JPS60144932A - Molecular beam growth method of compound semiconductor crystal - Google Patents

Molecular beam growth method of compound semiconductor crystal

Info

Publication number
JPS60144932A
JPS60144932A JP9684A JP9684A JPS60144932A JP S60144932 A JPS60144932 A JP S60144932A JP 9684 A JP9684 A JP 9684A JP 9684 A JP9684 A JP 9684A JP S60144932 A JPS60144932 A JP S60144932A
Authority
JP
Japan
Prior art keywords
substrate
compound semiconductor
melting point
molecular beam
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9684A
Other languages
Japanese (ja)
Inventor
Seiji Nishi
清次 西
Masahiro Akiyama
秋山 正博
Yoshiaki Sano
佐野 芳明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP9684A priority Critical patent/JPS60144932A/en
Publication of JPS60144932A publication Critical patent/JPS60144932A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Abstract

PURPOSE:To protect a substrate from receiving stress by fusing and depositing a high melting point metal film at the rear surface of substrate to a substrate holder with a low melting point metal film on the occasion of realizing molecular beam growing method of a compound semiconductor crystal. CONSTITUTION:A W (or Mo, Ta) film 2 is deposited in the thickness of 1,000Angstrom at the rear surface of a GaAs substrate 1. After the washing and etching, Mo is fused and deposited on a substrate holder 3 with In 4. Thereafter, a single crystal thin film is caused to grow in the molecular beam growing apparatus while monitoring a substrate temperature with a thermocouple 6. According to this structure, even when a substrate temperature is raised for growth, a compound semiconductor substrate 1 is fixed to the holder by a liquid low melting point metal 4 which does not change in the property and does not receive a stress. Moreover, a thin film can be formed by the growth on a substrate and a high quality thin film can be obtained.

Description

【発明の詳細な説明】 (技術分野) この発明は化合物半導体結晶の分子線成長方法に関し、
特に基板結晶固定方法に関する。
[Detailed Description of the Invention] (Technical Field) This invention relates to a method for molecular beam growth of compound semiconductor crystals,
In particular, it relates to a method for fixing substrate crystals.

(技術的背景) 従来、Ga’As 6るいはInP等の化合物半導体基
板に分子線により結晶を成長する場合、Mo等の高融点
金属によシ作られた基板ホルダーに、InあるいはGa
等の低融点金属により基板を融層固定し、加熱して基板
表面側より分子線を照射するこ゛とによシ、結晶を成長
させていた。通常、結晶成長はIn 、 Ga等の低融
点金属の融点よりはるかに高い温度で行なわれ、基板ホ
ルダーと基板の熱膨張の差による基板への応力は、低融
点金属の液体にょシ固定することで解決されていると考
えられていた。しかしながら、基板温度を高くするとI
n、Ga等の低融点金属は、GaAsあるいはInP等
の基板と反応してしまい、基板は基板ホルダーに反応物
による固体で固定され応力を受けるため凹凸が生じ、基
板は割れ易くなる欠点があった・ (発明の目的) 本発明の目的は、化合物半導体基板が応力?受けること
のない半導体の分子線結晶成長方法を得ることにある。
(Technical background) Conventionally, when growing crystals on a compound semiconductor substrate such as Ga'As6 or InP using molecular beams, a substrate holder made of a high melting point metal such as Mo is
Crystals were grown by fixing the substrate in a molten layer with a low melting point metal such as, heating and irradiating molecular beams from the surface side of the substrate. Normally, crystal growth is performed at a temperature much higher than the melting point of low melting point metals such as In and Ga, and the stress on the substrate due to the difference in thermal expansion between the substrate holder and the substrate is fixed by the liquid of the low melting point metal. was thought to have been resolved. However, if the substrate temperature is increased, I
Low melting point metals such as n, Ga, etc. react with substrates such as GaAs or InP, and the substrate is fixed to the substrate holder as a solid by the reactant and is subjected to stress, resulting in unevenness and the disadvantage that the substrate becomes easily broken. (Objective of the Invention) The object of the present invention is to reduce stress in a compound semiconductor substrate? The object of the present invention is to obtain a method for growing molecular beam crystals of semiconductors that does not suffer from oxidation.

(発明の概要〕 この発明の要点は化合物半導体結晶の分子線成長を行う
際、基板裏面にW r Mo + Taから選ばれた1
金属を含む高融点金属膜を設け、そしてInあるいはG
a等の低融点金属で、前記化合物半導体基板裏面の高融
点金属膜を基板ホルダーに融着したことにある。
(Summary of the Invention) The main point of this invention is that when performing molecular beam growth of a compound semiconductor crystal, 1 selected from W r Mo + Ta is formed on the back surface of the substrate.
A high melting point metal film containing metal is provided, and In or G
The high melting point metal film on the back surface of the compound semiconductor substrate is fused to the substrate holder using a low melting point metal such as a.

(実施例) 図は本発明の実施例を示す説明図であシ、以下図面に沿
って説明する。この実施例では、基板lとしては、Ga
Asヲ用いGaAs基板1の裏面にはW膜221ooo
L ス・母ツタ法により形成させる。
(Example) The figure is an explanatory diagram showing an example of the present invention, and the following description will be made along the drawing. In this example, the substrate l is Ga
A W film 221ooo is on the back surface of the GaAs substrate 1 using Aswo.
L. Formed by the mother vine method.

裏面にW膜2がつけられたGaAs基板l基板層浄、エ
ツチングの後にMoからなる基板ホルダー3上に、In
膜4によシ融着する。GaAs基板l基板層された基板
ホルダー3は分子線成長装置内に搬送する。
After cleaning and etching the GaAs substrate with the W film 2 on the back surface, In is placed on the substrate holder 3 made of Mo.
It is fused to the membrane 4. The substrate holder 3 on which the GaAs substrate is layered is transported into a molecular beam growth apparatus.

結晶の成長は超高真空下で、基板ホルダー3の裏側のヒ
ータ5によシ加熱された基板上に、成長させる構造元素
の分子線を照射し、単結晶薄膜を成長する。この分子線
結晶成長における基板温度は、熱電対6によシ読み取る
ことができる。成長時の基板温度は660℃程度である
。GaAs基板l基板層のIn膜4は保護膜としては次
の条件を満たす。
To grow the crystal, a molecular beam of the structural element to be grown is irradiated onto the substrate heated by the heater 5 on the back side of the substrate holder 3 under an ultra-high vacuum to grow a single crystal thin film. The substrate temperature during this molecular beam crystal growth can be read by a thermocouple 6. The substrate temperature during growth is about 660°C. The In film 4 on the GaAs substrate 1 substrate layer satisfies the following conditions as a protective film.

A) GaAs基板の洗浄、エツチング(エツチング液
は4H2SO4:lH2O2:lH2Oを用いる)に対
して安定である。
A) Stable against cleaning and etching of GaAs substrate (4H2SO4:1H2O2:1H2O is used as etching solution).

B)室温から結晶成長温度までの温度範囲で分解あるい
は融解蒸発しない。
B) Does not decompose or melt and evaporate in the temperature range from room temperature to crystal growth temperature.

C)室温から結晶成長温度までの温度範囲でGaAs基
板l基板層して膜全体が変質してしまわない。
C) The entire film does not change in quality when the GaAs substrate is layered in the temperature range from room temperature to the crystal growth temperature.

D)室温から結晶成長温度までの温度範囲で、Inと反
応し膜全体あるいはIn全体が変質してしまわない。
D) In the temperature range from room temperature to crystal growth temperature, the entire film or In does not change in quality due to reaction with In.

E) Inによシ、室温から結晶成長温度までの温度範
囲でGaAs基板l基板層できる。
E) For In, a GaAs substrate layer can be formed at a temperature range from room temperature to crystal growth temperature.

従ってこの発明によれば、GaAs基板の裏面に保護膜
を設けたので、融着に用いるInあるいはGaとGaA
s基板とが反応するのを防ぐことができる。
Therefore, according to this invention, since a protective film is provided on the back surface of the GaAs substrate, the In or Ga used for fusion bonding and the GaAs
Reaction with the s-substrate can be prevented.

更に融着に用いる金属として、InのみならずGaやI
nとGaとの合金などを用いる事が出来る。
Furthermore, as the metal used for fusion bonding, not only In but also Ga and I can be used.
An alloy of n and Ga can be used.

Ga及びInとGaの合金は融点が室温程度と低くGa
As基板の基板ホルダーへの融着作業が容易になるばか
シでなく、GaやInとGaとの合金は酸化膜の皮膜が
出来にくいので、’ G1As基板と基板ホルダーヲ密
着よく融着することができる。
Ga and alloys of In and Ga have low melting points around room temperature.
Not only does it make it easier to fuse the As substrate to the substrate holder, but it also makes it easier to weld the G1As substrate and substrate holder together, as Ga and alloys of In and Ga are less likely to form an oxide film. can.

なおまた、前記のA−Eまでの条件は、MOやTaの高
融点金属も満足するので、Wの代シに用いることができ
る。
Furthermore, since the conditions A to E described above are also satisfied with high melting point metals such as MO and Ta, they can be used in place of W.

なおSiO2,At203,513N4等の高耐熱絶縁
膜、その他の耐熱性材も保護膜としてWの代シに用いる
ことができるけれども、これらは一般にInやGaなど
の低融点金属とのぬれ具合が悪く、従って更にTi膜な
どを併合した2層保護膜とする必要があシ、簡易性に欠
ける。
Note that high heat-resistant insulating films such as SiO2, At203, and 513N4, and other heat-resistant materials can also be used as protective films in place of W, but these generally have poor wettability with low-melting point metals such as In and Ga. Therefore, it is necessary to form a two-layer protective film including a Ti film or the like, which lacks simplicity.

(発明の効果) この発明は以上説明したように化合物半導体基板裏面に
高融点金属膜を設け、基板ホルダーにこの高融点金属膜
を低融点金属を用いて融着し、半導体基板表面側から分
子線を照射して結晶成長を行うようにしたので、基板温
度を上げて成長しても、化合物半導体基板は、変質する
ことのない液汁/7”+ (< IA占61iij J
6P l−)1 −1145−b fi、 ’r If
 1ft67 Jn応力を受けることなく、化合物半導
体基板上に薄膜を成長することができるという利点があ
る。
(Effects of the Invention) As explained above, this invention provides a high melting point metal film on the back surface of a compound semiconductor substrate, fuses this high melting point metal film to a substrate holder using a low melting point metal, and then Since crystal growth is performed by irradiation with radiation, the compound semiconductor substrate can be grown without changing its quality even if the substrate temperature is raised.
6P l-)1 -1145-b fi, 'r If
There is an advantage that a thin film can be grown on a compound semiconductor substrate without being subjected to 1ft67 Jn stress.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例を示す断面図である。 l・・・GaAs基板、2・・・W膜、3・・・基板ホ
ルダー、4・・・In、5・・・ヒーター、6・・・熱
電対。 特許出願人 沖電気工業株式会社 昭和 年 月 日 特許庁長官 殿 1 事件の表示 昭和59年 特 許 願第000096号2、発明の名
称 化合物半導体結晶の分子線成長方法 3 補正をする者 事件との関係 特許出願人 住 所(〒105) 東京都港区虎ノ門1丁目7番12
号4代理人
The figure is a sectional view showing an embodiment of the present invention. 1...GaAs substrate, 2...W film, 3...substrate holder, 4...In, 5...heater, 6...thermocouple. Patent Applicant Oki Electric Industry Co., Ltd. Director General of the Patent Office, 1989 1. Indication of Case 1988 Patent Application No. 000096 2. Name of Invention Method for Molecular Beam Growth of Compound Semiconductor Crystal 3. Related patent applicant address (105) 1-7-12 Toranomon, Minato-ku, Tokyo
No. 4 agent

Claims (1)

【特許請求の範囲】 化合物半導体基板の裏面にW 、 Mo及びTaからな
るグループから選択された高融点金属の膜を形成する工
程と、 低融点金属を用いて前記化合物半導体基板裏面の高融点
金属の膜を基板ホルダーに融着する工程と、 前記化合物半導体基板の表面側から分子線を照射して結
晶成長を行う工程とからなる化合物半導体結晶の分子線
成長方法。
[Claims] A step of forming a film of a high melting point metal selected from the group consisting of W, Mo, and Ta on the back surface of a compound semiconductor substrate; A method for growing a compound semiconductor crystal using a molecular beam, the method comprising: fusing a film of the compound semiconductor substrate to a substrate holder; and growing a crystal by irradiating a molecular beam from the surface side of the compound semiconductor substrate.
JP9684A 1984-01-05 1984-01-05 Molecular beam growth method of compound semiconductor crystal Pending JPS60144932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9684A JPS60144932A (en) 1984-01-05 1984-01-05 Molecular beam growth method of compound semiconductor crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9684A JPS60144932A (en) 1984-01-05 1984-01-05 Molecular beam growth method of compound semiconductor crystal

Publications (1)

Publication Number Publication Date
JPS60144932A true JPS60144932A (en) 1985-07-31

Family

ID=11464571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9684A Pending JPS60144932A (en) 1984-01-05 1984-01-05 Molecular beam growth method of compound semiconductor crystal

Country Status (1)

Country Link
JP (1) JPS60144932A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319545A (en) * 2001-04-20 2002-10-31 Mitsubishi Cable Ind Ltd MANUFACTURING METHOD OF GaN CRYSTAL AND BASE MATERIAL FOR CRYSTAL GROWTH
WO2003077311A1 (en) * 2002-03-14 2003-09-18 Commonwealth Scientific And Industrial Research Organisation Method and resulting structure for manufacturing semiconductor substrate
US6960490B2 (en) 2002-03-14 2005-11-01 Epitactix Pty Ltd. Method and resulting structure for manufacturing semiconductor substrates

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002319545A (en) * 2001-04-20 2002-10-31 Mitsubishi Cable Ind Ltd MANUFACTURING METHOD OF GaN CRYSTAL AND BASE MATERIAL FOR CRYSTAL GROWTH
WO2003077311A1 (en) * 2002-03-14 2003-09-18 Commonwealth Scientific And Industrial Research Organisation Method and resulting structure for manufacturing semiconductor substrate
US6919261B2 (en) 2002-03-14 2005-07-19 Epitactix Pty Ltd Method and resulting structure for manufacturing semiconductor substrates
US6960490B2 (en) 2002-03-14 2005-11-01 Epitactix Pty Ltd. Method and resulting structure for manufacturing semiconductor substrates

Similar Documents

Publication Publication Date Title
JPS6392012A (en) Laminated article and manufacture of the same
JPS60144932A (en) Molecular beam growth method of compound semiconductor crystal
JPS59225893A (en) Joining method of ti or ti alloy to al or al alloy
JPS6046539B2 (en) Method for manufacturing silicon crystal film
JPH027415A (en) Formation of soi thin film
JPS6364048B2 (en)
JPS6158892A (en) Molecular beam epitaxial crystal growing method
JPH03138925A (en) Semiconductor-film crystallizing method
JPS60501501A (en) Processes and equipment for manufacturing single crystal and macrocrystalline layers, e.g. for photovoltaic cells
JPS5830145A (en) Manufacture of semiconductor device
JPS58212123A (en) Manufacture of single crystal thin film
JPH0450107B2 (en)
Zignani et al. Effects of vacuum deposition conditions on the structure of (111) epitaxial gold films
US3428474A (en) Method for forming ceramic metallic bonds
JPH038101B2 (en)
JPS60240119A (en) Molecular beam crystal growth
JPS60221385A (en) Manufacture of single crystal thin film
JPH0235716B2 (en)
JPS5928326A (en) Preparation of member for three-dimensional integrated circuit
JPS58110486A (en) Growing method for single crystal of semiconductor
JPH0372618A (en) Recrystallization of semiconductor film
JPS6027481A (en) Low-pressure diffusion joining method
JPS6126211A (en) Crystal growth of semiconductor
JPH03185822A (en) Heating method of semiconductor substrate
JPH03237713A (en) Manufacture of semiconductor crystal