JP2018123055A - Pharmaceutical composition for use in prevention and/or treatment of blood coagulation factor xi (fxi) abnormalities comprising multispecific antigen binding molecule replacing function of blood coagulation factor viii (fviii) - Google Patents

Pharmaceutical composition for use in prevention and/or treatment of blood coagulation factor xi (fxi) abnormalities comprising multispecific antigen binding molecule replacing function of blood coagulation factor viii (fviii) Download PDF

Info

Publication number
JP2018123055A
JP2018123055A JP2015089709A JP2015089709A JP2018123055A JP 2018123055 A JP2018123055 A JP 2018123055A JP 2015089709 A JP2015089709 A JP 2015089709A JP 2015089709 A JP2015089709 A JP 2015089709A JP 2018123055 A JP2018123055 A JP 2018123055A
Authority
JP
Japan
Prior art keywords
polypeptide
blood coagulation
coagulation factor
fxi
antibody
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015089709A
Other languages
Japanese (ja)
Inventor
緑倫 嶋
Ryokurin Shima
緑倫 嶋
恵嗣 野上
Keiji Nogami
恵嗣 野上
博明 南
Hiroaki Minami
博明 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Pharmaceutical Co Ltd
Nara Medical University
Original Assignee
Chugai Pharmaceutical Co Ltd
Nara Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Pharmaceutical Co Ltd, Nara Medical University filed Critical Chugai Pharmaceutical Co Ltd
Priority to JP2015089709A priority Critical patent/JP2018123055A/en
Priority to PCT/JP2016/062597 priority patent/WO2016171202A1/en
Publication of JP2018123055A publication Critical patent/JP2018123055A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum

Landscapes

  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mycology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a pharmaceutical composition for use in the prevention and/or treatment of blood coagulation factor XI (FXI) abnormalities.SOLUTION: A pharmaceutical composition for use in the prevention and/or treatment of blood coagulation factor XI abnormalities comprising a multispecific antigen binding molecule replacing the function of blood coagulation factor VIII. The multispecific antigen binding molecule replacing the function of blood coagulation factor VIII is a bispecific antibody that binds to blood coagulation factor IX and/or active coagulation factor IX and blood coagulation factor X.EFFECT: The multispecific antigen binding molecule replacing the function of blood coagulation factor VIII, can be used not only for preventing and/or treating bleeding resulting from FVIII dysfunction in hemophilia A, acquired Hemophilia A, and von Willebrand disease, but can also be used for preventing and/or treating bleeding due to diseases related to an abnormality in blood coagulation factor XI by the coagulation promoting action thereof.SELECTED DRAWING: None

Description

本発明は、血液凝固第VIII因子(FVIII)の機能を代替する多重特異性抗原結合分子を含有する、血液凝固第XI因子(FXI)異常症の予防および/または治療に用いられる医薬組成物に関する。   The present invention relates to a pharmaceutical composition used for the prevention and / or treatment of blood coagulation factor XI (FXI) abnormality, comprising a multispecific antigen-binding molecule that substitutes for the function of blood coagulation factor VIII (FVIII). .

FXI異常症は、FXIの先天的欠損又は機能不全に起因する稀な出血性疾患である(非特許文献1[Haemophilia 2006;12(suppl. 3):137-142])。FXI異常症は、血友病Cと称されることもある。FXIは酵素の前駆体であり、血液凝固反応が開始した際、前駆体から酵素活性を持つ活性型血液凝固第XI因子(FXIa)に変化する。FXIを活性化する凝固因子は、トロンビン、活性型第XII因子およびFXIa自身であり、このFXIを介した反応は血液凝固反応維持機構に重要な役割を果たしている。FXI異常症では、活性化部分トロンボプラスチン時間(APTT)が血友病Aおよび血友病Bと同様に異常延長する。血友病A及び血友病Bとの鑑別は、血液凝固因子定量、FXI定量で行なう。FXI異常症の出血に対しては血漿補充などで治療されるが、希少な出血性疾患であるため、出血に対する有効な予防法および/または治療法は確立されていない。   An FXI abnormality is a rare bleeding disorder caused by a congenital defect or dysfunction of FXI (Non-Patent Document 1 [Haemophilia 2006; 12 (suppl. 3): 137-142]). FXI abnormalities are sometimes referred to as hemophilia C. FXI is a precursor of an enzyme, and when the blood coagulation reaction starts, the precursor changes to an active blood coagulation factor XI (FXIa) having an enzyme activity. The coagulation factors that activate FXI are thrombin, activated factor XII, and FXIa itself, and this FXI-mediated reaction plays an important role in the maintenance mechanism of blood coagulation reaction. In FXI abnormalities, activated partial thromboplastin time (APTT) is abnormally prolonged, as is hemophilia A and hemophilia B. Differentiation from hemophilia A and hemophilia B is performed by blood coagulation factor quantification and FXI quantification. Although bleeding with FXI abnormalities is treated with plasma supplementation or the like, since it is a rare bleeding disorder, effective prevention and / or treatment for bleeding has not been established.

血友病Aは、血液凝固因子のうち血液凝固第VIII因子(FVIII)の先天的欠損または機能不全に起因する出血性疾患である。血友病Aの重症度は、血液中のFVIII活性とよく相関している。活性1%未満の患者が重症、活性1%以上5%未満の患者が中等症、活性5%以上40%未満の患者が軽症と分類される。血友病A患者の約半数を占める重症患者においては、月に数回の出血症状を呈するが、これは中等症患者および軽症患者に比べ顕著に高頻度である。このことから、重症血友病A患者においては、FVIIIの補充療法により、血液中のFVIII活性を1%以上に維持することが、出血症状の発現阻止に有効と考えられている(非特許文献2[Haemophilia 2003;9(suppl.1):32])。   Hemophilia A is a hemorrhagic disease caused by a congenital defect or dysfunction of blood coagulation factor VIII (FVIII) among blood coagulation factors. The severity of hemophilia A is well correlated with FVIII activity in the blood. Patients with an activity of less than 1% are classified as severe, patients with an activity of 1% or more but less than 5% are moderate, and those with an activity of 5% or more but less than 40% are classified as mild. Severe patients, accounting for about half of hemophilia A patients, have several bleeding episodes per month, which is significantly more frequent than moderate and mild patients. Therefore, in severe hemophilia A patients, maintaining FVIII activity in blood at 1% or higher by FVIII replacement therapy is considered effective in preventing bleeding symptoms (Non-Patent Documents). 2 [Haemophilia 2003; 9 (suppl.1): 32]).

血友病A患者における出血の予防および/または治療には、主として血漿から精製された若しくは遺伝子組換え技術により作製されたFVIII製剤が使用される。これらの製剤を用いて,出血時の止血を目的としたon-demand投与、または出血イベントの発生を防ぐための予防投与が行われる(非特許文献3[Blood 1981;58:1-13]、 非特許文献4[Nature 1984;312:330-337])。しかしながら、FVIII製剤の血中半減期は、約12時間であるため、予防投与では週に3回程度の頻回投与が必要となる(非特許文献5[Nature 1984;312:337-342]、非特許文献6[Biochim Biophys Acta 1986;871:268-278])。On-demand投与においては、再出血を防ぐため、必要に応じ、一定間隔で追加投与する必要がある。また、FVIII製剤の投与は静脈内に実施される。従って、既存のFVIII製剤と比べて、投与の負担が少ない(投与頻度が少なく、静注が必要ない)薬剤が、強く求められている。   For the prevention and / or treatment of hemorrhage in hemophilia A patients, FVIII preparations mainly purified from plasma or produced by genetic engineering techniques are used. Using these preparations, on-demand administration for the purpose of hemostasis at the time of bleeding, or preventive administration for preventing the occurrence of a bleeding event is performed (Non-Patent Document 3 [Blood 1981; 58: 1-13], Non-Patent Document 4 [Nature 1984; 312: 330-337]). However, since the blood half-life of the FVIII preparation is about 12 hours, frequent administration of about 3 times a week is required for preventive administration (Non-Patent Document 5 [Nature 1984; 312: 337-342], Non-Patent Document 6 [Biochim Biophys Acta 1986; 871: 268-278]). In on-demand administration, additional administration is necessary at regular intervals as necessary to prevent rebleeding. In addition, administration of the FVIII preparation is performed intravenously. Therefore, there is a strong demand for a drug that has a lower burden of administration (less administration frequency and does not require intravenous injection) compared to existing FVIII preparations.

また、FVIII製剤に対する抗体(インヒビター)が、血友病A患者に発生することがある(非特許文献7[Blood 2007;109(2):546-551])。インヒビターは、FVIII製剤の効果を打ち消すため、以後のFVIII製剤による予防/治療に困難を来す。インヒビターが発生した患者(インヒビター患者)の出血に対しては、バイパス製剤(活性型FVII製剤やAPCC製剤)が投与される(非特許文献7[Blood 2007;109(2):546-551])。それらの作用機序は、FVIIIの機能への依存性が少なく、血友病Aで止血作用を示す。しかしながら、その血中半減期は約2〜8時間程度と短いため、頻回の静脈注射が必要であり、且つ、その止血活性の程度としては出血を十分止められないケースがある。従って、インヒビターの存在に左右されず、投与の負担が少ない薬剤が、強く求められている。   In addition, antibodies (inhibitors) against FVIII preparations may occur in hemophilia A patients (Non-patent Document 7 [Blood 2007; 109 (2): 546-551]). Inhibitors counteract the effects of FVIII preparations, making subsequent prevention / treatment with FVIII preparations difficult. By-pass preparations (active FVII preparations and APCC preparations) are administered for bleeding in patients with inhibitors (inhibitor patients) (Non-patent Document 7 [Blood 2007; 109 (2): 546-551]) . Their mechanism of action is less dependent on the function of FVIII and is hemostatic in hemophilia A. However, since its blood half-life is as short as about 2 to 8 hours, frequent intravenous injection is required, and there are cases where bleeding cannot be stopped sufficiently as the degree of hemostatic activity. Therefore, there is a strong demand for drugs that are not affected by the presence of inhibitors and have a low administration burden.

関連する出血異常症として、後天的に血液凝固因子に対する自己中和抗体が発生するなどの原因で、血液凝固因子が不全となる後天性血友病A(非特許文献8[Semin Thromb Hemost 2012;38:433-446]、 非特許文献9[Thromb Haemost 2013;110:1114-1120])および後天性FXI異常症が考えられる。これらの後天性の出血異常症患者の出血に対しては、バイパス製剤などが投与されるが、同様に頻回の静脈注射や止血活性の程度として出血を十分止められないケースが課題である。   As a related bleeding disorder, acquired hemophilia A in which blood coagulation factor is impaired due to the generation of a self-neutralizing antibody against blood coagulation factor acquired (Non-Patent Document 8 [Semin Thromb Hemost 2012; 38: 433-446], Non-Patent Document 9 [Thromb Haemost 2013; 110: 1114-1120]) and acquired FXI abnormalities. For the bleeding of these patients with acquired bleeding abnormalities, bypass preparations and the like are administered, but the problem is that bleeding cannot be stopped sufficiently due to frequent intravenous injection and the degree of hemostatic activity.

その他にもFVIIIが関与する出血異常症として、フォンビルブランド因子(vWF)の機能異常または欠損に起因するフォンビルブランド病が知られている。vWFは、血小板が、血管壁の損傷部位の内皮下組織に正常に粘着するのに必要であるだけでなく、FVIIIと複合体を形成し、血液中のFVIIIレベルを正常に保つのにも必要である。フォンビルブランド病患者では、これらの機能が低下し、止血機能異常を来たしている(非特許文献10[Blood 2013;122:3735-3740])。フォンビルブランド病患者の出血に対しては、デスモプレシン(DDAVP)や血漿由来のvWFを含むFVIII製剤が投与されるが、同様に頻回の静脈注射や止血活性の程度として出血を十分止められないケースが課題である。   In addition, von Willebrand disease caused by dysfunction or deficiency of von Willebrand factor (vWF) is known as a bleeding disorder involving FVIII. vWF is not only necessary for platelets to normally adhere to the subendothelial tissue at the site of vascular wall injury, but is also required to form a complex with FVIII and maintain normal FVIII levels in the blood It is. In patients with von Willebrand disease, these functions are reduced and hemostasis is abnormal (Non-Patent Document 10 [Blood 2013; 122: 3735-3740]). For bleeding in patients with von Willebrand disease, FVIII preparations containing desmopressin (DDAVP) and plasma-derived vWF are administered, but the bleeding cannot be stopped sufficiently due to the frequent intravenous injection and the degree of hemostatic activity. Case is a challenge.

近年、活性化血液凝固第IX因子(FIXa)および血液第X因子(FX)の双方に結合し、FVIIIの補因子機能、すなわちFIXaによるFX活性化を促進する機能を代替する機能を有する多重特異性抗原結合分子が見出された(特許文献1〜3)。多重特異性抗原結合分子のうち、二重特異性抗体は、血友病Aの出血に対する予防および/または治療のための医薬品組成物として開発が進められている(特許文献1〜3、非特許文献11[Nature Medicine 2012;18(10):1570-1574]、非特許文献12[PLOS ONE 2013;8(2):e57479]、非特許文献13[J Thromb Haemost 2014;12(2):206-213] 、非特許文献14[Blood 2014;124(20):3165-3171])。また、FVIII機能を代替する機能を有する多重特異性抗原結合分子は、FVIIIの機能不全が関与する後天性血友病Aおよびフォンビルブランド病の出血に対する予防および/または治療への適用も考えられている(特許文献1〜3)。   In recent years, it has multiple specificity that binds to both activated blood coagulation factor IX (FIXa) and blood factor X (FX) and replaces the cofactor function of FVIII, that is, the function of promoting FX activation by FIXa Sex antigen-binding molecules were found (Patent Documents 1 to 3). Among multispecific antigen-binding molecules, bispecific antibodies are being developed as pharmaceutical compositions for the prevention and / or treatment of hemophilia A bleeding (Patent Documents 1 to 3, Non-Patent Documents). Document 11 [Nature Medicine 2012; 18 (10): 1570-1574], Non-Patent Document 12 [PLOS ONE 2013; 8 (2): e57479], Non-Patent Document 13 [J Thromb Haemost 2014; 12 (2): 206 -213], Non-Patent Document 14 [Blood 2014; 124 (20): 3165-3171]). In addition, multispecific antigen-binding molecules that have a function to substitute for FVIII function may be applied to the prevention and / or treatment of bleeding in acquired hemophilia A and von Willebrand disease, in which FVIII dysfunction is involved. (Patent Documents 1 to 3).

Haemophilia 2006;12(suppl. 3):137-142Haemophilia 2006; 12 (suppl. 3): 137-142 Haemophilia 2003;9(suppl.1):32Haemophilia 2003; 9 (suppl.1): 32 Blood 1981;58:1-13Blood 1981; 58: 1-13 Nature 1984;312:330-337Nature 1984; 312: 330-337 Nature 1984;312:337-342Nature 1984; 312: 337-342 Biochim Biophys Acta 1986;871:268-278]Biochim Biophys Acta 1986; 871: 268-278] Blood 2007;109(2):546-551Blood 2007; 109 (2): 546-551 Semin Thromb Hemost 2012;38:433-446Semin Thromb Hemost 2012; 38: 433-446 Thromb Haemost 2013;110:1114-1120Thromb Haemost 2013; 110: 1114-1120 Blood 2013;122:3735-3740Blood 2013; 122: 3735-3740 Nature Medicine 2012;18(10):1570-1574Nature Medicine 2012; 18 (10): 1570-1574 PLOS ONE 2013;8(2):e57479PLOS ONE 2013; 8 (2): e57479 J Thromb Haemost 2014;12(2):206-213J Thromb Haemost 2014; 12 (2): 206-213 Blood 2014;124(20):3165-3171Blood 2014; 124 (20): 3165-3171

WO2005/035756WO2005 / 035756 WO2006/109592WO2006 / 109592 WO2012/067176WO2012 / 067176

本発明は、FVIIIの機能を代替する多重特異性抗原結合分子を含有する、FXI異常症の予防および/または治療に用いられる医薬組成物の提供を課題とする。   An object of the present invention is to provide a pharmaceutical composition for use in the prevention and / or treatment of FXI abnormalities, which contains a multispecific antigen-binding molecule that substitutes for the function of FVIII.

本発明者らは上記課題を解決すべく、FXI異常症の患者由来の市販血漿を用いて、FVIIIの機能を代替する多重特異性抗原結合分子による血漿凝固促進作用を検証した。実施例として、FXI欠損または機能不全患者由来の市販血漿(FXI欠乏血漿と称す)、あるいは市販正常血漿へ抗FXI中和抗体を添加してFXI活性を低下させた血漿(FXI中和血漿と称す)を用いて、活性化部分トロンボプラスチン時間(APTT)、凝固波形解析(CWA)およびトロンビン生成試験(TGA)の各血漿凝固評価法にて、FVIII代替活性の機能を有する抗体による血漿凝固促進作用を調べた。   In order to solve the above-mentioned problems, the present inventors have examined the plasma coagulation promoting action of a multispecific antigen-binding molecule that substitutes for the function of FVIII using commercially available plasma derived from a patient with an FXI abnormality. Examples include commercial plasma derived from patients with FXI deficiency or dysfunction (referred to as FXI-deficient plasma), or plasma obtained by adding anti-FXI neutralizing antibody to commercially available normal plasma to reduce FXI activity (referred to as FXI neutralized plasma). ) To promote plasma clotting by an antibody having a function of FVIII alternative activity in each plasma clotting evaluation method of activated partial thromboplastin time (APTT), clotting waveform analysis (CWA) and thrombin generation test (TGA) Examined.

その結果、本発明者らは、FXI欠損または機能不全患者由来の市販血漿において、上述の各血漿凝固評価法の全てにおいて、FVIII代替活性の機能を有する抗体が血漿凝固促進作用を示すことを見出した。更に、後天的にFXI機能を中和した血漿においても、FVIII代替活性の機能を有する抗体が血漿凝固促進作用を示すことを見出した。従って、FVIIIの機能を代替する多重特異性抗原結合分子は、FVIIIの機能不全に起因する血友病A、後天性血友病Aおよびフォンビルブランド病での出血に対する予防剤および/または治療剤として利用できるのみならず、その凝固促進活性からFXI異常症での出血に対する予防剤および/または治療剤として利用できることが示された。
本発明はこのような知見に基づき、FVIIIの機能を代替する多重特異性抗原結合分子を含有する、血友病A、後天性血友病Aおよびフォンビルブランド病以外のFXI異常症の予防および/または治療に用いられる医薬組成物に関するものであり、より具体的には以下に関する。
〔1〕血液凝固第VIII因子の機能を代替する多重特異性抗原結合分子を含有する、血液凝固第XI因子異常症の予防および/または治療に用いられる医薬組成物。
〔2〕血液凝固第VIII因子の機能を代替する多重特異性抗原結合分子が、血液凝固第IX因子および/または活性型血液凝固第IX因子ならびに血液凝固第X因子に結合する二重特異性抗体である、〔1〕に記載の医薬組成物。
〔3〕前記二重特異性抗体が以下に記載の抗体であって、第一のポリペプチドと第三のポリペプチドが会合し、第二のポリペプチドと第四のポリペプチドが会合する二重特異性抗体である〔1〕または〔2〕に記載の医薬組成物;
第一のポリペプチドが配列番号:1、2、3(Q499のH鎖CDR)に記載のH鎖CDR1、2、3のアミノ酸配列を含むH鎖、第二のポリペプチドが配列番号:4、5、6(J327のH鎖CDR)に記載のH鎖CDR1、2、3のアミノ酸配列を含むH鎖、第三のポリペプチドと第四のポリペプチドが配列番号:7、8、9(L404のL鎖CDR)に記載のL鎖CDR1、2、3のアミノ酸配列を含む共通L鎖からなる二重特異性抗体(Q499-z121/J327-z119/L404-k)。
〔4〕前記二重特異性抗体が以下に記載の抗体であって、第一のポリペプチドと第三のポリペプチドが会合し、第二のポリペプチドと第四のポリペプチドが会合する二重特異性抗体である〔1〕〜〔3〕のいずれかに記載の医薬組成物;
第一のポリペプチドが配列番号:10に記載のアミノ酸配列からなるH鎖、第二のポリペプチドが配列番号:11に記載のアミノ酸配列からなるH鎖および第三のポリペプチドと第四のポリペプチドが配列番号:12に記載の共通L鎖からなる二重特異性抗体(Q499-z121/J327-z119/L404-k)。
〔5〕血液凝固第XI因子異常症が、血液凝固第XI因子および/または活性型血液凝固第XI因子の活性の低下、機能異常および/または欠損によって発症および/または進展する疾患である、〔1〕〜〔4〕のいずれかに記載の医薬組成物。
〔6〕血液凝固第XI因子異常症が先天性または後天性の疾患である、〔1〕〜〔5〕のいずれかに記載の医薬組成物。
〔7〕血液凝固第XI因子異常症が血友病Cである、〔1〕〜〔6〕のいずれかに記載の医薬組成物。
〔A1〕対象に有効量の血液凝固第VIII因子の機能を代替する多重特異性抗原結合分子を投与する工程を含む、血液凝固第XI因子異常症の予防および/または治療するための方法。
〔A2〕血液凝固第VIII因子の機能を代替する多重特異性抗原結合分子が、血液凝固第IX因子および/または活性型血液凝固第IX因子ならびに血液凝固第X因子に結合する二重特異性抗体である、〔A1〕に記載の方法。
〔A3〕前記二重特異性抗体が以下に記載の抗体であって、第一のポリペプチドと第三のポリペプチドが会合し、第二のポリペプチドと第四のポリペプチドが会合する二重特異性抗体である〔A1〕または〔A2〕に記載の方法;
第一のポリペプチドが配列番号:1、2、3(Q499のH鎖CDR)に記載のH鎖CDR1、2、3のアミノ酸配列を含むH鎖、第二のポリペプチドが配列番号:4、5、6(J327のH鎖CDR)に記載のH鎖CDR1、2、3のアミノ酸配列を含むH鎖、第三のポリペプチドと第四のポリペプチドが配列番号:7、8、9(L404のL鎖CDR)に記載のL鎖CDR1、2、3のアミノ酸配列を含む共通L鎖からなる二重特異性抗体(Q499-z121/J327-z119/L404-k)。
〔A4〕前記二重特異性抗体が以下に記載の抗体であって、第一のポリペプチドと第三のポリペプチドが会合し、第二のポリペプチドと第四のポリペプチドが会合する二重特異性抗体である〔A1〕〜〔A3〕のいずれかに記載の方法;
第一のポリペプチドが配列番号:10に記載のアミノ酸配列からなるH鎖、第二のポリペプチドが配列番号:11に記載のアミノ酸配列からなるH鎖および第三のポリペプチドと第四のポリペプチドが配列番号:12に記載の共通L鎖からなる二重特異性抗体(Q499-z121/J327-z119/L404-k)。
〔A5〕血液凝固第XI因子異常症が、血液凝固第XI因子および/または活性型血液凝固第XI因子の活性の低下、機能異常および/または欠損によって発症および/または進展する疾患である、〔A1〕〜〔A4〕のいずれかに記載の方法。
〔A6〕血液凝固第XI因子異常症が先天性または後天性の疾患である、〔A1〕〜〔A5〕のいずれかに記載の方法。
〔A7〕血液凝固第XI因子異常症が血友病Cである、〔A1〕〜〔A6〕のいずれかに記載の方法。
〔B1〕血液凝固第XI因子異常症の予防および/または治療に使用するための、血液凝固第VIII因子の機能を代替する多重特異性抗原結合分子。
〔B2〕血液凝固第VIII因子の機能を代替する多重特異性抗原結合分子が、血液凝固第IX因子および/または活性型血液凝固第IX因子ならびに血液凝固第X因子に結合する二重特異性抗体である、〔B1〕に記載の抗原結合分子。
〔B3〕前記二重特異性抗体が以下に記載の抗体であって、第一のポリペプチドと第三のポリペプチドが会合し、第二のポリペプチドと第四のポリペプチドが会合する二重特異性抗体である〔B1〕または〔B2〕に記載の抗原結合分子;
第一のポリペプチドが配列番号:1、2、3(Q499のH鎖CDR)に記載のH鎖CDR1、2、3のアミノ酸配列を含むH鎖、第二のポリペプチドが配列番号:4、5、6(J327のH鎖CDR)に記載のH鎖CDR1、2、3のアミノ酸配列を含むH鎖、第三のポリペプチドと第四のポリペプチドが配列番号:7、8、9(L404のL鎖CDR)に記載のL鎖CDR1、2、3のアミノ酸配列を含む共通L鎖からなる二重特異性抗体(Q499-z121/J327-z119/L404-k)。
〔B4〕前記二重特異性抗体が以下に記載の抗体であって、第一のポリペプチドと第三のポリペプチドが会合し、第二のポリペプチドと第四のポリペプチドが会合する二重特異性抗体である〔B1〕〜〔B3〕のいずれかに記載の抗原結合分子;
第一のポリペプチドが配列番号:10に記載のアミノ酸配列からなるH鎖、第二のポリペプチドが配列番号:11に記載のアミノ酸配列からなるH鎖および第三のポリペプチドと第四のポリペプチドが配列番号:12に記載の共通L鎖からなる二重特異性抗体(Q499-z121/J327-z119/L404-k)。
〔B5〕血液凝固第XI因子異常症が、血液凝固第XI因子および/または活性型血液凝固第XI因子の活性の低下、機能異常および/または欠損によって発症および/または進展する疾患である、〔B1〕〜〔B4〕のいずれかに記載の抗原結合分子。
〔B6〕血液凝固第XI因子異常症が先天性または後天性の疾患である、〔B1〕〜〔B5〕のいずれかに記載の抗原結合分子。
〔B7〕血液凝固第XI因子異常症が血友病Cである、〔B1〕〜〔B6〕のいずれかに記載の抗原結合分子。
〔C1〕血液凝固第XI因子異常症の予防および/または治療に用いられる医薬の製造における、血液凝固第VIII因子の機能を代替する多重特異性抗原結合分子の使用。
〔C2〕血液凝固第VIII因子の機能を代替する多重特異性抗原結合分子が、血液凝固第IX因子および/または活性型血液凝固第IX因子ならびに血液凝固第X因子に結合する二重特異性抗体である、〔C1〕に記載の使用。
〔C3〕前記二重特異性抗体が以下に記載の抗体であって、第一のポリペプチドと第三のポリペプチドが会合し、第二のポリペプチドと第四のポリペプチドが会合する二重特異性抗体である〔C1〕または〔C2〕に記載の使用;
第一のポリペプチドが配列番号:1、2、3(Q499のH鎖CDR)に記載のH鎖CDR1、2、3のアミノ酸配列を含むH鎖、第二のポリペプチドが配列番号:4、5、6(J327のH鎖CDR)に記載のH鎖CDR1、2、3のアミノ酸配列を含むH鎖、第三のポリペプチドと第四のポリペプチドが配列番号:7、8、9(L404のL鎖CDR)に記載のL鎖CDR1、2、3のアミノ酸配列を含む共通L鎖からなる二重特異性抗体(Q499-z121/J327-z119/L404-k)。
〔C4〕前記二重特異性抗体が以下に記載の抗体であって、第一のポリペプチドと第三のポリペプチドが会合し、第二のポリペプチドと第四のポリペプチドが会合する二重特異性抗体である〔C1〕〜〔C3〕のいずれかに記載の使用;
第一のポリペプチドが配列番号:10に記載のアミノ酸配列からなるH鎖、第二のポリペプチドが配列番号:11に記載のアミノ酸配列からなるH鎖および第三のポリペプチドと第四のポリペプチドが配列番号:12に記載の共通L鎖からなる二重特異性抗体(Q499-z121/J327-z119/L404-k)。
〔C5〕血液凝固第XI因子異常症が、血液凝固第XI因子および/または活性型血液凝固第XI因子の活性の低下、機能異常および/または欠損によって発症および/または進展する疾患である、〔C1〕〜〔C4〕のいずれかに記載の使用。
〔C6〕血液凝固第XI因子異常症が先天性または後天性の疾患である、〔C1〕〜〔C5〕のいずれかに記載の使用。
〔C7〕血液凝固第XI因子異常症が血友病Cである、〔C1〕〜〔C6〕のいずれかに記載の使用。
As a result, the present inventors have found that in commercially available plasma derived from patients with FXI deficiency or dysfunction, antibodies having a function of FVIII alternative activity exhibit plasma coagulation promoting effects in all of the above-mentioned plasma coagulation evaluation methods. It was. Furthermore, the present inventors have found that an antibody having a function of FVIII substitute activity exhibits plasma coagulation promoting action even in plasma obtained by neutralizing FXI function. Therefore, a multispecific antigen-binding molecule that substitutes for the function of FVIII is a prophylactic and / or therapeutic agent for bleeding in hemophilia A, acquired hemophilia A and von Willebrand disease caused by FVIII dysfunction. It was shown that it can be used as a prophylactic and / or therapeutic agent for bleeding in abnormal FXI due to its procoagulant activity.
Based on such findings, the present invention contains FXI abnormalities other than hemophilia A, acquired hemophilia A, and von Willebrand disease, which contain a multispecific antigen-binding molecule that substitutes for the function of FVIII. The present invention relates to a pharmaceutical composition used for treatment, and more specifically to the following.
[1] A pharmaceutical composition used for the prevention and / or treatment of blood coagulation factor XI abnormality, comprising a multispecific antigen-binding molecule that substitutes for the function of blood coagulation factor VIII.
[2] Bispecific antibody in which a multispecific antigen-binding molecule that substitutes for the function of blood coagulation factor VIII binds to blood coagulation factor IX and / or active blood coagulation factor IX and blood coagulation factor X The pharmaceutical composition according to [1], wherein
[3] The bispecific antibody is an antibody described below, wherein the first polypeptide and the third polypeptide are associated, and the second polypeptide and the fourth polypeptide are associated. The pharmaceutical composition according to [1] or [2], which is a specific antibody;
The first polypeptide is an H chain comprising the amino acid sequence of H chain CDR1, 2, 3 described in SEQ ID NO: 1, 2, 3 (H chain CDR of Q499), the second polypeptide is SEQ ID NO: 4, H chain comprising the amino acid sequence of H chain CDR1, 2, 3 described in 5, 6 (H chain CDR of J327), the third polypeptide and the fourth polypeptide are SEQ ID NO: 7, 8, 9 (L404 A bispecific antibody (Q499-z121 / J327-z119 / L404-k) consisting of a common L chain comprising the amino acid sequences of the L chain CDR1, 2, and 3 described in the above (L chain CDR).
[4] The bispecific antibody is an antibody described below, wherein the first polypeptide and the third polypeptide are associated, and the second polypeptide and the fourth polypeptide are associated. The pharmaceutical composition according to any one of [1] to [3], which is a specific antibody;
The first polypeptide is an H chain consisting of the amino acid sequence set forth in SEQ ID NO: 10, the second polypeptide is the H chain consisting of the amino acid sequence set forth in SEQ ID NO: 11, the third polypeptide and the fourth poly A bispecific antibody (Q499-z121 / J327-z119 / L404-k), wherein the peptide consists of a common L chain described in SEQ ID NO: 12.
[5] Blood coagulation factor XI abnormality is a disease that develops and / or progresses due to decreased activity, functional abnormality and / or deficiency of blood coagulation factor XI and / or active blood coagulation factor XI, [ [1] The pharmaceutical composition according to any one of [4].
[6] The pharmaceutical composition according to any one of [1] to [5], wherein the blood coagulation factor XI abnormality is a congenital or acquired disease.
[7] The pharmaceutical composition according to any one of [1] to [6], wherein the blood coagulation factor XI abnormality is hemophilia C.
[A1] A method for preventing and / or treating blood coagulation factor XI abnormality, comprising a step of administering an effective amount of a multispecific antigen-binding molecule that substitutes for the function of blood coagulation factor VIII to a subject.
[A2] A bispecific antibody in which a multispecific antigen-binding molecule that substitutes for the function of blood coagulation factor VIII binds to blood coagulation factor IX and / or active blood coagulation factor IX and blood coagulation factor X The method according to [A1].
[A3] The bispecific antibody is an antibody described below, wherein the first polypeptide and the third polypeptide are associated, and the second polypeptide and the fourth polypeptide are associated. The method according to [A1] or [A2], which is a specific antibody;
The first polypeptide is an H chain comprising the amino acid sequence of H chain CDR1, 2, 3 described in SEQ ID NO: 1, 2, 3 (H chain CDR of Q499), the second polypeptide is SEQ ID NO: 4, H chain comprising the amino acid sequence of H chain CDR1, 2, 3 described in 5, 6 (H chain CDR of J327), the third polypeptide and the fourth polypeptide are SEQ ID NO: 7, 8, 9 (L404 A bispecific antibody (Q499-z121 / J327-z119 / L404-k) consisting of a common L chain comprising the amino acid sequences of the L chain CDR1, 2, and 3 described in the above (L chain CDR).
[A4] The bispecific antibody is an antibody described below, wherein the first polypeptide and the third polypeptide are associated, and the second polypeptide and the fourth polypeptide are associated. The method according to any one of [A1] to [A3], which is a specific antibody;
The first polypeptide is an H chain consisting of the amino acid sequence set forth in SEQ ID NO: 10, the second polypeptide is the H chain consisting of the amino acid sequence set forth in SEQ ID NO: 11, the third polypeptide and the fourth poly A bispecific antibody (Q499-z121 / J327-z119 / L404-k), wherein the peptide consists of a common L chain described in SEQ ID NO: 12.
[A5] Blood coagulation factor XI abnormality is a disease that develops and / or progresses due to decreased activity, functional abnormality and / or deficiency of blood coagulation factor XI and / or active blood coagulation factor XI. The method according to any one of [A1] to [A4].
[A6] The method according to any one of [A1] to [A5], wherein the blood coagulation factor XI abnormality is a congenital or acquired disease.
[A7] The method according to any one of [A1] to [A6], wherein the blood coagulation factor XI abnormality is hemophilia C.
[B1] A multispecific antigen-binding molecule that substitutes for the function of blood coagulation factor VIII for use in the prevention and / or treatment of blood coagulation factor XI abnormality.
[B2] A bispecific antibody in which a multispecific antigen-binding molecule that substitutes for the function of blood coagulation factor VIII binds to blood coagulation factor IX and / or active blood coagulation factor IX and blood coagulation factor X The antigen-binding molecule according to [B1].
[B3] The bispecific antibody is an antibody described below, wherein the first polypeptide and the third polypeptide are associated, and the second polypeptide and the fourth polypeptide are associated. The antigen-binding molecule according to [B1] or [B2], which is a specific antibody;
The first polypeptide is an H chain comprising the amino acid sequence of H chain CDR1, 2, 3 described in SEQ ID NO: 1, 2, 3 (H chain CDR of Q499), the second polypeptide is SEQ ID NO: 4, H chain comprising the amino acid sequence of H chain CDR1, 2, 3 described in 5, 6 (H chain CDR of J327), the third polypeptide and the fourth polypeptide are SEQ ID NO: 7, 8, 9 (L404 A bispecific antibody (Q499-z121 / J327-z119 / L404-k) consisting of a common L chain comprising the amino acid sequences of the L chain CDR1, 2, and 3 described in the above (L chain CDR).
[B4] The bispecific antibody is an antibody described below, wherein the first polypeptide and the third polypeptide are associated, and the second polypeptide and the fourth polypeptide are associated. The antigen-binding molecule according to any one of [B1] to [B3], which is a specific antibody;
The first polypeptide is an H chain consisting of the amino acid sequence set forth in SEQ ID NO: 10, the second polypeptide is the H chain consisting of the amino acid sequence set forth in SEQ ID NO: 11, the third polypeptide and the fourth poly A bispecific antibody (Q499-z121 / J327-z119 / L404-k), wherein the peptide consists of a common L chain described in SEQ ID NO: 12.
[B5] Blood coagulation factor XI abnormality is a disease that develops and / or progresses due to decreased activity, abnormal function and / or deficiency of blood coagulation factor XI and / or active blood coagulation factor XI. The antigen-binding molecule according to any one of [B1] to [B4].
[B6] The antigen-binding molecule according to any one of [B1] to [B5], wherein the blood coagulation factor XI abnormality is a congenital or acquired disease.
[B7] The antigen-binding molecule according to any one of [B1] to [B6], wherein the blood coagulation factor XI abnormality is hemophilia C.
[C1] Use of a multispecific antigen-binding molecule that substitutes for the function of blood coagulation factor VIII in the manufacture of a medicament used for the prevention and / or treatment of blood coagulation factor XI abnormality.
[C2] A bispecific antibody in which a multispecific antigen-binding molecule that substitutes for the function of blood coagulation factor VIII binds to blood coagulation factor IX and / or active blood coagulation factor IX and blood coagulation factor X The use according to [C1].
[C3] The bispecific antibody is an antibody described below, wherein the first polypeptide and the third polypeptide are associated, and the second polypeptide and the fourth polypeptide are associated. Use according to [C1] or [C2], which is a specific antibody;
The first polypeptide is an H chain comprising the amino acid sequence of H chain CDR1, 2, 3 described in SEQ ID NO: 1, 2, 3 (H chain CDR of Q499), the second polypeptide is SEQ ID NO: 4, H chain comprising the amino acid sequence of H chain CDR1, 2, 3 described in 5, 6 (H chain CDR of J327), the third polypeptide and the fourth polypeptide are SEQ ID NO: 7, 8, 9 (L404 A bispecific antibody (Q499-z121 / J327-z119 / L404-k) consisting of a common L chain comprising the amino acid sequences of the L chain CDR1, 2, and 3 described in the above (L chain CDR).
[C4] The bispecific antibody is an antibody described below, wherein the first polypeptide and the third polypeptide are associated, and the second polypeptide and the fourth polypeptide are associated. The use according to any one of [C1] to [C3], which is a specific antibody;
The first polypeptide is an H chain consisting of the amino acid sequence set forth in SEQ ID NO: 10, the second polypeptide is the H chain consisting of the amino acid sequence set forth in SEQ ID NO: 11, the third polypeptide and the fourth poly A bispecific antibody (Q499-z121 / J327-z119 / L404-k), wherein the peptide consists of a common L chain described in SEQ ID NO: 12.
[C5] Blood coagulation factor XI abnormality is a disease that develops and / or progresses due to decreased activity, functional abnormality and / or deficiency of blood coagulation factor XI and / or active blood coagulation factor XI. Use in any one of C1]-[C4].
[C6] The use according to any one of [C1] to [C5], wherein the blood coagulation factor XI abnormality is a congenital or acquired disease.
[C7] The use according to any one of [C1] to [C6], wherein the blood coagulation factor XI abnormality is hemophilia C.

本発明により、FVIIIの機能を代替する多重特異性抗原結合分子を含有する、血友病A、後天性血友病A及びフォンビルブランド病以外のFXI異常症の予防および/または治療に用いられる医薬組成物が提供された。FVIIIの機能を代替する多重特異性抗原結合分子は、FVIIIの機能不全に起因する血友病A、後天性血友病Aおよびフォンビルブランド病での出血に対する予防剤および/または治療剤として利用できるのみならず、その凝固促進活性からFXI異常症の予防剤および/または治療剤として利用できると考えられる。FXI異常症は、希少な出血性疾患であるため、出血に対する有効な予防剤および/または治療剤は見出されておらず、本発明は、FXI異常症の予防剤および/または治療剤として有望と考えられる。   According to the present invention, it is used for the prevention and / or treatment of FXI abnormalities other than hemophilia A, acquired hemophilia A and von Willebrand disease, which contains a multispecific antigen-binding molecule that substitutes for the function of FVIII. A pharmaceutical composition was provided. Multispecific antigen-binding molecules that replace FVIII function can be used as preventive and / or therapeutic agents for hemorrhage in hemophilia A, acquired hemophilia A and von Willebrand disease caused by FVIII dysfunction It can be used as a prophylactic and / or therapeutic agent for FXI abnormality due to its procoagulant activity. Since FXI abnormality is a rare bleeding disorder, no effective preventive and / or therapeutic agent for bleeding has been found, and the present invention is promising as a prophylactic and / or therapeutic agent for FXI abnormalities. it is conceivable that.

FXI欠乏血漿を用いたAPTT測定において、FVIII代替活性の機能を有する二重特異性抗体の一つACE910が血漿凝固促進作用を示す図である(全10ロットの内の5ロットの個別データ)。ACE910は、何れのロットの血漿においても濃度依存的に凝固時間の短縮を示した。In APTT measurement using FXI-deficient plasma, ACE910, one of the bispecific antibodies having a function of FVIII alternative activity, shows plasma coagulation promoting action (individual data of 5 lots out of 10 lots). ACE910 showed a shortened clotting time in a concentration-dependent manner in any lot of plasma. FXI欠乏血漿を用いたAPTT測定において、FVIII代替活性の機能を有する二重特異性抗体の一つACE910が血漿凝固促進作用を示す図である(全10ロットの内の5ロットの個別データ)。ACE910は、何れのロットの血漿においても濃度依存的に凝固時間の短縮を示した。In APTT measurement using FXI-deficient plasma, ACE910, one of the bispecific antibodies having a function of FVIII alternative activity, shows plasma coagulation promoting action (individual data of 5 lots out of 10 lots). ACE910 showed a shortened clotting time in a concentration-dependent manner in any lot of plasma. FXI欠乏血漿を用いたAPTT測定において、ACE910が血漿凝固促進作用を示す図である(FXI def: 9-10ロットの平均値および標準偏差)。また、FXI中和血漿を用いたAPTT測定において、ACE910が血漿凝固促進作用を示す図である(Normal + FXI Ab: 1ロットの個別データ)。ACE910は、FXI欠乏およびFXI中和の何れの血漿においても濃度依存的に凝固時間の短縮を示した。In APTT measurement using FXI-deficient plasma, ACE910 shows plasma coagulation promoting action (FXI def: mean value and standard deviation of 9-10 lots). Further, in APTT measurement using FXI neutralized plasma, ACE910 shows plasma coagulation promoting action (Normal + FXI Ab: individual data of 1 lot). ACE910 showed shortened clotting time in a concentration-dependent manner in both FXI-deficient and FXI-neutralized plasma. FXI欠乏血漿を用いたAPTT試薬惹起によるCWA測定において、ACE910が血漿凝固促進作用を示す図である(全10ロットの個別データ)。ACE910は、何れのロットの血漿においても濃度依存的に最大凝固速度の増加を示した。In the CWA measurement by APTT reagent induction using FXI deficient plasma, ACE910 is a figure which shows a plasma coagulation promoting action (individual data of all 10 lots). ACE910 showed an increase in maximum clotting rate in a concentration-dependent manner in any lot of plasma. FXI欠乏血漿を用いたAPTT試薬惹起によるCWA測定において、ACE910が血漿凝固促進作用を示す図である(FXI def: 9-10ロットの平均値および標準偏差)。ACE910は、FXI欠乏血漿において濃度依存的に最大凝固速度の増加を示した。In the CWA measurement by APTT reagent induction using FXI deficient plasma, ACE910 shows the plasma coagulation promoting action (FXI def: average value and standard deviation of 9-10 lots). ACE910 showed an increase in maximum clotting rate in a concentration-dependent manner in FXI-deficient plasma. FXI欠乏血漿を用いたAPTT試薬惹起によるCWA測定において、ACE910が血漿凝固促進作用を示す図である(全10ロットの内の5ロットの個別データ)。ACE910は、何れのロットの血漿においても濃度依存的に最大凝固加速度の増加を示した。In CWA measurement by APTT reagent induction using FXI deficient plasma, ACE910 is a figure which shows a plasma coagulation promoting action (individual data of 5 lots out of all 10 lots). ACE910 showed an increase in maximum clotting acceleration in a concentration-dependent manner in any lot of plasma. FXI欠乏血漿を用いたAPTT試薬惹起によるCWA測定において、ACE910が血漿凝固促進作用を示す図である(全10ロットの内の5ロットの個別データ)。ACE910は、何れのロットの血漿においても濃度依存的に最大凝固加速度の増加を示した。In CWA measurement by APTT reagent induction using FXI deficient plasma, ACE910 is a figure which shows a plasma coagulation promoting action (individual data of 5 lots out of all 10 lots). ACE910 showed an increase in maximum clotting acceleration in a concentration-dependent manner in any lot of plasma. FXI欠乏血漿を用いたAPTT試薬惹起によるCWA測定において、ACE910が血漿凝固促進作用を示す図である(FXI def: 9-10ロットの平均値および標準偏差)。また、FXI中和血漿を用いたAPTT試薬惹起によるCWA測定において、ACE910が血漿凝固促進作用を示す図である(Normal + FXI Ab: 1ロットの個別データ)。ACE910は、FXI欠乏およびFXI中和の何れの血漿においても濃度依存的に最大凝固加速度の増加を示した。In the CWA measurement by APTT reagent induction using FXI deficient plasma, ACE910 shows the plasma coagulation promoting action (FXI def: average value and standard deviation of 9-10 lots). In addition, ACE910 shows plasma coagulation promoting action in CWA measurement by APTT reagent induction using FXI neutralized plasma (Normal + FXI Ab: individual data of 1 lot). ACE910 showed an increase in maximum clotting acceleration in a concentration-dependent manner in both FXI-deficient and FXI-neutralized plasma. FXI欠乏血漿を用いた混合試薬(組織因子およびエラグ酸を含む)惹起による凝固時間測定において、ACE910が血漿凝固促進作用を示す図である(全5ロットの個別データ)。ACE910は、何れのロットの血漿においても濃度依存的に凝固時間の短縮を示した。FIG. 4 is a diagram showing ACE910 having a plasma coagulation promoting action in measurement of coagulation time by inducing mixed reagent (including tissue factor and ellagic acid) using FXI-deficient plasma (individual data of all 5 lots). ACE910 showed a shortened clotting time in a concentration-dependent manner in any lot of plasma. FXI欠乏血漿を用いた混合試薬(組織因子およびエラグ酸を含む)惹起による凝固時間測定において、ACE910が血漿凝固促進作用を示す図である(FXI def: 4-5ロットの平均値および標準偏差)。また、FXI中和血漿を用いた混合試薬(組織因子およびエラグ酸を含む)惹起による凝固時間測定において、ACE910が血漿凝固促進作用を示す図である(Normal + FXI Ab: 1ロットの個別データ)。ACE910は、FXI欠乏およびFXI中和の何れの血漿においても濃度依存的に凝固時間の短縮を示した。ACE910 shows plasma coagulation-promoting effect in the measurement of coagulation time by induction of mixed reagents (including tissue factor and ellagic acid) using FXI-deficient plasma (FXI def: mean value and standard deviation of 4-5 lots) . In addition, ACE910 shows plasma coagulation-promoting action in the measurement of coagulation time by inducing mixed reagent (including tissue factor and ellagic acid) using FXI neutralized plasma (Normal + FXI Ab: Individual data of 1 lot) . ACE910 showed shortened clotting time in a concentration-dependent manner in both FXI-deficient and FXI-neutralized plasma. FXI欠乏血漿を用いた混合試薬(組織因子およびエラグ酸を含む)惹起によるCWA測定において、ACE910が血漿凝固促進作用を示す図である(全5ロットの個別データ)。ACE910は、何れのロットの血漿においても濃度依存的に最大凝固速度の増加を示した。FIG. 3 is a diagram showing ACE910 having a plasma coagulation promoting action in CWA measurement by inducing mixed reagent (including tissue factor and ellagic acid) using FXI-deficient plasma (individual data of all 5 lots). ACE910 showed an increase in maximum clotting rate in a concentration-dependent manner in any lot of plasma. FXI欠乏血漿を用いた混合試薬(組織因子およびエラグ酸を含む)惹起によるCWA測定において、ACE910が血漿凝固促進作用を示す図である(FXI def: 4-5ロットの平均値および標準偏差)。また、FXI中和血漿を用いた混合試薬(組織因子およびエラグ酸を含む)惹起によるCWA測定において、ACE910が血漿凝固促進作用を示す図である(Normal + FXI Ab: 1ロットの個別データ)。ACE910は、FXI欠乏およびFXI中和の何れの血漿においても濃度依存的に最大凝固速度の増加を示した。FIG. 4 is a view showing that ACE910 has a plasma coagulation promoting action in a CWA measurement by inducing mixed reagent (including tissue factor and ellagic acid) using FXI-deficient plasma (FXI def: mean value and standard deviation of 4-5 lots). Further, ACE910 shows a plasma coagulation promoting action in CWA measurement by inducing mixed reagent (including tissue factor and ellagic acid) using FXI neutralized plasma (Normal + FXI Ab: individual data of 1 lot). ACE910 showed an increase in maximum clotting rate in a concentration-dependent manner in both FXI-deficient and FXI-neutralized plasma. FXI欠乏血漿を用いた混合試薬(組織因子およびエラグ酸を含む)惹起によるCWA測定において、ACE910が血漿凝固促進作用を示す図である(全5ロットの個別データ)。ACE910は、何れのロットの血漿においても濃度依存的に最大凝固加速度の増加を示した。FIG. 3 is a diagram showing ACE910 having a plasma coagulation promoting action in CWA measurement by inducing mixed reagent (including tissue factor and ellagic acid) using FXI-deficient plasma (individual data of all 5 lots). ACE910 showed an increase in maximum clotting acceleration in a concentration-dependent manner in any lot of plasma. FXI欠乏血漿を用いた混合試薬(組織因子およびエラグ酸を含む)惹起によるCWA測定において、ACE910が血漿凝固促進作用を示す図である(FXI def: 4-5ロットの平均値および標準偏差)。また、FXI中和血漿を用いた混合試薬(組織因子およびエラグ酸を含む)惹起によるCWA測定において、ACE910が血漿凝固促進作用を示す図である(Normal + FXI Ab: 1ロットの個別データ)。ACE910は、FXI欠乏およびFXI中和の何れの血漿においても濃度依存的に最大凝固加速度の増加を示した。FIG. 4 is a view showing that ACE910 has a plasma coagulation promoting action in a CWA measurement by inducing mixed reagent (including tissue factor and ellagic acid) using FXI-deficient plasma (FXI def: mean value and standard deviation of 4-5 lots). Further, ACE910 shows a plasma coagulation promoting action in CWA measurement by inducing mixed reagent (including tissue factor and ellagic acid) using FXI neutralized plasma (Normal + FXI Ab: individual data of 1 lot). ACE910 showed an increase in maximum clotting acceleration in a concentration-dependent manner in both FXI-deficient and FXI-neutralized plasma. FXI欠乏血漿を用いた混合試薬(組織因子およびエラグ酸を含む)惹起によるTGA測定において、ACE910が血漿凝固促進作用を示す図である(全10ロットの個別データ)。ACE910は、概ね濃度依存的にトロンビン生成Peak heightの増加を示した。FIG. 3 is a diagram showing plasma coagulation promoting action of ACE910 in TGA measurement by inducing mixed reagent (including tissue factor and ellagic acid) using FXI-deficient plasma (individual data of all 10 lots). ACE910 showed an increase in thrombin generation peak height in a concentration-dependent manner.

本発明のFVIIIの機能を代替する多重特異性抗原結合分子とは、FVIII様活性を有する多重特異性抗原結合分子と言い換えることもできる。本発明において「FVIIIの機能を代替する」とは、FIXaによるFXの活性化を促進する(FIXaによるFXa産生を促進する)ことを意味する。また、より具体的には、本発明において「FVIIIの機能を代替する」とは、FIXおよび/またはFIXaならびにFXを認識し、FIXaによるFXの活性化を促進する(FIXaによるFXa産生を促進する)ことを意味する。FXa産生促進活性は、当業者によく知られた方法により行うことができ、例えば、FIXa、FX、合成基質S-2222(FXaの合成基質)、リン脂質から成る測定系で評価することができる。   The multispecific antigen-binding molecule that substitutes for the function of FVIII of the present invention can also be referred to as a multispecific antigen-binding molecule having FVIII-like activity. In the present invention, “substitute the function of FVIII” means promoting the activation of FX by FIXa (facilitating the production of FXa by FIXa). More specifically, in the present invention, “substitute FVIII function” recognizes FIX and / or FIXa and FX and promotes the activation of FX by FIXa (facilitates the production of FXa by FIXa) ) Means. FXa production promoting activity can be carried out by a method well known to those skilled in the art, and can be evaluated, for example, by a measurement system comprising FIXa, FX, synthetic substrate S-2222 (FXa synthetic substrate), and phospholipid. .

本発明の多重特異性抗原結合分子とは、少なくとも2種類の異なる抗原またはエピトープに対して特異的に結合することができる第一の抗原結合部位と第二の抗原結合部位を含む。第一の抗原結合部位と第二の抗原結合部位は、それぞれ、FIX及び/またはFIXaとFXに対して結合活性を有していれば特に限定されないが、例えば、抗体、Scaffold分子(抗体様分子)、ペプチド等の抗原との結合に必要な部位、または当該部位を含む断片をあげることができる。Scaffold分子とは、ターゲット分子に結合することで機能を発揮するような分子であり、少なくとも1つの標的抗原に結合することができる立体構造的に安定なポリペプチドであれば、どのようなポリペプチドであっても用いることができる。そのようなポリペプチドの例としては、例えば、抗体可変領域、フィブロネクチン(WO2002/032925)、Protein Aドメイン(WO1995/001937)、LDL受容体Aドメイン(WO2004/044011, WO2005/040229)、アンキリン(WO2002/020565)等のほか、Nygrenら(Current Opinion in Structural Biology 1997;7:463-469、Journal of Immunol Methods2004;290:3-28)、Binzら(Nature Biotech 2005;23:1257-1266)、Hosseら(Protein Science 2006;15:14-27)に記載の分子を挙げることができる。また、Curr Opin Mol Ther 2010;12(4):487-95やDrugs 2008;68(7):901-12に記されているように標的抗原に結合することができるペプチド分子を用いることもできる。   The multispecific antigen-binding molecule of the present invention includes a first antigen-binding site and a second antigen-binding site that can specifically bind to at least two different antigens or epitopes. The first antigen-binding site and the second antigen-binding site are not particularly limited as long as they have binding activity to FIX and / or FIXa and FX, respectively. For example, antibodies, Scaffold molecules (antibody-like molecules) ), A site necessary for binding to an antigen such as a peptide, or a fragment containing the site. A Scaffold molecule is a molecule that performs its function by binding to a target molecule, and any polypeptide that is a three-dimensionally stable polypeptide that can bind to at least one target antigen. Can be used. Examples of such polypeptides include, for example, antibody variable regions, fibronectin (WO2002 / 032925), Protein A domain (WO1995 / 001937), LDL receptor A domain (WO2004 / 044011, WO2005 / 040229), ankyrin (WO2002). Nygren et al. (Current Opinion in Structural Biology 1997; 7: 463-469, Journal of Immunol Methods 2004; 290: 3-28), Binz et al. (Nature Biotech 2005; 23: 1257-1266), Hosse (Protein Science 2006; 15: 14-27). Alternatively, peptide molecules that can bind to the target antigen can be used as described in Curr Opin Mol Ther 2010; 12 (4): 487-95 and Drugs 2008; 68 (7): 901-12 .

本発明において、多重特異性抗原結合分子としては、少なくとも2種類の異なる抗原またはエピトープと結合することができる分子であれば特に限定されないが、例えば、抗体やScaffold分子およびこれらの断片等の上記抗原結合部位を含むポリペプチド、核酸分子やペプチドからなるアプタマー等が挙げられ、単一分子であっても良いしこれらの多量体であってもよい。好ましい多重特異性抗原結合分子としては、少なくとも2つの異なる抗原に対して特異的に結合することができる多重特異性抗体を挙げることができる。本発明のFVIIIの機能を代替する活性を有する抗体においては、特に好ましい抗体として、2つの異なる抗原に対して特異的に結合することができる二重特異性抗体(bispecific antibody; BsAb)(二種特異性抗体と呼ばれる場合もある)を挙げることができる。   In the present invention, the multispecific antigen-binding molecule is not particularly limited as long as it is a molecule that can bind to at least two different antigens or epitopes. For example, the above antigens such as antibodies, Scaffold molecules, and fragments thereof Examples thereof include a polypeptide containing a binding site, an aptamer composed of a nucleic acid molecule or a peptide, and may be a single molecule or a multimer thereof. Preferred multispecific antigen binding molecules include multispecific antibodies that can specifically bind to at least two different antigens. In the antibody having activity substituting the function of FVIII of the present invention, as a particularly preferred antibody, a bispecific antibody (BsAb) (two types) capable of specifically binding to two different antigens is used. (Sometimes called specific antibodies).

本発明において「共通L鎖」とは、異なる2種以上のH鎖と会合し、それぞれの抗原に対して結合能を示し得るL鎖である。ここで、「異なるH鎖」とは、好ましくは異なる抗原に対する抗体のH鎖を指すが、それに限定されず、アミノ酸配列が互いに異なっているH鎖を意味する。共通L鎖は、例えばWO2006/109592に記載の方法に従って取得することができる。   In the present invention, the “common L chain” is an L chain that can associate with two or more different H chains and exhibit binding ability to each antigen. Here, “different H chains” preferably refer to H chains of antibodies against different antigens, but are not limited thereto and mean H chains having different amino acid sequences. The common L chain can be obtained, for example, according to the method described in WO2006 / 109592.

本発明における多重特異性抗原結合分子(好ましくは、二重特異性抗体)は、2種以上の異なる抗原に対して特異性を有する抗体もしくは抗体断片からなる分子である。本発明の抗体は特に制限されないが、モノクローナルであることが好ましい。   A multispecific antigen-binding molecule (preferably a bispecific antibody) in the present invention is a molecule comprising an antibody or antibody fragment having specificity for two or more different antigens. The antibody of the present invention is not particularly limited, but is preferably monoclonal.

また、本発明の多重特異性抗原結合分子となる抗体のL鎖は、異なるものであっても良いが、共通のL鎖を有していることが好ましい。   In addition, the L chains of the antibodies that serve as the multispecific antigen-binding molecules of the present invention may be different, but preferably have a common L chain.

本発明の一態様として、多重特異性抗原結合分子は、FIXおよび/またはFIXa、およびFXを認識し、FVIIIの機能を代替する機能を有する多重特異性抗原結合分子である。また、本発明の抗体は、通常、抗FIXa抗体における可変領域と、抗FX抗体における可変領域とを含む構造を有する。   In one embodiment of the present invention, the multispecific antigen-binding molecule is a multispecific antigen-binding molecule that has a function of recognizing FIX and / or FIXa and FX and substituting the function of FVIII. The antibody of the present invention usually has a structure including a variable region in an anti-FIXa antibody and a variable region in an anti-FX antibody.

本発明一態様として、多重特異性抗原結合分子は、FIXおよび/またはFIXaを認識する抗原結合部位を含む第一のポリペプチドおよび第三のポリペプチド、ならびにFXを認識する抗原結合部位を含む第二のポリペプチドおよび第四のポリペプチドを含む。第一のポリペプチドと第三のポリペプチド、ならびに第二のポリペプチドと第四のポリペプチドには、抗体のH鎖の抗原結合部位、と抗体のL鎖の抗原結合部位が含まれる。   In one embodiment of the present invention, the multispecific antigen-binding molecule comprises a first polypeptide and a third polypeptide that contain an antigen-binding site that recognizes FIX and / or FIXa, and an antigen-binding site that recognizes FX. A second polypeptide and a fourth polypeptide. The first polypeptide and the third polypeptide, and the second polypeptide and the fourth polypeptide include the antigen binding site of the antibody H chain and the antigen binding site of the antibody L chain.

例えば本発明における多重特異性抗原結合分子は、第一のポリペプチドと第三のポリペプチドがそれぞれFIXまたはFIXaに対する抗体のH鎖またはL鎖の抗原結合部位を含み、第二のポリペプチドと第四のポリペプチドがそれぞれFXに対する抗体のH鎖またはL鎖の抗原結合部位を含む。このとき、第一のポリペプチドと第三のポリペプチド、ならびに第二のポリペプチドと第四のポリペプチドに含まれる抗体のL鎖の抗原結合部位は、共通のL鎖であってもよい。   For example, in the multispecific antigen-binding molecule of the present invention, the first polypeptide and the third polypeptide each contain an antigen-binding site of an antibody H chain or L chain against FIX or FIXa, and the second polypeptide and the second polypeptide. Each of the four polypeptides contains an antigen binding site of an antibody H chain or L chain against FX. At this time, the antigen binding sites of the L chains of the antibodies contained in the first polypeptide and the third polypeptide, and the second polypeptide and the fourth polypeptide may be a common L chain.

本発明における抗体のL鎖の抗原結合部位を含むポリペプチドは、好ましくは、FIX、FIXaおよび/またはFXに結合する抗体のL鎖の全部または一部の配列を含むものである。   The polypeptide containing the antigen binding site of the antibody L chain in the present invention preferably contains the whole or a part of the sequence of the antibody L chain that binds to FIX, FIXa and / or FX.

本発明に記載のFVIIIの機能を代替する活性を有する物質の好ましい態様として、FIXおよび/またはFIXaならびにFXおよび/またはFXaに結合する二重特異性抗体を例示することができる。このような抗体は、例えばWO2005/035756、WO2006/109592、WO2012/067176などに記載の方法に従って取得することができる。本発明の二重特異性抗体にはこれらの文献に記載の抗体が含まれる。   As preferred embodiments of the substance having an activity that substitutes for the function of FVIII described in the present invention, FIX and / or FIXa and bispecific antibodies that bind to FX and / or FXa can be exemplified. Such an antibody can be obtained, for example, according to the method described in WO2005 / 035756, WO2006 / 109592, WO2012 / 067176, and the like. The bispecific antibodies of the present invention include the antibodies described in these documents.

好ましい二重特異性抗体として、特許文献(WO 2012/067176)に記載の二重特異性抗体である以下の抗体(ACE910)を挙げることができる。
第一のポリペプチドと第三のポリペプチドが会合し、第二のポリペプチドと第四のポリペプチドが会合する二重特異性抗体であって、第一のポリペプチドが配列番号:1、2、3(Q499のH鎖CDR)に記載のH鎖CDR1、2、3のアミノ酸配列を含むH鎖、第二のポリペプチドが配列番号:4、5、6(J327のH鎖CDR)に記載のH鎖CDR1、2、3のアミノ酸配列を含むH鎖、第三のポリペプチドと第四のポリペプチドが 配列番号:7、8、9(L404のL鎖CDR)に記載のL鎖CDR1、2、3のアミノ酸配列を含む共通L鎖からなる二重特異性抗体(Q499-z121/J327-z119/L404-k)。
さらに具体的には、第一のポリペプチドと第三のポリペプチドが会合し、第二のポリペプチドと第四のポリペプチドが会合する二重特異性抗体であって、第一のポリペプチドが配列番号:10に記載のアミノ酸配列からなるH鎖、第二のポリペプチドが配列番号:11に記載のアミノ酸配列からなるH鎖および第三のポリペプチドと第四のポリペプチドが配列番号:12に記載の共通L鎖からなる二重特異性抗体(Q499-z121/J327-z119/L404-k)。
As a preferable bispecific antibody, the following antibody (ACE910) which is a bispecific antibody described in the patent document (WO 2012/067176) can be mentioned.
A bispecific antibody in which a first polypeptide and a third polypeptide are associated, and a second polypeptide and a fourth polypeptide are associated, wherein the first polypeptide is SEQ ID NO: 1, 2 H chain comprising the amino acid sequence of H chain CDR1, 2, 3 described in 3 (Q499 H chain CDR), the second polypeptide is described in SEQ ID NOs: 4, 5, 6 (H chain CDR of J327) H chain comprising the amino acid sequence of H1, CDR2, 2, and 3, L chain CDR1, as described in SEQ ID NO: 7, 8, 9 (L404 CDR of L404), the third polypeptide and the fourth polypeptide, A bispecific antibody consisting of a common L chain containing a few amino acid sequences (Q499-z121 / J327-z119 / L404-k).
More specifically, a bispecific antibody in which a first polypeptide and a third polypeptide are associated, and a second polypeptide and a fourth polypeptide are associated, wherein the first polypeptide has The H chain consisting of the amino acid sequence set forth in SEQ ID NO: 10, the second polypeptide is the H chain consisting of the amino acid sequence set forth in SEQ ID NO: 11, and the third and fourth polypeptides are SEQ ID NO: 12. Bispecific antibody (Q499-z121 / J327-z119 / L404-k) comprising the common L chain described in 1.

本発明におけるポリペプチドとは、通常、10アミノ酸程度以上の長さを有するペプチド、およびタンパク質を指す。また、通常、生物由来のポリペプチドであるが、特に限定されず、例えば、人工的に設計された配列からなるポリペプチドであってもよい。また、天然ポリペプチド、あるいは合成ポリペプチド、組換えポリペプチド等のいずれであってもよい。さらに、上記のポリペプチドの断片もまた、本発明のポリペプチドに含まれる。   The polypeptide in the present invention usually refers to peptides and proteins having a length of about 10 amino acids or more. Moreover, although it is normally a polypeptide derived from a living organism | raw_food, it will not specifically limit, For example, the polypeptide which consists of a sequence designed artificially may be sufficient. Moreover, any of natural polypeptide, synthetic polypeptide, recombinant polypeptide, etc. may be sufficient. Furthermore, fragments of the above polypeptides are also included in the polypeptides of the present invention.

「抗体」という用語は、最も広い意味で使用され、所望の生物学的活性を示す限り、モノクローナル抗体、ポリクローナル抗体、二量体、多量体、多重特異性抗体(例えば、二重特異性抗体)、抗体誘導体および抗体修飾物であってもよい(Miller K et al. J Immunol. 2003, 170(9), 4854-61)。抗体は、マウス、ヒト、ヒト化、キメラであってもよく、または他の種由来であっても、人工的に合成したものであってもよい。本明細書中に開示される抗体は、免疫グロブリン分子の任意のタイプ(例えば、IgG、IgE、IgM、IgDおよびIgA)、クラス(例えば、IgG1、IgG2、IgG3、IgG4、IgA1およびIgA2)またはサブクラスであり得る。免疫グロブリンは、任意の種(例えば、ヒト、マウスまたはウサギ)由来であり得る。尚、「抗体」、「免疫グロブリン」および「イムノグロブリン」なる用語は互換性をもって広義な意味で使われる。   The term “antibody” is used in the broadest sense and is monoclonal, polyclonal, dimeric, multimeric, multispecific (eg, bispecific) as long as it exhibits the desired biological activity. Alternatively, antibody derivatives and modified antibodies may be used (Miller K et al. J Immunol. 2003, 170 (9), 4854-61). Antibodies may be mouse, human, humanized, chimeric, or derived from other species or artificially synthesized. The antibodies disclosed herein can be any type of immunoglobulin molecule (eg, IgG, IgE, IgM, IgD and IgA), class (eg, IgG1, IgG2, IgG3, IgG4, IgA1 and IgA2) or subclass. It can be. The immunoglobulin can be from any species (eg, human, mouse or rabbit). The terms “antibody”, “immunoglobulin” and “immunoglobulin” are used interchangeably in a broad sense.

「抗体誘導体」とは抗体の一部、好ましくは抗体の可変ドメイン、または少なくとも抗体の抗原結合領域を含む。抗体誘導体には、例えばFab、Fab'、F(ab')2、Fv断片、線状抗体、一本鎖抗体(scFv)、sc(Fv)2、Fab3、ドメイン抗体 (dAb)(国際公開第2004/058821号、国際公開第2003/002609号)、ダイアボディ、トリアボディ、テトラボディ、ミニボディおよび抗体誘導体から形成される多重特異性抗体が含まれるが、それらに限定されるわけではない。ここで、「Fab」は一本の軽鎖、ならびに一本の重鎖のCH1領域および可変領域から構成される。また、「Fv」は最小の抗体誘導体であり、完全な抗原認識領域と抗原結合領域を含む。また抗体誘導体は例えばIgG抗体のFcとの融合体であってもよい。例えば、米国特許第5641870号明細書、実施例2;Zapata G et al. Protein Eng.1995, 8(10), 1057-1062 ; Olafsen T et al. Protein Eng. Design & Sel. 2004, 17(4):315-323 ; Holliger P et al. Nat. Biotechnol. 2005, 23(9);1126-36;Fischer N et al. Pathobiology. 2007, 74(1):3-14 ; Shen J et al. J Immunol Methods. 2007, 318, 65-74 ; Wu et al. Nat Biotechnol. 2007, 25(11), 1290-7を参照できる。   “Antibody derivatives” comprise a portion of an antibody, preferably the variable domain of an antibody, or at least the antigen binding region of an antibody. Antibody derivatives include, for example, Fab, Fab ′, F (ab ′) 2, Fv fragment, linear antibody, single chain antibody (scFv), sc (Fv) 2, Fab3, domain antibody (dAb) (International Publication No. 2004/058821, International Publication No. WO 2003/002609), including but not limited to multispecific antibodies formed from diabodies, triabodies, tetrabodies, minibodies and antibody derivatives. Here, “Fab” is composed of one light chain and the CH1 region and variable region of one heavy chain. “Fv” is the smallest antibody derivative and includes a complete antigen recognition region and an antigen binding region. The antibody derivative may be, for example, a fusion of IgG antibody with Fc. For example, US Pat. No. 5,461,870, Example 2; Zapata G et al. Protein Eng. 1995, 8 (10), 1057-1062; Olafsen T et al. Protein Eng. Design & Sel. 2004, 17 (4 ): 315-323; Holliger P et al. Nat. Biotechnol. 2005, 23 (9); 1126-36; Fischer N et al. Pathobiology. 2007, 74 (1): 3-14; Shen J et al. J Immunol Methods. 2007, 318, 65-74; Wu et al. Nat Biotechnol. 2007, 25 (11), 1290-7.

ダイアボディは、遺伝子融合により構築された二価(bivalent)の低分子化抗体を指す(Holliger P et al., Proc.Natl.Acad.Sci.USA 1993;90:6444-6448、EP404,097号、WO93/11161号等)。ダイアボディは、2本のポリペプチド鎖から構成されるダイマーであり、ポリペプチド鎖は各々、同じ鎖中でL鎖可変領域(VL)およびH鎖可変領域(VH)が、互いに結合できない位に短い、例えば、2〜12残基が好ましく、さらに3〜10残基が好ましく、特には5残基程度のリンカーにより結合されている。同一ポリペプチド鎖上にコードされるVLとVHとは、その間のリンカーが短いため単鎖可変領域フラグメントを形成することが出来ず二量体を形成するため、ダイアボディは2つの抗原結合部位を有することとなる。   Diabodies refer to bivalent, low molecular weight antibodies constructed by gene fusion (Holliger P et al., Proc. Natl. Acad. Sci. USA 1993; 90: 6444-6448, EP 404,097 , WO93 / 11161 etc.). A diabody is a dimer composed of two polypeptide chains, each of which is in a position where the L chain variable region (VL) and H chain variable region (VH) cannot bind to each other in the same chain. Short, for example, 2 to 12 residues are preferable, 3 to 10 residues are more preferable, and the residues are particularly connected by a linker of about 5 residues. Since VL and VH encoded on the same polypeptide chain cannot form a single-chain variable region fragment because the linker between them is short, a diabody forms two antigen-binding sites. Will have.

一本鎖抗体またはscFv抗体断片には、抗体のVHおよびVL領域が含まれ、これらの領域は単一のポリペプチド鎖中に存在する。一般に、FvポリペプチドはさらにVHおよびVL領域の間にポリペプチドリンカーを含んでおり、これによりscFvは、抗原結合のために必要な構造を形成することができる(scFvの総説については、Pluckthun『The Pharmacology of Monoclonal Antibodies』Vol.113(Rosenburg and Moore ed (Springer Verlag, New York) pp.269-315, 1994)を参照)。本発明におけるリンカーは、その両端に連結された抗体可変領域の発現を阻害するものでなければ特に限定されない。   Single chain antibodies or scFv antibody fragments include the VH and VL regions of an antibody, and these regions are present in a single polypeptide chain. In general, Fv polypeptides further contain a polypeptide linker between the VH and VL regions, which allows the scFv to form the necessary structure for antigen binding (for a review of scFv, see Pluckthun The The Pharmacology of Monoclonal Antibodies, Vol. 113 (see Rosenburg and Mooreed (Springer Verlag, New York) pp. 269-315, 1994)). The linker in the present invention is not particularly limited as long as it does not inhibit the expression of the antibody variable region linked to both ends thereof.

また、Fab'を化学的に架橋することによっても二重特異性抗体を作製し得る。例えば一方の抗体から調製したFab'をo-PDM(ortho-phenylenedi-maleimide)にてマレイミド化し、これともう一方の抗体から調製したFab'を反応させることにより、異なる抗体由来Fab'同士を架橋させ二重特異性 F(ab')2を作製することが出来る(Keler T et al. Cancer Research 1997;57:4008-4014)。またFab'-チオニトロ安息香酸(TNB)誘導体とFab'-チオール(SH)等の抗体断片を化学的に結合する方法も知られている(Brennan M et al. Science 1985;229:81-83)。   Bispecific antibodies can also be produced by chemically cross-linking Fab ′. For example, Fab ′ prepared from one antibody is maleimidized with o-PDM (ortho-phenylenedi-maleimide) and reacted with Fab ′ prepared from the other antibody to crosslink Fab ′s derived from different antibodies. Bispecific F (ab ′) 2 can be generated (Keler T et al. Cancer Research 1997; 57: 4008-4014). Also known is a method of chemically binding Fab'-thionitrobenzoic acid (TNB) derivatives and antibody fragments such as Fab'-thiol (SH) (Brennan M et al. Science 1985; 229: 81-83). .

化学架橋の代わりにFos, Junなどに由来するロイシンジッパーを用いることも出来る。Fos, Junはホモダイマーも形成するが、ヘテロダイマーを優先的に形成することを利用する。Fosロイシンジッパーを付加したFab'とJunのそれを付加したもう一方のFab'を発現調製する。温和な条件で還元した単量体Fab'-Fos, Fab'-Junを混合し反応させることによって二重特異性 F(ab')2が形成できる(Kostelny SA et al. J of Immunology, 1992;148:1547-53)。この方法はFab'には限定されず、scFv, Fvなどにおいても応用可能である。   A leucine zipper derived from Fos, Jun or the like can be used instead of chemical crosslinking. Fos, Jun also forms homodimers, but utilizes the preferential formation of heterodimers. Expression and preparation of Fab ′ added with Fos leucine zipper and the other Fab ′ added with Jun. Bispecific F (ab ') 2 can be formed by mixing and reacting with the reduced monomers Fab'-Fos and Fab'-Jun under mild conditions (Kostelny SA et al. J of Immunology, 1992; 148: 1547-53). This method is not limited to Fab ′, and can also be applied to scFv, Fv, and the like.

また、IgG-scFv(Protein Eng Des Sel. 2010;23(4):221-8)やBiTEなどのsc(Fv)2(Drug Discov Today 2005;15;10(18):1237-44)、DVD-Ig(Nat Biotechnol 2007;25(11):1290-7. Epub 2007 Oct 14、MAbs 2009;1(4):339-47. Epub 2009 Jul 10)などの他(IDrugs 2010;13:698-700)、two-in-one抗体(Science 2009;20;323(5921):1610-4、Immunotherapy 2009;1(5):749-51)、Tri-FabやタンデムscFv、ダイアボディなどの二重特異性抗体も知られている(MAbs 2009;1(6):539-547.)。更にscFv-Fc、scaffold-Fcなどの分子形を用いても、ヘテロな組合せのFcを優先的に分泌させることで(Ridgway JB et al. Protein Engineering 1996;9:617-621、Merchant AM et al. Nature Biotechnology 1998;16:677-681、WO2006/106905、Davis JH et al. Protein Eng Des Sel 2010;4:195-202)、二重特異性抗体を効率的に作製し得る。   In addition, IgG-scFv (Protein Eng Des Sel. 2010; 23 (4): 221-8), sc (Fv) 2 such as BiTE (Drug Discov Today 2005; 15; 10 (18): 1237-44), DVD -Ig (Nat Biotechnol 2007; 25 (11): 1290-7. Epub 2007 Oct 14, MAbs 2009; 1 (4): 339-47. Epub 2009 Jul 10) and others (IDrugs 2010; 13: 698-700 ), Two-in-one antibody (Science 2009; 20; 323 (5921): 1610-4, Immunotherapy 2009; 1 (5): 749-51), bispecific such as Tri-Fab, tandem scFv, and diabody Sexual antibodies are also known (MAbs 2009; 1 (6): 539-547.). Furthermore, even when molecular forms such as scFv-Fc and scaffold-Fc are used, by secreting a heterogeneous combination of Fc preferentially (Ridgway JB et al. Protein Engineering 1996; 9: 617-621, Merchant AM et al Nature Biotechnology 1998; 16: 677-681, WO2006 / 106905, Davis JH et al. Protein Eng Des Sel 2010; 4: 195-202), bispecific antibodies can be made efficiently.

ダイアボディにおいても二重特異性抗体を作製し得る。二重特異性ダイアボディは二つのcross-over scFv断片のヘテロダイマーである。つまり二種の抗体A,B由来のVHとVLを5残基前後の比較的短いリンカーで結ぶことによって作製されたVH (A)-VL (B), VH (B)-VL (A)を用いてヘテロダイマーを構成することによって出来る(Holliger P et al. Proc of the National Academy of Sciences of the USA 1993;90:6444-6448)。   Bispecific antibodies can also be made in diabodies. A bispecific diabody is a heterodimer of two cross-over scFv fragments. In other words, VH (A) -VL (B), VH (B) -VL (A) prepared by linking VH and VL from two antibodies A and B with a relatively short linker of about 5 residues Can be used to construct heterodimers (Holliger P et al. Proc of the National Academy of Sciences of the USA 1993; 90: 6444-6448).

この際、二種のscFvを15残基程度の柔軟な比較的長いリンカーで結ぶ(一本鎖ダイアボディ:Kipriyanov SM et al. J of Molecular Biology 1999;293:41-56)、適当なアミノ酸置換(knobs-into-holes: Zhu Z et al. Protein Science 1997;6:781-788、VH/VL interface engineering: Igawa T et al. Protein Eng Des Sel 2010;8:667-77)を行うことによって目的の構成を促進させることも出来る。   At this time, two kinds of scFvs are connected by a flexible, relatively long linker of about 15 residues (single-stranded diabody: Kipriyanov SM et al. J of Molecular Biology 1999; 293: 41-56), and appropriate amino acid substitution (knobs-into-holes: Zhu Z et al. Protein Science 1997; 6: 781-788, VH / VL interface engineering: Igawa T et al. Protein Eng Des Sel 2010; 8: 667-77) The composition of can be promoted.

二種のscFvを15残基程度の柔軟な比較的長いリンカーで結ぶことによって作製できるsc(Fv)2も二重特異性抗体となり得る(Mallender WD et al. J of Biological Chemistry 1994;269:199-206)。   Sc (Fv) 2, which can be produced by linking two kinds of scFvs with a flexible relatively long linker of about 15 residues, can also be a bispecific antibody (Mallender WD et al. J of Biological Chemistry 1994; 269: 199 -206).

抗体修飾物としては、例えば、ポリエチレングリコール(PEG)等の各種分子と結合した抗体を挙げることができる。本発明の抗体には、これらの抗体修飾物も包含される。本発明の抗体修飾物においては、結合される物質は限定されない。このような抗体修飾物を得るには、得られた抗体に化学的な修飾を施すことによって得ることができる。これらの方法はこの分野において既に確立されている。   Examples of the modified antibody include antibodies bound to various molecules such as polyethylene glycol (PEG). The antibody of the present invention includes these modified antibodies. In the modified antibody of the present invention, the substance to be bound is not limited. In order to obtain such a modified antibody, it can be obtained by chemically modifying the obtained antibody. These methods are already established in this field.

「二重特異性」抗体は、異なるエピトープを認識する可変領域を同一の抗体分子内に有する抗体をいう。二重特異性抗体は2つ以上の異なる抗原を認識する抗体であってもよいし、同一抗原上の異なる2つ以上のエピトープを認識する抗体であってもよい。二重特異性抗体には、wholeの抗体だけでなく抗体誘導体が含まれていてもよい。本発明の抗体には、二重特異性抗体も含まれる。なお、本明細書において、抗FIXa/FX二重特異性抗体は、FIXaおよびFXに結合する二重特異性抗体と同義で用いられる。   A “bispecific” antibody refers to an antibody having variable regions that recognize different epitopes within the same antibody molecule. The bispecific antibody may be an antibody that recognizes two or more different antigens, or an antibody that recognizes two or more different epitopes on the same antigen. Bispecific antibodies may include whole antibodies as well as antibody derivatives. The antibodies of the present invention also include bispecific antibodies. In the present specification, the anti-FIXa / FX bispecific antibody is used synonymously with a bispecific antibody that binds to FIXa and FX.

遺伝子組換え抗体の作製方法
抗体としては、遺伝子組換え技術を用いて産生した組換え型抗体を用いることができる。組換え型抗体は、それをコードするDNAをハイブリドーマ、または抗体を産生する感作リンパ球等の抗体産生細胞からクローニングし、ベクターに組み込んで、これを宿主(宿主細胞)に導入し産生させることにより得ることができる。
Method for producing gene recombinant antibody As an antibody, a recombinant antibody produced using gene recombination technology can be used. Recombinant antibodies are produced by cloning DNA encoding them from hybridomas or antibody-producing cells such as sensitized lymphocytes that produce antibodies, incorporating them into vectors, and introducing them into hosts (host cells). Can be obtained.

抗体は、ヒト抗体、マウス抗体、ラット抗体など、その由来は限定されない。またキメラ抗体やヒト化抗体などの遺伝子改変抗体でもよい。   The origin of the antibody is not limited, such as a human antibody, a mouse antibody, or a rat antibody. Further, it may be a genetically modified antibody such as a chimeric antibody or a humanized antibody.

ヒト抗体の取得方法は既に知られており、例えば、ヒト抗体遺伝子の全てのレパートリーを有するトランスジェニック動物を目的の抗原で免疫することで目的のヒト抗体を取得することができる(国際特許出願公開番号WO 93/12227, WO 92/03918,WO 94/02602, WO 94/25585,WO 96/34096, WO 96/33735参照)。   Methods for obtaining human antibodies are already known. For example, a target human antibody can be obtained by immunizing a transgenic animal having all repertoires of human antibody genes with a target antigen (International Patent Application Publication) No. WO 93/12227, WO 92/03918, WO 94/02602, WO 94/25585, WO 96/34096, WO 96/33735).

遺伝子改変抗体は、既知の方法を用いて製造することができる。具体的には、たとえばキメラ抗体は、免疫動物の抗体のH鎖、およびL鎖の可変領域と、ヒト抗体のH鎖およびL鎖の定常領域からなる抗体である。免疫動物由来の抗体の可変領域をコードするDNAを、ヒト抗体の定常領域をコードするDNAと連結し、これを発現ベクターに組み込んで宿主に導入し産生させることによって、キメラ抗体を得ることができる。   Genetically modified antibodies can be produced using known methods. Specifically, for example, a chimeric antibody is an antibody comprising the H chain and L chain variable regions of an immunized animal antibody, and the H chain and L chain constant regions of a human antibody. A chimeric antibody can be obtained by ligating a DNA encoding the variable region of an antibody derived from an immunized animal with a DNA encoding the constant region of a human antibody, incorporating it into an expression vector, introducing it into a host, and producing it. .

ヒト化抗体は、再構成(reshaped)ヒト抗体とも称される改変抗体である。ヒト化抗体は、免疫動物由来の抗体のCDRを、ヒト抗体の相補性決定領域へ移植することによって構築される。その一般的な遺伝子組換え手法も知られている(欧州特許出願公開番号EP 239400、国際特許出願公開番号WO 96/02576、Sato K et al, Cancer Research 1993, 53: 851-856、国際特許出願公開番号WO 99/51743参照)。   A humanized antibody is a modified antibody also referred to as a reshaped human antibody. Humanized antibodies are constructed by grafting the CDRs of antibodies from immunized animals to the complementarity determining regions of human antibodies. Its general genetic recombination techniques are also known (European Patent Application Publication No. EP 239400, International Patent Application Publication No. WO 96/02576, Sato K et al, Cancer Research 1993, 53: 851-856, International Patent Application Publication number WO 99/51743).

二重特異性抗体(bispecific抗体)は、二種の異なる抗原に対して特異性を有する抗体である。   Bispecific antibodies are antibodies that have specificity for two different antigens.

二重特異性抗体はIgGタイプのものに限られないが、例えばIgGタイプ二重特異性抗体はIgG抗体を産生するハイブリドーマ二種を融合することによって生じるhybrid hybridoma(quadroma)によって分泌させることが出来る(Milstein C et al. Nature 1983, 305: 537-540)。また目的の二種のIgGを構成するL鎖およびH鎖の遺伝子、合計4種の遺伝子を細胞に導入することによって共発現させることによって分泌させることが出来る。   Bispecific antibodies are not limited to those of IgG type, but for example, IgG type bispecific antibodies can be secreted by hybrid hybridoma (quadroma) generated by fusing two hybridomas producing IgG antibodies (Milstein C et al. Nature 1983, 305: 537-540). Moreover, it can be secreted by co-expressing the L chain and H chain genes constituting the two types of IgG of interest, a total of four genes, by introducing them into cells.

この際H鎖のCH3領域に適当なアミノ酸置換を施すことによってH鎖についてヘテロな組合せのIgGを優先的に分泌させることも出来る(Ridgway JB et al. Protein Engineering 1996, 9: 617-621、Merchant AM et al. Nature Biotechnology 1998, 16: 677-681、WO2006/106905、Davis JH et al. Protein Eng Des Sel. 2010, 4: 195-202.)。   In this case, it is also possible to preferentially secrete IgG with a heterogeneous combination with respect to the H chain by making an appropriate amino acid substitution in the CH3 region of the H chain (Ridgway JB et al. Protein Engineering 1996, 9: 617-621, Merchant AM et al. Nature Biotechnology 1998, 16: 677-681, WO2006 / 106905, Davis JH et al. Protein Eng Des Sel. 2010, 4: 195-202.).

また、L鎖に関しては、H鎖可変領域に比べてL鎖可変領域の多様性が低いことから、両H鎖に結合能を与え得る共通のL鎖が得られることが期待され、本発明の抗体は、共通のL鎖を有する抗体であってもよい。この共通L鎖と両H鎖遺伝子を細胞に導入することによってIgGを発現させることで効率の良い二重特異性IgGの発現が可能となる。   As for the L chain, since the diversity of the L chain variable region is lower than that of the H chain variable region, it is expected that a common L chain capable of giving binding ability to both H chains can be obtained. The antibody may be an antibody having a common L chain. By introducing the common L chain and both H chain genes into the cells, the expression of IgG enables efficient expression of the bispecific IgG.

抗体の製造方法
本発明の抗体は当業者に公知の方法により製造することができる。具体的には、目的とする抗体をコードするDNAを発現ベクターへ組み込む。その際、発現制御領域、例えば、エンハンサー、プロモーターの制御のもとで発現するよう発現ベクターに組み込む。次に、この発現ベクターにより宿主細胞を形質転換し、抗体を発現させる。その際には、適当な宿主と発現ベクターの組み合わせを使用することができる。
Antibody Production Method The antibody of the present invention can be produced by methods known to those skilled in the art. Specifically, DNA encoding the target antibody is incorporated into an expression vector. In that case, it integrates into an expression vector so that it may express under the control of an expression control region, for example, an enhancer and a promoter. Next, host cells are transformed with this expression vector to express the antibody. In that case, a combination of an appropriate host and an expression vector can be used.

ベクターの例としては、M13系ベクター、pUC系ベクター、pBR322、pBluescript、pCR-Scriptなどが挙げられる。また、cDNAのサブクローニング、切り出しを目的とした場合、上記ベクターの他に、例えば、pGEM-T、pDIRECT、pT7などを用いることができる。   Examples of vectors include M13 vectors, pUC vectors, pBR322, pBluescript, pCR-Script, and the like. For the purpose of subcloning and excision of cDNA, for example, pGEM-T, pDIRECT, pT7 and the like can be used in addition to the above vector.

抗体を生産する目的においてベクターを使用する場合には、特に、発現ベクターが有用である。発現ベクターとしては、例えば、宿主をJM109、DH5α、HB101、XL1-Blueなどの大腸菌とした場合においては、大腸菌で効率よく発現できるようなプロモーター、例えば、lacZプロモーター(Wardら, Nature (1989) 341, 544-546;FASEB J. (1992) 6, 2422-2427)、araBプロモーター(Betterら, Science (1988) 240, 1041-1043)、またはT7プロモーターなどを持っていることが不可欠である。このようなベクターとしては、上記ベクターの他にpGEX-5X-1(Pharmacia社製)、「QIAexpress system」(QIAGEN社製)、pEGFP、またはpET(この場合、宿主はT7 RNAポリメラーゼを発現しているBL21が好ましい)などが挙げられる。   An expression vector is particularly useful when a vector is used for the purpose of producing an antibody. As an expression vector, for example, when the host is E. coli such as JM109, DH5α, HB101, XL1-Blue, a promoter that can be efficiently expressed in E. coli, such as the lacZ promoter (Ward et al., Nature (1989) 341). , 544-546; FASEB J. (1992) 6, 2422-2427), araB promoter (Better et al., Science (1988) 240, 1041-1043), or T7 promoter is essential. Examples of such vectors include pGEX-5X-1 (manufactured by Pharmacia), “QIAexpress system” (manufactured by QIAGEN), pEGFP, or pET (in this case, the host expresses T7 RNA polymerase). BL21 is preferred).

また、ベクターには、ポリペプチド分泌のためのシグナル配列が含まれていてもよい。ポリペプチド分泌のためのシグナル配列としては、大腸菌のペリプラズムに産生させる場合、例えばpelBシグナル配列(Lei, S. P. et al J. Bacteriol. (1987) 169, 4397)を使用すればよい。宿主細胞へのベクターの導入は、例えば塩化カルシウム法、エレクトロポレーション法を用いて行うことができる。   The vector may contain a signal sequence for polypeptide secretion. As a signal sequence for polypeptide secretion, for example, a pelB signal sequence (Lei, S. P. et al J. Bacteriol. (1987) 169, 4397) may be used when it is produced in the periplasm of E. coli. Introduction of a vector into a host cell can be performed using, for example, a calcium chloride method or an electroporation method.

大腸菌発現ベクターの他、本発明の抗体を製造するためのベクターとしては、例えば、哺乳動物由来の発現ベクター(例えば、pcDNA3(Invitrogen社製)や、pEGF-BOS (Nucleic Acids. Res.1990, 18(17),p5322)、pEF、pCDM8)、昆虫細胞由来の発現ベクター(例えば「Bac-to-BAC baculovairus expression system」(GIBCO BRL社製)、pBacPAK8)、植物由来の発現ベクター(例えばpMH1、pMH2)、動物ウィルス由来の発現ベクター(例えば、pHSV、pMV、pAdexLcw)、レトロウィルス由来の発現ベクター(例えば、pZIPneo)、酵母由来の発現ベクター(例えば、「Pichia Expression Kit」(Invitrogen社製)、pNV11、SP-Q01)、枯草菌由来の発現ベクター(例えば、pPL608、pKTH50)が挙げられる。   In addition to E. coli expression vectors, vectors for producing the antibody of the present invention include, for example, mammalian-derived expression vectors (for example, pcDNA3 (manufactured by Invitrogen), pEGF-BOS (Nucleic Acids. Res. 1990, 18). (17), p5322), pEF, pCDM8), insect cell-derived expression vectors (eg “Bac-to-BAC baculovairus expression system” (GIBCO BRL), pBacPAK8), plant-derived expression vectors (eg pMH1, pMH2 ), Animal virus-derived expression vectors (for example, pHSV, pMV, pAdexLcw), retrovirus-derived expression vectors (for example, pZIPneo), yeast-derived expression vectors (for example, “Pichia Expression Kit” (manufactured by Invitrogen), pNV11 , SP-Q01), and an expression vector derived from Bacillus subtilis (for example, pPL608, pKTH50).

CHO細胞、COS細胞、NIH3T3細胞等の動物細胞での発現を目的とした場合には、細胞内で発現させるために必要なプロモーター、例えばSV40プロモーター(Mulliganら, Nature (1979) 277, 108)、MMTV-LTRプロモーター、EF1αプロモーター(Mizushimaら, Nucleic Acids Res. (1990) 18, 5322)、CAGプロモーター(Gene. (1991) 108, 193)、CMVプロモーターなどを持っていることが不可欠であり、形質転換細胞を選抜するための遺伝子を有すればさらに好ましい。形質転換細胞を選抜するための遺伝子としては、例えば、薬剤(ネオマイシン、G418など)により判別できるような薬剤耐性遺伝子がある。このような特性を有するベクターとしては、例えば、pMAM、pDR2、pBK-RSV、pBK-CMV、pOPRSV、pOP13などが挙げられる。   When intended for expression in animal cells such as CHO cells, COS cells, NIH3T3 cells, etc., a promoter necessary for expression in the cells, such as the SV40 promoter (Mulligan et al., Nature (1979) 277, 108), It is essential to have MMTV-LTR promoter, EF1α promoter (Mizushima et al., Nucleic Acids Res. (1990) 18, 5322), CAG promoter (Gene. (1991) 108, 193), CMV promoter, etc. More preferably, it has a gene for selecting transformed cells. Examples of genes for selecting transformed cells include drug resistance genes that can be distinguished by drugs (neomycin, G418, etc.). Examples of such a vector include pMAM, pDR2, pBK-RSV, pBK-CMV, pOPRSV, and pOP13.

さらに、遺伝子を安定的に発現させ、かつ、細胞内での遺伝子のコピー数の増幅を目的とする場合には、核酸合成経路を欠損したCHO細胞にそれを相補するDHFR遺伝子を有するベクター(例えば、pCHOIなど)を導入し、メトトレキセート(MTX)により増幅させる方法が挙げられ、また、遺伝子の一過性の発現を目的とする場合には、SV40 T抗原を発現する遺伝子を染色体上に持つCOS細胞を用いてSV40の複製起点を持つベクター(pcDなど)で形質転換する方法が挙げられる。複製開始点としては、また、ポリオーマウィルス、アデノウィルス、ウシパピローマウィルス(BPV)等の由来のものを用いることもできる。さらに、宿主細胞系で遺伝子コピー数増幅のため、発現ベクターは選択マーカーとして、アミノグリコシドトランスフェラーゼ(APH)遺伝子、チミジンキナーゼ(TK)遺伝子、大腸菌キサンチングアニンホスホリボシルトランスフェラーゼ(Ecogpt)遺伝子、ジヒドロ葉酸還元酵素(dhfr)遺伝子等を含むことができる。   Furthermore, when the gene is stably expressed and the purpose is to amplify the copy number of the gene in the cell, a vector having a DHFR gene complementary to the CHO cell lacking the nucleic acid synthesis pathway (for example, , PCHOI, etc.) and amplifying with methotrexate (MTX), and for the purpose of transient expression of the gene, COS having a gene expressing SV40 T antigen on the chromosome An example is a method of transforming with a vector (such as pcD) having an SV40 replication origin using cells. As the replication origin, those derived from polyoma virus, adenovirus, bovine papilloma virus (BPV) and the like can also be used. Furthermore, for gene copy number amplification in host cell systems, the expression vectors are selectable markers: aminoglycoside transferase (APH) gene, thymidine kinase (TK) gene, E. coli xanthine guanine phosphoribosyltransferase (Ecogpt) gene, dihydrofolate reductase ( dhfr) gene and the like.

これにより得られた本発明の抗体は、宿主細胞内または細胞外(培地など)から単離し、実質的に純粋で均一な抗体として精製することができる。抗体の分離、精製は、通常の抗体の精製で使用されている分離、精製方法を使用すればよく、何ら限定されるものではない。例えば、クロマトグラフィーカラム、フィルター、限外濾過、塩析、溶媒沈殿、溶媒抽出、蒸留、免疫沈降、SDS-ポリアクリルアミドゲル電気泳動、等電点電気泳動法、透析、再結晶等を適宜選択、組み合わせれば抗体を分離、精製することができる。   The antibody of the present invention thus obtained can be isolated from the inside of the host cell or outside the cell (such as a medium) and purified as a substantially pure and homogeneous antibody. Separation and purification of antibodies may be carried out using separation and purification methods used in normal antibody purification, and are not limited in any way. For example, chromatography column, filter, ultrafiltration, salting out, solvent precipitation, solvent extraction, distillation, immunoprecipitation, SDS-polyacrylamide gel electrophoresis, isoelectric focusing, dialysis, recrystallization, etc. are appropriately selected, When combined, antibodies can be separated and purified.

クロマトグラフィーとしては、例えばアフィニティークロマトグラフィー、イオン交換クロマトグラフィー、疎水性クロマトグラフィー、ゲル濾過、逆相クロマトグラフィー、吸着クロマトグラフィー等が挙げられる(Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996)。これらのクロマトグラフィーは、液相クロマトグラフィー、例えばHPLC、FPLC等の液相クロマトグラフィーを用いて行うことができる。アフィニティークロマトグラフィーに用いるカラムとしては、Protein Aカラム、Protein Gカラムが挙げられる。例えば、Protein Aを用いたカラムとして、Hyper D, POROS, Sepharose FF(GE Amersham Biosciences)等が挙げられる。本発明は、これらの精製方法を用い、高度に精製された抗体も包含する。   Examples of chromatography include affinity chromatography, ion exchange chromatography, hydrophobic chromatography, gel filtration, reverse phase chromatography, and adsorption chromatography (Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel). R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996). These chromatography can be performed using liquid phase chromatography, for example, liquid phase chromatography such as HPLC and FPLC. Examples of columns used for affinity chromatography include Protein A columns and Protein G columns. For example, columns using Protein A include Hyper D, POROS, Sepharose FF (GE Amersham Biosciences) and the like. The present invention also encompasses antibodies highly purified using these purification methods.

得られた抗体は、均一にまで精製することができる。抗体の分離、精製は通常の蛋白質で使用されている分離、精製方法を使用すればよい。例えばアフィニティークロマトグラフィー等のクロマトグラフィーカラム、フィルター、限外濾過、塩析、透析、SDSポリアクリルアミドゲル電気泳動、等電点電気泳動等を適宜選択、組合せれば、抗体を分離、精製することができる(Antibodies : A Laboratory Manual. Ed Harlow and David Lane, Cold Spring Harbor Laboratory, 1988)が、これらに限定されるものではない。アフィニティークロマトグラフィーに用いるカラムとしては、Protein Aカラム、Protein Gカラムなどが挙げられる。   The obtained antibody can be purified to homogeneity. Separation and purification of antibodies may be carried out using separation and purification methods used for ordinary proteins. For example, antibodies can be separated and purified by appropriately selecting and combining chromatography columns such as affinity chromatography, filters, ultrafiltration, salting out, dialysis, SDS polyacrylamide gel electrophoresis, isoelectric focusing etc. (Antibodies: A Laboratory Manual. Ed Harlow and David Lane, Cold Spring Harbor Laboratory, 1988), but is not limited thereto. Examples of columns used for affinity chromatography include Protein A columns and Protein G columns.

治療または予防目的で使用される本発明の医薬組成物は、必要に応じて、適当な薬学的に許容される担体、媒体等と混和して調製し、凍結乾燥製剤または溶液製剤とすることができる。適当な薬学的に許容される担体、媒体としては、例えば、滅菌水や生理食塩水、安定剤、賦形剤、酸化防止剤(アスコルビン酸等)、緩衝剤(リン酸、クエン酸、ヒスチジン、他の有機酸等)、防腐剤、界面活性剤(PEG、Tween等)、キレート剤(EDTA等)、結合剤等を挙げることができる。また、その他の低分子量のポリペプチド、血清アルブミン、ゼラチンや免疫グロブリン等の蛋白質、グリシン、グルタミン、アスパラギン、グルタミン酸、アスパラギン酸、メチオニン、アルギニンおよびリシン等のアミノ酸、多糖および単糖等の糖類や炭水化物、マンニトールやソルビトール等の糖アルコールを含んでいてもよい。注射用の水溶液とする場合には、例えば生理食塩水、ブドウ糖やその他の補助薬を含む等張液、例えば、D-ソルビトール、D-マンノース、D-マンニトール、塩化ナトリウムが挙げられ、適当な溶解補助剤、例えばアルコール(エタノール等)、ポリアルコール(プロピレングリコール、PEG等)、非イオン性界面活性剤(ポリソルベート80、ポリソルベート20、ポロキサマー188、HCO-50)等と併用してもよい。また、製剤中にヒアルロニダーゼ(hyaluronidase)を混合することによって、より大きな液量を皮下投与することも可能である(Expert Opin Drug Deliv. 2007 Jul;4(4):427-40.)。また、本発明の医薬組成物は予め注射筒に入れられていてもよい。尚、溶液製剤はWO2011/090088に記載の方法に従って作製することができる。   The pharmaceutical composition of the present invention to be used for therapeutic or prophylactic purposes may be prepared by mixing with an appropriate pharmaceutically acceptable carrier, vehicle, etc., if necessary, to obtain a lyophilized preparation or a solution preparation. it can. Suitable pharmaceutically acceptable carriers and media include, for example, sterilized water, physiological saline, stabilizers, excipients, antioxidants (ascorbic acid, etc.), buffers (phosphoric acid, citric acid, histidine, Other organic acids), preservatives, surfactants (PEG, Tween, etc.), chelating agents (EDTA, etc.), binders and the like can be mentioned. In addition, other low molecular weight polypeptides, proteins such as serum albumin, gelatin and immunoglobulin, glycine, glutamine, asparagine, glutamic acid, aspartic acid, methionine, arginine and lysine and other amino acids, polysaccharides and monosaccharides such as saccharides and carbohydrates In addition, sugar alcohols such as mannitol and sorbitol may be contained. In the case of an aqueous solution for injection, for example, isotonic solutions containing physiological saline, glucose and other adjuvants such as D-sorbitol, D-mannose, D-mannitol, sodium chloride, You may use together with adjuvants, such as alcohol (ethanol etc.), polyalcohol (propylene glycol, PEG, etc.), nonionic surfactants (polysorbate 80, polysorbate 20, poloxamer 188, HCO-50) etc. It is also possible to administer a larger liquid volume subcutaneously by mixing hyaluronidase in the preparation (Expert Opin Drug Deliv. 2007 Jul; 4 (4): 427-40.). Moreover, the pharmaceutical composition of the present invention may be previously placed in a syringe. The solution preparation can be prepared according to the method described in WO2011 / 090088.

本発明の医薬組成物の投与は、任意の適切な経路を介して患者に投与することができる。例えば、ボーラスとしてまたは一定期間にわたる持続注入による静脈内、筋肉内、腹腔内、脳脊髄内、経皮、皮下、関節内、舌下、滑液内、経口、吸入、局所または外用による経路により患者に投与される。静脈内投与または皮下投与が好ましい。   Administration of the pharmaceutical composition of the present invention can be administered to a patient via any suitable route. For example, by intravenous, intramuscular, intraperitoneal, intracerebral spinal, transdermal, subcutaneous, intraarticular, sublingual, intrasynovial, oral, inhalation, topical or topical route as a bolus or by continuous infusion over a period of time To be administered. Intravenous or subcutaneous administration is preferred.

投与量は、例えば前記二重特異性抗体の場合、0.001〜1000mg/kgである。投与間隔は、前記二重特異性抗体の場合、少なくとも1日以上である。   For example, in the case of the bispecific antibody, the dosage is 0.001 to 1000 mg / kg. In the case of the bispecific antibody, the dosing interval is at least 1 day.

FVIII等の血液凝固因子の薬効をモニタリングする方法としては、APTT、CWAおよびTGAなどが広く知られており、当業者であればこれらの方法を適宜改変・修正して使用することができる。これらの方法は単独で用いてもよく、いくつかを併用して用いてもよく、少なくとも一つの方法の結果をもって薬効を判断することができる。   APTT, CWA, TGA and the like are widely known as methods for monitoring the efficacy of blood coagulation factors such as FVIII, and those skilled in the art can use these methods with appropriate modifications and corrections. These methods may be used alone or in combination, and the drug efficacy can be determined based on the result of at least one method.

APTTは、FVIII製剤の薬効のモニタリング法として古くから汎用されている。APTTは、被検血漿にAPTT試薬を添加後、CaCl2を添加し、フィブリノゲンが不溶性フィブリンに変換される時間、すなわち凝固が開始されるまでの時間を測定する方法である。 APTT has been widely used for a long time as a method for monitoring the efficacy of FVIII preparations. APTT after addition of APTT reagent test plasma, the addition of CaCl 2, time fibrinogen is converted to insoluble fibrin, i.e. a method of measuring the time until coagulation is initiated.

CWAは、凝固反応が亢進する中で生じるフィブリン量を光学的(例えば、吸光度)変化量として経時的に測定する試験である。CWAでは、凝固反応のフィブリン生成の開始段階から増幅段階までの一連の凝固反応を経時的に評価できる。更に、CWAの凝固開始試薬については、APTT試薬(Thromb Haemost 2002;87(3):436-41、J Thromb Haemost 2006;4(2):377-84)、低濃度の組織因子(TF)と血液凝固第XII因子(FXII)活性化剤(ellagic acid)の混合溶液と組み合せた試薬(J Thromb Haemost 2014;12(3):355-62)などが報告されている。凝固波形は、光量に関する光学的情報(吸光度)の経時的変化を表す波形である。凝固波形を微分(1次微分)して、凝固速度を算出し、最大凝固速度をパラメータとして利用する。凝固速度を微分(2次微分)して、凝固加速度を算出し、最大凝固加速度をパラメータとして利用する(Haemophilia 2008;14:83-92、J Thromb Haemost 2014;12(3):355-62)。   CWA is a test in which the amount of fibrin produced while the coagulation reaction is enhanced is measured over time as an optical (for example, absorbance) change amount. In CWA, a series of coagulation reactions from the start stage of fibrin generation of the coagulation reaction to the amplification stage can be evaluated over time. Furthermore, as for the coagulation initiation reagent of CWA, APTT reagent (Thromb Haemost 2002; 87 (3): 436-41, J Thromb Haemost 2006; 4 (2): 377-84), low concentration tissue factor (TF) and A reagent combined with a mixed solution of blood coagulation factor XII (FXII) activator (ellagic acid) (J Thromb Haemost 2014; 12 (3): 355-62) has been reported. The coagulation waveform is a waveform that represents a change over time in optical information (absorbance) regarding the amount of light. The coagulation waveform is differentiated (first derivative) to calculate the coagulation rate, and the maximum coagulation rate is used as a parameter. The coagulation rate is differentiated (second derivative) to calculate the coagulation acceleration, and the maximum coagulation acceleration is used as a parameter (Haemophilia 2008; 14: 83-92, J Thromb Haemost 2014; 12 (3): 355-62) .

TGAは、トロンビンに対する蛍光基質を用いて、凝固反応が亢進する中で生成されるトロンビン量を酵素活性として経時的に測定する試験である(Haemophilia 2008;14(suppl. 3):83-92)。   TGA is a test that measures the amount of thrombin generated while the coagulation reaction is enhanced using a fluorescent substrate for thrombin as enzyme activity over time (Haemophilia 2008; 14 (suppl. 3): 83-92) .

本発明により、FVIIIの機能を代替する多重特異性抗原結合分子を含有する、血友病A、後天性血友病Aおよびフォンビルブランド病以外のFXI異常症の予防および/または治療に用いられる医薬組成物が提供された。FXI異常症は、FXIの先天的欠損または機能不全に起因する稀な出血性疾患であり、例えば血友病Cを挙げることができる。また、FXIの活性低下または欠損は、先天的および/または後天的な原因によるものを例示することができるが、これらに限定されない。FXIの活性低下の程度としては、健常者と比較して、好ましくは40%未満(例えば40%未満、30%未満、20%未満、10%未満)、より好ましくは10%未満(例えば10%未満、9%未満、8%未満、7%未満、6%未満)、更に好ましくは5%未満(例えば5%未満、4%未満、3%未満、2%未満)、特に好ましくは1%未満の患者が挙げられるが、これらに限定されない。FXIの活性の測定方法は当業者に周知である(例えば、「みんなに役立つ血友病の基礎と臨床」、白幡聡、医薬ジャーナル社、2009など)。 The present invention, containing the multispecific antigen-binding molecules to replace the function of FVIII, used in the prevention and / or treatment of hemophilia A, acquired hemophilia A and other than a von Willebrand's disease F XI disorders Pharmaceutical compositions are provided. An FXI abnormality is a rare hemorrhagic disease caused by a congenital defect or dysfunction of FXI, and examples thereof include hemophilia C. In addition, the decrease or deficiency of FXI activity can be exemplified by congenital and / or acquired causes, but is not limited thereto. The degree of FXI activity decrease is preferably less than 40% (eg, less than 40%, less than 30%, less than 20%, less than 10%), more preferably less than 10% (eg, 10%) compared to healthy subjects. Less than 9%, less than 8%, less than 7%, less than 6%), more preferably less than 5% (eg less than 5%, less than 4%, less than 3%, less than 2%), particularly preferably less than 1% Include, but are not limited to: Methods for measuring the activity of FXI are well known to those skilled in the art (for example, “Basics and Clinics of Hemophilia Useful for Everyone”, Hakuho, Pharmaceutical Journal, 2009, etc.).

本明細書において用いる場合、「・・・を含む(comprising)」との表現により表される態様は、「本質的に・・・からなる(essentially consisting of)」との表現により表される態様、ならびに「・・・からなる(consisting of)」との表現により表される態様を包含する。
本明細書において明示的に引用される全ての特許および参考文献の内容は全て本明細書に参照として取り込まれる。
本発明は、以下の実施例によってさらに例示されるが、下記の実施例に限定されるものではない。
As used herein, an aspect represented by the expression “comprising” is an aspect represented by an expression “essentially consisting of”. And embodiments represented by the expression “consisting of”.
The contents of all patents and references explicitly cited herein are hereby incorporated by reference.
The present invention is further illustrated by the following examples, but is not limited to the following examples.

以下、実施例により本発明をより詳細に説明するが、本発明は、これら実施例に制限されるものではない。
[実施例1]
本発明では、血友病A、後天性血友病Aおよびフォンビルブランド病以外のFXI異常症の患者由来の市販血漿を用いて、FVIII代替活性の機能を有する多重特異性抗原結合分子による血漿凝固促進作用の検証を試みた。実施例として、市販のFXI欠乏血漿、あるいはFXI中和血漿を用いて、APTT、CWAおよびTGAの各血漿凝固評価法にて、FVIII代替活性の機能を有する抗体の一つである特許文献(WO 2012/067176)に記載の二重特異性抗体であるACE910による血漿凝固促進作用を調べた。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not restrict | limited to these Examples.
[Example 1]
In the present invention, using plasma obtained from a patient with FXI abnormality other than hemophilia A, acquired hemophilia A and von Willebrand disease, plasma with a multispecific antigen-binding molecule having a function of FVIII alternative activity Attempts were made to verify the procoagulant action. As an example, a patent document (WO) that is one of the antibodies having a function of FVIII substitute activity in each of the APTT, CWA and TGA plasma coagulation evaluation methods using commercially available FXI-deficient plasma or FXI-neutralized plasma The plasma coagulation promoting action of ACE910, a bispecific antibody described in 2012/067176) was examined.

[実施例2]
FVIII機能代替活性を有する抗FIXa/FX二重特異性抗体の調製
FVIII機能代替活性を有する抗FIXa/FX二重特異性抗体の一つであるACE910を、WO2005/035756、WO2006/109592、WO2012/067176に記載された方法で取得した。抗体遺伝子を、動物細胞発現ベクターに組み込み、それをCHO細胞へトランスフェクションすることで、二重特異性抗体を発現した。次いで、細胞の培養上清に含まれる二重特異性抗体を精製した。
このように精製された二重特異性抗体のFVIII機能代替活性の測定は、以下に示す酵素アッセイにて行った。室温下、1 nMのhuman FIXa(Enzyme Research Laboratories)、140nMのhuman FX(Enzyme Research Laboratories)、20 μMのリン脂質(10% phosphatidylserine、60% phosphatidylcholine、30% phosphatidylethanolamine)、及び二重特異性抗体を、5 mM CaCl2と0.1%牛血清アルブミンを含むトリス緩衝生理食塩水溶液で混合後2分間インキュベーションし、FIXaによるFX活性化反応を進めた。本反応は、EDTAの添加により停止させた。次いで、FXa特異的な発色基質溶液S-2222(CHROMOGENIX)を添加し、405nmの吸光度変化をSpectraMax 340PC384 (Molecular Devices)を用いて測定した。既知濃度のヒトFXa(Enzyme Research Laboratories)による吸光度変化から検量線を作成し、二重特異性抗体によるFXa産生促進活性を評価した。
[Example 2]
Preparation of anti-FIXa / FX bispecific antibody with FVIII function alternative activity
ACE910, which is one of the anti-FIXa / FX bispecific antibodies having FVIII function alternative activity, was obtained by the method described in WO2005 / 035756, WO2006 / 109592, and WO2012 / 067176. The bispecific antibody was expressed by incorporating the antibody gene into an animal cell expression vector and transfecting it into CHO cells. Subsequently, the bispecific antibody contained in the cell culture supernatant was purified.
Measurement of the FVIII function-substituting activity of the bispecific antibody thus purified was performed by the enzyme assay shown below. At room temperature, 1 nM human FIXa (Enzyme Research Laboratories), 140 nM human FX (Enzyme Research Laboratories), 20 μM phospholipids (10% phosphatidylserine, 60% phosphatidylcholine, 30% phosphatidylethanolamine), and bispecific antibodies After mixing with Tris-buffered saline solution containing 5 mM CaCl 2 and 0.1% bovine serum albumin, the mixture was incubated for 2 minutes to promote the FX activation reaction with FIXa. The reaction was stopped by adding EDTA. Next, FXa-specific chromogenic substrate solution S-2222 (CHROMOGENIX) was added, and the absorbance change at 405 nm was measured using SpectraMax 340PC384 (Molecular Devices). A calibration curve was prepared from changes in absorbance with known concentrations of human FXa (Enzyme Research Laboratories), and the FXa production promoting activity by the bispecific antibody was evaluated.

[実施例3]
APTT測定およびCWA測定
APTT試薬としてThrombocheck APTT-SLA(Sysmex)を用いた。二重特異性抗体ACE910を含むFXI欠乏ヒト血漿(市販品、George King Bio-Medical)50μLまたは抗FXI中和抗体(XI-5108, J Thromb Haemost2006;4:1496-1501)を添加したヒト血漿(市販品、George King Bio-Medical)50μLに、APTT試薬50 μLを添加した。3分間インキュベーション後、0.02 mol/L塩化カルシウム溶液50 μLを添加して凝固反応を開始し、血液凝固自動測定装置(CS-2000i、Sysmex)で常法に従いAPTTを測定した。凝固反応が亢進する中で生じるフィブリン量を吸光度変化量として経時的に測定し、CWAにより最大凝固速度および最大凝固加速度を算出した。FXI欠乏ヒト血漿としては、全10ロットを評価した。
[Example 3]
APTT measurement and CWA measurement
Thrombocheck APTT-SLA (Sysmex) was used as the APTT reagent. Human plasma supplemented with 50 μL FXI-deficient human plasma (George King Bio-Medical) containing the bispecific antibody ACE910 or anti-FXI neutralizing antibody (XI-5108, J Thromb Haemost2006; 4: 1496-1501) 50 μL of APTT reagent was added to 50 μL of a commercial product (George King Bio-Medical). After incubation for 3 minutes, 50 μL of a 0.02 mol / L calcium chloride solution was added to start the coagulation reaction, and APTT was measured with a blood coagulation automatic measuring device (CS-2000i, Sysmex) according to a conventional method. The amount of fibrin produced while the coagulation reaction was promoted was measured over time as the amount of change in absorbance, and the maximum coagulation rate and the maximum coagulation acceleration were calculated by CWA. A total of 10 lots of FXI-deficient human plasma were evaluated.

[実施例4]
混合試薬惹起による凝固時間測定およびCWA測定
凝固反応を惹起する試薬として混合試薬(組織因子イノビン0.1 pM [Sysmex]、合成リン脂質10 μM [Sysmex]およびエラグ酸0.3 μM [Sysmex]を含む:濃度は測定時濃度)を用いた。二重特異性抗体ACE910を含むFXI欠乏ヒト血漿(市販品、George King Bio-Medical)50μLまたは抗FXI中和抗体(XI-5108)を添加したヒト血漿(市販品、George King Bio-Medical)50μLに、混合試薬50 μLを添加した。3分間インキュベーション後、0.02 mol/L塩化カルシウム溶液50 μLを添加して凝固反応を開始し、血液凝固自動測定装置(CS-2000i、Sysmex)で凝固時間を測定した。凝固反応が亢進する中で生じるフィブリン量を吸光度変化量として経時的に測定し、CWAにより最大凝固速度および最大凝固加速度を算出した。FXI欠乏ヒト血漿としては、全5ロットを評価した。
[Example 4]
Coagulation time measurement and CWA measurement by inducing mixed reagent As a reagent for inducing the coagulation reaction, mixed reagent (including tissue factor inobin 0.1 pM [Sysmex], synthetic phospholipid 10 μM [Sysmex] and ellagic acid 0.3 μM [Sysmex]: Measurement concentration) was used. 50μL of FXI-deficient human plasma (commercial product, George King Bio-Medical) containing bispecific antibody ACE910 or human plasma (commercial product, George King Bio-Medical) supplemented with anti-FXI neutralizing antibody (XI-5108) Was added 50 μL of the mixed reagent. After incubation for 3 minutes, 50 μL of a 0.02 mol / L calcium chloride solution was added to start the coagulation reaction, and the coagulation time was measured with an automatic blood coagulation analyzer (CS-2000i, Sysmex). The amount of fibrin produced while the coagulation reaction was promoted was measured over time as the amount of change in absorbance, and the maximum coagulation rate and the maximum coagulation acceleration were calculated by CWA. All 5 lots of FXI-deficient human plasma were evaluated.

[実施例5]
混合試薬惹起によるTGA測定
励起波長390 nm/蛍光波長460 nmフィルターセット、ディスペンザー、解析ソフトウェア(Thrombinoscope software version 3.0.0.29、 Thrombinoscope BV)を備えた96ウェル蛍光プレート蛍光光度計(Thermo Fisher Scientific Instruments)を用いて、calibrated automated thrombographyにより常法に従いTGA測定を行った。二重特異性抗体ACE910を含むFXI欠乏ヒト血漿(市販品、George King Bio-Medical)80μLまたは抗FXI中和抗体(XI-5108)を添加したヒト血漿(市販品、George King Bio-Medical)80μLを96ウェルプレートの各ウェルに添加した。次に、凝固反応を惹起する試薬として混合試薬(組織因子イノビン0.5 pM [Sysmex]、合成リン脂質4 μM [Sysmex]およびエラグ酸0.3 μM [Sysmex]を含む:濃度は測定時濃度)20 μLを各ウェルへ添加した。測定される蛍光強度をトロンビン量に換算するために、混合試薬の代わりにThrombin Calibrator(Thrombinoscope BV)20 μLを添加するウェルも設けた。反応を開始させるため、FluCa kit(Thrombinoscope BV)から調製したFluCa reagent 20 μLを、プログラムされた装置により自動分注した。装置のソフトウェアにより、トロンボグラムおよびpeak height(最大トロンビン量)を算出した。FXI欠乏ヒト血漿としては、全5ロットを評価した。
[Example 5]
96-well fluorescence plate fluorometer (Thermo Fisher Scientific Instruments) equipped with TGA measurement excitation wavelength 390 nm / fluorescence wavelength 460 nm filter set, dispenser, analysis software (Thrombinoscope software version 3.0.0.29, Thrombinoscope BV) Then, TGA measurement was performed according to a conventional method by calibrated automated thrombography. 80μL of FXI-deficient human plasma (commercial product, George King Bio-Medical) containing bispecific antibody ACE910 or 80μL of human plasma (commercial product, George King Bio-Medical) supplemented with anti-FXI neutralizing antibody (XI-5108) Was added to each well of a 96 well plate. Next, 20 μL of mixed reagents (including tissue factor inobin 0.5 pM [Sysmex], synthetic phospholipid 4 μM [Sysmex] and ellagic acid 0.3 μM [Sysmex]: concentration at the time of measurement) Added to each well. In order to convert the measured fluorescence intensity into the thrombin amount, a well to which 20 μL of Thrombin Calibrator (Thrombinoscope BV) was added instead of the mixed reagent was also provided. In order to start the reaction, 20 μL of FluCa reagent prepared from FluCa kit (Thrombinoscope BV) was automatically dispensed by a programmed apparatus. The thrombogram and peak height (maximum thrombin amount) were calculated by the instrument software. All 5 lots of FXI-deficient human plasma were evaluated.

[実施例6]
APTT測定の結果
FXI欠乏血漿を用いたAPTT測定において、FVIII代替活性の機能を有する二重特異性抗体の一つACE910は凝固時間短縮作用を示した(図1、全10ロットの個別データ)。ACE910は、何れのロットの血漿においても濃度依存的に凝固時間の短縮を示した。FXI欠乏血漿の全10ロットの結果集計においても、ACE910の凝固時間短縮作用が確認された(図2、FXI def: 9-10ロットの平均値および標準偏差)。また、FXI中和血漿を用いたAPTT測定において、ACE910は凝固時間短縮作用を示した(図2、Normal + FXI Ab: 1ロットの個別データ)。以上、ACE910は、FXI欠乏およびFXI中和の何れの血漿においても濃度依存的に凝固時間の短縮を示した。
[Example 6]
APTT measurement results
In the APTT measurement using FXI-deficient plasma, ACE910, one of the bispecific antibodies having a function of FVIII substitute activity, showed a shortening action on clotting time (FIG. 1, individual data of all 10 lots). ACE910 showed a shortened clotting time in a concentration-dependent manner in any lot of plasma. In the results of all 10 lots of FXI-deficient plasma, ACE910 also confirmed the effect of shortening the clotting time (Figure 2, FXI def: mean and standard deviation of 9-10 lots). Moreover, in APTT measurement using FXI neutralized plasma, ACE910 showed a coagulation time shortening action (FIG. 2, Normal + FXI Ab: individual data of 1 lot). As described above, ACE910 showed shortening of the coagulation time in a concentration-dependent manner in both FXI-deficient and FXI-neutralized plasmas.

[実施例7]
APTT試薬惹起によるCWA測定の結果
FXI欠乏血漿を用いたAPTT試薬惹起によるCWA測定において、ACE910は最大凝固速度増加作用を示した(図3、全10ロットの個別データ)。ACE910は、何れのロットの血漿においても濃度依存的に最大凝固速度の増加を示した。FXI欠乏血漿の全10ロットの結果集計においても、ACE910の最大凝固速度増加作用が確認された(図4、FXI def: 9-10ロットの平均値および標準偏差)。
FXI欠乏血漿を用いたAPTT試薬惹起によるCWA測定において、ACE910は最大凝固加速度増加作用を示した(図5、全10ロットの個別データ)。ACE910は、何れのロットの血漿においても濃度依存的に最大凝固加速度の増加を示した。FXI欠乏血漿の全10ロットの結果集計においても、ACE910の最大凝固加速度増加作用が確認された(図6、FXI def: 9-10ロットの平均値および標準偏差)。また、FXI中和血漿を用いたAPTT試薬惹起によるCWA測定において、ACE910は最大凝固加速度時間の短縮作用を示した(図6、Normal + FXI Ab: 1ロットの個別データ)。以上、ACE910は、FXI欠乏およびFXI中和の何れの血漿においても濃度依存的に最大凝固加速度の増加を示した。
[Example 7]
Results of CWA measurement using APTT reagent
In CWA measurement by APTT reagent induction using FXI-deficient plasma, ACE910 showed an effect of increasing the maximum coagulation rate (Fig. 3, individual data of all 10 lots). ACE910 showed an increase in maximum clotting rate in a concentration-dependent manner in any lot of plasma. In the results of all 10 lots of FXI-deficient plasma, the effect of increasing the maximum clotting rate of ACE910 was also confirmed (Fig. 4, FXI def: mean value and standard deviation of 9-10 lots).
In CWA measurement by APTT reagent induction using FXI-deficient plasma, ACE910 showed the maximum coagulation acceleration action (Fig. 5, individual data of all 10 lots). ACE910 showed an increase in maximum clotting acceleration in a concentration-dependent manner in any lot of plasma. In the result aggregation of all 10 lots of FXI-deficient plasma, the effect of increasing the maximum clotting acceleration of ACE910 was also confirmed (FIG. 6, FXI def: mean value and standard deviation of 9-10 lots). Moreover, in CWA measurement by APTT reagent induction using FXI neutralized plasma, ACE910 showed a shortening action of the maximum clotting acceleration time (FIG. 6, Normal + FXI Ab: individual data of one lot). As described above, ACE910 showed an increase in the maximum coagulation acceleration in a concentration-dependent manner in both FXI-deficient and FXI-neutralized plasma.

[実施例8]
混合試薬惹起による凝固時間測定の結果
FXI欠乏血漿を用いた混合試薬(組織因子およびエラグ酸を含む)惹起による凝固時間測定において、ACE910は凝固時間短縮作用を示した(図7、全5ロットの個別データ)。ACE910は、何れのロットの血漿においても濃度依存的に凝固時間の短縮を示した。FXI欠乏血漿の全5ロットの結果集計においても、ACE910の凝固時間短縮作用が確認された(図8、FXI def: 4-5ロットの平均値および標準偏差)。また、FXI中和血漿を用いた混合試薬(組織因子およびエラグ酸を含む)惹起による凝固時間測定において、ACE910は凝固時間短縮作用を示した(図8、Normal + FXI Ab: 1ロットの個別データ)。以上、ACE910は、FXI欠乏およびFXI中和の何れの血漿においても濃度依存的に凝固時間の短縮を示した。
[Example 8]
Results of coagulation time measurement by mixing reagent induction
In measurement of clotting time by inducing mixed reagent (including tissue factor and ellagic acid) using FXI-deficient plasma, ACE910 showed a shortening action of clotting time (FIG. 7, individual data of all 5 lots). ACE910 showed a shortened clotting time in a concentration-dependent manner in any lot of plasma. In the results of all five lots of FXI-deficient plasma, ACE910 also confirmed the effect of shortening the clotting time (Fig. 8, FXI def: mean and standard deviation of 4-5 lots). In addition, ACE910 showed the effect of shortening the clotting time in the measurement of clotting time by inducing mixed reagent (including tissue factor and ellagic acid) using FXI neutralized plasma (Figure 8, Normal + FXI Ab: Individual data of 1 lot) ). As described above, ACE910 showed shortening of the coagulation time in a concentration-dependent manner in both FXI-deficient and FXI-neutralized plasmas.

[実施例9]
混合試薬惹起によるCWA測定の結果
FXI欠乏血漿を用いた混合試薬(組織因子およびエラグ酸を含む)惹起によるCWA測定において、ACE910は最大凝固速度増加作用を示した(図9、全5ロットの個別データ)。ACE910は、何れのロットの血漿においても濃度依存的に最大凝固速度の増加を示した。FXI欠乏血漿の全5ロットの結果集計においても、ACE910の最大凝固速度増加作用が確認された(図10、FXI def: 4-5ロットの平均値および標準偏差)。また、FXI中和血漿を用いた混合試薬(組織因子およびエラグ酸を含む)惹起によるCWA測定において、ACE910は最大凝固速度増加作用を示した(図10、Normal + FXI Ab: 1ロットの個別データ)。以上、ACE910は、FXI欠乏およびFXI中和の何れの血漿においても濃度依存的に最大凝固速度の増加を示した。
FXI欠乏血漿を用いた混合試薬(組織因子およびエラグ酸を含む)惹起によるCWA測定において、ACE910は最大凝固加速度増加作用を示した(図11、全5ロットの個別データ)。ACE910は、何れのロットの血漿においても濃度依存的に最大凝固加速度の増加を示した。FXI欠乏血漿の全5ロットの結果集計においても、ACE910の最大凝固加速度増加作用が確認された(図12、FXI def: 4-5ロットの平均値および標準偏差)。また、FXI中和血漿を用いた混合試薬(組織因子およびエラグ酸を含む)惹起によるCWA測定において、ACE910は最大凝固加速度増加作用を示した(図12、Normal + FXI Ab: 1ロットの個別データ)。以上、ACE910は、FXI欠乏およびFXI中和の何れの血漿においても濃度依存的に最大凝固加速度の増加を示した。
[Example 9]
Result of CWA measurement by inducing mixed reagent
ACE910 showed the effect of increasing the maximum clotting rate in the CWA measurement by inducing mixed reagent (including tissue factor and ellagic acid) using FXI-deficient plasma (Fig. 9, individual data of all 5 lots). ACE910 showed an increase in maximum clotting rate in a concentration-dependent manner in any lot of plasma. In the result summation of all 5 lots of FXI-deficient plasma, the effect of increasing the maximum clotting rate of ACE910 was also confirmed (FIG. 10, FXI def: mean value and standard deviation of 4-5 lots). In addition, ACE910 showed an effect of increasing the maximum clotting rate in the CWA measurement by inducing mixed reagent (including tissue factor and ellagic acid) using FXI neutralized plasma (Figure 10, Normal + FXI Ab: Individual data of 1 lot ). As described above, ACE910 showed an increase in the maximum coagulation rate in a concentration-dependent manner in both FXI-deficient and FXI-neutralized plasma.
ACE910 showed an effect of increasing the maximum clotting acceleration in CWA measurement by inducing mixed reagent (including tissue factor and ellagic acid) using FXI-deficient plasma (Fig. 11, individual data of all 5 lots). ACE910 showed an increase in maximum clotting acceleration in a concentration-dependent manner in any lot of plasma. In the results of all five lots of FXI-deficient plasma, ACE910 also confirmed the effect of increasing the maximum clotting acceleration (Fig. 12, FXI def: mean value and standard deviation of 4-5 lots). In addition, ACE910 showed the effect of increasing the maximum coagulation acceleration in the CWA measurement by inducing mixed reagent (including tissue factor and ellagic acid) using FXI neutralized plasma (Figure 12, Normal + FXI Ab: Individual data of 1 lot) ). As described above, ACE910 showed an increase in the maximum coagulation acceleration in a concentration-dependent manner in both FXI-deficient and FXI-neutralized plasma.

[実施例10]
混合試薬惹起によるTGA測定の結果
FXI欠乏血漿を用いた混合試薬(組織因子およびエラグ酸を含む)惹起によるTGA測定において、ACE910が血漿凝固促進作用を示した(図13、全10ロットの個別データ)。ACE910は、概ね濃度依存的にトロンビン生成Peak heightの増加を示した。
[Example 10]
Results of TGA measurement by inducing mixed reagent
ACE910 showed plasma coagulation-promoting action in TGA measurement induced by mixed reagents (including tissue factor and ellagic acid) using FXI-deficient plasma (FIG. 13, individual data for all 10 lots). ACE910 showed an increase in thrombin generation peak height in a concentration-dependent manner.

本発明により、血友病A、後天性血友病Aおよびフォンビルブランド病以外のFXI異常症において、出血、出血を伴う疾患、もしくは出血に起因する疾患の発症および/または進展に対する、予防法および/または治療法としてFVIIIの機能を代替する多重特異性抗原結合分子を用いる方法が提供された。FVIIIの機能を代替する多重特異性抗原結合分子は、FVIIIの機能不全に起因する血友病A、後天性血友病Aおよびフォンビルブランド病での出血に対する予防法および/または治療法として利用できるのみならず、その凝固促進活性から他のFXI異常症での出血に対する予防法および/または治療法として利用できると考えられる。FXI異常症は、希少な出血性疾患であるため、出血に対する有効な予防法および/または治療法は確立されておらず、本発明は、FXI異常症における出血の発症および/または進展に対する、予防法および/または治療法として有望と考えられる。   According to the present invention, in FXI abnormalities other than hemophilia A, acquired hemophilia A and von Willebrand disease, a method for preventing the onset and / or progression of bleeding, bleeding-related diseases, or diseases caused by bleeding And / or methods of using multispecific antigen binding molecules to replace the function of FVIII as therapeutics. Multispecific antigen-binding molecules that replace FVIII function can be used as a prophylactic and / or therapeutic approach for hemorrhage in hemophilia A, acquired hemophilia A, and von Willebrand disease caused by FVIII dysfunction It can be used as a preventive and / or therapeutic method against bleeding in other FXI abnormalities because of its procoagulant activity. Since FXI abnormalities are rare hemorrhagic diseases, effective prevention methods and / or treatment methods for bleeding have not been established, and the present invention prevents prophylaxis against the onset and / or progression of bleeding in FXI abnormal diseases. Promising as a method and / or treatment.

Claims (7)

血液凝固第VIII因子の機能を代替する多重特異性抗原結合分子を含有する、血液凝固第XI因子異常症の予防および/または治療に用いられる医薬組成物。 A pharmaceutical composition used for the prevention and / or treatment of blood coagulation factor XI abnormality, comprising a multispecific antigen-binding molecule that substitutes for the function of blood coagulation factor VIII. 血液凝固第VIII因子の機能を代替する多重特異性抗原結合分子が、血液凝固第IX因子および/または活性型血液凝固第IX因子ならびに血液凝固第X因子に結合する二重特異性抗体である、請求項1に記載の医薬組成物。 A multispecific antigen binding molecule that replaces the function of blood coagulation factor VIII is a bispecific antibody that binds to blood coagulation factor IX and / or active blood coagulation factor IX and blood coagulation factor X, The pharmaceutical composition according to claim 1. 前記二重特異性抗体が以下に記載の抗体であって、第一のポリペプチドと第三のポリペプチドが会合し、第二のポリペプチドと第四のポリペプチドが会合する二重特異性抗体である請求項1または2に記載の医薬組成物。
第一のポリペプチドが配列番号:1、2、3(Q499のH鎖CDR)に記載のH鎖CDR1、2、3のアミノ酸配列を含むH鎖、第二のポリペプチドが配列番号:4、5、6(J327のH鎖CDR)に記載のH鎖CDR1、2、3のアミノ酸配列を含むH鎖、第三のポリペプチドと第四のポリペプチドが 配列番号:7、8、9(L404のL鎖CDR)に記載のL鎖CDR1、2、3のアミノ酸配列を含む共通L鎖からなる二重特異性抗体(Q499-z121/J327-z119/L404-k)。
The bispecific antibody is an antibody described below, wherein the first polypeptide and the third polypeptide are associated, and the second polypeptide and the fourth polypeptide are associated. The pharmaceutical composition according to claim 1 or 2.
The first polypeptide is an H chain comprising the amino acid sequence of H chain CDR1, 2, 3 described in SEQ ID NO: 1, 2, 3 (H chain CDR of Q499), the second polypeptide is SEQ ID NO: 4, H chain containing the amino acid sequence of H chain CDR1, 2, 3 described in 5, 6 (H chain CDR of J327), the third polypeptide and the fourth polypeptide are SEQ ID NO: 7, 8, 9 (L404 A bispecific antibody (Q499-z121 / J327-z119 / L404-k) consisting of a common L chain comprising the amino acid sequences of the L chain CDR1, 2, and 3 described in the above (L chain CDR).
前記二重特異性抗体が以下に記載の抗体であって、第一のポリペプチドと第三のポリペプチドが会合し、第二のポリペプチドと第四のポリペプチドが会合する二重特異性抗体である請求項1〜3のいずれかに記載の医薬組成物。
第一のポリペプチドが配列番号:10に記載のアミノ酸配列からなるH鎖、第二のポリペプチドが配列番号:11に記載のアミノ酸配列からなるH鎖および第三のポリペプチドと第四のポリペプチドが配列番号:12に記載の共通L鎖からなる二重特異性抗体(Q499-z121/J327-z119/L404-k)。
The bispecific antibody is an antibody described below, wherein the first polypeptide and the third polypeptide are associated, and the second polypeptide and the fourth polypeptide are associated. The pharmaceutical composition according to any one of claims 1 to 3.
The first polypeptide is an H chain consisting of the amino acid sequence set forth in SEQ ID NO: 10, the second polypeptide is the H chain consisting of the amino acid sequence set forth in SEQ ID NO: 11, the third polypeptide and the fourth poly A bispecific antibody (Q499-z121 / J327-z119 / L404-k), wherein the peptide consists of a common L chain described in SEQ ID NO: 12.
血液凝固第XI因子異常症が、血液凝固第XI因子および/または活性型血液凝固第XI因子の活性の低下、機能異常および/または欠損によって発症および/または進展する疾患である、請求項1〜4のいずれかに記載の医薬組成物。 The blood coagulation factor XI abnormality is a disease that develops and / or progresses due to decreased activity, functional abnormality and / or deficiency of blood coagulation factor XI and / or active blood coagulation factor XI. 5. The pharmaceutical composition according to any one of 4. 血液凝固第XI因子異常症が先天性または後天性の疾患である、請求項1〜5のいずれかに記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 5, wherein the blood coagulation factor XI abnormality is a congenital or acquired disease. 血液凝固第XI因子異常症が血友病Cである、請求項1〜6のいずれかに記載の医薬組成物。 The pharmaceutical composition according to any one of claims 1 to 6, wherein the blood coagulation factor XI abnormality is hemophilia C.
JP2015089709A 2015-04-24 2015-04-24 Pharmaceutical composition for use in prevention and/or treatment of blood coagulation factor xi (fxi) abnormalities comprising multispecific antigen binding molecule replacing function of blood coagulation factor viii (fviii) Pending JP2018123055A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015089709A JP2018123055A (en) 2015-04-24 2015-04-24 Pharmaceutical composition for use in prevention and/or treatment of blood coagulation factor xi (fxi) abnormalities comprising multispecific antigen binding molecule replacing function of blood coagulation factor viii (fviii)
PCT/JP2016/062597 WO2016171202A1 (en) 2015-04-24 2016-04-21 Pharmaceutical composition for use in prophylaxis and/or treatment of coagulation factor xi (fxi) disorders, comprising multispecific antigen binding molecule that substitutes for coagulation factor viii (fviii) function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015089709A JP2018123055A (en) 2015-04-24 2015-04-24 Pharmaceutical composition for use in prevention and/or treatment of blood coagulation factor xi (fxi) abnormalities comprising multispecific antigen binding molecule replacing function of blood coagulation factor viii (fviii)

Publications (1)

Publication Number Publication Date
JP2018123055A true JP2018123055A (en) 2018-08-09

Family

ID=57143166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015089709A Pending JP2018123055A (en) 2015-04-24 2015-04-24 Pharmaceutical composition for use in prevention and/or treatment of blood coagulation factor xi (fxi) abnormalities comprising multispecific antigen binding molecule replacing function of blood coagulation factor viii (fviii)

Country Status (2)

Country Link
JP (1) JP2018123055A (en)
WO (1) WO2016171202A1 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106905A1 (en) 2005-03-31 2006-10-12 Chugai Seiyaku Kabushiki Kaisha Process for production of polypeptide by regulation of assembly
US11046784B2 (en) 2006-03-31 2021-06-29 Chugai Seiyaku Kabushiki Kaisha Methods for controlling blood pharmacokinetics of antibodies
DK2009101T3 (en) 2006-03-31 2018-01-15 Chugai Pharmaceutical Co Ltd Antibody modification method for purification of a bispecific antibody
SI2202245T1 (en) 2007-09-26 2016-10-28 Chugai Seiyaku Kabushiki Kaisha Method of modifying isoelectric point of antibody via amino acid substitution in cdr
CN105859889B (en) 2010-11-17 2020-01-07 中外制药株式会社 Multispecific antigen-binding molecules having a function replacing the function of factor VIII
BR112016006197B1 (en) 2013-09-27 2023-04-11 Chugai Seiyaku Kabushiki Kaisha METHOD FOR PRODUCING A BISPECIFIC POLYPEPTIDE ANTIBODY
TWI701435B (en) 2014-09-26 2020-08-11 日商中外製藥股份有限公司 Method to determine the reactivity of FVIII
TWI700300B (en) 2014-09-26 2020-08-01 日商中外製藥股份有限公司 Antibodies that neutralize substances with the function of FVIII coagulation factor (FVIII)
WO2016159213A1 (en) 2015-04-01 2016-10-06 中外製薬株式会社 Method for producing polypeptide hetero-oligomer
EP3398965A4 (en) 2015-12-28 2019-09-18 Chugai Seiyaku Kabushiki Kaisha Method for promoting efficiency of purification of fc region-containing polypeptide
EP3509637A4 (en) 2016-09-06 2020-05-27 Chugai Seiyaku Kabushiki Kaisha Methods of using a bispecific antibody that recognizes coagulation factor ix and/or activated coagulation factor ix and coagulation factor x and/or activated coagulation factor x
US20210107994A1 (en) * 2017-03-31 2021-04-15 Public University Corporation Nara Medical University Medicinal composition usable for preventing and/or treating blood coagulation factor ix abnormality, comprising multispecific antigen binding molecule replacing function of blood coagulation factor viii
GB201709970D0 (en) 2017-06-22 2017-08-09 Kymab Ltd Bispecific antigen-binding molecules
CA3071236A1 (en) 2017-09-29 2019-04-04 Chugai Seiyaku Kabushiki Kaisha Multispecific antigen-binding molecule having blood coagulation factor viii (fviii) cofactor function-substituting activity, and pharmaceutical formulation containing said molecule as active ingredient
LT3723858T (en) 2018-12-21 2022-02-10 Kymab Limited Fixaxfx bispecific antibody with common light chain

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003271174A1 (en) * 2003-10-10 2005-04-27 Chugai Seiyaku Kabushiki Kaisha Double specific antibodies substituting for functional protein
PL1876236T3 (en) * 2005-04-08 2015-01-30 Chugai Pharmaceutical Co Ltd Antibody substituting for function of blood coagulation factor viii
US20100144620A1 (en) * 2006-11-16 2010-06-10 Crucell Holland B.V. Complementation of factor xi deficeincy by factor v mutants
CN105859889B (en) * 2010-11-17 2020-01-07 中外制药株式会社 Multispecific antigen-binding molecules having a function replacing the function of factor VIII

Also Published As

Publication number Publication date
WO2016171202A1 (en) 2016-10-27

Similar Documents

Publication Publication Date Title
WO2016171202A1 (en) Pharmaceutical composition for use in prophylaxis and/or treatment of coagulation factor xi (fxi) disorders, comprising multispecific antigen binding molecule that substitutes for coagulation factor viii (fviii) function
JP7209298B2 (en) A pharmaceutical composition used for the prevention and/or treatment of blood coagulation factor IX disorders, containing a multispecific antigen-binding molecule that substitutes for the function of blood coagulation factor VIII
JP6823677B2 (en) A multispecific antigen-binding molecule that has the function of substituting the function of blood coagulation factor VIII.
KR102517509B1 (en) Antibody capable of neutralizing substance having activity alternative to function of coagulation factor viii (fviii)
JP6954842B2 (en) Antibodies with enhanced activity and methods for modifying them
WO2016047652A1 (en) Method for measuring reactivity of fviii