JPH0235716B2 - - Google Patents

Info

Publication number
JPH0235716B2
JPH0235716B2 JP59143242A JP14324284A JPH0235716B2 JP H0235716 B2 JPH0235716 B2 JP H0235716B2 JP 59143242 A JP59143242 A JP 59143242A JP 14324284 A JP14324284 A JP 14324284A JP H0235716 B2 JPH0235716 B2 JP H0235716B2
Authority
JP
Japan
Prior art keywords
germanium
layer
boron nitride
depositing
dielectric substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59143242A
Other languages
Japanese (ja)
Other versions
JPS6126598A (en
Inventor
Takashi Nishioka
Tokuro Oomachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59143242A priority Critical patent/JPS6126598A/en
Publication of JPS6126598A publication Critical patent/JPS6126598A/en
Publication of JPH0235716B2 publication Critical patent/JPH0235716B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/08Germanium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳现な説明】 産業䞊の利甚分野 本発明はゲルマニりム薄膜結晶の補造方法に関
し、特に発光ダむオヌド、光耇合玠子、モノシリ
ツク耇合機胜集積回路などの半導䜓玠子に利甚す
るゲルマニりム薄膜結晶の補造方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for manufacturing germanium thin film crystals, and in particular to manufacturing germanium thin film crystals for use in semiconductor devices such as light emitting diodes, optical composite devices, and monolithic multifunctional integrated circuits. Regarding the method.

埓来技術 埓来、この皮ゲルマニりム薄膜結晶の補造に圓
぀おは、シルコンシリコンの衚面を酞化膜で被
芆したもの等の誘電䜓基板䞊に、予め所望の厚
さにゲルマニりム局を堆積させた埌、ゲルマニり
ム局の䞀方の偎から他方の偎にレヌザ光や電子ビ
ヌムを照射あるいは線状ヒヌタ加熱によるゟヌン
溶融法によ぀お溶融、固化するこずによ぀お結晶
化させおお぀た。しかし、この方法でゲルマニり
ムを結晶化する堎合、基板䞊にゲルマニりム局の
みを堆積させた状態では、線状ヒヌタによる加熱
溶融の堎合は、ヒヌタ枩床、基板枩床およびビヌ
ムず基板間の盞察速床移動速床等が、たた゚
ネルギビヌムによる加熱溶融の堎合はビヌムパワ
ヌ、基板枩床およびビヌムず基板間の盞察速床等
を厳密に定めなければならない。
<Prior art> Conventionally, in manufacturing this type of germanium thin film crystal, a germanium layer is deposited in advance to a desired thickness on a dielectric substrate such as silicon (silicon surface coated with an oxide film). After that, the germanium layer was crystallized by being melted and solidified by irradiating a laser beam or an electron beam from one side to the other or by a zone melting method using linear heater heating. However, when crystallizing germanium using this method, when only the germanium layer is deposited on the substrate, in the case of heating and melting with a linear heater, the heater temperature, the substrate temperature, and the relative speed (movement) between the beam and the substrate are In the case of heating and melting with an energy beam, the beam power, substrate temperature, relative speed between the beam and the substrate, etc. must be strictly determined.

これは、第図に瀺すようにゲルマニりムが
溶解した状態では基板SiO2ずの付着性が匱
いために、䞊蚘条件から少しでもずれるず充分な
結晶成長が起こらないか、或いは同図に瀺すよ
うにゲルマニりムが凝瞮しお基板から遊離しおし
たい、薄膜結晶化が実珟しないからである。特
に、加熱結晶化䞭の溶融ゲルマニりムの面積が倧
きい線状ヒヌタによる方法では、基板面党䜓にわ
たる薄膜結晶化は著るしく困難ずなる。このよう
な凝瞮を防止するため、埓来から、第図に瀺す
ように、タングステン等の高融点金属局を
ゲルマニりム局の䞊䞋に圢成しおから加熱結晶
させる方法が採甚されおいるが、このような方法
による結晶化は、ゲルマニりムの凝瞮防止には有
効ではあるが、第図に瀺すように、発光玠子を
構成するためゲルマニりム局の䞊に、さらに他
の結晶、たずえばヒ化ガリりム局を゚ピタキシ
ダル成長させるためには、ゲルマニりムを結晶
化埌第図に瀺す高融点金属局を陀去し、ゲル
マニりム局を露出した䞊、第図のように゚ピ
タキシダル成長局を圢成する必芁がある。高融
点金属局の陀去には、珟圚、䞻ずしお化孊゚ツ
チング法が採甚されおいるが、局陀去埌のゲル
マニりム局の衚面は、充分平坊なものを埗るこ
ずが困難である。したが぀お、゚ピタキシダル成
長局の衚面も局の衚面の圱響を受け、充分平
坊なものが埗られず、局に圢成した玠子の特性
に䞍均䞀さが珟われる欠点があ぀た。たた、第
図のようにヒ化ガリりム局に圢成した発光玠子
から出た光信号を、基板䞊に予め圢成した受
光玠子で受ける構成のフオトカプラ玠子では光
信号に察しお䞍透明な高融点金属局が存圚す
るため、有効に光信号が受光玠子に達するに
は、局の厚さを凝瞮防止に有効な範囲で薄くす
る等の工倫が必芁であり、実際に、玠子に到達
する光のパワヌは、受光玠子の駆動に䞍充分な
堎合が倚か぀た。たた、ゲルマニりムの凝瞮を防
止する他の方法ずしお、第図のようにゲルマニ
りム局の䞊に厚さ玄1Ό皋床のSiO2B局を圢
成する方法も採甚されおいるが、この方法では凝
瞮防止できるゲルマニりムの面積に限床があり、
広い面積にわたる結晶化が困難であ぀た。
This is because, as shown in Figure 7a, when germanium is dissolved, its adhesion to the substrate (SiO 2 ) is weak, so if the conditions deviate even slightly from the above conditions, sufficient crystal growth will not occur, or, as shown in Figure 7a. This is because germanium condenses and becomes liberated from the substrate as shown in b, and thin film crystallization cannot be achieved. In particular, in a method using a linear heater in which the area of molten germanium during heating crystallization is large, it becomes extremely difficult to crystallize a thin film over the entire substrate surface. In order to prevent such condensation, conventionally, as shown in Fig. 1, a method has been adopted in which layers 1 and 3 of a high-melting point metal such as tungsten are formed above and below a germanium layer 2 and then heated and crystallized. However, although crystallization by such a method is effective in preventing condensation of germanium, as shown in FIG. In order to epitaxially grow the gallium oxide layer 6, after crystallizing the germanium 2, the high melting point metal layer 3 shown in FIG. 1 is removed to expose the germanium layer 2, and then epitaxial growth is performed as shown in FIG. Layer 6 needs to be formed. At present, chemical etching is mainly used to remove the high melting point metal layer 3, but it is difficult to obtain a sufficiently flat surface of the germanium layer 2 after the layer 3 is removed. Therefore, the surface of the epitaxially grown layer 6 is also affected by the surface of the layer 2, making it impossible to obtain a sufficiently flat surface, resulting in the disadvantage that non-uniformity appears in the characteristics of the elements formed on the layer 6. Also, the third
As shown in the figure, a photocoupler element configured to receive an optical signal 8 emitted from a light emitting element 7 formed on a gallium arsenide layer 6 with a light receiving element 9 formed in advance on a substrate uses a high melting point metal that is opaque to the optical signal 8. Due to the existence of layer 1, in order for the optical signal 8 to effectively reach the light receiving element 9, it is necessary to reduce the thickness of layer 1 within a range that is effective for preventing condensation. The power of the arriving light was often insufficient to drive the light receiving element 9. Another method for preventing germanium condensation is to form a SiO 2 B layer 10 with a thickness of about 1 ÎŒm on the germanium layer 2 as shown in FIG. There is a limit to the area of germanium that can prevent condensation.
Crystallization over a wide area was difficult.

解決しようずする問題点 本発明は、ゲルマニりム薄膜結晶䜜成における
䞊述の欠点を陀去するためになされたものであ぀
お、ゲルマニりム薄膜結晶化時の諞条件に察する
蚱容床が倧きく、ゲルマニりム薄膜結晶が高い再
珟性をも぀お、基板党面にわた぀お結晶成長させ
るこずができ、衚面の平坊性が良奜なゲルマニり
ム薄膜結晶を䜜成できるゲルマニりム薄膜結晶の
補造方法を提䟛するこずを目的ずする。
<Problems to be Solved> The present invention was made in order to eliminate the above-mentioned drawbacks in the production of germanium thin film crystals. An object of the present invention is to provide a method for producing a germanium thin film crystal that can grow crystals over the entire surface of a substrate with high reproducibility and can produce a germanium thin film crystal with good surface flatness.

問題点を解決するための手段 䞊蚘問題点を解決するために、本発明の手段の
は、誘電䜓基板䞊に、窒化硌玠、窒化アルミニ
りム、酞化ベリリりムおよび炭化シリコンからな
る矀から遞んだ少くずも䞀からなる第の局を堆
積させる工皋ず、䞊蚘第の局䞊にゲルマニりム
からなる第の局を堆積させる工皋ず、䞊蚘第
の局䞊に窒化硌玠、窒化アルミニりム、酞化ベリ
リりムおよび炭化シリコンからなる矀から遞んだ
少くずも䞀からなる第の局を堆積させる工皋
ず、䞊蚘第、第および第の局を堆積した誘
電䜓基板の党䜓又は第の局に沿぀お誘電䜓基板
を郚分加熱する工皋ずからなるこずを特城ずす
る。
<Means for Solving the Problems> In order to solve the above-mentioned problems, one of the means of the present invention is to apply a material selected from the group consisting of boron nitride, aluminum nitride, beryllium oxide, and silicon carbide on a dielectric substrate. depositing a first layer of germanium on the first layer; depositing a second layer of germanium on the first layer;
depositing a third layer consisting of at least one selected from the group consisting of boron nitride, aluminum nitride, beryllium oxide and silicon carbide on the layer; and depositing the first, second and third layers. The method is characterized by comprising a step of partially heating the dielectric substrate along the entire dielectric substrate or the second layer.

たた、本発明の他の手段は誘電䜓基板䞊に、窒
化硌玠、窒化アルミニりム、酞化ベリリりムおよ
び炭化シリコンからなる矀から遞んだ少くずも䞀
からなる第の局を堆積させる工皋ず、䞊蚘第
の局䞊にゲルマニりムからなる第の局を堆積さ
せる工皋ず、䞊蚘第の局䞊にゲルマニりムの融
点近傍の枩床でゲルマニりムず合金を圢成しない
高融点金属からなる第の局を堆積させる工皋
ず、䞊蚘第、第および第のの局を堆積した
誘電䜓基板の党䜓又は第の局に沿぀お誘電䜓基
板を郚分加熱する工皋ずなるこずを特城ずする。
Further, another means of the present invention includes the step of depositing, on the dielectric substrate, a first layer consisting of at least one selected from the group consisting of boron nitride, aluminum nitride, beryllium oxide, and silicon carbide;
depositing a second layer made of germanium on the layer; and depositing a third layer made of a high melting point metal that does not form an alloy with germanium at a temperature near the melting point of germanium on the second layer. and a step of partially heating the dielectric substrate on which the first, second, and third layers are deposited or along the second layer.

たた、本発明のもう぀の手段は誘電䜓基板䞊
に、ゲルマニりムの融点近傍の枩床でゲルマニり
ムず合金を圢成しない高融点金属からなる第の
局ず、䞊蚘第の局䞊にゲルマニりムからなる第
の局を堆積させる工皋ず、䞊蚘第の局䞊に窒
化硌玠、窒化アルミニりム、酞化ベリリりムおよ
び炭化シリコンからなる矀から遞んだ少くずも䞀
からなる第の局を堆積させる工皋ず、䞊蚘第
、第および第の局を堆積した誘電䜓基板の
党䜓又は第の局に沿぀お誘電䜓基板を郚分加熱
する工皋ずなるこずを特城ずするものである。
Another means of the present invention is to provide a first layer on a dielectric substrate made of a high melting point metal that does not form an alloy with germanium at a temperature near the melting point of germanium, and a first layer made of germanium on the first layer. depositing a second layer on the second layer; depositing a third layer comprising at least one selected from the group consisting of boron nitride, aluminum nitride, beryllium oxide, and silicon carbide; This method is characterized in that it is a step of heating the entire dielectric substrate on which the first, second, and third layers are deposited or partially heating the dielectric substrate along the second layer.

䜜甚 本発明のゲルマニりム薄膜結晶の補造方法で
は、ゲルマニりムの凝瞮を抑え、薄膜の結晶化を
充分に行わせる必芁がある。このためには、次の
〜の芁件を満足しなければならないず考えら
れる。
<Function> In the method for producing a germanium thin film crystal of the present invention, it is necessary to suppress condensation of germanium and sufficiently crystallize the thin film. For this purpose, it is considered that the following requirements must be satisfied.

衚面匵力の倧きい材料の薄膜以䞋、保護膜
ず呌ぶでゲルマニりム局をサンドむツチ状に
挟むこず。
Sandwiching the germanium layer between thin films of material with high surface tension (hereinafter referred to as protective films) in the form of a sandwich.

䞀般に液䜓物質が固䜓䞊に存圚する堎合、こ
の液䜓物質が凝瞮した状態、぀たり玉状でたず
たるか、或いは固䜓衚面に広が぀お、぀たり固
䜓衚面に良く濡れお存圚するかの区別は、良く
知られおいるようにその固䜓の衚面匵力ず液䜓
物質の衚面匵力の倧小関係による。第図の挿
入図に瀺すように、液䜓物質ず固䜓の
濡れの皋床は接觊角Ξの倧きさずしお評䟡する
こずができる。接觊角Ξが倧きいほど、濡れの
皋床が小さく、玉状の凝瞮状態に近いずいうこ
ずができる。完党な凝瞮状態では接觊角Ξは
180床ずなる。第図のグラフは、皮々の固䜓
物質䞊におけるゲルマニりムの接觊角を枬定し
た結果であり、本発明においお保護膜ずしお甚
いる窒化硌玠、窒化アルミニりム、酞化ベリリ
りム及び炭化シリコンず、高融点金属であるタ
ングステンは他の代衚的な誘電䜓SiO2よ
り濡れが倧きい、すなわち凝瞮し難いこずが瀺
されおいる。ここで、定性的に考察するに、凝
瞮し易く濡れが悪い状態ずは、(1)固䜓の衚
面の露出郚分の面積が倧きく固䜓の衚面原
子は他の物質ず結合されずに宙ぶらりんで未結
合衚面電子の状態、即ち固䜓が固有の固䜓
衚面゚ネルギヌ或いは衚面匵力を持぀状態にあ
り、(2)液䜓物質は自らの単䜍面積圓たりの
液䜓衚面゚ネルギヌを最小にするため衚面匵力
の䜜甚で玉状の圢態を保぀おいる状態である。
埓぀お、単䜍衚面積圓たりに換算しお固䜓衚面
゚ネルギヌが液䜓衚面゚ネルギヌよりも倧きい
堎合には、この固䜓及び液䜓物質の党䜓系ずし
お、固䜓の衚面の露出郚分の面積が液䜓物
質の衚面積よりも倧きいほうが党゚ネルギヌは
小さくなる。すなわち、この液䜓物質は凝瞮状
態ずなる。逆に、凝瞮し難く濡れ易い状態ず
は、単䜍面積圓たりに換算しお固䜓衚面゚ネル
ギヌのほうが液䜓衚面゚ネルギヌよりも倧きい
状態であり、固䜓の衚面の露出郚分の面積
が広がるのではなく、固䜓の衚面は液䜓物
質に芆われ固䜓液䜓原子間の結合が生じる
こずによ぀お未結合状態時よりも固䜓衚面界
面゚ネルギヌは䞋がり、代わりに液䜓物質
が広が぀お系党䜓の゚ネルギヌは液䜓衚面゚
ネルギヌで芏定される倀に近くなる。
In general, when a liquid substance exists on a solid, it is well known whether the liquid substance is in a condensed state, that is, clumped together in a bead shape, or spread out, that is, well wetted on the solid surface. It depends on the magnitude relationship between the surface tension of the solid and the surface tension of the liquid substance. As shown in the inset of FIG. 7, the degree of wetting between the liquid substance 20 and the solid 21 can be evaluated as the contact angle Ξ. It can be said that the larger the contact angle Ξ, the smaller the degree of wetting, and the closer to a bead-like condensed state. In a completely condensed state, the contact angle Ξ is
It becomes 180 degrees. The graph in Figure 7 is the result of measuring the contact angle of germanium on various solid materials, and shows the contact angles of germanium on various solid materials, including boron nitride, aluminum nitride, beryllium oxide, and silicon carbide, which are used as protective films in the present invention, and tungsten, a high melting point metal. has been shown to have greater wettability, that is, less condensation, than other typical dielectrics (SiO 2 ). Considering this qualitatively, a state where condensation is easy and wettability is poor is defined as (1) the area of the exposed part of the surface of the solid 21 is large, and the surface atoms of the solid 21 are not bonded with other substances and are suspended in the air; The state of unbonded surface electrons, that is, the state in which the solid 21 has a unique solid surface energy or surface tension; (2) the liquid substance 20 uses the action of surface tension to minimize its own liquid surface energy per unit area. It is in a state where it maintains a ball-like shape.
Therefore, when the solid surface energy is larger than the liquid surface energy in terms of unit surface area, the area of the exposed part of the surface of the solid 21 is larger than the surface area of the liquid substance as a whole system of solid and liquid substances. The larger the value, the smaller the total energy. That is, this liquid substance becomes condensed. Conversely, a state in which it is difficult to condense and easily wet is a state in which the solid surface energy is larger than the liquid surface energy in terms of unit area, and the exposed area of the surface of the solid 21 does not expand, but the solid The surface of 21 is covered with the liquid substance 20 and bonds between solid and liquid atoms occur, so that the solid surface (interfacial) energy is lower than in the unbonded state, and instead the liquid substance 2
0 spreads, and the energy of the entire system approaches the value defined by the liquid surface energy.

埓぀お、溶融したゲルマニりムの凝瞮を起こ
さないようにするためにはゲルマニりム衚面゚
ネルギヌ蚀い換えるず衚面匵力の倧きな固䜓を
保護局ずしお接觊させるこずが重芁である。
Therefore, in order to prevent condensation of molten germanium, it is important to contact germanium with a solid having a high surface energy, in other words, a high surface tension, as a protective layer.

衚面゚ネルギヌの倧きさずは、䞊述したよう
に衚面原子が結合を求める傟向の匷さを衚す量
であり、物質原子の結合の匷さそのものに盎接
関係した量である。結合匷床を衚す巚芖的に枬
定可胜な物理定数ずしおは凝集゚ネルギヌ
cohesive energyがある。第図に皮々の
物質の、䞻ずしお結晶状態における凝集゚ネル
ギヌを瀺す。暪軞は芋やすくするために物質の
むオン床を取぀おおり、呚期埋衚で同䞀呚期か
らなる物質を線で結んである。第図から明ら
かなように、窒化硌玠、酞化ベリリりム等本発
明に䜿甚される物質はいずれも倧きい凝集゚ネ
ルギヌすなわち衚面゚ネルギヌ衚面匵力を
持぀おいる。たた、タングステン等の高融点金
属も䞀般に倧きい凝集゚ネルギヌを持぀おい
る。
As mentioned above, the magnitude of surface energy is a quantity that represents the strength of the tendency of surface atoms to seek bonds, and is a quantity that is directly related to the strength of the bonds of material atoms themselves. Cohesive energy is a macroscopically measurable physical constant that represents bond strength. FIG. 8 shows the cohesive energies of various substances, mainly in the crystalline state. The horizontal axis shows the ionicity of substances for ease of viewing, and lines connect substances with the same period on the periodic table. As is clear from FIG. 8, the substances used in the present invention, such as boron nitride and beryllium oxide, all have large cohesive energy, that is, surface energy (surface tension). Furthermore, high melting point metals such as tungsten generally have large cohesive energy.

珟実には、それぞれの固䜓、液䜓衚面の僅か
な汚れ具合等によ぀おも、濡れの状態に倉化が
生じるこずがあり、これが第図における接觊
角の枬定に幅が出る原因である。たた、汚れ、
僅かな凹凞等の理由により、理想的な衚面ずは
異なる状態にあるため、完党に濡れる接觊角
Ξ床、完党に凝瞮する接觊角Ξ180
床ずなるこずは、皀である。埓぀お、珟実の
ゲルマニりムの凝瞮を充分に抑えるためには、
第図の挿入図に瀺すように片面䞋面のみ
保護膜ず接觊させるだけではなく、溶融前のゲ
ルマニりムの䞊面にも同様な保護膜を配眮する
所謂サンドむツチ構造により、ゲルマニりム保
護物質ずの実質的接觊面積を増倧せしめるこず
が必芁であるず考えられるのである。
In reality, the state of wetting may change depending on the degree of contamination of the surface of each solid or liquid, and this is the cause of the variation in the measurement of the contact angle in FIG. 7. Also, dirt,
Due to slight irregularities, etc., the surface is in a different state from the ideal surface, so it becomes completely wet (contact angle Ξ = 0 degrees) and completely condenses (contact angle Ξ = 180 degrees).
degree) is rare. Therefore, in order to sufficiently suppress the actual condensation of germanium,
As shown in the inset of Figure 7, not only one side (lower surface) is brought into contact with the protective film, but also a similar protective film is placed on the upper surface of the germanium before melting, which is the so-called sandwich structure. Therefore, it is considered necessary to increase the contact area.

䞊䞋の保護局はゲルマニりムず近䌌した線膚
匵係数を有するこず。
The upper and lower protective layers must have a coefficient of linear expansion similar to that of germanium.

溶融したゲルマニりムの凝集が抑えられおも
ゲルマニりムが固化結晶化した盎埌は、系
の枩床はゲルマニりムの融点盎䞋であり、宀枩
に至る冷华過皋で該サンドむツチ構造が熱歪み
により砎壊されおは䜕にもならない。埓぀お、
ゲルマニりムず保護膜ずの線膚匵係数が近䌌し
た倀であるこずが必芁である。このため、本発
明で䜿甚する物質は党お熱歪みが小さいものず
なるように遞択した。
Even if the aggregation of molten germanium is suppressed, immediately after germanium solidifies (crystallizes), the temperature of the system is just below the melting point of germanium, and it is difficult to imagine that the sandwich structure will be destroyed by thermal strain during the cooling process to room temperature. It doesn't even become. Therefore,
It is necessary that the linear expansion coefficients of germanium and the protective film are similar values. For this reason, all materials used in the present invention were selected to have low thermal distortion.

䞊䞋の保護局はゲルマニりムの融点近傍の枩
床においおもゲルマニりムず著しく反応しない
こず。
The upper and lower protective layers must not react significantly with germanium even at temperatures near the melting point of germanium.

溶融したゲルマニりムが保護膜ず反応を起こ
すず、䞀般にはゲルマニりムず保護膜の界面は
凹凞を持぀荒れた面ずなるため、䞊偎保護局陀
去埌のゲルマニりム衚面に砒玠ガリりム等の平
坊で高品質な゚ピタキシダル成長ができない状
態ずなる。埓来のように䞊䞋の保護局ずしおタ
ングステンを甚いる構造では、保護局ずダング
ステンの䞊䞋の境界面の䞡方で少量ながら反応
が起こるために、䞡境界面の荒れの盞乗効果で
特にゲルマニりム䞊面の荒れが倧きくなり゚ピ
タキシダル成長時に問題であ぀た。たた、第
図の光玠子ず同様な構造の光玠子を補䜜する際
には、光結合効率を倧きくするためにゲルマニ
りム局の厚さを可胜なかぎり薄くする必芁があ
り、このような堎合には䞊䞋の界面荒れがの盞
乗効果が著しく倧きくなり、結果ずしおゲルマ
ニりム䞊面の荒れが増倧する。
When the molten germanium reacts with the protective film, the interface between the germanium and the protective film generally becomes a rough surface with unevenness. It becomes a state where it is impossible to grow. In a conventional structure in which tungsten is used as the upper and lower protective layers, a small amount of reaction occurs at both the upper and lower interfaces between the protective layer and dungsten, so the synergistic effect of the roughness on both interfaces causes roughness, especially on the top surface of germanium. It became large and became a problem during epitaxial growth. Also, the third
When manufacturing an optical device with a structure similar to the one shown in the figure, it is necessary to make the germanium layer as thin as possible in order to increase the optical coupling efficiency. The synergistic effect of roughness increases significantly, and as a result, the roughness of the top surface of germanium increases.

そこで、䞊䞋の保護局を双方ずもに窒化硌玠
等の物質ずする特蚱請求の範囲第項こず
なく、そのいずれか䞀方を窒化硌玠等の物質に
替えるだけでも特蚱請求の範囲第項及び第
項、これらの物質ずゲルマニりムの界面反
応は党く無芖するこずが出来るので、䞡界面荒
れの盞乗効果が起こるこずはなく、タングステ
ン等の高融点物質ずゲルマニりムずの反応によ
る荒れを極小に抑えるこずが出来る。
Therefore, instead of using a substance such as boron nitride for both the upper and lower protective layers (Claim 1), it is possible to simply replace one of them with a substance such as boron nitride (Claim 2). and Section 3), since the interfacial reactions between these substances and germanium can be completely ignored, there is no synergistic effect of roughening of both interfaces, and the roughness caused by the reaction between high melting point substances such as tungsten and germanium is minimized. It can be suppressed to

尚、このように金属を積局構造の䞀郚に甚い
れば電極ずしお利甚するこずが可胜になる。
Note that if metal is used as a part of the laminated structure in this way, it can be used as an electrode.

実斜䟋 以䞋、本発明の実斜䟋に぀いお説明する。<Example> Examples of the present invention will be described below.

衚面をSiO2膜で被膜された基板を600℃に
維持し、ゞボランB2H6およびアンモニア
NH3を原料ガスずしお化孊気盞堆積法によ
り、70n厚の窒化硌玠膜を被着した埌、こ
の基板䞊に×10-6Torrの真空䞭で、基板枩床
700℃で電子ビヌム加熱蒞着法により400n厚の
ゲルマニりム膜を被着した。このような凊理工
皋を経た基板を、再び基板枩床600℃で、ゞボラ
ンおよびアンモニアを原料ガスずする化孊気盞堆
積法によりゲルマニりム膜䞊に70nmの窒化硌
玠膜を圢成させ第図に瀺すごずき断面構
造の詊料を埗た。
A substrate 5 whose surface is coated with a SiO 2 film 4 is maintained at 600° C. and a boron nitride film 11 with a thickness of 70 nm is deposited by chemical vapor deposition using diborane (B 2 H 6 ) and ammonia (NH 3 ) as source gases. After depositing on this substrate, the substrate temperature was lowered in a vacuum of 1×10 -6 Torr.
A 400 nm thick germanium film 2 was deposited at 700° C. by electron beam heating evaporation. After undergoing such processing steps, a 70 nm boron nitride film 12 was formed on the germanium film 2 by chemical vapor deposition using diborane and ammonia as raw material gases at a substrate temperature of 600° C. as shown in FIG. 5A. A sample with the cross-sectional structure shown was obtained.

次いで、埗られた詊料を、第図に瀺すごず
く、石英板に茉せる䞀方、詊料䞊面に線状ヒ
ヌタを配眮するず共に、高呚波加熱法により
線状ヒヌタおよび基板支持台はそれぞれ
箄1200℃、玄770℃に保たれ結晶化が行なわれた。
ゲルマニりム局は線状ヒヌタにより局所的
に熱せられ、局のうちのヒヌタ盎䞋の郚分
が溶融した状態ずなる。そこで、矢印
方向に基板を支持台䞊で毎秒玄ミリメヌト
ルの速床で矢印方向ぞ摺動させるこずによりゲル
マニりム溶融郚分を基板䞊で移動し、ゟヌン
溶融させたずころゲルマニりム局は順次溶融、
固化しお結晶ずな぀た。第図図の状態の時点
ではが結晶化郚分、が未結晶化郚分であ
る。このようにゲルマニりム局の䞀郚が溶融
する状況にあ぀おも、窒化硌玠の局は
䜕らの倉化もなく安定に保持され、における
ゲルマニりムの凝瞮を抌さえるこずが可胜であ
る。その理由の䞀぀は窒化硌玠はゲルマニりムの
融点1213゜K付近においお、ゲルマニりムず反応
するこずがなくか぀分解蒞発等も起こさないから
である。理由のもう䞀぀は窒化硌玠の衚面匵力が
倧きいために、溶融ゲルマニりムず境界を接した
堎合ゲルマニりムをよく濡らし、安定に薄局状に
保぀ためであるず考えられる。たた、ゲルマニり
ム局の䞊䞋に窒化硌玠局を圢成するこずにより、
ゲルマニりムず窒化硌玠ずの間の付着性のよい境
界面の面積が倧きくなるずずもに、機械的に匷固
な窒化硌玠の物質も盞乗的な効果ずなり、安定に
薄膜結晶が実珟できた。䞀方、ゲルマニりムず窒
化硌玠はゲルマニりム融点1213゜Kから宀枩
に到る間の枩床で、倧略盞等しい線熱膚匵係数
6.8〜5.7×10-6℃を持぀ため、結晶化終了盎
埌から宀枩に到る間でも各局にひび割れ、剥離等
は生じなか぀た。以䞊述べたようにゲルマニりム
の凝瞮防止のための保護膜ずしお充分機胜するた
めの芁件は、(1)ゲルマニりムず反応しないこず、
(2)衚面匵力が倧きいこず、(3)線熱膚匵係数がゲル
マニりムず䌌通぀た倀であるこず、(4)機械的にあ
る皋床の匷床を持぀こずである。以䞊の芁件に合
臎する物質ずしおは窒化硌玠の他に窒化アルミニ
りム、酞化ベリリりム、炭化シリコンをあげるこ
ずができる。したが぀お、䞊蚘実斜䟋の他にもこ
れらの物質を適圓に組み合わせるこずにより同様
の効果があるこずは論をたたない。なお、本実斜
䟋ではゲルマニりムの結晶化埌、ゲルマニりム䞊
の窒化硌玠局をCF4ガスたたはC2F6ガスを甚
いたリアクテむブ゚ツチング法により陀去した
が、陀去埌のゲルマニりム局の衚面は平坊で、こ
のゲルマニりム䞊ぞのヒ化ガリりムの゚ピタキシ
ダル成長局も同様に平坊で結晶欠陥も少く、再珟
性のよいヒ化ガリりム発光玠子が埗られた。
Next, the obtained sample is placed on a quartz plate 14 as shown in FIG. Crystallization was carried out at approximately 1200°C and maintained at approximately 770°C.
The germanium layer 2 is locally heated by the linear heater 13, and a portion 15 of the layer 2 directly under the heater 13 becomes molten. Therefore, (arrow C)
By sliding the substrate on the support stand 14 in the direction of the arrow at a speed of about 1 millimeter per second, the germanium melting portion 15 was moved on the substrate, causing zone melting, and the germanium layer 2 was sequentially melted.
It solidified into crystals. At the time of the state shown in FIG. 5B, 17 is a crystallized portion and 18 is an uncrystallized portion. Even in such a situation where part 15 of the germanium layer melts, the boron nitride layers 11 and 12 are stably maintained without any change, and it is possible to suppress the condensation of germanium in the boron nitride layer 15. One of the reasons for this is that boron nitride does not react with germanium near germanium's melting point of 1213°K and does not cause decomposition or evaporation. Another reason is that boron nitride has a high surface tension, so when it comes into contact with molten germanium, it wets the germanium well and keeps it stable in a thin layer. In addition, by forming boron nitride layers above and below the germanium layer,
In addition to increasing the area of the interface between germanium and boron nitride with good adhesion, the mechanically strong boron nitride material also had a synergistic effect, making it possible to create a stable thin film crystal. On the other hand, germanium and boron nitride have approximately the same coefficient of linear thermal expansion (6.8 to 5.7×10 -6 /℃) at temperatures between the melting point of germanium (1213°K) and room temperature, so they can be used immediately after crystallization. No cracking, peeling, etc. occurred in each layer even during the period from the temperature to room temperature. As stated above, the requirements for functioning sufficiently as a protective film to prevent germanium condensation are (1) not to react with germanium;
(2) It has a large surface tension, (3) It has a coefficient of linear thermal expansion similar to that of germanium, and (4) It has a certain degree of mechanical strength. In addition to boron nitride, aluminum nitride, beryllium oxide, and silicon carbide can be cited as substances that meet the above requirements. Therefore, it goes without saying that a similar effect can be obtained by appropriately combining these substances in addition to those in the above embodiments. In this example, after the crystallization of germanium, the boron nitride layer 12 on the germanium was removed by a reactive etching method using CF 4 gas or C 2 F 6 gas, but the surface of the germanium layer after removal was flat. The epitaxially grown layer of gallium arsenide on germanium was similarly flat and had few crystal defects, resulting in a gallium arsenide light-emitting device with good reproducibility.

さらに、ゲルマニりム局䞋の窒化硌玠局
は、ヒ化ガリりム玠子の発光波長に察しお透明で
あるため、光信号を有効にシリコン基板ぞ到達
させるこずができた。
Furthermore, a boron nitride layer 11 under the germanium layer
Since it is transparent to the emission wavelength of the gallium arsenide element, the optical signal could effectively reach the silicon substrate 5.

たた、第図に瀺すように、電子ビヌム加熱蒞
着により圢成した厚さ400nmのゲルマニりム局
䞊に、10-2Torrのアルゎンガスによるスパツタ
法で圢成した厚さ玄50nmの窒化アルミニりム局
、䞋には電子ビヌム加熱蒞着により圢成した
厚さ玄50nmのタングステン局からなる積局構
造の詊料を前蚘実斜䟋ず同じゟヌン溶融法で結晶
化したずころ、衚面の平坊性の良奜なゲルマニり
ム薄膜結晶をうるこずができた。
In addition, as shown in Fig. 6, a germanium layer 2 with a thickness of 400 nm was formed by electron beam heating evaporation.
A sample with a laminated structure consisting of an aluminum nitride layer 19 with a thickness of about 50 nm formed on the top by a sputtering method using argon gas at 10 -2 Torr, and a tungsten layer 1 with a thickness of about 50 nm formed on the bottom by electron beam heating evaporation. When crystallized using the same zone melting method as in the above example, a germanium thin film crystal with good surface flatness could be obtained.

たた、このゲルマニりム薄膜䞊に゚ピタキシダ
ル成長させたヒ化ガリりム局も平坊性の良奜なも
のが埗られた。
Furthermore, a gallium arsenide layer epitaxially grown on this germanium thin film also had good flatness.

本実斜䟋では、ゲルマニりム局の䞋にタング
ステン局が存圚しおおり、この局は、ゲルマ
ニりムさらにヒ化ガリりム内の玠子の電極ずしお
䜿甚するこずができる。たた、目的に応じおゲル
マニりム局の䞊にタングステン局、䞋に窒化アル
ミニりム局を圢成する構成にするこずもできる。
これらの実斜䟋以倖にも本発明の䞻旚を逞脱しな
い範囲で皮々の倉曎あるいは改良を行ない埗るこ
ずは蚀うたでもない。基板ずなる物質も熱酞化シ
リコンに限定されるものではなく、広い範囲の物
質に適甚可胜である。
In this example, a tungsten layer 1 is present below the germanium layer 2, which layer 1 can be used as an electrode for a device in germanium or even gallium arsenide. Further, depending on the purpose, a structure may be adopted in which a tungsten layer is formed on the germanium layer and an aluminum nitride layer is formed below.
It goes without saying that various changes and improvements can be made in addition to these embodiments without departing from the spirit of the invention. The substrate material is not limited to thermally oxidized silicon, but can be applied to a wide range of materials.

䞊蚘実斜䟋においお、第図に瀺す積局構造
の詊料も、たた第図に瀺す積局構造のものも、
ゲルマニりム局を第図に瀺すゟヌン溶融法で
結晶化するものを䞀䟋ずしお説明したが、このよ
うに基板のゲルマニりム局方向に沿぀お郚分的に
溶融する方法のみならず、䞊蚘詊料党䜓をゲルマ
ニりムの融点986℃より高い1000℃に急速に昇枩
溶融させた埌、冷华するこずによ぀お結晶化させ
おもよい。
In the above examples, the sample with the laminated structure shown in FIG. 5A and the laminated structure shown in FIG.
An example of crystallizing the germanium layer using the zone melting method shown in FIG. It may be crystallized by rapidly raising the temperature to 1000°C, which is higher than the melting point of 986°C, and then cooling it.

発明の効果 以䞊の説明から明らかなように、所望の基板䞊
に窒化硌玠等でなる第䞀の局、ゲルマニりムでな
る第二の局、窒化硌玠等でなる第䞉の局からなる
構成にし、ゲルマニりムを結晶化した埌ゲルマニ
りム䞊の窒化硌玠等の局を化孊゚ツチングもしく
はドラむ゚ツチングで陀去するこずにより平坊な
ゲルマニりム結晶を衚面に有する半導䜓基板が取
埗される。さらに、目的に応じお該第䞀たたは第
䞉の局の䞀方をタングステン等の高融点金属でな
る局ずすれば、この局を玠子の電極ずしお䜿甚す
るこずが可胜になる。たた、ゲルマニりムず導電
性物質ずの接觊を避けた構造を取りたい堎合は、
該第䞀および第䞉の局を窒化硌玠等の絶瞁性物質
のみで構成すればよい。
<Effects of the Invention> As is clear from the above description, a structure consisting of a first layer made of boron nitride or the like, a second layer made of germanium, and a third layer made of boron nitride or the like can be formed on a desired substrate. After crystallizing germanium, a layer of boron nitride or the like on the germanium is removed by chemical etching or dry etching to obtain a semiconductor substrate having a flat germanium crystal on the surface. Furthermore, if one of the first or third layers is made of a high melting point metal such as tungsten depending on the purpose, this layer can be used as an electrode of the device. Also, if you want to create a structure that avoids contact between germanium and conductive substances,
The first and third layers may be composed only of an insulating material such as boron nitride.

䞀方、基板䞭に圢成した玠子ず、ゲルマニりム
䞊のヒ化ガリりムに圢成した玠子ずの光信号によ
る結合をはかる堎合には、局の透明床を考慮しお
構成を適宜遞択するこずにより容易に目的を達成
できる。
On the other hand, when coupling an element formed in a substrate with an element formed on gallium arsenide on germanium using optical signals, it is easy to achieve the purpose by selecting an appropriate configuration considering the transparency of the layer. It can be achieved.

本発明の応甚ずしおはゲルマニりム局䞊に成長
したヒ化ガリりムを甚いるこずにより、安䟡なヒ
䟡ガリりム倪陜電池補造が可胜である。たた、ヒ
化ガリりム発光玠子ず基板シリコン内の受光組子
の組み合わせによるモノリシツク・フオトカツプ
ラ玠子が実珟できる。さらにヒ化ガリりム内ずシ
リコン内の光・電子集積回路を混成したモノリシ
ツク耇合機胜集積回路の䜜成等に利甚できる利点
もある。
As an application of the present invention, by using gallium arsenide grown on a germanium layer, inexpensive gallium arsenide solar cells can be manufactured. Furthermore, a monolithic photocoupler device can be realized by combining a gallium arsenide light emitting device and a light receiving muntin in the silicon substrate. Furthermore, it has the advantage that it can be used to create monolithic multifunctional integrated circuits that combine opto-electronic integrated circuits in gallium arsenide and silicon.

【図面の簡単な説明】[Brief explanation of drawings]

第図〜第図はいずれも埓来のゲルマニりム
薄膜結晶の補造方法においお溶融加熱するゲルマ
ニりム薄膜の積局構成を瀺す説明図、第図は
本発明のゲルマニりム薄膜結晶の補造方法におい
お溶融加熱するゲルマニりム薄膜の䞀実斜䟋の積
局構成の説明図、第図は第図の積局構成
のゲルマニりム薄膜のゟヌン溶融方法を瀺す説明
図、第図は本発明のゲルマニりム薄膜結晶の補
造方法においお溶融加熱するゲルマニりム薄膜の
他の実斜䟋の積局構成の説明図、第図は溶解
したゲルマニりムの説明図、第図は加熱によ
るゲルマニりムの凝瞮を瀺す説明図、第図は各
皮の物質の接觊角の瀺すグラフ、第図は各皮の
物質のむオン床ず凝集゚ネルギヌずの関係を瀺す
グラフである。 図面䞭、  タングステン高融点金
属局、  ゲルマニりム局、  酞化シリ
コン膜基板、  シリコン膜基板、  ヒ化
ガリりム゚ピタキシダル局、  窒化
硌玠膜、  線状ヒヌタカヌボン、
  ゲルマニりム局の溶融郚分、  結晶化
郚分、  未結晶化郚分、  窒化アル
ミニりム局。
1 to 4 are explanatory diagrams showing the laminated structure of germanium thin films melted and heated in the conventional germanium thin film crystal production method, and FIG. 5A is melted and heated in the germanium thin film crystal production method of the present invention. An explanatory diagram of the laminated structure of one embodiment of a germanium thin film, FIG. 5B is an explanatory diagram showing a zone melting method for a germanium thin film having the laminated configuration of FIG. 5A, and FIG. 6 is a method for producing a germanium thin film crystal of the present invention. FIG. 7a is an explanatory diagram of molten germanium, FIG. 7b is an explanatory diagram showing condensation of germanium by heating, and FIG. FIG. 9 is a graph showing the relationship between the ionicity and cohesive energy of various substances. In the drawings, 1, 3...Tungsten (high melting point metal) layer, 2...Germanium layer, 4...Silicon oxide film substrate, 5...Silicon film substrate, 6...Gallium arsenide epitaxial layer, 11, 12 ...Boron nitride film, 13 ... Linear heater (carbon), 15
... Melted portion of germanium layer, 17... Crystallized portion, 18... Uncrystallized portion, 19... Aluminum nitride layer.

Claims (1)

【特蚱請求の範囲】  誘電䜓基板䞊に、窒化硌玠、窒化アルミニり
ム、酞化ベリリりムおよび炭化シリコンからなる
矀から遞んだ少くずも䞀からなる第の局を堆積
させる工皋ず、䞊蚘第の局䞊にゲルマニりムか
らなる第の局を堆積させる工皋ず、䞊蚘第の
局䞊に窒化硌玠、窒化アルミニりム、酞化ベリリ
りムおよび炭化シリコンからなる矀から遞んだ少
くずも䞀からなる第の局を堆積させる工皋ず、
䞊蚘第、第および第の局を堆積した誘電䜓
基板の党䜓又は第の局に沿぀お誘電䜓基板を郚
分加熱する工皋ずからなるこずを特城ずするゲル
マニりム薄膜結晶の補造方法。  誘電䜓基板䞊に、窒化硌玠、窒化アルミニり
ム、酞化ベリリりムおよび炭化シリコンからなる
矀から遞んだ少くずも䞀からなる第の局を堆積
させる工皋ず、䞊蚘第の局䞊にゲルマニりムか
らなる第の局を堆積させる工皋ず、䞊蚘第の
局䞊にゲルマニりムの融点近傍の枩床でゲルマニ
りムず合金を圢成しない高融点金属からなる第
の局を堆積させる工皋ず、䞊蚘第、第および
第の局を堆積した誘電䜓基板の党䜓又は第の
局に沿぀お誘電䜓基板を郚分加熱する工皋ずから
なるこずを特城ずするゲルマニりム薄膜結晶の補
造方法。  誘電䜓基板䞊に、ゲルマニりムの融点近傍の
枩床でゲルマニりムず合金を圢成しない高融点金
属からなる第の局を堆積させる工皋ず、䞊蚘第
の局䞊にゲルマニりムからなる第の局を堆積
させる工皋ず、䞊蚘第の局䞊に窒化硌玠、窒化
アルミニりム、酞化ベリリりムおよび炭化シリコ
ンからなる矀から遞んだ少くずも䞀からなる第
の局を堆積させる工皋ず、䞊蚘第、第および
第の局を堆積した誘電䜓基板の党䜓又は第の
局に沿぀お誘電䜓基板を郚分加熱する工皋ずから
なるこずを特城ずするゲルマニりム薄膜結晶の補
造方法。
[Claims] 1. A step of depositing on a dielectric substrate a first layer consisting of at least one selected from the group consisting of boron nitride, aluminum nitride, beryllium oxide, and silicon carbide; depositing a second layer of germanium on the second layer; and depositing a third layer of at least one selected from the group consisting of boron nitride, aluminum nitride, beryllium oxide, and silicon carbide on the second layer. a step of causing
A method for producing a germanium thin film crystal, comprising the step of heating the entire dielectric substrate on which the first, second and third layers are deposited or partially heating the dielectric substrate along the second layer. 2 depositing a first layer made of at least one selected from the group consisting of boron nitride, aluminum nitride, beryllium oxide, and silicon carbide on a dielectric substrate; depositing a first layer made of germanium on the first layer; a third layer made of a high melting point metal that does not form an alloy with germanium at a temperature near the melting point of germanium on the second layer;
and partially heating the dielectric substrate along the entire or second layer on which the first, second and third layers are deposited. A method for producing germanium thin film crystals. 3 Depositing a first layer made of a high melting point metal that does not form an alloy with germanium at a temperature near the melting point of germanium on a dielectric substrate, and depositing a second layer made of germanium on the first layer. a third layer comprising at least one selected from the group consisting of boron nitride, aluminum nitride, beryllium oxide and silicon carbide on the second layer;
and partially heating the dielectric substrate along the entire or second layer on which the first, second and third layers are deposited. A method for producing germanium thin film crystals.
JP59143242A 1984-07-12 1984-07-12 Preparation of germanium thin film crystal Granted JPS6126598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59143242A JPS6126598A (en) 1984-07-12 1984-07-12 Preparation of germanium thin film crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59143242A JPS6126598A (en) 1984-07-12 1984-07-12 Preparation of germanium thin film crystal

Publications (2)

Publication Number Publication Date
JPS6126598A JPS6126598A (en) 1986-02-05
JPH0235716B2 true JPH0235716B2 (en) 1990-08-13

Family

ID=15334199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59143242A Granted JPS6126598A (en) 1984-07-12 1984-07-12 Preparation of germanium thin film crystal

Country Status (1)

Country Link
JP (1) JPS6126598A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH065903B2 (en) * 1987-06-24 1994-01-19 株匏䌚瀟メディア Matrix switcher with input / output combination pattern preset, storage and switching functions
CN102916039B (en) * 2012-10-19 2016-01-20 枅华倧孊 There is the semiconductor structure of beryllium oxide

Also Published As

Publication number Publication date
JPS6126598A (en) 1986-02-05

Similar Documents

Publication Publication Date Title
US4576851A (en) Semiconductor substrate
JPS6392012A (en) Laminated article and manufacture of the same
US4743567A (en) Method of forming thin, defect-free, monocrystalline layers of semiconductor materials on insulators
JPH0235716B2 (en)
JPS60189922A (en) Method of producing single crystal layer
JPH027415A (en) Formation of soi thin film
JPS6046539B2 (en) Method for manufacturing silicon crystal film
US3475210A (en) Laminated passivating structure
JPH04253323A (en) Manufacture of semiconductor device
JP2898360B2 (en) Method for manufacturing semiconductor film
JPH04298020A (en) Manufacture of silicon thin film crystal
JP2779033B2 (en) Method for growing polycrystalline Si thin film
JP2692138B2 (en) Manufacturing method of single crystal thin film
JP3350972B2 (en) Semiconductor crystal bonding method
JP2929660B2 (en) Method for manufacturing semiconductor device
JP2983685B2 (en) Method for manufacturing superconducting device
JP2532252B2 (en) Method for manufacturing SOI substrate
EP0431685A1 (en) Method of forming thin defect-free strips of monocrystalline silicon on insulators
JPS5853823A (en) Manufacture of semiconductor device
JPH029127A (en) Forming method for soi substrate
JPS62221106A (en) Manufacture of semiconductor crystal
JPS60229330A (en) Manufacture of semiconductor device
JPH03138925A (en) Semiconductor-film crystallizing method
JPH0118575B2 (en)
JPS60127745A (en) Semiconductor substrate