JPS6364048B2 - - Google Patents

Info

Publication number
JPS6364048B2
JPS6364048B2 JP58011412A JP1141283A JPS6364048B2 JP S6364048 B2 JPS6364048 B2 JP S6364048B2 JP 58011412 A JP58011412 A JP 58011412A JP 1141283 A JP1141283 A JP 1141283A JP S6364048 B2 JPS6364048 B2 JP S6364048B2
Authority
JP
Japan
Prior art keywords
germanium
layer
substrate
tungsten
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58011412A
Other languages
Japanese (ja)
Other versions
JPS59138331A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58011412A priority Critical patent/JPS59138331A/en
Publication of JPS59138331A publication Critical patent/JPS59138331A/en
Publication of JPS6364048B2 publication Critical patent/JPS6364048B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02491Conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02686Pulsed laser beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Recrystallisation Techniques (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はゲルマニウムの結晶成長、詳しくは薄
膜状のゲルマニウムを溶解、固化せしめることに
よつて再現性良くゲルマニウム結晶膜を得る方法
に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to germanium crystal growth, and more specifically, to a method for obtaining a germanium crystal film with good reproducibility by dissolving and solidifying a thin film of germanium. .

(従来技術) 現在、SiO2ガラス等を基板としてゲルマニウ
ムの結晶を得るには、基板上に予め所望の厚さを
有するゲルマニウム層を形成し、しかる後にレー
ザビームや電子ビームを照射することにより、当
該ゲルマニウムを溶解せしめ、固化させることに
よつて結晶化する方法が取られている。例えば第
1図はArレーザによる結晶化技術の模式図であ
り、図において1は例えばSiO2でなる基板、2
2は結晶化されるべきゲルマニウム層、3はレー
ザビーム、4はレンズ、矢印はビーム掃引方向を
示す。基板1上のゲルマニウム膜22を結晶化す
るにはレーザビーム3をレンズ4でビーム径Dに
収束させた状態でゲルマニウム膜22の表面を矢
印の方向に掃引する。かくしてゲルマニウム膜2
2の一部は加熱されて溶解し、冷却に伴つて固化
と同時に結晶化して結晶化域5を形成する。Dの
大きさはレーザビーム3の収束によつて決まり、
通常は数百μmから数mmである。
(Prior art) Currently, in order to obtain germanium crystals using SiO 2 glass or the like as a substrate, a germanium layer having a desired thickness is formed on the substrate in advance, and then a laser beam or an electron beam is irradiated. A method has been adopted in which the germanium is crystallized by dissolving and solidifying the germanium. For example, Figure 1 is a schematic diagram of crystallization technology using an Ar laser. In the figure, 1 is a substrate made of, for example, SiO2 ,
2 is a germanium layer to be crystallized, 3 is a laser beam, 4 is a lens, and the arrow indicates the beam sweeping direction. To crystallize the germanium film 22 on the substrate 1, the surface of the germanium film 22 is swept in the direction of the arrow while the laser beam 3 is converged to a beam diameter D by a lens 4. Thus germanium film 2
A part of 2 is heated and melted, solidified and crystallized as it cools to form a crystallized region 5. The size of D is determined by the convergence of the laser beam 3,
Usually, it is several hundred μm to several mm.

しかるに、かかる方法で結晶化をおこなうには
レーザ光の照射条件すなわちパワー、掃引速度、
基板温度は厳密に設定されねばならない。すなわ
ち、ゲルマニウムが溶解した状態では基板SiO2
との付着性が弱いために、少しでもレーザビーム
のパワーが大きすぎると溶解したゲルマニウムは
凝縮して基板から遊離してしまい薄膜結晶化は実
現されない。かかる状況を第2図で定量的に示
す。
However, in order to perform crystallization using this method, the laser beam irradiation conditions, such as power, sweep speed,
The substrate temperature must be set precisely. In other words, when germanium is dissolved, the substrate SiO 2
Because the adhesion to the substrate is weak, if the power of the laser beam is even slightly too high, the dissolved germanium will condense and become liberated from the substrate, making it impossible to achieve thin film crystallization. This situation is shown quantitatively in FIG.

すなわち、第2図はSiO2基板1上の厚さ0.4μm
を有するゲルマニウム層22をレーザ照射によつ
て結晶化する場合の最適条件を示す。図示の場合
はレーザ掃引15cm/秒でGeの厚さ0.4μmの層を
形成せしめた場合を示す。実線で示されるパワー
よりも少ないパワーではゲルマニウム層は溶解せ
ず、破線で示すパワーより大きなパワー域では溶
解ゲルマニウムの温度が上昇しすぎて基板から遊
離してしまう。つまり実線と破線ではさまれた領
域が結晶化のための最適領域である。例えば基板
温度を500〓に保つて結晶化させる場合にはアル
ゴンレーザのパワーPは1.5KW/cm2が適当であ
り、そのパワーの許容値は0.05KW/cm2と小さ
い。従つてレーザのパワーのゆらぎは3%以下に
抑えなければならない。しかも掃引速度が少しで
も大きくなるとゲルマニウムは溶解せず、少しで
も小さくなるとゲルマニウムは基板から遊離して
しまい、実験では掃引速度についても2%程度の
変化しか許されなかつた。このように従来方法で
は再現性良く基板全体にわたつて結晶化をおこな
うことは困難であつた。
In other words, Fig. 2 shows the thickness of 0.4 μm on the SiO 2 substrate 1.
The optimum conditions for crystallizing the germanium layer 22 having the following values by laser irradiation are shown below. In the illustrated case, a 0.4 μm thick Ge layer was formed with a laser sweep of 15 cm/sec. If the power is lower than the power indicated by the solid line, the germanium layer will not melt, and if the power is greater than the power indicated by the broken line, the temperature of the dissolved germanium will rise too much and it will be separated from the substrate. In other words, the region between the solid line and the broken line is the optimal region for crystallization. For example, in the case of crystallization while maintaining the substrate temperature at 500°C, the appropriate power P of the argon laser is 1.5 KW/cm 2 , and the permissible value of that power is as small as 0.05 KW/cm 2 . Therefore, fluctuations in laser power must be suppressed to 3% or less. Moreover, if the sweep speed increases even a little, germanium will not dissolve, and if it decreases even a little, germanium will be liberated from the substrate, and in experiments, the sweep speed could only be changed by about 2%. As described above, with the conventional method, it is difficult to crystallize the entire substrate with good reproducibility.

なお高融点金属上にゲルマニウムを被着し、電
子ビームによつて結晶化する方法も提案されてい
るが、この方法によつて形成されたゲルマニウム
結晶は、その表面の平滑性が良好でないため、こ
の上に他の半導体層又は電極を良好な状態で形成
することが困難である欠点を有している。
A method has also been proposed in which germanium is deposited on a high-melting point metal and crystallized using an electron beam, but germanium crystals formed by this method do not have good surface smoothness. This has the disadvantage that it is difficult to form other semiconductor layers or electrodes in good condition thereon.

(発明の目的) 本発明は上記の欠点を除去すべく提案されたも
ので、レーザビームの照射条件に対する許容度を
大きくして再現性良く基板全面にわたつて結晶化
を実現することを目的とするものである。
(Objective of the Invention) The present invention was proposed to eliminate the above-mentioned drawbacks, and its purpose is to increase the tolerance to the laser beam irradiation conditions and realize crystallization over the entire surface of the substrate with good reproducibility. It is something to do.

(発明の構成) 上記の目的を達成するため、本発明はゲルマニ
ウムと合金を形成しない高融点金属でなる第一の
層と、前記第一の層上にゲルマニウムでなる第二
の層を形成する工程と、前記第二の層上にゲルマ
ニウムと合金を形成しない高融点金属でなる第三
の層を形成する工程と、前記第一の層、第二の
層、第三の層を有する基体の面積の全部もしくは
一部を加熱する工程を少なくとも含むことを特徴
とするゲルマニウム結晶の製造方法を発明の要旨
とするものである。
(Structure of the Invention) In order to achieve the above object, the present invention forms a first layer made of a high melting point metal that does not form an alloy with germanium, and a second layer made of germanium on the first layer. a step of forming a third layer made of a high melting point metal that does not form an alloy with germanium on the second layer; and a step of forming a substrate having the first layer, second layer, and third layer. The gist of the invention is a method for producing a germanium crystal, which includes at least a step of heating all or part of the area.

次に本発明の実施例を添付図面について説明す
る。なお実施例は一つの例示であつて、本発明の
精神を逸脱しない範囲で、種々の変更あるいは改
良を行いうることは言うまでもない。
Next, embodiments of the present invention will be described with reference to the accompanying drawings. It should be noted that the embodiments are merely illustrative, and it goes without saying that various changes and improvements can be made without departing from the spirit of the present invention.

第3図は本発明の実施例を模式的に示したもの
であり、図において1はSiO2等の基板、21は
厚さt1のタングステンでなる第1の層、22は厚
さt2の結晶化されるべきゲルマニウム層、23は
厚さt3のタングステンでなる第3の層で構成され
る。かかる層構成は電子ビーム蒸着、スパツタリ
ング法等の従来法で形成される。しかる後に第1
図に示した手法によりレーザビームを照射すると
ゲルマニウム層のみが溶解し、結晶薄膜化する。
その理由はタングステンの融点は3643〓とゲルマ
ニウムの融点1213〓に比べて格段に高いこと、そ
してタングステンとゲルマニウムは合金反応しな
いためによる。かかる層構成をもつて結晶化をお
こなう場合にはレーザビームの照射条件は第4図
に示すように大幅に緩和されることが実験的に示
された。第4図は第2図と同様にゲルマニウム層
が溶解し、基板から遊離することなく結晶化する
範囲を斜線で示してある。この場合レーザ掃引速
度は15cm/秒であり、ゲルマニウム層の厚さ0.4μ
mの場合を示す。例えば基板温度を500〓とした
場合、第1のタングステン層の厚さt1を600Åと
することにより最適レーザパワーは1.9〜2.2×
105W/cm2に広がり(A領域)、さらにゲルマニウ
ム層の上にt3=600Åのタングステンでなる第3
の層を付加することによりArレーザパワーPの
大きさは2.8KW/cm2以上、少なくとも5KW/cm2
のArレーザパワーでも問題なくゲルマニウムの
結晶化が実現された(B領域で示す)。このよう
に広い範囲のレーザビームのパワーで基板からゲ
ルマニウムが遊離することなく再現性良く結晶化
する。この理由は、溶融ゲルマニウムとタングス
テンの付着性が良いためであると考えられる。タ
ングステンでなる第3の層を形成することによ
り、より条件がゆるやかになるのは溶融ゲルマニ
ウムとタングステンの付着性が良いことに加え
て、かかる高温でもタングステン層が軟化せずに
ゲルマニウム層を上から支えているためと理解さ
れる。
FIG. 3 schematically shows an embodiment of the present invention, in which 1 is a substrate such as SiO 2 , 21 is a first layer made of tungsten with a thickness of t 1 , and 22 is a layer with a thickness of t 2 The germanium layer to be crystallized, 23, is composed of a third layer of tungsten with a thickness t 3 . Such a layered structure is formed by conventional methods such as electron beam evaporation and sputtering. After that, the first
When irradiated with a laser beam using the method shown in the figure, only the germanium layer is dissolved, resulting in a thin crystalline film.
The reason for this is that the melting point of tungsten is 3643〓, which is much higher than the melting point of germanium 1213〓, and that tungsten and germanium do not undergo alloying reactions. It has been experimentally shown that when crystallization is performed with such a layer configuration, the laser beam irradiation conditions are significantly relaxed as shown in FIG. In FIG. 4, as in FIG. 2, the area where the germanium layer dissolves and crystallizes without being released from the substrate is indicated by diagonal lines. In this case, the laser sweep speed is 15 cm/s, and the thickness of the germanium layer is 0.4 μ.
The case of m is shown. For example, when the substrate temperature is 500㎓, the optimum laser power is 1.9~2.2× by setting the thickness t1 of the first tungsten layer to 600Å.
10 5 W/cm 2 (region A), and a third layer made of tungsten with t 3 = 600 Å on the germanium layer.
By adding a layer of
Crystallization of germanium was achieved without problems even with an Ar laser power of In this way, with a wide range of laser beam power, germanium is crystallized with good reproducibility without being liberated from the substrate. The reason for this is thought to be that molten germanium and tungsten have good adhesion. By forming the third layer of tungsten, the conditions are more relaxed.In addition to the good adhesion between molten germanium and tungsten, the tungsten layer does not soften even at such high temperatures, and the germanium layer can be removed from above. It is understood that this is because they are supporting them.

第4図においてゲルマニウムの厚さが同じでも
タングステン層を導入することによつて結晶化に
必要なレーザビームのパワーPが大きくなるのは
タングステン層による基板への熱放散が促進され
るためと解釈される。
In Figure 4, even if the thickness of germanium is the same, the power P of the laser beam required for crystallization increases by introducing a tungsten layer, which is interpreted to be because the tungsten layer promotes heat dissipation to the substrate. be done.

ゲルマニウムの厚さt2と第3のタングステン層
の厚さt3の効果を第5図に示す。縦軸は結晶化に
必要なレーザパワーPの許容幅△P、すなわち第
4図における実線と破線ではさまれたレーザパワ
ーの大きさを示す。第5図は基板温度690〓、レ
ーザ掃引速度15cm/秒、第一層t1の厚さ300Åの
場合を示すもので、ゲルマニウムの厚さt2が0.2
〜1μmの範囲で変化してもレーザパワーの許容
差△Pの大きさはさほど変化しないことを示す。
特に注目すべきはタングステンでなる第3の層の
厚さt3が大きくなるにつれて△Pの値は大幅に増
加することであり、t3=600Åになれば△Pはt3
=0Åの時の7培も大きくなる。第5図は第1の
タングステン層の厚さがt1=300Åの場合につい
ての測定値であるがt1=600Åの場合でもほぼ第
5図に定量的に一致する結果が得られた。従つて
再現性良くゲルマニウムを結晶化するためにレー
ザビームのパワーの許容幅△Pを大きく取るには
第1のタングステン層の厚さよりも第3のタング
ステン層の厚さの効果が顕著であると結論つけら
れる。さらに第5図はレーザビームの掃引速度が
15cm/秒の場合を示したが掃引速度が例えば12
cm/秒に低下してもt3=600Åの場合には△Pと
して少なくとも0.8KW/cm2の許容幅でもつて結
晶化できた。すなわちタングステン層の導入によ
り、レーザパワーのみならずレーザビームの掃引
速度についても許容範囲が著しく増加し、結晶化
に対する条件がゆるやかになり結晶化が容易にな
つた。
The effect of the germanium thickness t 2 and the third tungsten layer thickness t 3 is shown in FIG. The vertical axis indicates the allowable width ΔP of the laser power P necessary for crystallization, that is, the magnitude of the laser power sandwiched between the solid line and the broken line in FIG. Figure 5 shows the case where the substrate temperature is 690㎓, the laser sweep speed is 15 cm/sec, the first layer t 1 has a thickness of 300 Å, and the germanium thickness t 2 is 0.2.
This shows that the magnitude of the laser power tolerance ΔP does not change much even if it changes within the range of ~1 μm.
It is particularly noteworthy that the value of △P increases significantly as the thickness t 3 of the third layer made of tungsten increases, and when t 3 = 600 Å, △P decreases to t 3
When = 0 Å, 7x also becomes larger. Although FIG. 5 shows measured values when the thickness of the first tungsten layer is t 1 =300 Å, even when t 1 =600 Å, results almost quantitatively consistent with FIG. 5 were obtained. Therefore, in order to increase the allowable width ΔP of the laser beam power in order to crystallize germanium with good reproducibility, the effect of the thickness of the third tungsten layer is more pronounced than that of the first tungsten layer. I can come to a conclusion. Furthermore, Figure 5 shows that the sweep speed of the laser beam is
The case where the sweep speed is 15cm/sec is shown, but if the sweep speed is 12cm/sec.
cm/sec, when t 3 =600 Å, crystallization was possible with an allowable range of ΔP of at least 0.8 KW/cm 2 . That is, the introduction of the tungsten layer significantly increases the tolerance range not only for the laser power but also for the sweep speed of the laser beam, making the conditions for crystallization more relaxed and making crystallization easier.

(発明の効果) 以上所望の基板上にタングステンでなる第1の
層、結晶化されるべきゲルマニウムでなる第2の
層、タングステンでなる第3の層の順に構成する
ことによりレーザビーム照射によつて再現性良く
ゲルマニウムでなる第2の層を結晶化できること
を示した。そして上記第1の層の厚さt1は数百Å
で良く、上記第3の層の厚さt3は第1の層よりも
厚い方が効果であるが高々600Å程度の厚さで所
望の効果が実現されることを示した。かかる層構
成でゲルマニウムを結晶化した後は該ゲルマニウ
ム結晶の表面に構成された第3の層を化学エツチ
ングやプラズマエツチングで除去してゲルマニウ
ム結晶を表面に有する半導体基板が取得される。
ゲルマニウムとガリウム砒素は格子整合するの
で、該半導体基板は安価なガリウム砒素太陽電池
製造に供される。
(Effects of the Invention) By forming the first layer made of tungsten, the second layer made of germanium to be crystallized, and the third layer made of tungsten in this order on a desired substrate, laser beam irradiation is performed. It was shown that the second layer made of germanium could be crystallized with good reproducibility. The thickness t 1 of the first layer is several hundred Å.
Although it is more effective if the thickness t3 of the third layer is thicker than the first layer, it has been shown that the desired effect can be achieved with a thickness of about 600 Å at most. After crystallizing germanium with this layered structure, the third layer formed on the surface of the germanium crystal is removed by chemical etching or plasma etching to obtain a semiconductor substrate having germanium crystal on the surface.
Since germanium and gallium arsenide are lattice matched, the semiconductor substrate can be used to manufacture inexpensive gallium arsenide solar cells.

さらに上記実施例からタングステン層の効果
は、第1にゲルマニウムと反応しないこと、第2
にゲルマニウムと親和性が良いこと、第3にゲル
マニウムが溶解する高温状態でも変形しないこと
等によることが理解される。従つてモリブデン等
他の高融点金属もしくはそれらの合金もタングス
テンと同様の効果を有することは容易に推定され
る。ただしクロームはゲルマニウムと反応するの
で所期の効果は期待できない。基板としてタング
ステンやモリブデン等の高融点金属を用い、該基
板上にゲルマニウム結晶を形成する場合にも本発
明は有効に活用可能である。すなわち高融点金属
を基板とする場合には、高融点金属でなる基板自
体が上記実施例における高融点金属でなる第1の
層の効果を有しているので、高融点金属でなる基
板がすでに高融点金属でなる第1の層を構成して
いると同等である。
Furthermore, from the above examples, the effects of the tungsten layer are firstly that it does not react with germanium, and secondly that it does not react with germanium.
It is understood that this is because it has good affinity with germanium, and thirdly, it does not deform even in high temperature conditions where germanium dissolves. Therefore, it is easily presumed that other high melting point metals such as molybdenum or alloys thereof also have the same effect as tungsten. However, since chromium reacts with germanium, the desired effect cannot be expected. The present invention can also be effectively utilized when a high melting point metal such as tungsten or molybdenum is used as a substrate and germanium crystals are formed on the substrate. In other words, when a high melting point metal is used as a substrate, the substrate made of a high melting point metal itself has the effect of the first layer made of a high melting point metal in the above embodiment, so that the substrate made of a high melting point metal has already been used. This is equivalent to forming a first layer made of a high melting point metal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来法すなわちアルゴンレーザビーム
照射による結晶化の状態を示し、第2図は第1図
に示される手法でゲルマニウムを結晶化するため
の条件である。第3図は本発明の実施例を示し、
第4,5図は本発明の実施例においてゲルマニウ
ムを結晶化するための条件を示す。 1……基板、21……タングステンでなる第1
の層、22……ゲルマニウムでなる第2の層、2
3……タングステンでなる第3の層、3……レー
ザビーム、4……レンズ、5……結晶化域。
FIG. 1 shows the state of crystallization by the conventional method, that is, argon laser beam irradiation, and FIG. 2 shows the conditions for crystallizing germanium by the method shown in FIG. FIG. 3 shows an embodiment of the invention,
4 and 5 show conditions for crystallizing germanium in an example of the present invention. 1...Substrate, 21...First made of tungsten
a layer of 22...a second layer of germanium, 2
3... Third layer made of tungsten, 3... Laser beam, 4... Lens, 5... Crystallized region.

Claims (1)

【特許請求の範囲】[Claims] 1 ゲルマニウムと合金を形成しない高融点金属
でなる第一の層と、前記第一の層上にゲルマニウ
ムでなる第二の層を形成する工程と、前記第二の
層上にゲルマニウムと合金を形成しない高融点金
属でなる第三の層を形成する工程と、前記第一の
層、第二の層、第三の層を有する基体の面積の全
部もしくは一部を加熱する工程を少なくとも含む
ことを特徴とするゲルマニウム結晶の製造方法。
1. Forming a first layer made of a high melting point metal that does not form an alloy with germanium, a second layer made of germanium on the first layer, and forming an alloy with germanium on the second layer. and a step of heating all or part of the area of the substrate having the first layer, second layer, and third layer. Characteristic method for producing germanium crystals.
JP58011412A 1983-01-28 1983-01-28 Fabrication of germanium crystal Granted JPS59138331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58011412A JPS59138331A (en) 1983-01-28 1983-01-28 Fabrication of germanium crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58011412A JPS59138331A (en) 1983-01-28 1983-01-28 Fabrication of germanium crystal

Publications (2)

Publication Number Publication Date
JPS59138331A JPS59138331A (en) 1984-08-08
JPS6364048B2 true JPS6364048B2 (en) 1988-12-09

Family

ID=11777308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58011412A Granted JPS59138331A (en) 1983-01-28 1983-01-28 Fabrication of germanium crystal

Country Status (1)

Country Link
JP (1) JPS59138331A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2206808B1 (en) * 2008-12-23 2017-07-12 Imec Method for manufacturing a mono-crystalline semiconductor layer on a substrate

Also Published As

Publication number Publication date
JPS59138331A (en) 1984-08-08

Similar Documents

Publication Publication Date Title
JPS5861622A (en) Manufacture of single crystal thin film
JP2009135501A (en) Crystallization method
JPH0343769B2 (en)
JPS6115319A (en) Manufacture of semiconductor device
JPS6364048B2 (en)
JPS6046539B2 (en) Method for manufacturing silicon crystal film
JP2000091604A (en) Polycrystalline semiconductor film, photoelectric transfer element, and manufacture thereof
JPS6147627A (en) Manufacture of semiconductor device
JPS6347256B2 (en)
JP2779033B2 (en) Method for growing polycrystalline Si thin film
JPS61108121A (en) Manufacture of semiconductor device
JPH03250620A (en) Manufacture of semiconductor device
JPS60144932A (en) Molecular beam growth method of compound semiconductor crystal
JP2692138B2 (en) Manufacturing method of single crystal thin film
JP2740281B2 (en) Method for producing crystalline silicon
JPS5978999A (en) Manufacture of semiconductor single crystal film
JPS6126598A (en) Preparation of germanium thin film crystal
JPH01720A (en) Method for manufacturing single crystal thin film
JPH01181588A (en) Manufacture of mask semiconductor laser
JPS6388819A (en) Manufacture of semiconductor device
JPS61170017A (en) Manufacture of semiconductor device
JPS60229330A (en) Manufacture of semiconductor device
JPH03116924A (en) Manufacture of single crystal semiconductor thin film
JPH0372618A (en) Recrystallization of semiconductor film
JPH046823A (en) Manufacture of crystalline semiconductor thin film