JPH05203652A - Antibody enzyme immunoassay - Google Patents

Antibody enzyme immunoassay

Info

Publication number
JPH05203652A
JPH05203652A JP3575792A JP3575792A JPH05203652A JP H05203652 A JPH05203652 A JP H05203652A JP 3575792 A JP3575792 A JP 3575792A JP 3575792 A JP3575792 A JP 3575792A JP H05203652 A JPH05203652 A JP H05203652A
Authority
JP
Japan
Prior art keywords
antibody
enzyme
ligand
headed
coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3575792A
Other languages
Japanese (ja)
Inventor
Yumiko Wada
裕美子 和田
Mitsunori Ono
光則 小野
Masayoshi Yamamoto
正義 山本
Yukio Sudo
幸夫 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP3575792A priority Critical patent/JPH05203652A/en
Publication of JPH05203652A publication Critical patent/JPH05203652A/en
Pending legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To enable analysis with high sensitivity and high reproducibility without causing deterioration of S/N by bringing a two-head antibody into contact with a ligand, and measuring the activity of the antibody enzyme of the two- head antibody being coupled to the ligand, the two-head antibody consisting of a moiety of an antibody for the ligand and a moiety of the antibody enzyme which can generate signals. CONSTITUTION:Antigens (ligand L) 12 in a sample are coupled to a solid-phase antibody 10 (first immunoreaction). Those antigens which are not yet coupled are removed (washing). A two-head antibody(Bs-Ab) comprising a moiety 14a of the ligand specific antibody and a moiety 14b of an enzyme antibody is added and coupled to the antigens 12 being coupled to the solid-phase antibody 10 (second immunoreaction). Those two-head antibodies 14 which are not yet coupled to the antigens 12 are removed (washing). An enzyme substrate (S) is added to detect a product (Prod) so as to measure the amount of the coupled two-head antibodies (enzyme reaction).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は抗体酵素を用いる免疫分
析法に関するものであり、詳しくは2頭抗体を用いた抗
体酵素免疫分析法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an immunoassay method using an antibody enzyme, and more particularly to an antibody enzyme immunoassay method using a double-headed antibody.

【0002】[0002]

【発明の背景】血液や尿等の分析は、病態の診断や治療
経過の判定に非常に有用であり、臨床検査の分野で重要
な役割を果たしている。このような微量成分(リガン
ド)の分析方法として、該微量成分に対する抗体を用い
て免疫学的に測定する方法が広く応用されている(例え
ば「免疫学イラストレイテッド」多田富雄訳、南江堂、
1990年、p327-339参照)。免疫反応は抗原と抗体との間
の特異的かつ高親和性の反応であり、抗体と抗原の平衡
状態を標識抗原又は標識抗体とを用いて解析することに
より測定対象の抗原を定量することができる。この標識
として酵素を使用して酵素による化学増幅を利用したの
が酵素免疫測定法(エンザイムイムノアッセイ;EI
A)である。酵素免疫測定法は、簡便かつ高感度な分析
方法として近年盛んに利用され、その詳細は例えば石川
栄治、辻章夫ら編集、「酵素免疫測定法」(共立出版、
1987年)に記載されている。
BACKGROUND OF THE INVENTION Analysis of blood, urine, etc. is very useful for diagnosing pathological conditions and determining the course of treatment, and plays an important role in the field of clinical examination. As a method of analyzing such a trace component (ligand), a method of immunologically measuring using an antibody against the trace component has been widely applied (for example, "Immunology Illustrated" translated by Tomio Tada, Nankodo,
1990, p327-339). The immune reaction is a specific and high-affinity reaction between an antigen and an antibody, and it is possible to quantify the antigen to be measured by analyzing the equilibrium state between the antibody and the antigen using a labeled antigen or a labeled antibody. it can. An enzyme immunoassay method (enzyme immunoassay; EI) uses an enzyme as the label and utilizes chemical amplification by the enzyme.
A). The enzyme immunoassay method has been actively used in recent years as a simple and highly sensitive analysis method. For details, see, for example, Eiji Ishikawa and Akio Tsuji, "Enzyme Immunoassay Method" (Kyoritsu Publishing,
1987).

【0003】現在、抗原測定のために最もよく使用され
ている酵素免疫測定法はいわゆるサンドイッチ法であ
る。サンドイッチ法は、2以上の抗原決定部位を持つ多
価抗原の測定法であり、異なる抗原決定部位に対する2
種類の抗体を用いる。代表的なサンドイッチEIA法
は、例えば次のようなステップで行なうことができる。 1. 試料中の抗原を、固相化抗体(第1抗体)に結合さ
せる(第1免疫反応)。 2. 未結合の抗原を除去する(洗浄)。 3. 酵素標識抗体(固相化抗体とは異なる第2抗体)を
添加し、固相上の抗原に結合させる(第2免疫反応)。 4. 未結合の酵素標識抗体を除去する(洗浄)。 5. 酵素基質を加え、結合している酵素標識抗体量を測
定する(酵素反応)。 このような方法では、第2抗体を酵素で標識し酵素標識
抗体を作る必要があり、抗体と酵素を主に架橋試薬を用
いて化学的に結合していた(例えば、石川栄治、河合
忠、宮井潔著「酵素免疫測定法」(医学書院、1987
年))。
At present, the most commonly used enzyme immunoassay method for antigen measurement is the so-called sandwich method. The sandwich method is a method for measuring a multivalent antigen having two or more antigenic determinant sites, and is used for measuring different antigenic determinant sites.
Use different types of antibodies. A typical sandwich EIA method can be performed by the following steps, for example. 1. The antigen in the sample is bound to the immobilized antibody (first antibody) (first immune reaction). 2. Remove unbound antigen (wash). 3. An enzyme-labeled antibody (a second antibody different from the immobilized antibody) is added and allowed to bind to the antigen on the solid phase (second immune reaction). 4. Unbound enzyme-labeled antibody is removed (washing). 5. Add an enzyme substrate and measure the amount of enzyme-labeled antibody bound (enzyme reaction). In such a method, it is necessary to label the second antibody with an enzyme to prepare an enzyme-labeled antibody, and the antibody and the enzyme were chemically bound mainly by using a crosslinking reagent (for example, Eiji Ishikawa, Tadashi Kawai, Kiyoshi Miyai "Enzyme Immunoassay" (Medical Shoin, 1987)
Year)).

【0004】酵素免疫測定法では、使用する酵素標識抗
体の性能が測定感度、再現性などに大きな影響を与え
る。しかし、抗体と酵素とを化学結合させて得られる酵
素標識抗体は、この性能の点で問題がある。
In the enzyme immunoassay, the performance of the enzyme-labeled antibody used has a great influence on the measurement sensitivity and reproducibility. However, an enzyme-labeled antibody obtained by chemically bonding an antibody and an enzyme has a problem in this performance.

【0005】架橋試薬として代表的なグルタルアルデヒ
ドは、抗体、酵素のアミノ基と結合・架橋するが、その
結合はランダムであり抗体、酵素のアミノ基に無差別に
反応して抗体活性や酵素活性を損なう。また酵素のみが
重合したり抗体のみが重合したりするため標識効率が低
い。またランダムな反応の結果、ホモポリマーやヘテロ
ポリマーが多くなり、これらポリマーは一旦形成される
と、必要とする酵素標識抗体(酵素:抗体=1:1の割
合で結合している複合体が理想的である)との分離が困
難であるため、EIA法の感度・再現性を低下させる原
因となっていた。
Glutaraldehyde, which is a typical cross-linking reagent, binds and cross-links with amino groups of antibodies and enzymes, but the binding is random and reacts indiscriminately with amino groups of antibodies and enzymes to cause antibody activity and enzyme activity. Spoil. In addition, the labeling efficiency is low because only the enzyme or the antibody polymerizes. Moreover, as a result of random reaction, homopolymers and heteropolymers increase, and once these polymers are formed, the enzyme-labeled antibody (enzyme: antibody = 1: 1) is the ideal complex. Since it is difficult to separate the EIA method, the sensitivity and reproducibility of the EIA method are reduced.

【0006】過ヨウ素酸法は、酵素の糖鎖を酸化してア
ルデヒド基を形成させ、このアルデヒド基と抗体のアミ
ノ基とを反応・結合させるものである。この方法では、
酵素活性の低下は少ないものの、抗体のアミノ基に対す
る選択性はないので、抗体活性の低下は免れない。また
糖鎖をもたない酵素には適用できない。
The periodate method is a method in which the sugar chain of an enzyme is oxidized to form an aldehyde group, and the aldehyde group and the amino group of the antibody are reacted and bonded. in this way,
Although the decrease in the enzyme activity is small, the decrease in the antibody activity is inevitable because the antibody has no selectivity for the amino group. In addition, it cannot be applied to enzymes that do not have sugar chains.

【0007】マレイミド法は、IgG抗体のヒンジ部に
あるチオール基に、酵素に導入したマレイミド基を結合
・架橋させる。この方法では、抗体活性部位から離れた
ヒンジ部分に選択的に酵素を結合できるので、抗体活性
の低下は少ない。しかし、酵素のアミノ基に対する選択
性はないから、酵素に2以上のアミノ基があれば酵素活
性は多少とも低下する。また1分子の酵素に2分子以上
の抗体が結合することになれば、抗体1分子当たりに対
する標識酵素の濃度は低くなり、感度の上昇は望めな
い。
In the maleimide method, a maleimide group introduced into an enzyme is bound / crosslinked with a thiol group at the hinge portion of an IgG antibody. According to this method, the enzyme can be selectively bound to the hinge portion distant from the antibody active site, so that the decrease in antibody activity is small. However, since the enzyme has no selectivity for amino groups, if the enzyme has two or more amino groups, the enzyme activity will decrease to some extent. Further, if two or more molecules of antibody are bound to one molecule of enzyme, the concentration of the labeled enzyme per molecule of antibody will be low, and the increase in sensitivity cannot be expected.

【0008】化学結合による酵素標識法は他にも種々あ
るが、得られる酵素標識抗体はいずれも上記と大同小異
の欠点を有している。またこれら化学結合による酵素標
識抗体は、抗体と酵素という分子量の大きい分子同士が
結合したものであるため、マイクロタイタープレートや
ビーズ等の固相に対する非特異的吸着性が増大するとい
う欠陥も生じやすい。そのため期待通りの感度が得られ
なくなったり、再現性が乏しくなるという問題もあっ
た。
There are various other enzyme labeling methods by chemical bonding, but all of the enzyme-labeled antibodies obtained have the same and slightly different drawbacks as the above. In addition, the enzyme-labeled antibody by these chemical bonds is a combination of molecules having a large molecular weight, that is, an antibody and an enzyme, so that a defect that non-specific adsorption to a solid phase such as a microtiter plate or beads is likely to occur easily occurs. .. Therefore, there are problems that the sensitivity as expected cannot be obtained and the reproducibility is poor.

【0009】また,我々は、従来のような化学的に結合
した酵素抗体複合体を用いる代りに、酵素を2頭抗体
(BS抗体;Bi-specific antibody) に免疫学的に結合
させて酵素免疫分析を行う方法も開発し、この性能も検
討した(特願平3-113774)。この2頭抗体を用いる方法
によって感度、再現性に著しい向上が見られた。しかし
この方法は、反応系に多量の酵素を添加しなければなら
ないため、添加酵素の非特異的吸着によりS/N比が低
下するという新たな問題が生じてきた。
In addition, instead of using a chemically bound enzyme-antibody complex as in the prior art, we immunologically bind an enzyme to a two-headed antibody (BS antibody; Bi-specific antibody). We also developed a method of analysis and examined its performance (Japanese Patent Application No. 3-113774). A marked improvement in sensitivity and reproducibility was observed by the method using this two-headed antibody. However, in this method, a large amount of enzyme must be added to the reaction system, so that a new problem has arisen that the S / N ratio is lowered due to nonspecific adsorption of the added enzyme.

【0010】[0010]

【発明の目的】本発明は、以上のような事情に鑑みなさ
れたものであり、抗体活性の低下が少なく、高感度かつ
再現性の良い分析が、S/N比の低下を伴わずに行なう
ことが出来る免疫測定法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and an assay with high reduction in antibody activity and high sensitivity and good reproducibility can be carried out without reduction in S / N ratio. It is an object of the present invention to provide an immunoassay capable of performing the same.

【0011】[0011]

【発明の構成】このような本発明の目的は、リガンドに
対する抗体の半量体と、検出可能な信号を発生すること
のできる抗体酵素の半量体とからなる2頭抗体を、リガ
ンドに接触させ、リガンドに結合した(又はしていな
い)2頭抗体の抗体酵素の活性を測定することを特徴と
する抗体酵素免疫分析法により達成された。
The object of the present invention is to contact a ligand with a two-headed antibody comprising a half-body of an antibody against a ligand and a half-body of an antibody enzyme capable of generating a detectable signal, It was achieved by an antibody-enzyme immunoassay characterized by measuring the activity of the antibody enzyme of the two-headed antibody bound (or not bound) to the ligand.

【0012】[0012]

【作用】本発明では、従来のような化学的に結合した酵
素抗体複合体を用いる代りに、抗体酵素の2頭抗体(B
S抗体;Bi-specific antibody) を用いて免疫分析を行
う。これは、検出可能なシグナルを発生することのでき
る抗体酵素の半量体と、被検物(リガンド)に対する抗
原特異性を有する特異抗体の半量体とからなる2頭抗体
を用いることにより、問題となる感度の低下が見られな
くなるという発明者による知見に基づくものである。
In the present invention, instead of using a chemically bound enzyme-antibody complex as in the conventional case, a double-headed antibody (B
S-antibody; Bi-specific antibody) is used for immunoassay. This is problematic by using a two-headed antibody consisting of a half-body of an antibody enzyme capable of generating a detectable signal and a half-body of a specific antibody having antigen specificity for a test substance (ligand). It is based on the finding by the inventor that the decrease in sensitivity is not seen.

【0013】2頭抗体は通常の抗体と同様の2量体構造
であり、化学的な修飾はされていないので抗体活性は損
なわれていない。また、抗体酵素の酵素活性も、損なわ
れることがない。また、この2頭抗体以外には酵素等の
添加を必要としないので、添加酵素の非特異吸着に伴う
S/N比の低下等も生じない。
The two-headed antibody has a dimer structure similar to that of a normal antibody and is not chemically modified, so that the antibody activity is not impaired. Moreover, the enzyme activity of the antibody enzyme is not impaired. In addition, since it is not necessary to add an enzyme or the like other than the two-headed antibody, the S / N ratio does not decrease due to nonspecific adsorption of the added enzyme.

【0014】[0014]

【発明の構成の詳細な説明】抗体酵素 本発明における抗体酵素とは、その特異的結合対を別の
生成物に換える能力を有する抗体のいう。言い換えれ
ば、酵素活性(または触媒活性)を保持する抗体のこと
である。抗体酵素(Antibody Enzyme) は、また、触媒抗
体(catalytic Antibody)、Abzyme等と呼ばれるよばれ
ることもある。
Detailed Description of the Structure of the Invention Antibody Enzyme The antibody enzyme in the present invention refers to an antibody capable of converting its specific binding pair into another product. In other words, it is an antibody that retains enzymatic activity (or catalytic activity). The antibody enzyme (Antibody Enzyme) is also called a catalytic antibody (catalytic Antibody), Abzyme and the like.

【0015】一般に、抗体は特定の分子(抗原)を識別
して特異的に結合する蛋白質として特徴づけられる。一
方、同じ蛋白質である酵素は特定の分子(酵素基質)に
特異的に結合するだけでなく、その分子の化学反応を触
媒する機能を有する。すなわち、酵素も抗体も特異的な
物質と結合対をつくることのできる生体内蛋白質ではあ
るが、抗体は、化学反応を触媒する能力がないという点
で、酵素と区別することができる。しかし、抗体は原理
的のほとんど全ての分子に対して特異的なものを得るこ
とが可能であることから、抗体と酵素とが共有する特
性、すなわち特異的に結合するという性格を基礎にし
て、化学反応を触媒するような抗体を得ることができな
いかとの試みがなされた。ただ初期の研究では、基質に
対する抗体を作製するものであったため、触媒効果を持
つ抗体を見つけるには至らなかった(Biochemistry, 5,
2836(1966) 、FEBS Letter, 100, 137(1979) )。これ
に対して、P.G.SchulzらやR.A.Lernerらは、“酵素の活
性中心は、反応の遷移状態と相補的な構造を持つ”とい
うL.Pauling の考えに基づき、反応の遷移状態のアナロ
グに対する抗体を作製し、この抗体が触媒活性を持つこ
とを発見した(Science, 234, 1570(1986),Science, 2
34,1566(1986)) 。その後、多数の研究者によりこのよ
うな触媒活性を持つ抗体が作製され、抗体酵素(触媒抗
体,Abzyme)という考えが広く認められるに至ってい
る。
In general, an antibody is characterized as a protein that recognizes a specific molecule (antigen) and specifically binds to it. On the other hand, the enzyme, which is the same protein, has the function of not only specifically binding to a specific molecule (enzyme substrate) but also catalyzing the chemical reaction of the molecule. That is, both enzymes and antibodies are in-vivo proteins capable of forming a binding pair with a specific substance, but antibodies can be distinguished from enzymes in that they have no ability to catalyze chemical reactions. However, since it is possible to obtain antibodies specific to almost all molecules in principle, on the basis of the property shared by antibodies and enzymes, that is, the property of specifically binding, Attempts have been made to obtain antibodies that catalyze chemical reactions. However, in the early studies, it was not possible to find an antibody having a catalytic effect, because it produced an antibody against the substrate (Biochemistry, 5 ,
2836 (1966), FEBS Letter, 100 , 137 (1979)). On the other hand, PG Schulz et al. And RA Lerner et al. Produced an antibody against an analog of the transition state of the reaction based on L. Pauling's idea that the active center of the enzyme has a structure complementary to the transition state of the reaction. And found that this antibody has catalytic activity (Science, 234 , 1570 (1986), Science, 2
34 , 1566 (1986)). Since then, many researchers have produced antibodies with such catalytic activity, and the idea of antibody enzyme (catalytic antibody, Abzyme) has been widely accepted.

【0016】遷移状態アナログとは、ある酵素反応にお
いて遷移状態にある物質(中間体)と形も電荷もよく似
た安定な類似体であり、このような遷移状態アナログ
は、抗原として働いて抗体を誘導し、又できた抗体は、
反応過程の遷移状態にある物質に結合し、これを安定化
し、さらに触媒として機能する。例えばカルボン酸エス
テルの加水分解反応では、反応物であるエステルは一般
に電荷をもたない平面上の分子構造をとる。加水分解は
水分子の攻撃により始まり、電荷をもった四面体型中間
体(遷移状態)を経たのち、速やかにカルボン酸とアル
コールに分解するという経過をたどる。この中間体で
は、原子間の結合方向も変わるし、原子間距離も約1.2
倍ほどに伸びる。このような不安定な特徴からこれを単
離することはできず、その抗体を得ることはできない
(下記化1参照)。
A transition state analog is a stable analog that is similar in shape and charge to a substance (intermediate) in a transition state in a certain enzymatic reaction. Such a transition state analog acts as an antigen and is an antibody. The antibody that induces
It binds to substances in the transition state of the reaction process, stabilizes them, and further functions as a catalyst. For example, in the hydrolysis reaction of a carboxylic acid ester, the reactant ester generally has a planar molecular structure having no charge. Hydrolysis begins with the attack of water molecules, passes through a charged tetrahedral intermediate (transition state), and then rapidly decomposes into carboxylic acids and alcohols. In this intermediate, the bond direction between atoms also changes, and the distance between atoms is about 1.2.
Doubles. Due to such an unstable characteristic, it cannot be isolated and its antibody cannot be obtained (see the following chemical formula 1).

【0017】[0017]

【化1】 [Chemical 1]

【0018】しかし、この四面体構造の中央の炭素原子
(C)をリン原子(P)に置き換えると、よく似た立体
配置をとるリン酸エステルと呼ばれる安定な化合物とな
る。しかもリン−酸素間の結合距離は、通常の炭素−酸
素間の結合よりも約20%長く、実際の遷移状態の結合
距離に近い。実際このような性質を備えたリン酸エステ
ルは、ある種の加水分解酵素を阻害することが知られて
いる。このような遷移状態アナログを抗原として免疫す
ることにより、この酵素活性をもった抗体、すなわち抗
体酵素を得ることができる。
However, when the central carbon atom (C) of this tetrahedral structure is replaced with a phosphorus atom (P), a stable compound called a phosphoric acid ester having a similar configuration is obtained. In addition, the bond distance between phosphorus and oxygen is about 20% longer than the normal bond between carbon and oxygen, and is close to the bond distance in the actual transition state. In fact, phosphoric acid esters having such properties are known to inhibit certain hydrolases. By immunizing with such a transition state analog as an antigen, an antibody having this enzyme activity, that is, an antibody enzyme can be obtained.

【0019】本発明における2頭抗体の半量体の一方と
して使用する抗体酵素とは、このような酵素活性を有す
る抗体をいう。本発明では抗体酵素を、従来の標識酵素
の代わりとして用いる。従って、ここで使用する抗体酵
素とは、基質から、検出可能な信号を発生することので
きる生成物又は分解物を生じることができるものであ
る。例えば、前記式1中のエステル分解により生じる生
成物が色素であるような物質を基質とするものがある。
なお、抗体酵素としては、遷移状態アナログをそのまま
免疫して得られたポリクローナルな抗体をそのまま用い
るよりも、モノクローナル抗体を作製して、高い触媒活
性を有するものを選択して、これを本発明の2頭抗体の
材料とするのが好ましい。
The antibody enzyme used as one of the half isomers of the two-headed antibody in the present invention refers to an antibody having such an enzyme activity. The present invention uses antibody enzymes as an alternative to conventional labeling enzymes. Therefore, an antibody enzyme as used herein is one that is capable of producing a product or degradation product capable of producing a detectable signal from a substrate. For example, there is a substrate that uses a substance whose product generated by the ester decomposition in the above formula 1 is a dye.
As the antibody enzyme, rather than using a polyclonal antibody as it is obtained by immunizing with a transition state analog as it is, a monoclonal antibody is prepared and one having high catalytic activity is selected, which is used in the present invention. It is preferable to use it as a material for the two-headed antibody.

【0020】2頭抗体 免疫グロブリン(抗体)は1種類のものではなく、その
化学構造から幾つかのクラスに分類されるが、その基本
構造はIgGに見られる構造である。すなわち、分子量
約25,000のL鎖と分子量約50,000のH鎖とがS−S結合
(ジスルフィド結合)して1つの単位(半量体)とな
り、これら等価な半量体がさらにH鎖のS−S結合で2
量体化して1つのIgG分子を形成する。抗原結合部位
(Fab部位)は各半量体にそれぞれ存在する。つまり、
IgGは抗原特異性は1つであるが2つの抗原分子に結
合する能力(同種2価)を有している。この同種2価の
IgGを化学的に処理することにより異なる2つの抗原
特異性を有する抗体(異種2価のいわゆる2頭抗体)を
作ろうとする概念自体は既に存在し、種々の方法が開発
されている。本発明で使用する2頭抗体はこれら公知技
術により作ることができ、検出可能なシグナルを発生す
ることのできる抗体酵素の半量体と、被検物(リガン
ド)に対する特異抗体の半量体とから構成される。
The double-headed antibody immunoglobulin (antibody) is not one type and is classified into several classes based on its chemical structure, but its basic structure is the structure found in IgG. That is, an L chain having a molecular weight of about 25,000 and an H chain having a molecular weight of about 50,000 form an S-S bond (disulfide bond) to form one unit (half-mer), and these equivalent half-mers further form an S-S bond of the H-chain. In 2
Quantify to form one IgG molecule. The antigen-binding site (Fab site) exists in each halfmer. That is,
IgG has one antigen specificity, but has the ability to bind to two antigen molecules (homologous bivalent). The concept itself of making an antibody having two different antigenic specificities (a so-called two-headed antibody having a different divalent) by chemically treating the same divalent IgG has already existed, and various methods have been developed. ing. The two-headed antibody used in the present invention can be produced by these known techniques, and is composed of a half-body of an antibody enzyme capable of generating a detectable signal and a half-body of a specific antibody against an analyte (ligand). To be done.

【0021】例えば、Nisonoffら方法に従い、2種のI
gGをペプシン消化してFc部分を除去した後、それぞ
れ還元して半量体のFab' を得、これを再酸化すること
により2頭抗体を作成できる(Arch. Biochem. Biophy
s.,90, 460-462, (1961))。この方法では、相異なる抗
体の半量体Fab' が結合した異種2価抗体の他に、同じ
抗原特異性の半量体Fab' が結合(自己会合)した同種
2価抗体も形成される。従ってこの場合には、同種2価
抗体から異種2価抗体を分離・精製する。或いは、Bren
nan らの方法に従い、半量体Fab' の一方をSH基をニ
トロ安息香酸で一時的に保護してもよい(Science, 22
9, 81, (1985)) 。これにより2種のモノクローナル抗
体から異種2価の2頭抗体を選択的に作成できる。Bren
nanらの手法をさらに簡便化した奥村らの方法に従って
もよい(特開平2-76899)。
For example, according to the method of Nisonoff et al., Two types of I
After digesting gG with pepsin to remove the Fc portion, each was reduced to obtain a half-body Fab ′, which was reoxidized to prepare a two-headed antibody (Arch. Biochem. Biophy.
s., 90 , 460-462, (1961)). In this method, in addition to the heterodivalent antibody to which the different antibody half-dimers Fab 'are bound, the homologous divalent antibody to which the half-dimer Fab' having the same antigen specificity is bound (self-associated) is also formed. Therefore, in this case, the heterobivalent antibody is separated and purified from the homobivalent antibody. Or Bren
According to the method of Nan et al., one of the half-dimers Fab 'may be temporarily protected at the SH group with nitrobenzoic acid (Science, 22.
9 , 81, (1985)). By this, a heterodivalent two-headed antibody can be selectively prepared from two kinds of monoclonal antibodies. Bren
The method of Okumura et al., which is a simplified version of the method of Nan et al., may be followed (Japanese Patent Laid-Open No. 2-76899).

【0022】なお上記の2頭抗体では、いずれもFc部
分を除去したF(ab')2を用いているが、Fc部分を除去
しないで還元して半量体を得て、これを他の半量体と酸
化・結合させてもよい。しかし、Fc部分は固相に非特
異的吸着しやすい。従って、高感度測定のためには、I
gGをペプシン消化してFc部分を除去し、さらに還元
して得られるFab' を2頭抗体の材料とするのが望まし
い。
In each of the above-mentioned two-headed antibody, F (ab ') 2 with the Fc portion removed was used. However, the Fc portion was not removed and the F (ab') 2 was reduced to obtain a halfmer. It may be oxidized and bound to the body. However, the Fc portion is likely to be nonspecifically adsorbed on the solid phase. Therefore, for high sensitivity measurement, I
It is preferable to use Fab 'obtained by digesting gG with pepsin to remove the Fc portion and further reducing it to form a double-headed antibody.

【0023】また、2頭抗体は、2種類のハイブリドー
マを融合し、ヘテロハイブリドーマを作製することによ
っても作製することができる。また、ハイブリドーマ
と、脾臓細胞を融合することによっても作製することが
できる。モノクローナル抗体の作成方法、その精製方
法、F(ab')2断片の取得方法は種々の成書に記載されて
いる方法により得ることができる(例えば、富山朔二ら
編、「単クローン抗体実験マニュアル」講談社刊、1988
年)。
The two-headed antibody can also be produced by fusing two types of hybridomas to produce a heterohybridoma. It can also be prepared by fusing a hybridoma and spleen cells. A method for producing a monoclonal antibody, a method for purifying the same, and a method for obtaining an F (ab ') 2 fragment can be obtained by the methods described in various publications (for example, "Tomonoyama Sakuji et al.," Monoclonal Antibody Experimental Manual). ] Kodansha, 1988
Year).

【0024】分析方法 本発明による抗体酵素免疫分析法は、具体的には以下の
ように行うことができる。(図1参照)。 1) 試料中の抗原(リガンドL)12を固相化抗体10
に結合させる(第1免疫反応)。 2) 未結合の抗原12を除去する(洗浄)。 3) リガンド特異抗体の半量体14aと酵素抗体の半量
体14bからなる2頭抗体(BS-Ab)14を添加し、固相
化抗原10に結合している抗原12に結合させる(第2
免疫反応)。 4) 抗原12に未結合の2頭抗体を除去する(洗浄)。 5) 酵素基質(S)を加え、生成物(Prod)を検出する
ことにより結合した2頭抗体量を測定する(酵素反
応)。
Analysis Method The antibody enzyme immunoassay method of the present invention can be specifically performed as follows. (See Figure 1). 1) The antibody (ligand L) 12 in the sample is immobilized onto the immobilized antibody 10
(First immune reaction). 2) The unbound antigen 12 is removed (washing). 3) A two-headed antibody (BS-Ab) 14 consisting of a half-body 14a of a ligand-specific antibody and a half-body 14b of an enzyme antibody is added to bind to the antigen 12 bound to the immobilized antigen 10 (second
Immune reaction). 4) The two antibodies that have not bound to the antigen 12 are removed (washing). 5) An enzyme substrate (S) is added, and the amount of bound two-headed antibody is measured by detecting the product (Prod) (enzyme reaction).

【0025】以上は、サンドイッチ法に本発明を適用し
固相に結合した2頭抗体の抗体酵素活性を測定するよう
にしたものであるが、固相に結合しなかった遊離の2頭
抗体に結合した抗体酵素の活性を測定するようにしても
よい。また本発明の実施方法がこのようなサンドイッチ
法に限定されるわけではない。例えば、一定量の固相抗
原と試料中の抗原(リガンド)とを一定量の2頭抗体に
対して競合させ、固相に結合した2頭抗体の量を抗体酵
素活性測定により求めるようにしてもよい。また固相抗
原に予め2頭抗体を結合させておき、後から添加した試
料中の抗原(リガンド)との競合により減少した固相上
の2頭抗体の量を測定するようにしてもよい(いわゆる
置換法)。
In the above, the present invention is applied to the sandwich method to measure the antibody enzyme activity of the two-headed antibody bound to the solid phase. However, for the free two-headed antibody not bound to the solid phase. The activity of the bound antibody enzyme may be measured. Further, the method for carrying out the present invention is not limited to such a sandwich method. For example, a fixed amount of solid-phase antigen and an antigen (ligand) in a sample compete with a fixed amount of two-headed antibody, and the amount of the two-headed antibody bound to the solid-phase is determined by measuring the enzyme activity of the antibody. Good. Alternatively, the two-headed antibody may be bound to the solid-phase antigen in advance, and the amount of the two-headed antibody on the solid-phase reduced by competition with the antigen (ligand) in the sample added later may be measured ( So-called replacement method).

【0026】[0026]

【合成例1】抗体酵素用ハプテンの合成 下記反応式により基質1からp-ニトロフェノール(黄
色:400nm に吸収)を生成する反応を想定し、これを触
媒する酵素抗体の作製を行なった。
[Synthesis Example 1] Synthesis of hapten for antibody enzyme Assuming a reaction for producing p-nitrophenol (yellow: absorption at 400 nm) from substrate 1 according to the following reaction formula, an enzyme antibody which catalyzes this was prepared.

【0027】[0027]

【化2】 [Chemical 2]

【0028】まず上記反応の遷移状態アナログ(ハプテ
ン)として下記構造式の化合物を合成した。
First, a compound having the following structural formula was synthesized as a transition state analog (hapten) of the above reaction.

【0029】[0029]

【化3】 [Chemical 3]

【0030】その反応合成経路の概略を図2に示す。ま
ず、図2の化合物1(17g; 0.1モル)と化合物2(20g;
0.1モル)を混合し、160 ℃にて7時間加熱した。冷却
後、蒸留により低沸点部分を溜去すると目的とする化合
物3が13g無色油として得られた。化合物3(6.5g; 0.
026 モル)を10mLのエタノールに溶解し、12N 塩酸を80
mL加えた。混合物を160 ℃に2.5 時間加熱した。冷却
後、溶媒を減圧溜去すると目的とする化合物4が4.4g固
形物として得られた。化合物4(5.1g; 0.028 モル)を
塩化チオニル40mLに溶解させ、4時間室温にて撹拌した
(この反応により化合物5が生成する)。過剰の塩化チ
オニルを減圧溜去後、残査をクロロホルム40mLに溶解
し、その中にp−ニトロフェノール(12g; 0.086モル)
とトリエチルアミン(8.7g; 0.086 モル)のクロロホル
ム溶液40mLを滴下した。滴下後、2時間室温にて撹拌
後、通常の後処理を行い、有機層を溜去すると結晶が得
られた。この結晶を酢酸エチル/ヘキサン混合溶媒にて
再結晶すると、目的とする化合物6が7.2g得られた。化
合物6(3.0g; 0.005 モル)を200mL の0.2N NaOH 溶液
に加えて、100 ℃にて1.5 時間加熱撹拌した。塩酸にて
酸性化した後、エーテルにて繰り返し抽出してニトロフ
ェノールを除去した。水層を集め、これをエバポレータ
ーで濃縮すると、白色結晶が析出した。エタノールにて
再結晶することにより、目的とする化合物7(遷移状態
アナログ)900mg が得られた。
The outline of the reaction synthesis route is shown in FIG. First, compound 1 (17 g; 0.1 mol) and compound 2 (20 g;
0.1 mol) was mixed and heated at 160 ° C. for 7 hours. After cooling, the low boiling point portion was distilled off to obtain 13 g of the target compound 3 as a colorless oil. Compound 3 (6.5 g; 0.
(026 mol) is dissolved in 10 mL of ethanol and 12N hydrochloric acid is added to 80
mL was added. The mixture was heated to 160 ° C. for 2.5 hours. After cooling, the solvent was distilled off under reduced pressure to obtain 4.4 g of the target compound 4 as a solid. Compound 4 (5.1 g; 0.028 mol) was dissolved in thionyl chloride (40 mL) and stirred at room temperature for 4 hours (compound 5 was produced by this reaction). After distilling off excess thionyl chloride under reduced pressure, the residue was dissolved in 40 mL of chloroform, and p-nitrophenol (12 g; 0.086 mol) was dissolved therein.
And 40 mL of a chloroform solution of triethylamine (8.7 g; 0.086 mol) were added dropwise. After the dropping, the mixture was stirred for 2 hours at room temperature and then subjected to usual post-treatment, and the organic layer was distilled off to obtain crystals. The crystals were recrystallized from a mixed solvent of ethyl acetate / hexane to obtain 7.2 g of the target compound 6. Compound 6 (3.0 g; 0.005 mol) was added to 200 mL of 0.2N NaOH solution, and the mixture was heated with stirring at 100 ° C. for 1.5 hours. After acidification with hydrochloric acid, nitrophenol was removed by repeated extraction with ether. The aqueous layer was collected and concentrated with an evaporator to deposit white crystals. By recrystallizing from ethanol, 900 mg of the desired compound 7 (transition state analog) was obtained.

【0031】[0031]

【合成例2】ハプテン−KLH複合体の合成 合成例1で得た化合物7をハプテンとして、担体蛋白質
キーホール・リンペッド・ヘモシアニン(KLH)に結
合し免疫用のハプテン−KLHを合成した。ハプテン
(化合物7:5mg)、N−ヒドロキシサクシミド(4mg
)、ジシクロヘキシルカルボジイミド(7.4mg )、ピ
ロリヂノピリジン(0.4mg )を2mLの塩化メチレンに溶
解し,室温で1日反応させた。生成した尿素体を除去
後、KLH水溶液(6mg/mL) を1mL静かに添加し、室温
で3時間反応させた。その後、水で2日間透析し、ハプ
テン−KLH複合体を合成した。全く同様な手法によ
り、抗体力価測定用のハプテン−BSA複合体を合成し
た。
[Synthesis Example 2] Synthesis of hapten-KLH complex The compound 7 obtained in Synthesis Example 1 was used as a hapten to bind to a carrier protein keyhole limped hemocyanin (KLH) to synthesize an hapten-KLH for immunization. Hapten (Compound 7: 5 mg), N-hydroxysuccinide (4 mg
), Dicyclohexylcarbodiimide (7.4 mg) and pyrrolidinopyridine (0.4 mg) were dissolved in 2 mL of methylene chloride and reacted at room temperature for 1 day. After removing the generated urea body, 1 mL of an aqueous KLH solution (6 mg / mL) was gently added, and the mixture was reacted at room temperature for 3 hours. Then, it was dialyzed against water for 2 days to synthesize a hapten-KLH complex. A hapten-BSA complex for measuring antibody titer was synthesized by a completely similar method.

【0032】[0032]

【合成例3】基質の合成 J.Am.Chem.Soc.,109,2174−2
176(1987)に記載の方法により、下記構造の基
質1を合成した。
[Synthesis Example 3] Synthesis of Substrate Am. Chem. Soc. , 109 , 2174-2
Substrate 1 having the following structure was synthesized by the method described in 176 (1987).

【0033】[0033]

【化4】 [Chemical 4]

【0034】[0034]

【実施例】(1−1)抗体酵素の作製 合成例2で合成したハプテン−KLH複合体を,燐酸緩
衝溶液(10mM, pH7.4,0.9% NaCl含有) に溶かし、40μg
/mL溶液とした。これを等量のフロイント完全アジュバ
ントと混合したもの(追加免疫では、フロイントの不完
全アジュバントと混合して使用)500 μL を、Balb/Cマ
ウスに免疫した。追加免疫は、3週間ごとに4回行っ
た。その後、2月間免疫を中止した後、2週間ごとに2
回免疫をし抗体力価確認後、免疫マウスの脾臓を取り出
し、この脾臓細胞とミエローマ細胞(SP2)とをポリ
エチレングリコールを用いる常法に従って細胞融合させ
た。ハプテン−BSA複合体を固定したマイクロタイタ
ープレートを使用してELISA法でスクリーニング
し、ハプテン結合性の抗体産生細胞を93種選択した。
この細胞をBalb/Cマウスに腹腔注射した。マウス腹腔内
で生産された抗体含有腹水を集め、硫酸アンモニウム沈
澱法によりIgG分画を回収した。得られたIgG分画
は、プロテインAカラム(MAPS-2キット;バイオラッド
社製)により精製した。
Example (1-1) Preparation of antibody enzyme The hapten-KLH complex synthesized in Synthesis Example 2 was dissolved in a phosphate buffer solution (10 mM, pH7.4, containing 0.9% NaCl) to give 40 μg.
/ mL solution. Balb / C mice were immunized with 500 μL of a mixture of this with an equal amount of Freund's complete adjuvant (for booster immunization, mixed with Freund's incomplete adjuvant). Boosts were given 4 times every 3 weeks. After stopping immunization for 2 months, 2 every 2 weeks
After the immunization was performed and the antibody titer was confirmed, the spleen of the immunized mouse was taken out, and the spleen cells and myeloma cells (SP2) were cell-fused according to a conventional method using polyethylene glycol. The hapten-BSA complex-immobilized microtiter plate was used for screening by the ELISA method, and 93 types of hapten-binding antibody-producing cells were selected.
The cells were intraperitoneally injected into Balb / C mice. The antibody-containing ascites produced in the abdominal cavity of the mouse was collected and the IgG fraction was collected by the ammonium sulfate precipitation method. The obtained IgG fraction was purified with a protein A column (MAPS-2 kit; manufactured by Bio-Rad).

【0035】(1−2)抗体酵素の触媒能力の評価 実施例1−1で選んだハプテン結合能力のある抗体の中
から、触媒能力の有る抗体を、次のような手法で選びだ
した。合成例3の基質1(0.12mg/mL;10mM Tris-HCl 緩
衝液; pH8.5 )0.2mL と、精製抗体(2mg/ml) 0.1mL を
混合し、基質1が分解して生じたパラニトロフェノ−ル
の吸収を400nm で追跡した。93種の抗体より、基質を
分解する能力のある抗体(抗体酵素)が、3クロ−ン
(抗体酵素4A1,5H2,1G2)見つかった(図3
参照)。
(1-2) Evaluation of catalytic ability of antibody enzyme From the antibodies having a hapten-binding ability selected in Example 1-1, an antibody having a catalytic ability was selected by the following method. Substrate 1 (0.12mg / mL; 10mM Tris-HCl buffer solution; pH8.5) 0.2mL of Synthetic Example 3 and purified antibody (2mg / ml) 0.1mL were mixed, and substrate 1 was decomposed to form paranitro. The absorption of phenol was followed at 400 nm. From 93 types of antibodies, an antibody (antibody enzyme) capable of degrading a substrate was found to be 3 clones (antibody enzyme 4A1, 5H2, 1G2) (Fig. 3).
reference).

【0036】最も触媒能力が高かった抗体酵素4A1に
ついて、その精製IgGを10mg/mL(酢酸緩衝液;pH4.2)
にして、その1mLに0.5mg のペプシン(Sigma 社製)を
添加し、37℃で20時間反応させた。反応後、Superdex-2
00カラム(ファルマシア社製)でゲル濾過し、F(ab')2
画分を得た。
For the antibody enzyme 4A1 having the highest catalytic ability, purified IgG of 10 mg / mL (acetate buffer; pH 4.2)
Then, 0.5 mg of pepsin (manufactured by Sigma) was added to 1 mL of the mixture, and the mixture was reacted at 37 ° C. for 20 hours. After reaction, Superdex-2
Gel filtered through 00 column (Pharmacia) to obtain F (ab ') 2
Fractions were obtained.

【0037】(2)抗CRP抗体の作製 市販のCRP(C反応性蛋白)を燐酸緩衝溶液(10mM,
pH7.4, 0.9% NaCl含有) に溶かし、400 μg/mL溶液とし
た。これを等量のフロイント完全アジュバントと混合し
たもの(追加免疫では、生理食塩水と混合して使用)50
0 μL を、Balb/Cマウスに免疫した。追加免疫は、2週
間ごとに5回行った。抗体力価確認後、免疫マウスの脾
臓を取り出し、この脾臓細胞とミエローマ細胞(SP
2)とをポリエチレングリコールを用いる常法に従って
細胞融合させた。ELISA法でスクリーニングして得
られた抗体産生融合細胞をBalb/Cマウスに腹腔注射し
た。マウス腹腔内で生産された抗CRP抗体含有腹水を
集め、硫酸アンモニウム沈澱法によりIgG分画を回収
した。得られたIgG分画は、プロテインAカラム(MA
PS-2キット;バイオラッド社製)により精製した。精製
IgGを10mg/mL(酢酸緩衝液;pH4.2)にして、その1mL
に0.5mg のペプシン(Sigma 社製)を添加し、37℃で20
時間反応させた。反応後、Superdex-200カラム(ファル
マシア社製)でゲル濾過し、F(ab')2画分を得た。
(2) Preparation of anti-CRP antibody Commercially available CRP (C-reactive protein) was added to a phosphate buffer solution (10 mM,
pH 7.4, containing 0.9% NaCl) to give a 400 μg / mL solution. This was mixed with an equal volume of Freund's complete adjuvant (for booster immunization, mixed with physiological saline) 50
Balb / C mice were immunized with 0 μL. Booster immunizations were given 5 times every 2 weeks. After confirming the antibody titer, the spleen of the immunized mouse was taken out, and the spleen cells and myeloma cells (SP
2) and were fused with each other according to a conventional method using polyethylene glycol. The antibody-producing fused cells obtained by screening by the ELISA method were intraperitoneally injected into Balb / C mice. The anti-CRP antibody-containing ascites produced in the mouse abdominal cavity was collected, and the IgG fraction was collected by the ammonium sulfate precipitation method. The IgG fraction thus obtained was separated from the protein A column (MA
PS-2 kit; manufactured by Bio-Rad). Make purified IgG 10 mg / mL (acetate buffer; pH 4.2) and add 1 mL
0.5mg of pepsin (Sigma) was added to
Reacted for hours. After the reaction, gel filtration was carried out using a Superdex-200 column (manufactured by Pharmacia) to obtain an F (ab ') 2 fraction.

【0038】(3)2頭抗体の作製 (1−2)で作製した抗体酵素4A1のF(ab')2分画の
3mg/mL溶液(燐酸緩衝液;pH6)0.45mLに、0.5Mの2-メル
カプトアミン0.05mLを添加し、30℃で90分反応させて、
還元した。反応後、セファデックスG-25カラムによりゲ
ル濾過して、抗体酵素の半量体Fab' を得た。一方、
(2)で作製した抗CRP抗体のF(ab')2分画の3mg/mL
溶液(燐酸緩衝液;pH6)0.45mLには、5mM のジチオスラ
イトール0.05mLを添加し、30℃で30分反応させて還元し
た。反応後ジチオビスニトロ安息香酸(50mM)を0.05mL
添加して反応停止すると共に還元されたチオール基をマ
スキングした。このセファデックスG-25カラムによりゲ
ル濾過して、半量体の抗CRP−Fab' を得た。こうし
て得られた抗体酵素の半量体Fab' と、抗CRP抗体の
半量体Fab' とを、等量混合し室温下10時間放置するこ
とにより、会合させた。結合したF(ab')2(2頭抗体)
はSuperdex-200カラム(ファルマシア社製)でゲル濾過
して精製した。
(3) Preparation of double-headed antibody Fraction of F (ab ′) 2 fraction of antibody enzyme 4A1 prepared in (1-2)
To 0.45 mL of 3 mg / mL solution (phosphate buffer solution; pH 6), 0.05 mL of 0.5 M 2-mercaptoamine was added, and the mixture was reacted at 30 ° C for 90 minutes,
Reduced. After the reaction, gel filtration was performed using a Sephadex G-25 column to obtain a half-body Fab ′ of the antibody enzyme. on the other hand,
3 mg / mL of F (ab ') 2 fraction of anti-CRP antibody prepared in (2)
To 0.45 mL of the solution (phosphate buffer solution; pH 6), 0.05 mL of 5 mM dithiothreitol was added, and the mixture was allowed to react at 30 ° C. for 30 minutes for reduction. After the reaction, 0.05mL of dithiobisnitrobenzoic acid (50mM)
The reaction was stopped by addition, and the reduced thiol group was masked. Gel filtration was performed on this Sephadex G-25 column to obtain a half-meric anti-CRP-Fab '. The antibody enzyme half-body Fab ′ thus obtained and an anti-CRP antibody half-body Fab ′ were mixed in equal amounts and allowed to stand at room temperature for 10 hours to cause association. Bound F (ab ') 2 (2 antibodies)
Was purified by gel filtration on a Superdex-200 column (Pharmacia).

【0039】(4)比較例 比較例として、化学結合による抗体酵素標識抗体を用い
た。すなわち、(1−1)の抗体酵素4A1単量体と、
(2)の抗CPP抗体単量体とを、グルタルアルデヒド
2段階法で結合させ、抗CRP−抗体酵素複合体を作製
した。
(4) Comparative Example As a comparative example, an antibody enzyme-labeled antibody by chemical bond was used. That is, (1-1) the antibody enzyme 4A1 monomer,
The anti-CPP antibody monomer of (2) was combined with the glutaraldehyde two-step method to prepare an anti-CRP-antibody enzyme complex.

【0040】(5)抗CRP固定化プレートの作製 (2)で作製した抗CRP・IgG(50μg/mL,PBS溶
液)50μL を、96穴マイクロタイターテストプレート
(Nunc社製)の各ウェルに入れ、4℃で一晩感作した。
その後、各ウェルをPBSで洗浄し、300 μL の3%BS
A 含有PBS溶液を各ウェルに入れて、非特異的吸着部
位をブロックした。なお本実施例のサンドイッチ法で
は、固相化する第1抗体と2頭抗体の半量体とされた第
2抗体とは1つの抗原の異なる抗原決定基に結合するも
のであり、本来は異なる抗原特異性を有するものを使用
する。しかし、CRPは5量体であるので、本実施例で
は、2頭抗体に使用した抗CRP抗体と同じ抗体を固相
化した。ただし固相化した抗CRP抗体はペプシン消化
していないインタクトなIgGを用いた。
(5) Preparation of anti-CRP-immobilized plate 50 μL of anti-CRP IgG (50 μg / mL, PBS solution) prepared in (2) was placed in each well of a 96-well microtiter test plate (Nunc). Sensitized overnight at 4 ° C.
Then, wash each well with PBS and add 300 μL of 3% BS.
A PBS solution containing A was added to each well to block nonspecific adsorption sites. In the sandwich method of the present Example, the first antibody to be immobilized and the second antibody, which is a half-body of the two-headed antibody, bind to different antigenic determinants of one antigen, and originally different antigens. Use one with specificity. However, since CRP is a pentamer, the same antibody as the anti-CRP antibody used for the two-headed antibody was immobilized in this example. However, as the immobilized anti-CRP antibody, intact IgG that was not digested with pepsin was used.

【0041】(6)CRPの定量 CRPをPBS溶液で段階的に希釈し、各50μL を
(5)で作製した抗CRP抗体固定化プレートの各ウェ
ルに入れ、37℃で2時間反応させた(第1免疫反応)。
その後PBS溶液で3回洗浄して、未結合のCRPを除
去した。各ウェルに(3)で作製した2頭抗体(10μg/
mL) を含有するPBS溶液100μL を加え、37℃で60分
間反応させた(第2免疫反応)。その後PBS溶液で3
回洗浄した。次いで、合成例3の基質1を0.08mg/mL 含
有するTris-HCl緩衝液(pH8.5)を200 μL 加え、室温で
20分間放置した。その後、マイクロプレートリーダー
(コロナ社製)で各ウェルの400nm 吸光度を測定して、
検量線を作成した。
(6) Quantification of CRP CRP was diluted stepwise with a PBS solution, 50 μL of each was placed in each well of the anti-CRP antibody-immobilized plate prepared in (5), and reacted at 37 ° C. for 2 hours ( First immune reaction).
After that, the unbound CRP was removed by washing three times with a PBS solution. 2 head antibody (10 μg /
100 μL of PBS solution containing (mL) was added, and the mixture was reacted at 37 ° C. for 60 minutes (second immunoreaction). Then 3 with PBS solution
Washed twice. Then, 200 μL of Tris-HCl buffer solution (pH 8.5) containing 0.08 mg / mL of the substrate 1 of Synthesis Example 3 was added, and the mixture was stirred at room temperature.
Leave for 20 minutes. Then, measure the 400 nm absorbance of each well with a microplate reader (Corona),
A calibration curve was created.

【0042】比較例では,2頭抗体の代わりに、(4)
で作製した抗CRP−抗体酵素複合体(12μg/mL) を含
有するPBS溶液を使用した。反応は、2頭抗体の場合
と同じである。図4に示すように、実施例(−○−)の
方が比較例(−●−)よりも約10倍高感度であった。
このことは、抗体酵素は標識試薬として酵素活性を有す
るだけでなく、これを半量体として、抗リガンド抗体の
半量体と組み合わせた2頭抗体とした方が、より高感度
な免疫分析が可能となることを示している。
In the comparative example, instead of the two-headed antibody, (4)
The PBS solution containing the anti-CRP-antibody enzyme complex (12 μg / mL) prepared in 1. was used. The reaction is the same as for the two-headed antibody. As shown in FIG. 4, the example (-○-) was about 10 times more sensitive than the comparative example (-●-).
This means that the antibody enzyme not only has enzymatic activity as a labeling reagent, but it is also possible to use this two-headed antibody in combination with the half-body of the anti-ligand antibody as a half-mer for more sensitive immunoassay. It shows that

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の免疫分析方法の説明概略図である。FIG. 1 is a schematic diagram illustrating an immunoassay method of the present invention.

【図2】本発明の実施例において抗体酵素作製のために
使用したハプテン(遷移状態アナログ)の合成経路を示
す図である。
FIG. 2 is a diagram showing a synthetic route of a hapten (transition state analog) used for producing an antibody enzyme in an example of the present invention.

【図3】ハプテン結合性抗体36クローンの触媒活性能
を示す図である。
FIG. 3 shows the catalytic activity of 36 clones of hapten-binding antibody.

【図4】実施例及び比較例の結果を示す検量線を示す図
である。
FIG. 4 is a diagram showing a calibration curve showing the results of Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

10 固相化抗体、 12 抗原(リガンド) 14 2頭抗体 14a 抗リガンド特異抗体の半量体 14b 酵素抗体の半量体 10 Immobilized antibody, 12 Antigen (ligand) 14 Two-headed antibody 14a Half-dimer of anti-ligand specific antibody 14b Half-dimer of enzyme antibody

フロントページの続き (72)発明者 須藤 幸夫 埼玉県朝霞市泉水三丁目11番46号 富士写 真フイルム株式会社内Continuation of the front page (72) Inventor Yukio Sudo 3-1146 Izumisui, Asaka-shi, Saitama Fuji Shashin Film Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リガンドに対する抗体の半量体と、検出
可能な信号を発生することのできる抗体酵素の半量体と
からなる2頭抗体を、リガンドに接触させ、リガンドに
結合した2頭抗体の抗体酵素の活性を測定することを特
徴とする抗体酵素免疫分析法。
1. A double-headed antibody that is bound to a ligand by contacting a double-headed antibody consisting of a half-body of an antibody against the ligand and a half-body of an antibody enzyme capable of generating a detectable signal to the ligand. An antibody enzyme immunoassay characterized by measuring the activity of an enzyme.
【請求項2】 リガンドに対する抗体の半量体と、検出
可能な信号を発生することのできる抗体酵素の半量体と
からなる2頭抗体を、リガンドに接触させ、リガンドに
結合していない2頭抗体の抗体酵素活性を測定すること
を特徴とする抗体酵素免疫分析法。
2. A two-headed antibody comprising a half-body of an antibody against the ligand and a half-body of an antibody enzyme capable of generating a detectable signal, which is brought into contact with the ligand and is not bound to the ligand. An antibody-enzyme immunoassay method characterized by measuring the antibody enzyme activity of.
JP3575792A 1992-01-28 1992-01-28 Antibody enzyme immunoassay Pending JPH05203652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3575792A JPH05203652A (en) 1992-01-28 1992-01-28 Antibody enzyme immunoassay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3575792A JPH05203652A (en) 1992-01-28 1992-01-28 Antibody enzyme immunoassay

Publications (1)

Publication Number Publication Date
JPH05203652A true JPH05203652A (en) 1993-08-10

Family

ID=12450716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3575792A Pending JPH05203652A (en) 1992-01-28 1992-01-28 Antibody enzyme immunoassay

Country Status (1)

Country Link
JP (1) JPH05203652A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000028330A1 (en) * 1998-11-09 2000-05-18 Basf Aktiengesellschaft Method for selecting catalytic antibodies
EP0854934A4 (en) * 1995-08-18 2000-09-06 Donald W Landry Detection of organic compounds through regulation of antibody-catalyzed reactions
WO2005035756A1 (en) * 2003-10-10 2005-04-21 Chugai Seiyaku Kabushiki Kaisha Bispecific antibody substituting for functional proteins
US9334331B2 (en) 2010-11-17 2016-05-10 Chugai Seiyaku Kabushiki Kaisha Bispecific antibodies
US9670269B2 (en) 2006-03-31 2017-06-06 Chugai Seiyaku Kabushiki Kaisha Methods of modifying antibodies for purification of bispecific antibodies
US9828429B2 (en) 2007-09-26 2017-11-28 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US9975966B2 (en) 2014-09-26 2018-05-22 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing theraputic agent
US10011858B2 (en) 2005-03-31 2018-07-03 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
US10759870B2 (en) 2017-09-29 2020-09-01 Chugai Seiyaku Kabushiki Kaisha Multispecific antigen-binding molecules having blood coagulation factor VIII (FVIII) cofactor function-substituting activity and pharmaceutical formulations containing such a molecule as an active ingredient
US11046784B2 (en) 2006-03-31 2021-06-29 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
US11124576B2 (en) 2013-09-27 2021-09-21 Chungai Seiyaku Kabushiki Kaisha Method for producing polypeptide heteromultimer
US11142587B2 (en) 2015-04-01 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide hetero-oligomer
US11150254B2 (en) 2014-09-26 2021-10-19 Chugai Seiyaku Kabushiki Kaisha Method for measuring reactivity of FVIII
US11214623B2 (en) 2014-09-26 2022-01-04 Chugai Seiyaku Kabushiki Kaisha Antibody capable of neutralizing substance having activity alternative to function of coagulation factor VIII (FVIII)
US11352438B2 (en) 2016-09-06 2022-06-07 Chugai Seiyaku Kabushiki Kaisha Methods of using a bispecific antibody that recognizes coagulation factor IX and/or activated coagulation factor IX and coagulation factor X and/or activated coagulation factor X
US11649262B2 (en) 2015-12-28 2023-05-16 Chugai Seiyaku Kabushiki Kaisha Method for promoting efficiency of purification of Fc region-containing polypeptide

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0854934A4 (en) * 1995-08-18 2000-09-06 Donald W Landry Detection of organic compounds through regulation of antibody-catalyzed reactions
WO2000028330A1 (en) * 1998-11-09 2000-05-18 Basf Aktiengesellschaft Method for selecting catalytic antibodies
WO2005035756A1 (en) * 2003-10-10 2005-04-21 Chugai Seiyaku Kabushiki Kaisha Bispecific antibody substituting for functional proteins
US8062635B2 (en) 2003-10-10 2011-11-22 Chugai Seiyaku Kabushiki Kaisha Bispecific antibody substituting for functional proteins
US11168344B2 (en) 2005-03-31 2021-11-09 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
US10011858B2 (en) 2005-03-31 2018-07-03 Chugai Seiyaku Kabushiki Kaisha Methods for producing polypeptides by regulating polypeptide association
US10934344B2 (en) 2006-03-31 2021-03-02 Chugai Seiyaku Kabushiki Kaisha Methods of modifying antibodies for purification of bispecific antibodies
US9670269B2 (en) 2006-03-31 2017-06-06 Chugai Seiyaku Kabushiki Kaisha Methods of modifying antibodies for purification of bispecific antibodies
US11046784B2 (en) 2006-03-31 2021-06-29 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
US9828429B2 (en) 2007-09-26 2017-11-28 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US11248053B2 (en) 2007-09-26 2022-02-15 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in CDR
US9334331B2 (en) 2010-11-17 2016-05-10 Chugai Seiyaku Kabushiki Kaisha Bispecific antibodies
US10450381B2 (en) 2010-11-17 2019-10-22 Chugai Seiyaku Kabushiki Kaisha Methods of treatment that include the administration of bispecific antibodies
US11124576B2 (en) 2013-09-27 2021-09-21 Chungai Seiyaku Kabushiki Kaisha Method for producing polypeptide heteromultimer
US11001643B2 (en) 2014-09-26 2021-05-11 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing therapeutic agent
US9975966B2 (en) 2014-09-26 2018-05-22 Chugai Seiyaku Kabushiki Kaisha Cytotoxicity-inducing theraputic agent
US11150254B2 (en) 2014-09-26 2021-10-19 Chugai Seiyaku Kabushiki Kaisha Method for measuring reactivity of FVIII
US11214623B2 (en) 2014-09-26 2022-01-04 Chugai Seiyaku Kabushiki Kaisha Antibody capable of neutralizing substance having activity alternative to function of coagulation factor VIII (FVIII)
US11142587B2 (en) 2015-04-01 2021-10-12 Chugai Seiyaku Kabushiki Kaisha Method for producing polypeptide hetero-oligomer
US11649262B2 (en) 2015-12-28 2023-05-16 Chugai Seiyaku Kabushiki Kaisha Method for promoting efficiency of purification of Fc region-containing polypeptide
US11352438B2 (en) 2016-09-06 2022-06-07 Chugai Seiyaku Kabushiki Kaisha Methods of using a bispecific antibody that recognizes coagulation factor IX and/or activated coagulation factor IX and coagulation factor X and/or activated coagulation factor X
US10759870B2 (en) 2017-09-29 2020-09-01 Chugai Seiyaku Kabushiki Kaisha Multispecific antigen-binding molecules having blood coagulation factor VIII (FVIII) cofactor function-substituting activity and pharmaceutical formulations containing such a molecule as an active ingredient

Similar Documents

Publication Publication Date Title
JPH05203652A (en) Antibody enzyme immunoassay
US20070166776A1 (en) Immunoassay and kit for an early and simultaneous detection of biochemical markers in a patient's sample
JPH0579943B2 (en)
JPH06239899A (en) Antibody for human tau protein and determination of human tau protein in body fluid utilizing the same
JP4663831B2 (en) Monoclonal antibodies, cell lines, and methods for measuring N1, N12-diacetylspermine
JP3015121B2 (en) Monoclonal antibody against non-A1c glycated hemoglobin
JPH11151085A (en) Anti-human medullasin monoclonal antibody, its production process and immunoassay using the same
WO1988004670A1 (en) Bilirubin antigen, monoclonal antibody therefor, process for their preparation, and their use
JP3091974B2 (en) 8-Hydroxy-2'-deoxyguanosine monoclonal antibody, method for producing the same, and hybrid cell producing monoclonal antibody
WO2011040429A1 (en) Monoclonal antibody against human hig-1 polypeptide
JPH0677017B2 (en) A method for the immunoassay of human dehydrogenase type IV collagen
JPH10160735A (en) Sandwich measuring method
JPH04320966A (en) Method for analyzing oxygen immunity
JP7002101B2 (en) Anti-glycyrrhetinic acid antibody and its utilization
JP3849001B2 (en) Anti-2'-deoxycytidine antibodies and their production and use
WO1996028474A1 (en) Immunoassay using antibodies directed to the reaction product of enzymes used as labels
JPH08211054A (en) Antibody, preparation thereof and imminoassay
JP2002005935A (en) High sensitivity detection method for antigen or antibody
JP2520249B2 (en) Quantitative determination of human prolyl hydroxylase by immunoassay
AU2002346529B2 (en) Immunoassay and kit for an early and simulataneous detection of biochemical markers in a patient's sample
EP0423333A1 (en) Anti-endoserine antibody
JPH06273415A (en) Reagent and method for measuring cholecystokinin
JP3161513B2 (en) Pyrazosulfuron derivative, anti-pyrazosulfuron-ethyl antibody, hybridoma secreting the same, and method for analyzing pyrazosulfuron-ethyl
JP2002253230A (en) Monoclonal antibody, hybridoma and use thereof
JPH09154596A (en) Antibody specific to para-nitrophenoxy organic phosphorous compound, its production, and measurement of para-nitrophenoxy organic phosphorous compound