JPH03138925A - Semiconductor-film crystallizing method - Google Patents

Semiconductor-film crystallizing method

Info

Publication number
JPH03138925A
JPH03138925A JP27642089A JP27642089A JPH03138925A JP H03138925 A JPH03138925 A JP H03138925A JP 27642089 A JP27642089 A JP 27642089A JP 27642089 A JP27642089 A JP 27642089A JP H03138925 A JPH03138925 A JP H03138925A
Authority
JP
Japan
Prior art keywords
film
semiconductor film
insulating film
semiconductor
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27642089A
Other languages
Japanese (ja)
Inventor
Yoshiteru Nitta
新田 佳照
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP27642089A priority Critical patent/JPH03138925A/en
Publication of JPH03138925A publication Critical patent/JPH03138925A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a semiconductor-film crystallizing method by which the temperature distribution in the film thickness direction of a semiconductor film can be controlled accurately and simply by providing a second insulating film on a semiconductor film which is provided on a first insulating film, laminating a metal film on the second insulating film, and thereafter projecting an energy beam from the side of an insulating substrate. CONSTITUTION:An amorphous silicon semiconductor film 3 is formed on a first insulating film 2 by a plasma CVD method using silane gas or disilane gas and the like. A second insulating film 4 comprising silicon oxide is further formed on the semiconductor film 3 by the same war as for the first insulating film 2. A molybdenum film 5 is formed on the second insulating film 4 by a vacuum vapor deposition method, a sputtering method and the like. The temperature distribution in the film-thickness direction of the semiconductor film 3 immediately after the projection of an ion energy beam can be accurately controlled. Thus, the temperature gradient in the thickness direction of the semiconductor film can be made approximately constant. The semiconductor film comprising the large single crystal having excellent crystalline property is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体膜の結晶化法に関し、より詳しくは透
光性の絶縁基板上もしくは該基板上に設けた絶縁膜上に
形成した非単結晶の半導体膜にレーザ光等エネルギビー
ムを基板側から照射することによって半導体膜を単結晶
化する方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for crystallizing a semiconductor film, and more specifically, the present invention relates to a method for crystallizing a semiconductor film, and more specifically, to a method for crystallizing a semiconductor film. The present invention relates to a method of making a semiconductor film into a single crystal by irradiating the single crystal semiconductor film with an energy beam such as a laser beam from the substrate side.

〔従来の技術〕[Conventional technology]

近年、レーザ光によって非単結晶シリコン膜を溶融し単
結晶化する、いわゆるレーザ光による結晶化法がS O
I (Silicon On In5ulator)技
術等において有望視されており、例えばシリコン膜の結
晶化層における粒径の成長促進化や粒界の局所化等を図
って、大型かつ欠陥の少ない単結晶領域を得る技術が報
告されている(例えば、JAPANESEJOURNA
L OF APPLIED P)IYsIcs、 Vo
l、 28. No、1゜JANUARY、 1989
. pp−L128−L130参照)。
S O
It is seen as promising in I (Silicon On In5ulator) technology, etc., and for example, it is possible to obtain large single crystal regions with few defects by promoting grain size growth and localizing grain boundaries in the crystallized layer of silicon films. techniques have been reported (e.g. JAPANESE JOURNA
L OF APPLIED P)IYsIcs, Vo
l, 28. No. 1゜JANUARY, 1989
.. (See pp-L128-L130).

第2図に基づいて上記技術を説明する。第2図は部分断
f図を示し、シリコンウェハ55上に酸化シリコン(S
iO2) IK 54を形成させ、この上に多結晶のシ
リコン膜53をCVD法により堆積させる。さらに、シ
リコン膜53に冷却媒体として透明のポリエチレングリ
コール(液体、分子量約600以下)層52を配設させ
る。このとき、透明のガラス板51によってポリエチレ
ングリコール層52の厚み(約0.5〜約2ミリ)を一
定に保持させている。
The above technique will be explained based on FIG. FIG. 2 shows a partial cross-sectional view, in which silicon oxide (S) is placed on a silicon wafer 55.
iO2) IK 54 is formed, and a polycrystalline silicon film 53 is deposited thereon by the CVD method. Furthermore, a transparent polyethylene glycol (liquid, molecular weight of about 600 or less) layer 52 is provided on the silicone film 53 as a cooling medium. At this time, the thickness of the polyethylene glycol layer 52 (about 0.5 to about 2 mm) is kept constant by the transparent glass plate 51.

このような状態で、エネルギビームであるレーザ光りを
シリコン膜53に走査させながら照射し、これを溶融及
び固化させて単結晶化を行う。
In this state, the silicon film 53 is irradiated with scanning laser light, which is an energy beam, to melt and solidify the silicon film 53 to form a single crystal.

ガラス板51及びポリエチレングリコール層52が無い
場合には、シリコン膜53の上面は雰囲気ガスと接触す
るため、レーザ光りの照射直後におけるシリコン膜53
の厚み方向の温度分布は、酸化シリコン膜54に接して
いるシリコン膜53の下W153bが下面側53aより
いちはやく冷却され、上面側53aが高温、下面側53
bが低温の急な温度勾配を有することになる。
In the absence of the glass plate 51 and the polyethylene glycol layer 52, the upper surface of the silicon film 53 comes into contact with the atmospheric gas, so that the silicon film 53 immediately after irradiation with laser light
The temperature distribution in the thickness direction is such that the lower W153b of the silicon film 53 in contact with the silicon oxide film 54 is cooled faster than the lower surface side 53a, the upper surface side 53a is at a higher temperature, and the lower surface side 53
b will have a steep temperature gradient at a low temperature.

一方、シリコン膜53に冷却媒体を接触させた上述の方
法によれば、シリコン膜53の上面側53aはポリエチ
レングリコール層52により下面側53bと同程度に冷
却され放熱を行うので、シリコン膜53の厚み方向の温
度勾配はほぼ一定となる。これにより、結晶粒径の成長
が促進され、大型の単結晶が得られる。
On the other hand, according to the above-described method in which a cooling medium is brought into contact with the silicon film 53, the upper surface side 53a of the silicon film 53 is cooled by the polyethylene glycol layer 52 to the same extent as the lower surface side 53b and radiates heat. The temperature gradient in the thickness direction is approximately constant. This promotes the growth of crystal grain size and provides a large single crystal.

〔発明が解決しようとする課題〕 しかしながら、上述の従来の技術では、基板上に形成さ
れたシリコン膜S3の表面を覆うかなり厚い液体のポリ
エチレングリコール層52及びガラス板51の2つの層
をレーザ光りが通過してシリコン膜53を溶融するので
、前記14Nの屈折率の相違や振動その他によるポリエ
チレングリコール152の厚みの変化等によりレーザ光
りの焦点ずれが生じやすい。また、常温で液体のポリエ
チレングリコール層52を用いているので、シリコン膜
53が溶融する前にシリコン膜53からの熱でポリエチ
レングリコールN52が沸騰し、気泡が発生する等して
レーザ光りの光路の妨げとなりやすい。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional technology, two layers, the fairly thick liquid polyethylene glycol layer 52 covering the surface of the silicon film S3 formed on the substrate and the glass plate 51, are exposed to laser light. passes through and melts the silicon film 53, so the focus of the laser beam tends to shift due to the difference in the refractive index of the 14N, the change in the thickness of the polyethylene glycol 152 due to vibration, etc. Furthermore, since the polyethylene glycol layer 52, which is liquid at room temperature, is used, the polyethylene glycol N52 boils due to the heat from the silicon film 53 before the silicon film 53 melts, causing bubbles and the like to interfere with the optical path of the laser beam. It can easily become a hindrance.

そこで、透明なガラス基板上に形成したシリコン膜をガ
ラス基板下側からレーザ光を照射する方法が考えられる
が、シリコン膜上に何も形成させない状態でレーザ光を
走査照射させた場合、形成された単結晶において、約1
00μm当り数度の範囲で結晶方位が回転するという不
都合が起きることが判明した。このため、結晶性が良好
な半導体膜が得られず、所望の半導体特性を期待するこ
とができない、上記結晶方位の回転の原因は、既述した
ようにシリコン膜のガラス基板側(下面側)が低温とな
り、シリコン膜の上面側より下面側の方が固化が速いか
らである。この問題を解決するためにシリコン膜の上部
及び下部に同じような材質で、かつ厚みのほぼ等しい膜
を形成させればよく、例えば以下に示す■〜■の方法が
挙げられる。
Therefore, a method can be considered in which a silicon film formed on a transparent glass substrate is irradiated with laser light from below the glass substrate, but if the laser light is scanned and irradiated without forming anything on the silicon film, no formation will occur. In a single crystal, approximately 1
It has been found that an inconvenience occurs in that the crystal orientation rotates within a range of several degrees per 00 μm. For this reason, it is not possible to obtain a semiconductor film with good crystallinity, and the desired semiconductor properties cannot be expected.The reason for the rotation of the crystal orientation is, as already mentioned, the glass substrate side (bottom side) of the silicon film. This is because the lower surface side of the silicon film solidifies faster than the upper surface side due to the lower temperature. In order to solve this problem, it is sufficient to form films of the same material and approximately the same thickness on the upper and lower parts of the silicon film, for example, methods 1 to 2 shown below can be used.

■ ガラス基板上にシリコン膜を厚く設け、熱酸化によ
って酸化膜を成長させる方法。
■ A method of depositing a thick silicon film on a glass substrate and growing an oxide film through thermal oxidation.

■ ガラス基板上のシリコン膜の上に、さらにガラス板
を貼着する方法。
■ A method of attaching a glass plate on top of the silicon film on the glass substrate.

■ CVD等気相成長法によってシリコン膜の上下に酸
化膜を形成させる方法。
■ A method of forming oxide films above and below a silicon film using a vapor phase growth method such as CVD.

しかしながら、■の方法では、酸化シリコン等の酸化膜
の成長速度がきわめて遅いうえ、例えば酸化膜の元とな
るシリコン膜をかなり厚く形成させる必要があり、現実
的に困難である。
However, in method (2), the growth rate of an oxide film such as silicon oxide is extremely slow, and it is necessary to form a silicon film, which is the source of the oxide film, to be considerably thick, which is practically difficult.

また、■の方法では、ガラス板をシリコン膜に整合性よ
く貼着させることは困難であり、接合面でのミクロな接
触は不十分である。
Furthermore, in method (2), it is difficult to adhere the glass plate to the silicon film with good consistency, and microscopic contact at the bonding surface is insufficient.

さらに、■の方法では、酸化膜が約1μmを超えるとク
ラックが生じやすくなり問題である。
Furthermore, in method (2), if the oxide film exceeds about 1 μm, cracks tend to occur, which is a problem.

したがって、本発明はガラス等の透光性を有する絶縁基
板上に形成した半導体膜の結晶化法において、上述の問
題点を解決し、かつレーザ光等エネルギビームの照射直
後における半導体膜の膜厚方向の温度分布を正確かつ簡
便に制御できる半導体膜の結晶化法を提供することを目
的とする。
Therefore, the present invention solves the above-mentioned problems in a method for crystallizing a semiconductor film formed on a light-transmitting insulating substrate such as glass, and improves the thickness of the semiconductor film immediately after irradiation with an energy beam such as a laser beam. An object of the present invention is to provide a method for crystallizing a semiconductor film that can accurately and easily control the directional temperature distribution.

〔課題を解決するための手段〕[Means to solve the problem]

上述の課題は以下に述べる手段によって解決される。 The above-mentioned problem is solved by the means described below.

すなわち、 透光性の絶縁基板上もしくは該基板上に設けた第1絶縁
膜上に非単結晶の半導体膜を設け、該半導体膜上に第2
絶縁膜を設け、該第2絶縁膜上に金属膜を積層した後、
前記絶縁基板側からエネルギビームを照射することを特
徴とする半導体膜の結晶化法によって!i題は解決され
る。
That is, a non-single crystal semiconductor film is provided on a light-transmitting insulating substrate or a first insulating film provided on the substrate, and a second insulating film is provided on the semiconductor film.
After providing an insulating film and laminating a metal film on the second insulating film,
By a semiconductor film crystallization method characterized by irradiating an energy beam from the insulating substrate side! i problem is solved.

〔作用〕[Effect]

次に、本発明の作用について説明する。 Next, the operation of the present invention will be explained.

本発明の半導体膜の結晶化法によれば、エネルギビーム
として例えばレーザ光を用いた場合、レーザ光の半導体
膜への照射は主に透光性の絶縁基板のみを介して行われ
る。よって、従来のように、レーザ光がかなり厚い液体
のポリエチレングリコール層を通過する必要もないので
、この余分な層によるレーザ光の進路が歪められること
がない。
According to the semiconductor film crystallization method of the present invention, when a laser beam, for example, is used as the energy beam, the semiconductor film is irradiated with the laser beam mainly through only the light-transmitting insulating substrate. Therefore, there is no need for the laser light to pass through a fairly thick layer of liquid polyethylene glycol, unlike in the prior art, and the path of the laser light is not distorted by this extra layer.

また、半導体膜上に形成した絶縁膜と、該絶縁膜上に形
成した金属膜を所定膜厚に形成することにより、エネル
ギビーム照射直後の半導体膜の裏厚方向の温度分布を正
確に制御することができ、半導体膜の温度勾配を小さく
して、結晶性が良好な単結晶半導体膜を得ることができ
る。
Furthermore, by forming the insulating film formed on the semiconductor film and the metal film formed on the insulating film to a predetermined thickness, it is possible to accurately control the temperature distribution in the back thickness direction of the semiconductor film immediately after energy beam irradiation. The temperature gradient of the semiconductor film can be reduced, and a single crystal semiconductor film with good crystallinity can be obtained.

なお、半導体膜上に設けた絶縁膜及び該絶縁膜上に設け
た金属膜の膜厚を種々に設定することは例えばCvD゛
法、スパッタ法、真空蒸着法等の気相成長法等により連
続的かつ容易に°行うことができる。
Note that the film thicknesses of the insulating film provided on the semiconductor film and the metal film provided on the insulating film can be set to various thicknesses by, for example, a vapor phase growth method such as a CvD method, a sputtering method, or a vacuum evaporation method. Can be done objectively and easily.

〔実施例〕〔Example〕

本発明に係る一実施例を図面に基づいて詳細に説明する
An embodiment according to the present invention will be described in detail based on the drawings.

第1図は本実施例を示す部分断面図である。1は透光性
の絶縁基板であり、厚さ約0. 7ミリのガラス基板(
ここではアルカリ金属元素を極度に除去したホウケイ酸
ガラス、#7059を月いている。以後、単に基板とも
いう)である、この基板1上に、笑気ガス(N 20 
)並びにシランガスもしくはジシランガスを用いてプラ
ズマCVD法等により厚さ約0.5μmの酸化シリコン
の第1絶縁膜2を形成する。なお、ここで第1絶縁膜2
は窒化シリコンもしくは炭化シリーン等でもよい。
FIG. 1 is a partial sectional view showing this embodiment. 1 is a translucent insulating substrate with a thickness of about 0. 7mm glass substrate (
Here, we use #7059 borosilicate glass, which has extremely low alkali metal elements. Laughing gas (N 20
) and a first insulating film 2 of silicon oxide having a thickness of about 0.5 μm is formed by plasma CVD or the like using silane gas or disilane gas. Note that here, the first insulating film 2
may be silicon nitride, silicon carbide, or the like.

また、基板1に透光性を有する石英ガラス等を用いるな
らば、第1絶縁膜2は形成しなくともよい。
Further, if a transparent quartz glass or the like is used for the substrate 1, the first insulating film 2 may not be formed.

なぜなら、石英ガラスと第1絶縁膜2とは材質が近似す
るために基板1からの不純物の拡散を考慮する必要がな
いからである。
This is because the materials of the silica glass and the first insulating film 2 are similar, so there is no need to consider the diffusion of impurities from the substrate 1.

第1絶縁膜2上にはシランガスもしくはジシランガスを
用いたプラズマCVD法等により厚さ約0.5μmの非
単結晶シリコンの半導体膜3を形成する。この半導体膜
3は形成後約550〜約600℃の温度でアニールして
脱水素処理を施したものを用いる。
On the first insulating film 2, a non-single-crystal silicon semiconductor film 3 having a thickness of about 0.5 μm is formed by a plasma CVD method using silane gas or disilane gas. This semiconductor film 3 is annealed at a temperature of about 550 to about 600° C. after being formed to undergo dehydrogenation treatment.

半導体膜3上には、さらに第1絶縁膜2と同様な方法に
より約0. 5μmの酸化シリコンの第2絶縁膜4を形
成する。なお、第2絶縁膜4も第1絶縁膜2と同様に窒
化シリコンもしくは炭化シリコン等でもよい。
The semiconductor film 3 is further coated with about 0.0% by the same method as the first insulating film 2. A second insulating film 4 of silicon oxide with a thickness of 5 μm is formed. Note that, like the first insulating film 2, the second insulating film 4 may also be made of silicon nitride, silicon carbide, or the like.

第2絶縁膜4上には厚さ約2μmのモリブデンの金属膜
5を真空蒸着法やスッパタ法等にて形成する。なお、こ
こで金属膜5はモリブデンの他に、半導体膜3からの熱
に甜えうる材料として少なくともアルミニウムより融点
が高いニッケル、タンタル、タングステン等高融点の金
属もしくは合金を用いてもよく、これらは熱伝導度が基
板1よりも1〜2桁程度オーダが高い。
A molybdenum metal film 5 having a thickness of approximately 2 μm is formed on the second insulating film 4 by vacuum evaporation, sputtering, or the like. In addition to molybdenum, the metal film 5 may be made of a metal or alloy with a high melting point such as nickel, tantalum, or tungsten, which has a melting point higher than at least aluminum, as a material that can absorb the heat from the semiconductor film 3. The thermal conductivity of the substrate 1 is about 1 to 2 orders of magnitude higher than that of the substrate 1.

前記第1及び第2絶縁腰2,4、金属膜5の厚みはガス
の流量等成腹条件を適宜設定することによって容易に変
えることができ、例えば半導体膜3の厚み約0.5μm
に対し、第1及び第2絶縁膜2,4は約0.01〜約1
μm、金属膜5は約0.5〜約10μmの範囲で成膜さ
れるものとする。ここで、第1及び第2絶縁膜2,4の
厚みの下限は金属膜5および基板1からの不純物の拡散
を防ぐバリア層としての最小限の厚みであり、その上限
はクラックが生じない最大限の厚みである。
The thicknesses of the first and second insulating layers 2, 4 and the metal film 5 can be easily changed by appropriately setting conditions such as gas flow rate. For example, the thickness of the semiconductor film 3 is about 0.5 μm.
On the other hand, the first and second insulating films 2 and 4 have a thickness of about 0.01 to about 1
.mu.m, and the metal film 5 is formed to have a thickness in the range of about 0.5 to about 10 .mu.m. Here, the lower limit of the thickness of the first and second insulating films 2 and 4 is the minimum thickness as a barrier layer that prevents the diffusion of impurities from the metal film 5 and the substrate 1, and the upper limit is the maximum thickness that does not cause cracks. It is as thick as possible.

また、金属膜5の下限はレーザ光等エネルギビームを照
射したときの放熱のため最小限の厚みであり、その上限
は成膜の容易性から設定した最大限の厚みである。ここ
で、金属膜5の側に例えばヘリウムガス等を吹き付けた
状態で、ビームを照射すれば放熱効果が促進されるため
、その厚みの下限を約0.1μm程度にすることができ
る。
Further, the lower limit of the metal film 5 is the minimum thickness for heat dissipation when irradiated with an energy beam such as a laser beam, and the upper limit is the maximum thickness set from the viewpoint of ease of film formation. Here, if the beam is irradiated with, for example, helium gas or the like being blown onto the metal film 5 side, the heat dissipation effect will be promoted, so the lower limit of the thickness can be set to about 0.1 μm.

上述の構成において、基板1の下側からレーザ光りを走
査照射する。レーザ光は出力的0.7〜約1.5ワット
程度の連続発振アルゴンレーザ光を用い、ビーム径を約
10〜約300μmに集光し、走査速度約1〜約20c
m/秒程度で走査させる。なお、エネルギビームとして
レーザ光の他に電子ビーム等を用いてもかまわない。
In the above configuration, laser light is scanned and irradiated from below the substrate 1 . The laser beam is a continuous wave argon laser beam with an output power of about 0.7 to about 1.5 watts, focused to a beam diameter of about 10 to about 300 μm, and a scanning speed of about 1 to about 20 c.
Scan at a speed of about m/sec. Note that, in addition to laser light, an electron beam or the like may be used as the energy beam.

上述の条件によれば欠陥のきわめて少ない良質の単結晶
の半導体膜を得ることができる。すなわち1本実施例で
は半導体膜3上に形成される第2絶縁膜4と該第2絶縁
膜4上に形成される金属膜5の厚みを設定することによ
って、レーザ光りにより溶融した半導体膜3が1化する
度合な膜厚方向で依存しないようにして、形成された単
結晶の結晶方位の回転を極力抑えることができ、従来に
比してきわめて簡単かつ確実な方法で広帯域かつ欠陥の
少ない結晶性の良好な単結晶膜を得ることができる。
According to the above conditions, a high quality single crystal semiconductor film with extremely few defects can be obtained. That is, in this embodiment, by setting the thickness of the second insulating film 4 formed on the semiconductor film 3 and the metal film 5 formed on the second insulating film 4, the thickness of the semiconductor film 3 melted by laser light can be reduced. It is possible to suppress the rotation of the crystal orientation of the formed single crystal as much as possible by avoiding dependence in the film thickness direction to the extent that A single crystal film with good crystallinity can be obtained.

なお、本発明は上述し、かつ図面に示す実施例にのみ限
定されるものではなく、要旨を逸脱しない範囲内で適宜
変更して実施し得る。
It should be noted that the present invention is not limited to the embodiments described above and shown in the drawings, but can be implemented with appropriate modifications within the scope of the gist.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の半導体膜の結晶化法によ
れば、半導体膜上に形成した絶縁膜及び該絶縁膜上に形
成した金属膜により、エネルギビーム照射直後における
半導体膜の膜厚方向の温度分布を正確に制御することが
できる。これにより、半導体膜の膜厚方向の温度勾配を
ほぼ一定にすることができ、大型かつ結晶性の良好な単
結晶の半導体膜が得られる。
As explained above, according to the semiconductor film crystallization method of the present invention, the insulating film formed on the semiconductor film and the metal film formed on the insulating film cause the semiconductor film to be exposed in the film thickness direction immediately after energy beam irradiation. temperature distribution can be precisely controlled. As a result, the temperature gradient in the thickness direction of the semiconductor film can be made almost constant, and a large single-crystal semiconductor film with good crystallinity can be obtained.

また、透光性の絶縁基板上に形成した半導体膜に対して
、この絶縁基板側からレーザ光等のエネルギビームを照
射する際に、半導体膜上に形成した絶縁膜及び金属膜に
より、温度分布の制御を行う方法であるので、従来のよ
うにかなり厚い液体のポリエチレングリコール層を固定
するための装置が不要であり、ポリエチレングリコール
層が沸謄することによって気泡が発生して、エネルギビ
ームの焦点ずれが生じることはなく、−J’W結晶性の
良好な半導体膜が得られる。
In addition, when a semiconductor film formed on a transparent insulating substrate is irradiated with an energy beam such as a laser beam from the insulating substrate side, the temperature distribution is affected by the insulating film and metal film formed on the semiconductor film. This method eliminates the need for a device to fix a fairly thick layer of liquid polyethylene glycol as in the past, and bubbles are generated as the polyethylene glycol layer boils, creating a focal point for the energy beam. A semiconductor film with good -J'W crystallinity is obtained without any deviation.

さらに、例えばシリコンTPT等のデバイスを製造する
のに、安価なガラス基板上に大面積かつ低温プロセスで
非晶質のシリコン膜を成膜し、これを結晶化する場合に
この方法を採泪することはきわめて好適といえる。
Furthermore, in order to manufacture devices such as silicon TPT, for example, this method is used when forming an amorphous silicon film on a large area and using a low-temperature process on an inexpensive glass substrate and then crystallizing it. This can be said to be extremely suitable.

【図面の簡単な説明】[Brief explanation of the drawing]

M1図は、本発明に係る一実施例を示す部分断面図であ
り、第2図は従来の技術を示す部分断面図である。 1    ・・・ 基板、 2   ・・・ 第1絶縁膜、 半導体膜、 第2絶縁膜。 金属膜、 レーザ光。
FIG. M1 is a partial sectional view showing one embodiment of the present invention, and FIG. 2 is a partial sectional view showing a conventional technique. 1... Substrate, 2... First insulating film, semiconductor film, second insulating film. Metal film, laser light.

Claims (1)

【特許請求の範囲】[Claims]  透光性の絶縁基板上もしくは該基板上に設けた第1絶
縁膜上に非単結晶の半導体膜を設け、該半導体膜上に第
2絶縁膜を設け、該第2絶縁膜上に金属膜を積層した後
、前記絶縁基板側からエネルギビームを照射することを
特徴とする半導体膜の結晶化法。
A non-single crystal semiconductor film is provided on a light-transmitting insulating substrate or a first insulating film provided on the substrate, a second insulating film is provided on the semiconductor film, and a metal film is provided on the second insulating film. 1. A method for crystallizing a semiconductor film, which comprises stacking a semiconductor film and then irradiating an energy beam from the insulating substrate side.
JP27642089A 1989-10-24 1989-10-24 Semiconductor-film crystallizing method Pending JPH03138925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27642089A JPH03138925A (en) 1989-10-24 1989-10-24 Semiconductor-film crystallizing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27642089A JPH03138925A (en) 1989-10-24 1989-10-24 Semiconductor-film crystallizing method

Publications (1)

Publication Number Publication Date
JPH03138925A true JPH03138925A (en) 1991-06-13

Family

ID=17569164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27642089A Pending JPH03138925A (en) 1989-10-24 1989-10-24 Semiconductor-film crystallizing method

Country Status (1)

Country Link
JP (1) JPH03138925A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610142B1 (en) 1993-02-03 2003-08-26 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating semiconductor and process for fabricating semiconductor device
JP2008153261A (en) * 2006-12-14 2008-07-03 Mitsubishi Electric Corp Laser annealing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610142B1 (en) 1993-02-03 2003-08-26 Semiconductor Energy Laboratory Co., Ltd. Process for fabricating semiconductor and process for fabricating semiconductor device
JP2008153261A (en) * 2006-12-14 2008-07-03 Mitsubishi Electric Corp Laser annealing apparatus

Similar Documents

Publication Publication Date Title
JPS6392012A (en) Laminated article and manufacture of the same
JP2001007045A (en) Optical system for laser thermal treatment and laser thermal treatment apparatus
JPS5880832A (en) Method of annealing via laser semiconductor material
JPH0454370B2 (en)
JPS6115319A (en) Manufacture of semiconductor device
JPH03138925A (en) Semiconductor-film crystallizing method
JPH027415A (en) Formation of soi thin film
JP2898360B2 (en) Method for manufacturing semiconductor film
JP2006066902A (en) Method of manufacturing semiconductor device
JPH0372618A (en) Recrystallization of semiconductor film
JP2929660B2 (en) Method for manufacturing semiconductor device
JP2692138B2 (en) Manufacturing method of single crystal thin film
JPH0442358B2 (en)
JPS6237922A (en) Semiconductor substrate
JPH0288490A (en) Production of semiconductor single crystal thin film
JP2993107B2 (en) Semiconductor thin film manufacturing method
JPS60229330A (en) Manufacture of semiconductor device
JPH0482213A (en) Method of forming single crystal layer having no defect of silicon
JPH0287519A (en) Manufacture of single crystal semiconductor thin film
JPS62250629A (en) Manufacture of semiconductor device
JPS62206812A (en) Manufacture of semiconductor device
JPS62245621A (en) Formation of soi device
JPH01147826A (en) Manufacture of multilayer semiconductor substrate
JPH03284832A (en) Method of single-crystallization of semiconductor film
JPS60160114A (en) Manufacture of semiconductor single crystal layer