecific antibodies for immune checkpoint-dependent t cell activation
WO2024089551A1 (en) 2022-10-25 2024-05-02 Janssen Biotech, Inc. Msln and cd3 binding agents and methods of use thereof
WO2024094660A1 (en) 2022-10-31 2024-05-10 Genmab A/S Cd38 antibodies and uses thereof
US20240174761A1 (en) 2022-11-02 2024-05-30 Genmab A/S Bispecific antibodies against cd3 and cd20 for treating richter's syndrome
WO2024095173A1 (en) 2022-11-02 2024-05-10 Janssen Biotech, Inc. Methods of treating cancers
WO2024100170A1 (en) 2022-11-11 2024-05-16 F. Hoffmann-La Roche Ag Antibodies binding to hla-a*02/foxp3
WO2024104933A1 (en) 2022-11-15 2024-05-23 F. Hoffmann-La Roche Ag Antigen binding molecules
WO2024104988A1 (en) 2022-11-15 2024-05-23 F. Hoffmann-La Roche Ag Recombinant binding proteins with activatable effector domain

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI544076B (en) * 2005-03-31 2016-08-01 Chugai Pharmaceutical Co Ltd A method of manufacturing a polypeptide that controls assembly

Family Cites Families (352)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE370449B (en) 1970-08-29 1974-10-14 Philips Nv
JPS5334319B2 (en) 1971-12-28 1978-09-20
JPS5717624B2 (en) 1974-04-17 1982-04-12
JPS59878B2 (en) 1975-09-04 1984-01-09 松下電工株式会社 sensor
US4208479A (en) 1977-07-14 1980-06-17 Syva Company Label modified immunoassays
JPS5912436B2 (en) 1980-08-05 1984-03-23 ファナック株式会社 Industrial robot safety mechanism
US4474893A (en) 1981-07-01 1984-10-02 The University of Texas System Cancer Center Recombinant monoclonal antibodies
US4444878A (en) 1981-12-21 1984-04-24 Boston Biomedical Research Institute, Inc. Bispecific antibody determinants
JPS58201994A (en) 1982-05-21 1983-11-25 Hideaki Hagiwara Method for producing antigen-specific human immunoglobulin
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
GB8607679D0 (en) 1986-03-27 1986-04-30 Winter G P Recombinant dna product
JPH0234615Y2 (en) 1986-08-08 1990-09-18
JPH06104071B2 (en) 1986-08-24 1994-12-21 財団法人化学及血清療法研究所 Factor IX Monoclonal antibody specific for conformation
US5004697A (en) 1987-08-17 1991-04-02 Univ. Of Ca Cationized antibodies for delivery through the blood-brain barrier
US5670373A (en) * 1988-01-22 1997-09-23 Kishimoto; Tadamitsu Antibody to human interleukin-6 receptor
US5322678A (en) * 1988-02-17 1994-06-21 Neorx Corporation Alteration of pharmacokinetics of proteins by charge modification
US6010902A (en) 1988-04-04 2000-01-04 Bristol-Meyers Squibb Company Antibody heteroconjugates and bispecific antibodies for use in regulation of lymphocyte activity
US5126250A (en) 1988-09-28 1992-06-30 Eli Lilly And Company Method for the reduction of heterogeneity of monoclonal antibodies
IL89491A0 (en) 1988-11-17 1989-09-10 Hybritech Inc Bifunctional chimeric antibodies
DE3920358A1 (en) 1989-06-22 1991-01-17 Behringwerke Ag BISPECIFIC AND OLIGO-SPECIFIC, MONO- AND OLIGOVALENT ANTI-BODY CONSTRUCTS, THEIR PRODUCTION AND USE
JPH0341033A (en) 1989-07-07 1991-02-21 Kyowa Hakko Kogyo Co Ltd Stable preparation containing motilins
GB8916400D0 (en) 1989-07-18 1989-09-06 Dynal As Modified igg3
JP3032287B2 (en) 1989-12-11 2000-04-10 イムノメデイツクス・インコーポレイテツド Antibody targeting of diagnostic or therapeutic agents
US5859205A (en) 1989-12-21 1999-01-12 Celltech Limited Humanised antibodies
TW212184B (en) 1990-04-02 1993-09-01 Takeda Pharm Industry Co Ltd
JPH05184383A (en) 1990-06-19 1993-07-27 Dainabotsuto Kk Bispecific antibody
GB9015198D0 (en) 1990-07-10 1990-08-29 Brien Caroline J O Binding substance
ES2139598T3 (en) 1990-07-10 2000-02-16 Medical Res Council PROCEDURES FOR THE PRODUCTION OF SPECIFIC UNION COUPLE MEMBERS.
JPH05199894A (en) 1990-08-20 1993-08-10 Takeda Chem Ind Ltd Bi-specific antibody and antibody-containing medicine
ES2108048T3 (en) 1990-08-29 1997-12-16 Genpharm Int PRODUCTION AND USE OF LOWER TRANSGENIC ANIMALS CAPABLE OF PRODUCING HETEROLOGICAL ANTIBODIES.
DE69229482T2 (en) 1991-04-25 1999-11-18 Chugai Pharmaceutical Co Ltd RECOMBINED HUMAN ANTIBODIES AGAINST THE HUMAN INTERLEUKIN 6 RECEPTOR
JPH05304992A (en) 1991-06-20 1993-11-19 Takeda Chem Ind Ltd Hybridoma-monoclonal antibody and medicine containing antibody
US5637481A (en) * 1993-02-01 1997-06-10 Bristol-Myers Squibb Company Expression vectors encoding bispecific fusion proteins and methods of producing biologically active bispecific fusion proteins in a mammalian cell
US6136310A (en) 1991-07-25 2000-10-24 Idec Pharmaceuticals Corporation Recombinant anti-CD4 antibodies for human therapy
EP0605522B1 (en) 1991-09-23 1999-06-23 Medical Research Council Methods for the production of humanized antibodies
DE69233528T2 (en) 1991-11-25 2006-03-16 Enzon, Inc. Process for the preparation of multivalent antigen-binding proteins
ES2341666T3 (en) 1991-12-02 2010-06-24 Medimmune Limited PRODUCTION OF AUTHORTIC BODIES OF REPERTORIES OF ANTIQUE RPOS SEGMENTS EXPRESSED ON THE FAGOS SURFACE.
EP0746609A4 (en) 1991-12-17 1997-12-17 Genpharm Int Transgenic non-human animals capable of producing heterologous antibodies
US5667988A (en) 1992-01-27 1997-09-16 The Scripps Research Institute Methods for producing antibody libraries using universal or randomized immunoglobulin light chains
JPH05203652A (en) 1992-01-28 1993-08-10 Fuji Photo Film Co Ltd Antibody enzyme immunoassay
JPH05213775A (en) 1992-02-05 1993-08-24 Otsuka Pharmaceut Co Ltd Bfa antibody
US6749853B1 (en) 1992-03-05 2004-06-15 Board Of Regents, The University Of Texas System Combined methods and compositions for coagulation and tumor treatment
CA2131151A1 (en) 1992-03-24 1994-09-30 Kevin S. Johnson Methods for producing members of specific binding pairs
US6129914A (en) 1992-03-27 2000-10-10 Protein Design Labs, Inc. Bispecific antibody effective to treat B-cell lymphoma and cell line
US5744446A (en) 1992-04-07 1998-04-28 Emory University Hybrid human/animal factor VIII
AU675661B2 (en) 1992-07-24 1997-02-13 Abgenix, Inc. Generation of xenogeneic antibodies
ZA936260B (en) * 1992-09-09 1994-03-18 Smithkline Beecham Corp Novel antibodies for conferring passive immunity against infection by a pathogen in man
US5639641A (en) 1992-09-09 1997-06-17 Immunogen Inc. Resurfacing of rodent antibodies
EP0627932B1 (en) * 1992-11-04 2002-05-08 City Of Hope Antibody construct
AU690528B2 (en) 1992-12-04 1998-04-30 Medical Research Council Multivalent and multispecific binding proteins, their manufacture and use
JPH06175590A (en) 1992-12-09 1994-06-24 Ricoh Res Inst Of Gen Electron Card-shaped display device
ATE187494T1 (en) 1992-12-11 1999-12-15 Dow Chemical Co MULTIVALENT SINGLE CHAIN ANTIBODIES
GB9313509D0 (en) 1993-06-30 1993-08-11 Medical Res Council Chemisynthetic libraries
WO1995001571A1 (en) 1993-07-01 1995-01-12 Baxter Diagnostics Inc. Process for the preparation of factor x depleted plasma
UA40577C2 (en) 1993-08-02 2001-08-15 Мерк Патент Гмбх Bispecific antigen molecule for lysis of tumor cells, method for preparing of bispecific antigen molecule, monoclonal antibody (variants), pharmaceutical preparation, pharmaceutical kit for lysis of tumor cells (variants), method of lysis of tumor cells
IL107742A0 (en) 1993-11-24 1994-02-27 Yeda Res & Dev Chemically-modified binding proteins
CA2177367A1 (en) 1993-12-03 1995-06-08 Andrew David Griffiths Recombinant binding proteins and peptides
US6214613B1 (en) 1993-12-03 2001-04-10 Ashai Kasei Kogyo Kabushiki Kaisha Expression screening vector
US5945311A (en) * 1994-06-03 1999-08-31 GSF--Forschungszentrumfur Umweltund Gesundheit Method for producing heterologous bi-specific antibodies
DE122009000068I2 (en) 1994-06-03 2011-06-16 Ascenion Gmbh Process for the preparation of heterologous bispecific antibodies
US8017121B2 (en) * 1994-06-30 2011-09-13 Chugai Seiyaku Kabushika Kaisha Chronic rheumatoid arthritis therapy containing IL-6 antagonist as effective component
AU702250B2 (en) 1994-07-11 1999-02-18 Board Of Regents, The University Of Texas System Methods and compositions for the specific coagulation of vasculature
EP0770628B9 (en) 1994-07-13 2007-02-28 Chugai Seiyaku Kabushiki Kaisha Reconstituted human antibody against human interleukin-8
AU3272695A (en) 1994-08-12 1996-03-07 Immunomedics Inc. Immunoconjugates and humanized antibodies specific for b-cell lymphoma and leukemia cells
US6451523B1 (en) 1994-09-14 2002-09-17 Interneuron Pharmaceuticals, Inc. Detection of a leptin receptor variant and methods for regulating obesity
US6309636B1 (en) 1995-09-14 2001-10-30 Cancer Research Institute Of Contra Costa Recombinant peptides derived from the Mc3 anti-BA46 antibody, methods of use thereof, and methods of humanizing antibody peptides
CZ296919B6 (en) 1994-10-07 2006-07-12 Chugai Seiyaku Kabushiki Kaisha Pharmaceutical composition intended for treating chronic rheumatoid arthritis
PL182089B1 (en) 1994-10-21 2001-11-30 Chugai Pharmaceutical Co Ltd Pharmaceutic compositions for treating diseases caused by production of il-6
WO1996016673A1 (en) 1994-12-02 1996-06-06 Chiron Corporation Method of promoting an immune response with a bispecific antibody
US6485943B2 (en) 1995-01-17 2002-11-26 The University Of Chicago Method for altering antibody light chain interactions
EP0812136B1 (en) * 1995-02-28 2000-12-20 The Procter & Gamble Company Preparation of noncarbonated beverage products having superior microbial stability
US5731168A (en) 1995-03-01 1998-03-24 Genentech, Inc. Method for making heteromultimeric polypeptides
CA2219361C (en) 1995-04-27 2012-02-28 Abgenix, Inc. Human antibodies derived from immunized xenomice
WO1996034096A1 (en) 1995-04-28 1996-10-31 Abgenix, Inc. Human antibodies derived from immunized xenomice
EP0871673B1 (en) 1995-05-03 2006-04-05 Bioenhancementsments Ltd. Bispecific antibodies in which the binding capability is reversibly inhibited by a photocleavable moiety
CA2205007C (en) 1995-09-11 2010-12-14 Masamichi Koike Antibody against human interleukin-5 receptor .alpha. chain
EP0885299B1 (en) 1996-01-08 2005-10-26 Genentech, Inc. Ob receptor and ligands
MA24512A1 (en) 1996-01-17 1998-12-31 Univ Vermont And State Agrienl PROCESS FOR THE PREPARATION OF ANTICOAGULATING AGENTS USEFUL IN THE TREATMENT OF THROMBOSIS
FR2745008A1 (en) 1996-02-20 1997-08-22 Ass Pour Le Dev De La Rech En MODIFIED NUCLEAR GLUCOCORTICOID RECEPTOR, DNA FRAGMENTS ENCODING SAID RECEPTOR, AND METHODS IN WHICH THEY ARE USED
JP3032287U (en) 1996-06-10 1996-12-17 幸喜 高橋 Human form
US20020147326A1 (en) 1996-06-14 2002-10-10 Smithkline Beecham Corporation Hexameric fusion proteins and uses therefor
CZ399A3 (en) 1996-07-19 1999-06-16 Amgen Inc. Polypeptide analogs of cation-active polypeptides
AU744146B2 (en) 1996-09-26 2002-02-14 Chugai Seiyaku Kabushiki Kaisha Antibody against human parathormone related peptides
JPH10165184A (en) 1996-12-16 1998-06-23 Tosoh Corp Antibody, gene and production of chimera antibody
US5990286A (en) 1996-12-18 1999-11-23 Techniclone, Inc. Antibodies with reduced net positive charge
US6323000B2 (en) 1996-12-20 2001-11-27 Clark A. Briggs Variant human α7 acetylcholine receptor subunit, and methods of production and uses thereof
US7541034B1 (en) 1997-03-20 2009-06-02 The United States Of America As Represented By The Department Of Health And Human Services Recombinant antibodies and immunoconjugates targeted to CD-22 bearing cells and tumors
US6306393B1 (en) 1997-03-24 2001-10-23 Immunomedics, Inc. Immunotherapy of B-cell malignancies using anti-CD22 antibodies
US6183744B1 (en) 1997-03-24 2001-02-06 Immunomedics, Inc. Immunotherapy of B-cell malignancies using anti-CD22 antibodies
US20070059302A1 (en) 1997-04-07 2007-03-15 Genentech, Inc. Anti-vegf antibodies
US6884879B1 (en) 1997-04-07 2005-04-26 Genentech, Inc. Anti-VEGF antibodies
FR2761994B1 (en) 1997-04-11 1999-06-18 Centre Nat Rech Scient PREPARATION OF MEMBRANE RECEPTORS FROM EXTRACELLULAR BACULOVIRUSES
US20030207346A1 (en) 1997-05-02 2003-11-06 William R. Arathoon Method for making multispecific antibodies having heteromultimeric and common components
US20020062010A1 (en) 1997-05-02 2002-05-23 Genentech, Inc. Method for making multispecific antibodies having heteromultimeric and common components
WO1998050431A2 (en) 1997-05-02 1998-11-12 Genentech, Inc. A method for making multispecific antibodies having heteromultimeric and common components
DE19725586C2 (en) 1997-06-17 1999-06-24 Gsf Forschungszentrum Umwelt Process for the preparation of cell preparations for immunization by means of heterologous intact bispecific and / or trispecific antibodies
AU8296098A (en) 1997-07-08 1999-02-08 Board Of Regents, The University Of Texas System Compositions and methods for homoconjugates of antibodies which induce growth arrest or apoptosis of tumor cells
US5980893A (en) 1997-07-17 1999-11-09 Beth Israel Deaconess Medical Center, Inc. Agonist murine monoclonal antibody as a stimulant for megakaryocytopoiesis
US6207805B1 (en) 1997-07-18 2001-03-27 University Of Iowa Research Foundation Prostate cell surface antigen-specific antibodies
US20020187150A1 (en) * 1997-08-15 2002-12-12 Chugai Seiyaku Kabushiki Kaisha Preventive and/or therapeutic agent for systemic lupus erythematosus comprising anti-IL-6 receptor antibody as an active ingredient
US6342220B1 (en) 1997-08-25 2002-01-29 Genentech, Inc. Agonist antibodies
DE69838454T2 (en) 1997-10-03 2008-02-07 Chugai Seiyaku K.K. NATURAL HUMAN ANTIBODY
CZ297083B6 (en) * 1998-03-17 2006-09-13 Chugai Seiyaku Kabushiki Kaisha Agent for prevention and treatment of inflammatory intestinal disease containing IL-6 antagonist as active component
TR200002885T2 (en) 1998-04-03 2000-12-21 Chugai Seiyaku Kabushiki Kaisha Humanized antibody against human tissue factor (TF)
DE19819846B4 (en) 1998-05-05 2016-11-24 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Multivalent antibody constructs
GB9809951D0 (en) 1998-05-08 1998-07-08 Univ Cambridge Tech Binding molecules
US7081360B2 (en) 1998-07-28 2006-07-25 Cadus Technologies, Inc. Expression of G protein-coupled receptors with altered ligand binding and/or coupling properties
JP2002522063A (en) * 1998-08-17 2002-07-23 アブジェニックス インコーポレイテッド Generation of modified molecules with increased serum half-life
DE69942671D1 (en) * 1998-12-01 2010-09-23 Facet Biotech Corp HUMANIZED ANTIKOERPER AGAINST GAMMA INTERFERON
US6737056B1 (en) 1999-01-15 2004-05-18 Genentech, Inc. Polypeptide variants with altered effector function
US6897044B1 (en) 1999-01-28 2005-05-24 Biogen Idec, Inc. Production of tetravalent antibodies
US6972125B2 (en) * 1999-02-12 2005-12-06 Genetics Institute, Llc Humanized immunoglobulin reactive with B7-2 and methods of treatment therewith
AR030019A1 (en) 1999-05-18 2003-08-13 Smithkline Beecham Corp HUMAN MONOCLONAL ANTIBODIES AND FUNCTIONAL FRAGMENTS OF THE SAME, A PROCEDURE FOR THEIR PRODUCTION, PHARMACEUTICAL COMPOSITIONS THAT INCLUDE THEM, A NUCLEIC ACID ISOLATED MOLECULA, A RECOMBINANT PLASMIDE, A HOSPED DIFFERENT USE OF A MUSCLE
SK782002A3 (en) * 1999-07-21 2003-08-05 Lexigen Pharm Corp FC fusion proteins for enhancing the immunogenicity of protein and peptide antigens
AT411997B (en) 1999-09-14 2004-08-26 Baxter Ag FACTOR IX / FACTOR IXA ACTIVATING ANTIBODIES AND ANTIBODY DERIVATIVES
SE9903895D0 (en) 1999-10-28 1999-10-28 Active Biotech Ab Novel compounds
US20020028178A1 (en) * 2000-07-12 2002-03-07 Nabil Hanna Treatment of B cell malignancies using combination of B cell depleting antibody and immune modulating antibody related applications
JP2003515323A (en) 1999-11-18 2003-05-07 オックスフォード バイオメディカ(ユーケイ)リミテッド Body
WO2001044282A2 (en) 1999-12-14 2001-06-21 The Burnham Institute Bcl-g polypeptides, encoding nucleic acids and methods of use
WO2001064713A2 (en) 2000-03-01 2001-09-07 Christoph Gasche Mammalian interleukin-10 (il-10) receptor variants
TWI242043B (en) 2000-03-10 2005-10-21 Chugai Pharmaceutical Co Ltd Polypeptide inducing apoptosis
PT1265914E (en) 2000-03-22 2008-04-08 Geneprint Inc Wnt-1 related polypeptides, and nucleic acids encoding the same
US6896885B2 (en) 2000-03-31 2005-05-24 Biogen Idec Inc. Combined use of anti-cytokine antibodies or antagonists and anti-CD20 for treatment of B cell lymphoma
AU2001249835A1 (en) * 2000-04-03 2001-10-15 Oxford Glycosciences (Uk) Ltd. Diagnosis and treatment of alzheimer's disease
WO2001079494A1 (en) 2000-04-17 2001-10-25 Chugai Seiyaku Kabushiki Kaisha Agonist antibodies
AU6627201A (en) 2000-05-03 2001-11-12 Mbt Munich Biotechnology Gmbh Cationic diagnostic, imaging and therapeutic agents associated with activated vascular sites
WO2001090192A2 (en) 2000-05-24 2001-11-29 Imclone Systems Incorporated Bispecific immunoglobulin-like antigen binding proteins and method of production
CA2411102A1 (en) 2000-06-20 2001-12-27 Idec Pharmaceutical Corporation Cold anti-cd20 antibody/radiolabeled anti-cd22 antibody combination
CA2415100A1 (en) 2000-07-12 2002-01-17 Idec Pharmaceutical Corporation Treatment of b cell malignancies using combination of b cell depleting antibody and immune modulating antibody related applications
EP1304573A4 (en) 2000-07-17 2006-06-07 Chugai Pharmaceutical Co Ltd Method for screening ligand having biological activity
CA2422076A1 (en) 2000-09-18 2002-03-21 Idec Pharmaceutical Corporation Combination therapy for treatment of autoimmune diseases using b cell depleting/immunoregulatory antibody combination
IL155002A0 (en) 2000-10-12 2003-10-31 Genentech Inc Reduced-viscosity concentrated protein formulations
CA2424371A1 (en) 2000-10-20 2003-04-01 Chugai Seiyaku Kabushiki Kaisha Agonistic monoclonal antibody fragments
CA2424364A1 (en) 2000-10-20 2003-04-01 Chugai Seiyaku Kabushiki Kaisha Degraded tpo agonist antibody
KR20030055274A (en) 2000-10-20 2003-07-02 츄가이 세이야꾸 가부시키가이샤 Degraded tpo agonist antibody
KR100870123B1 (en) 2000-10-20 2008-11-25 츄가이 세이야꾸 가부시키가이샤 Degraded agonist antibody
AU2000279625A1 (en) * 2000-10-27 2002-05-15 Chugai Seiyaku Kabushiki Kaisha Blood mmp-3 level-lowering agent containing il-6 antgonist as the active ingredient
PT1355919E (en) 2000-12-12 2011-03-02 Medimmune Llc Molecules with extended half-lives, compositions and uses thereof
HUP0303428A2 (en) 2001-03-07 2004-01-28 Merck Patent Gmbh. Expression technology for proteins containing a hybrid isotype antibody moiety
UA80091C2 (en) 2001-04-02 2007-08-27 Chugai Pharmaceutical Co Ltd Remedies for infant chronic arthritis-relating diseases and still's disease which contain an interleukin-6 (il-6) antagonist
AU2002307062A1 (en) 2001-04-02 2002-10-15 Purdue Pharma L.P. Thrombopoietin (tpo) synthebody for stimulation of platelet production
CZ303450B6 (en) 2001-04-13 2012-09-19 Biogen Idec Ma Inc. Antibodies to VLA-1, composition containing such antibodies, nucleic acids encoding such antibodies, method of determining VLA-1 level and the use thereof when treating immunological disease
PT2208784E (en) * 2001-06-22 2013-04-03 Chugai Pharmaceutical Co Ltd Cell proliferation inhibitors containing anti-glypican 3 antibody
DE60237282D1 (en) * 2001-06-28 2010-09-23 Domantis Ltd DOUBLE-SPECIFIC LIGAND AND ITS USE
US6833441B2 (en) 2001-08-01 2004-12-21 Abmaxis, Inc. Compositions and methods for generating chimeric heteromultimers
US20030049203A1 (en) 2001-08-31 2003-03-13 Elmaleh David R. Targeted nucleic acid constructs and uses related thereto
PL374495A1 (en) 2001-10-15 2005-10-31 Immunomedics, Inc. Direct targeting binding proteins
KR100988949B1 (en) 2001-10-25 2010-10-20 제넨테크, 인크. Glycoprotein compositions
US20030190705A1 (en) 2001-10-29 2003-10-09 Sunol Molecular Corporation Method of humanizing immune system molecules
DE10156482A1 (en) 2001-11-12 2003-05-28 Gundram Jung Bispecific antibody molecule
WO2003068801A2 (en) * 2002-02-11 2003-08-21 Genentech, Inc. Antibody variants with faster antigen association rates
US20040110226A1 (en) 2002-03-01 2004-06-10 Xencor Antibody optimization
US8188231B2 (en) * 2002-09-27 2012-05-29 Xencor, Inc. Optimized FC variants
US7736652B2 (en) 2002-03-21 2010-06-15 The Regents Of The University Of California Antibody fusion proteins: effective adjuvants of protein vaccination
EP1500665B1 (en) * 2002-04-15 2011-06-15 Chugai Seiyaku Kabushiki Kaisha METHODS FOR CONSTRUCTING scDb LIBRARIES
JP4518941B2 (en) 2002-04-26 2010-08-04 中外製薬株式会社 Agonist antibody screening method
US20050130224A1 (en) * 2002-05-31 2005-06-16 Celestar Lexico- Sciences, Inc. Interaction predicting device
JP2004086862A (en) 2002-05-31 2004-03-18 Celestar Lexico-Sciences Inc Apparatus, method and program for processing protein interaction information, and recording medium
AU2003239197A1 (en) 2002-06-07 2003-12-22 The Government Of The United States Of America, As Represented By The Secretary Of The Department Of Novel stable anti-cd22 antibodies
WO2003105757A2 (en) 2002-06-12 2003-12-24 Genencor International, Inc. Methods and compositions for milieu-dependent binding of a targeted agent to a target
CA2965865C (en) 2002-07-18 2021-10-19 Merus N.V. Recombinant production of mixtures of antibodies
AU2003264009A1 (en) 2002-08-15 2004-03-03 Epitomics, Inc. Humanized rabbit antibodies
EP1541165A4 (en) * 2002-08-27 2009-06-24 Chugai Pharmaceutical Co Ltd Method of stabilizing protein solution preparation
JP2004086682A (en) 2002-08-28 2004-03-18 Fujitsu Ltd Functional block design method and functional block design device
DE60324700D1 (en) 2002-10-11 2008-12-24 Chugai Pharmaceutical Co Ltd CELL TOD INDUCTIVE ACTIVE SUBSTANCE
US7217797B2 (en) 2002-10-15 2007-05-15 Pdl Biopharma, Inc. Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis
GB0224082D0 (en) 2002-10-16 2002-11-27 Celltech R&D Ltd Biological products
US7098189B2 (en) * 2002-12-16 2006-08-29 Kimberly-Clark Worldwide, Inc. Wound and skin care compositions
PL215171B1 (en) 2002-12-24 2013-10-31 Rinat Neuroscience Corp Anti-ngf antibodies and methods using same
WO2004060919A1 (en) 2002-12-26 2004-07-22 Chugai Seiyaku Kabushiki Kaisha Agonist antibody against heteroreceptor
US8337841B2 (en) * 2003-01-21 2012-12-25 Chugai Seiyaku Kabushiki Kaisha Methods of screening for antibody light chains
CA2515081A1 (en) 2003-02-07 2004-08-19 Protein Design Labs, Inc. Amphiregulin antibodies and their use to treat cancer and psoriasis
JP2004279086A (en) 2003-03-13 2004-10-07 Konica Minolta Holdings Inc Radiation image conversion panel and method for manufacturing it
WO2004081048A1 (en) 2003-03-13 2004-09-23 Chugai Seiyaku Kabushiki Kaisha Ligand having agonistic activity to mutated receptor
EP1609803A4 (en) 2003-03-31 2006-05-24 Chugai Pharmaceutical Co Ltd Modified antibody against cd22 and utilization thereof
JP2004321100A (en) 2003-04-25 2004-11-18 Rikogaku Shinkokai VARIANT OF PROTEIN COMPRISING Fc REGION OF IgG
GB2400851B (en) 2003-04-25 2004-12-15 Bioinvent Int Ab Identifying binding of a polypeptide to a polypeptide target
GB2401040A (en) 2003-04-28 2004-11-03 Chugai Pharmaceutical Co Ltd Method for treating interleukin-6 related diseases
RU2337107C2 (en) 2003-05-02 2008-10-27 Ксенкор, Инк. OPTIMIZED Fc-VERSIONS THAT HAVE ALTERED BINDING TO FcγR AND METHODS FOR THEIR PRODUCTION
RS20050885A (en) 2003-05-30 2008-04-04 Genentech Treatment with anti-vegf antibodies
EP2395017A3 (en) * 2003-05-30 2012-12-19 Merus B.V. Design and use of paired variable regions of specific binding molecules
JP2007526220A (en) 2003-06-05 2007-09-13 ジェネンテック・インコーポレーテッド Combination therapy for B cell disease
JP4794301B2 (en) * 2003-06-11 2011-10-19 中外製薬株式会社 Antibody production method
WO2004113387A2 (en) 2003-06-24 2004-12-29 Merck Patent Gmbh Tumour necrosis factor receptor molecules with reduced immunogenicity
US20050033029A1 (en) 2003-06-30 2005-02-10 Jin Lu Engineered anti-target immunoglobulin derived proteins, compositions, methods and uses
US7297336B2 (en) 2003-09-12 2007-11-20 Baxter International Inc. Factor IXa specific antibodies displaying factor VIIIa like activity
JP2005101105A (en) 2003-09-22 2005-04-14 Canon Inc Positioning device, exposure apparatus, and device manufacturing method
US20060134105A1 (en) 2004-10-21 2006-06-22 Xencor, Inc. IgG immunoglobulin variants with optimized effector function
JP2005112514A (en) 2003-10-06 2005-04-28 Tadano Ltd Expansion boom
WO2005035753A1 (en) * 2003-10-10 2005-04-21 Chugai Seiyaku Kabushiki Kaisha Double specific antibodies substituting for functional protein
AU2003271186A1 (en) 2003-10-14 2005-04-27 Chugai Seiyaku Kabushiki Kaisha Double specific antibodies substituting for functional protein
WO2005047327A2 (en) 2003-11-12 2005-05-26 Biogen Idec Ma Inc. NEONATAL Fc RECEPTOR (FcRn)-BINDING POLYPEPTIDE VARIANTS, DIMERIC Fc BINDING PROTEINS AND METHODS RELATED THERETO
US20050142133A1 (en) * 2003-12-03 2005-06-30 Xencor, Inc. Optimized proteins that target the epidermal growth factor receptor
SI2383295T1 (en) * 2003-12-10 2015-07-31 E.R. Squibb & Sons, L.L.C. IP-10 antibodies and their uses
AU2004299833B2 (en) 2003-12-10 2009-05-07 E. R. Squibb & Sons, L.L.C. Interferon alpha antibodies and their uses
JPWO2005056602A1 (en) * 2003-12-12 2008-03-06 中外製薬株式会社 Screening method for modified antibodies having agonist activity
TW200530266A (en) * 2003-12-12 2005-09-16 Chugai Pharmaceutical Co Ltd Method of reinforcing antibody activity
WO2005056605A1 (en) * 2003-12-12 2005-06-23 Chugai Seiyaku Kabushiki Kaisha Modified antibodies recognizing trimer receptor or higher
WO2005056603A1 (en) 2003-12-12 2005-06-23 Chugai Seiyaku Kabushiki Kaisha Cell death inducing agent
TW200530269A (en) 2003-12-12 2005-09-16 Chugai Pharmaceutical Co Ltd Anti-Mpl antibodies
AR048210A1 (en) 2003-12-19 2006-04-12 Chugai Pharmaceutical Co Ltd A PREVENTIVE AGENT FOR VASCULITIS.
AU2004308439A1 (en) 2003-12-22 2005-07-14 Centocor, Inc. Methods for generating multimeric molecules
PT1707627E (en) 2003-12-25 2013-01-24 Kyowa Hakko Kirin Co Ltd Antagonistic anti-cd40 antibody mutant
ATE393169T1 (en) 2003-12-30 2008-05-15 Merck Patent Gmbh IL-7 FUSION PROTEINS WITH ANTIBODIES, THEIR PRODUCTION AND THEIR USE
US20050266425A1 (en) 2003-12-31 2005-12-01 Vaccinex, Inc. Methods for producing and identifying multispecific antibodies
SI2177537T1 (en) 2004-01-09 2012-01-31 Pfizer Antibodies to MAdCAM
AU2005227326B2 (en) * 2004-03-24 2009-12-03 Xencor, Inc. Immunoglobulin variants outside the Fc region
AR048335A1 (en) 2004-03-24 2006-04-19 Chugai Pharmaceutical Co Ltd THERAPEUTIC AGENTS FOR INTERNAL EAR DISORDERS CONTAINING AN IL-6 ANTAGONIST AS AN ACTIVE INGREDIENT
WO2005100560A1 (en) 2004-04-09 2005-10-27 Chugai Seiyaku Kabushiki Kaisha Cell death inducer
WO2005112564A2 (en) 2004-04-15 2005-12-01 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Germline and sequence variants of humanized antibodies and methods of making and using them
TW200605906A (en) 2004-05-11 2006-02-16 Chugai Pharmaceutical Co Ltd Remedy for thrombopenia
KR100620554B1 (en) 2004-06-05 2006-09-06 한국생명공학연구원 -72 Humanized Anti-TAG-72 Monoclonal Antibodies
AR049390A1 (en) 2004-06-09 2006-07-26 Wyeth Corp ANTIBODIES AGAINST HUMAN INTERLEUQUINE-13 AND USES OF THE SAME
AU2005259992A1 (en) 2004-06-25 2006-01-12 Medimmune, Llc Increasing the production of recombinant antibodies in mammalian cells by site-directed mutagenesis
DE102004032634A1 (en) 2004-07-06 2006-02-16 Sms Demag Ag Method and device for measuring and controlling the flatness and / or the strip tensions of a stainless steel strip or a stainless steel foil during cold rolling in a multi-roll stand, in particular in a 20-roll Sendizimir rolling mill
US7919086B2 (en) 2004-07-09 2011-04-05 Chugai Seiyaku Kabushiki Kaisha Anti-glypican 3 antibody
CN103351434B (en) 2004-07-15 2015-09-30 赞科股份有限公司 The Fc variant optimized
AU2005282700A1 (en) * 2004-09-02 2006-03-16 Genentech, Inc. Heteromultimeric molecules
CA2579142A1 (en) 2004-09-13 2006-03-23 Macrogenics, Inc. Humanized antibodies against west nile virus and therapeutic and prophylactic uses thereof
WO2006031994A2 (en) 2004-09-14 2006-03-23 Xencor, Inc. Monomeric immunoglobulin fc domains
US20080233131A1 (en) 2004-09-14 2008-09-25 Richard John Stebbings Vaccine
TWI380996B (en) 2004-09-17 2013-01-01 Hoffmann La Roche Anti-ox40l antibodies
US7563443B2 (en) 2004-09-17 2009-07-21 Domantis Limited Monovalent anti-CD40L antibody polypeptides and compositions thereof
EP1810979B1 (en) 2004-09-22 2012-06-20 Kyowa Hakko Kirin Co., Ltd. STABILIZED HUMAN IgG4 ANTIBODIES
WO2006047350A2 (en) 2004-10-21 2006-05-04 Xencor, Inc. IgG IMMUNOGLOBULIN VARIANTS WITH OPTIMIZED EFFECTOR FUNCTION
US7928205B2 (en) * 2004-10-22 2011-04-19 Amgen Inc. Methods for refolding of recombinant antibodies
US7462697B2 (en) 2004-11-08 2008-12-09 Epitomics, Inc. Methods for antibody engineering
US7632497B2 (en) * 2004-11-10 2009-12-15 Macrogenics, Inc. Engineering Fc Antibody regions to confer effector function
AU2005317279C1 (en) 2004-12-14 2014-07-17 Cytiva Bioprocess R&D Ab Purification of immunoglobulins
JPWO2006067847A1 (en) * 2004-12-22 2008-06-12 中外製薬株式会社 Antibody production method using cells in which fucose transporter function is inhibited
US8728828B2 (en) 2004-12-22 2014-05-20 Ge Healthcare Bio-Sciences Ab Purification of immunoglobulins
WO2006071877A2 (en) 2004-12-27 2006-07-06 Progenics Pharmaceuticals (Nevada), Inc. Orally deliverable and anti-toxin antibodies and methods for making and using them
KR101564713B1 (en) 2004-12-28 2015-11-06 이나뜨 파르마 2 monoclonal antibodies against nkg2a
JP4986633B2 (en) 2005-01-12 2012-07-25 協和発酵キリン株式会社 Stabilized human IgG2 and IgG3 antibodies
AU2006204791A1 (en) * 2005-01-12 2006-07-20 Xencor, Inc Antibodies and Fc fusion proteins with altered immunogenicity
US7700099B2 (en) 2005-02-14 2010-04-20 Merck & Co., Inc. Non-immunostimulatory antibody and compositions containing the same
US9493569B2 (en) * 2005-03-31 2016-11-15 Chugai Seiyaku Kabushiki Kaisha Structural isomers of sc(Fv)2
EP1876236B9 (en) 2005-04-08 2015-02-25 Chugai Seiyaku Kabushiki Kaisha Antibody substituting for function of blood coagulation factor viii
AU2006236360B2 (en) 2005-04-15 2012-02-02 Genentech, Inc. HGF beta chain variants
WO2006116260A2 (en) 2005-04-26 2006-11-02 Medimmune, Inc. Modulation of antibody effector function by hinge domain engineering
WO2006121852A2 (en) 2005-05-05 2006-11-16 Duke University Anti-cd19 antibody therapy for autoimmune disease
TW200718780A (en) 2005-06-10 2007-05-16 Chugai Pharmaceutical Co Ltd Sc(Fv)2 site-directed mutant
AU2006256041B2 (en) * 2005-06-10 2012-03-29 Chugai Seiyaku Kabushiki Kaisha Stabilizer for protein preparation comprising meglumine and use thereof
JP5085322B2 (en) 2005-06-10 2012-11-28 中外製薬株式会社 Pharmaceutical composition containing sc (Fv) 2
JP2008546805A (en) 2005-06-23 2008-12-25 メディミューン,エルエルシー Antibody formulations with optimal aggregation and fragmentation profiles
CN101627054A (en) 2005-07-11 2010-01-13 马克罗基因公司 Method with the anti-CD16A Antybody therapy of humanization autoimmune disease
SI2573114T1 (en) 2005-08-10 2016-08-31 Macrogenics, Inc. Identification and engineering of antibodies with variant Fc regions and methods of using same
PT2407486T (en) 2005-08-19 2018-02-21 Univ Pennsylvania Antagonist antibodies against gdf-8 and uses in treatment of als and other gdf-8-associated disorders
JP2009510102A (en) 2005-09-29 2009-03-12 ヴァイラル ロジック システムズ テクノロジー コーポレーション Immunomodulatory compositions and uses thereof
EP1941907B1 (en) 2005-10-14 2016-03-23 Fukuoka University Inhibitor of transplanted islet dysfunction in islet transplantation
BRPI0617664B8 (en) 2005-10-21 2021-05-25 Chugai Pharmaceutical Co Ltd use of an antibody recognizing IL-6 for the production of a pharmaceutical composition to treat myocardial infarction or suppress left ventricular remodeling after myocardial infarction
WO2007060411A1 (en) 2005-11-24 2007-05-31 Ucb Pharma S.A. Anti-tnf alpha antibodies which selectively inhibit tnf alpha signalling through the p55r
TW200808347A (en) * 2006-03-23 2008-02-16 Kirin Brewery Agonistic antibody directed against human thrombopoietin receptor
DK1999154T3 (en) 2006-03-24 2012-12-03 Merck Patent Gmbh MANUFACTURED HETERODIMERED PROTEIN DOMAINS
JP5624276B2 (en) 2006-03-31 2014-11-12 中外製薬株式会社 Methods for controlling blood kinetics of antibodies
CN105177091A (en) * 2006-03-31 2015-12-23 中外制药株式会社 Antibody modification method for purifying bispecific antibody
EP2025346B1 (en) * 2006-04-07 2016-08-10 Osaka University Muscle regeneration promoter
RU2511406C2 (en) * 2006-06-08 2014-04-10 Чугаи Сейяку Кабусики Кайся Preventive and therapeutic agent for inflammatory disease
US20090182127A1 (en) 2006-06-22 2009-07-16 Novo Nordisk A/S Production of Bispecific Antibodies
US20100034194A1 (en) 2006-10-11 2010-02-11 Siemens Communications Inc. Eliminating unreachable subscribers in voice-over-ip networks
JPWO2008090960A1 (en) 2007-01-24 2010-05-20 協和発酵キリン株式会社 Recombinant antibody composition that specifically binds to ganglioside GM2
WO2008092117A2 (en) 2007-01-25 2008-07-31 Xencor, Inc. Immunoglobulins with modifications in the fcr binding region
KR101540822B1 (en) 2007-03-27 2015-07-30 씨 레인 바이오테크놀로지스, 엘엘씨 constructs and libraries comprising antibody surrogate light chain sequences
ES2667863T3 (en) 2007-03-29 2018-05-14 Genmab A/S Bispecific antibodies and their production methods
CA2688275A1 (en) 2007-05-31 2008-12-04 Genmab A/S Stable igg4 antibodies
EP2155790A1 (en) 2007-05-31 2010-02-24 Genmab A/S Method for extending the half-life of exogenous or endogenous soluble molecules
ES2562790T3 (en) 2007-07-17 2016-03-08 E. R. Squibb & Sons, L.L.C. Monoclonal antibodies against Glipicano-3
EP2031064A1 (en) 2007-08-29 2009-03-04 Boehringer Ingelheim Pharma GmbH & Co. KG Method for increasing protein titres
US20100226925A1 (en) 2007-09-14 2010-09-09 Amgen Inc. Homogeneous Antibody Populations
AU2008304756B8 (en) 2007-09-26 2015-02-12 Chugai Seiyaku Kabushiki Kaisha Anti-IL-6 receptor antibody
EP4368721A2 (en) 2007-09-26 2024-05-15 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in cdr
WO2009041734A1 (en) 2007-09-26 2009-04-02 Kyowa Hakko Kirin Co., Ltd. Agonistic antibody against human thrombopoietin receptor
AR068563A1 (en) 2007-09-26 2009-11-18 Chugai Pharmaceutical Co Ltd CONSTANT MUTANT ANTIBODY REGION
EP2196541B1 (en) 2007-09-28 2012-11-07 Chugai Seiyaku Kabushiki Kaisha Anti-glypican-3 antibody having improved kinetics in plasma
JO3076B1 (en) 2007-10-17 2017-03-15 Janssen Alzheimer Immunotherap Immunotherapy regimes dependent on apoe status
WO2009053368A1 (en) 2007-10-22 2009-04-30 Merck Serono S.A. Single ifn-beta fused to a mutated igg fc fragment
DK2236604T3 (en) 2007-12-05 2016-10-03 Chugai Pharmaceutical Co Ltd The anti-NR10 antibody and use thereof
KR101672271B1 (en) 2007-12-18 2016-11-03 바이오얼라이언스 씨.브이. Antibodies recognizing a carbohydrate containing epitope on cd-43 and cea expressed on cancer cells and methods using same
PE20091174A1 (en) 2007-12-27 2009-08-03 Chugai Pharmaceutical Co Ltd LIQUID FORMULATION WITH HIGH CONCENTRATION OF ANTIBODY CONTENT
PT2235064E (en) * 2008-01-07 2016-03-01 Amgen Inc Method for making antibody fc-heterodimeric molecules using electrostatic steering effects
US20110059078A1 (en) 2008-02-08 2011-03-10 Medimmune, Llc Anti-ifnar1 antibodies with reduced fc ligand affinity
MY195714A (en) * 2008-04-11 2023-02-07 Chugai Pharmaceutical Co Ltd Antigen-Binding Molecule Capable of Binding to Two or More Antigen Molecules Repeatedly
JP2011519279A (en) 2008-05-01 2011-07-07 アムジエン・インコーポレーテツド Anti-hepcidin antibodies and methods of use
TWI440469B (en) 2008-09-26 2014-06-11 Chugai Pharmaceutical Co Ltd Improved antibody molecules
SG172754A1 (en) 2008-10-10 2011-08-29 Trubion Pharmaceuticals Inc Tcr complex immunotherapeutics
AR074438A1 (en) 2008-12-02 2011-01-19 Pf Medicament PROCESS FOR THE MODULATION OF ANTAGONIST ACTIVITY OF A MONOCLONAL ANTIBODY
WO2010064090A1 (en) 2008-12-02 2010-06-10 Pierre Fabre Medicament Process for the modulation of the antagonistic activity of a monoclonal antibody
US20110279752A1 (en) 2008-12-23 2011-11-17 Sumitomo Chemical Company, Limited Optical film and liquid crystal display device comprising same
US20120149875A1 (en) 2009-01-12 2012-06-14 Ge Healthcare Bio-Sciences Ab Affinity chromatography matrix
EP2409991B1 (en) 2009-03-19 2017-05-03 Chugai Seiyaku Kabushiki Kaisha Antibody constant region variant
TWI544077B (en) 2009-03-19 2016-08-01 Chugai Pharmaceutical Co Ltd Antibody constant region change body
EP2233500A1 (en) 2009-03-20 2010-09-29 LFB Biotechnologies Optimized Fc variants
ES2537100T3 (en) 2009-04-07 2015-06-02 Roche Glycart Ag Trivalent bispecific antibodies
CN102459346B (en) 2009-04-27 2016-10-26 昂考梅德药品有限公司 The method manufacturing heteromultimers molecule
CA2766220C (en) 2009-06-26 2021-02-09 Regeneron Pharmaceuticals, Inc. Readily isolated bispecific antibodies with native immunoglobulin format
RU2570639C2 (en) 2009-08-29 2015-12-10 Эббви Инк Therapeutic dll4-binding proteins
EP2481752B1 (en) * 2009-09-24 2016-11-09 Chugai Seiyaku Kabushiki Kaisha Modified antibody constant regions
ES2777901T3 (en) 2009-12-25 2020-08-06 Chugai Pharmaceutical Co Ltd Polypeptide Modification Method to Purify Polypeptide Multimers
EP3112382A1 (en) 2009-12-29 2017-01-04 Emergent Product Development Seattle, LLC Heterodimer binding proteins and uses thereof
CA2787755A1 (en) 2010-01-20 2011-07-28 Tolerx, Inc. Immunoregulation by anti-ilt5 antibodies and ilt5-binding antibody fragments
EP2525813B1 (en) 2010-01-20 2017-01-04 Merck Sharp & Dohme Corp. Anti-ilt5 antibodies and ilt5-binding antibody fragments
TWI609698B (en) 2010-01-20 2018-01-01 Chugai Pharmaceutical Co Ltd Stabilized antibody-containing solution preparation
AU2011222012C1 (en) 2010-03-02 2015-02-26 Kyowa Kirin Co., Ltd. Modified antibody composition
JP5889181B2 (en) 2010-03-04 2016-03-22 中外製薬株式会社 Antibody constant region variants
SG10201507722QA (en) 2010-03-11 2015-10-29 Rinat Neuroscience Corp ANTIBODIES WITH pH DEPENDENT ANTIGEN BINDING
JP5998050B2 (en) 2010-03-31 2016-09-28 Jsr株式会社 Affinity chromatography packing
EA201201435A1 (en) 2010-04-20 2013-04-30 Генмаб А/С HETERODIMERNY ANTIBODY-Fc-CONTAINING PROTEINS AND METHODS FOR THEIR RECEIVING
CN102946906B (en) 2010-04-23 2015-07-15 弗·哈夫曼-拉罗切有限公司 Production of heteromultimeric proteins
EP2569337A1 (en) 2010-05-14 2013-03-20 Rinat Neuroscience Corp. Heterodimeric proteins and methods for producing and purifying them
DK3029066T3 (en) 2010-07-29 2019-05-20 Xencor Inc ANTIBODIES WITH MODIFIED ISOELECTRIC ITEMS
CA2808154A1 (en) 2010-08-13 2012-02-16 Medimmmune Limited Monomeric polypeptides comprising variant fc regions and methods of use
MX352929B (en) 2010-11-05 2017-12-13 Zymeworks Inc Stable heterodimeric antibody design with mutations in the fc domain.
TWI452136B (en) 2010-11-17 2014-09-11 中外製藥股份有限公司 A multiple specific antigen-binding molecule that replaces the function of Factor VIII in blood coagulation
ES2693232T3 (en) 2010-11-30 2018-12-10 Chugai Seiyaku Kabushiki Kaisha Therapeutic agent that induces cytotoxicity
SG10201602371VA (en) 2011-03-25 2016-04-28 Glenmark Pharmaceuticals Sa Hetero-dimeric immunoglobulins
EP2699263A4 (en) 2011-04-20 2014-12-24 Liquidating Trust Methods for reducing an adverse immune response to a foreign antigen in a human subject with anti-cd4 antibodies or cd4-binding fragments thereof or cd4-binding molecules
US9098611B2 (en) 2012-11-26 2015-08-04 Intouch Technologies, Inc. Enhanced video interaction for a user interface of a telepresence network
LT2771364T (en) 2011-10-27 2019-09-10 Genmab A/S Production of heterodimeric proteins
BR112014010257A2 (en) 2011-10-31 2017-04-18 Chugai Pharmaceutical Co Ltd antigen binding molecule having regulated conjugation between heavy and light chains
PT2773671T (en) 2011-11-04 2021-12-14 Zymeworks Inc Stable heterodimeric antibody design with mutations in the fc domain
GB201203051D0 (en) 2012-02-22 2012-04-04 Ucb Pharma Sa Biological products
MY166045A (en) 2012-03-08 2018-05-22 Hoffmann La Roche Abeta antibody formulation
EP3517548A1 (en) 2012-03-13 2019-07-31 NovImmune S.A. Readily isolated bispecific antibodies with native immunoglobulin format
US9751942B2 (en) 2012-03-29 2017-09-05 Chugai Seiyaku Kabushiki Kaisha Anti-LAMP5 antibody and utilization thereof
KR20150004856A (en) 2012-04-20 2015-01-13 이머전트 프로덕트 디벨롭먼트 시애틀, 엘엘씨 Cd3 binding polypeptides
KR102171431B1 (en) 2012-04-20 2020-10-30 메뤼스 엔.페. Methods and means for the production of Ig-like molecules
US20140154270A1 (en) 2012-05-21 2014-06-05 Chen Wang Purification of non-human antibodies using kosmotropic salt enhanced protein a affinity chromatography
KR102159773B1 (en) 2012-06-01 2020-09-28 더 유나이티드 스테이츠 오브 어메리카, 애즈 리프리젠티드 바이 더 세크러테리, 디파트먼트 오브 헬쓰 앤드 휴먼 서비씨즈 High-affinity monoclonal antibodies to glypican-3 and use thereof
WO2014028354A1 (en) 2012-08-13 2014-02-20 Regeneron Pharmaceuticals, Inc. Anti-pcsk9 antibodies with ph-dependent binding characteristics
CA2889681C (en) 2012-09-27 2023-04-11 Merus B.V. Bispecific igg antibodies as t cell engagers
ES2773107T3 (en) 2012-10-05 2020-07-09 Kyowa Kirin Co Ltd Heterodimeric protein composition
CA2889951C (en) 2012-11-02 2023-04-18 Zymeworks Inc. Crystal structures of heterodimeric fc domains
CN103833852A (en) 2012-11-23 2014-06-04 上海市肿瘤研究所 Bispecific antibody aiming at phosphatidylinositols protein polysaccharide-3 and T cell antigen
WO2014144960A2 (en) 2013-03-15 2014-09-18 Abbvie Biotherapeutics Inc. Fc variants
SG11201602261VA (en) 2013-09-27 2016-04-28 Chugai Pharmaceutical Co Ltd Method for producing polypeptide heteromultimer
MX2016003617A (en) 2013-09-30 2016-07-21 Chugai Pharmaceutical Co Ltd Method for producing antigen-binding molecule using modified helper phage.
AP2016009222A0 (en) 2013-11-04 2016-05-31 Glenmark Pharmaceuticals Sa Production of t cell retargeting hetero-dimeric immunoglobulins
ES2900898T3 (en) 2014-04-07 2022-03-18 Chugai Pharmaceutical Co Ltd Bispecific immunoactivating antibodies
WO2015174439A1 (en) 2014-05-13 2015-11-19 中外製薬株式会社 T cell-redirected antigen-binding molecule for cells having immunosuppression function
TW201625299A (en) 2014-06-20 2016-07-16 Chugai Pharmaceutical Co Ltd Pharmaceutical composition for use in prevention and/or treatment of disease that develops or progresses as a result of decrease or loss of activity of blood coagulation factor viii and/or activated blood coagulation factor viii
AR101262A1 (en) 2014-07-26 2016-12-07 Regeneron Pharma PURIFICATION PLATFORM FOR Bispecific Antibodies
MA40764A (en) 2014-09-26 2017-08-01 Chugai Pharmaceutical Co Ltd THERAPEUTIC AGENT INDUCING CYTOTOXICITY
JP6630036B2 (en) 2014-09-30 2020-01-15 Jsr株式会社 Method for purifying target substance and carrier for mixed mode
US11142587B2 (en) 2015-04-01 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide hetero-oligomer
AU2016248817A1 (en) 2015-04-17 2017-08-17 F. Hoffmann-La Roche Ag Combination therapy with coagulation factors and multispecific antibodies
JP2018123055A (en) 2015-04-24 2018-08-09 公立大学法人奈良県立医科大学 Pharmaceutical composition for use in prevention and/or treatment of blood coagulation factor xi (fxi) abnormalities comprising multispecific antigen binding molecule replacing function of blood coagulation factor viii (fviii)
AU2016381992B2 (en) 2015-12-28 2024-01-04 Chugai Seiyaku Kabushiki Kaisha Method for promoting efficiency of purification of Fc region-containing polypeptide
TWI797073B (en) 2016-01-25 2023-04-01 德商安美基研究(慕尼黑)公司 Pharmaceutical composition comprising bispecific antibody constructs
MX2018010988A (en) 2016-03-14 2019-01-21 Chugai Pharmaceutical Co Ltd Cell injury inducing therapeutic drug for use in cancer therapy.
CN117205314A (en) 2016-03-14 2023-12-12 中外制药株式会社 Therapeutic agent for inducing cell damage for cancer treatment
AU2017255077B2 (en) 2016-04-28 2024-05-16 Chugai Seiyaku Kabushiki Kaisha Antibody-containing preparation
JP7209298B2 (en) 2017-03-31 2023-01-20 公立大学法人奈良県立医科大学 A pharmaceutical composition used for the prevention and/or treatment of blood coagulation factor IX disorders, containing a multispecific antigen-binding molecule that substitutes for the function of blood coagulation factor VIII

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI544076B (en) * 2005-03-31 2016-08-01 Chugai Pharmaceutical Co Ltd A method of manufacturing a polypeptide that controls assembly

Also Published As

Publication number Publication date
EP1870459A1 (en) 2007-12-26
EP3050963A1 (en) 2016-08-03
JP5739387B2 (en) 2015-06-24
TWI544076B (en) 2016-08-01
JPWO2006106905A1 (en) 2008-09-11
EP3623473A1 (en) 2020-03-18
EP3050963B1 (en) 2019-09-18
US20180051307A1 (en) 2018-02-22
KR20080013875A (en) 2008-02-13
DK3050963T3 (en) 2019-12-09
CN101198698A (en) 2008-06-11
JP2013009675A (en) 2013-01-17
US11168344B2 (en) 2021-11-09
AU2006232287B2 (en) 2011-10-06
CA2603408A1 (en) 2006-10-12
EP1870459A4 (en) 2010-09-01
TW201631154A (en) 2016-09-01
JP5620626B2 (en) 2014-11-05
AU2006232287A8 (en) 2008-01-24
ES2592271T3 (en) 2016-11-29
US20220267822A1 (en) 2022-08-25
EP1870459B1 (en) 2016-06-29
AU2006232287A1 (en) 2006-10-12
CN101198698B (en) 2014-03-19
US20100015133A1 (en) 2010-01-21
US10011858B2 (en) 2018-07-03
HK1114878A1 (en) 2008-11-14
CA2603408C (en) 2018-08-21
WO2006106905A1 (en) 2006-10-12
TW200722517A (en) 2007-06-16
KR101374454B1 (en) 2014-03-17

Similar Documents

Publication Publication Date Title
TWI671403B (en) Method for controlling controlled assembly of polypeptide
JP6219877B2 (en) Antibody modification method for purifying bispecific antibodies
US20200087380A1 (en) Antigen-binding molecule having regulated conjugation between heavy-chain and light-chain
RU2663123C2 (en) Cytotoxicity-inducing therapeutic agent