JP2009098017A - 血管内可視化方法および血管内可視化装置 - Google Patents

血管内可視化方法および血管内可視化装置 Download PDF

Info

Publication number
JP2009098017A
JP2009098017A JP2007270347A JP2007270347A JP2009098017A JP 2009098017 A JP2009098017 A JP 2009098017A JP 2007270347 A JP2007270347 A JP 2007270347A JP 2007270347 A JP2007270347 A JP 2007270347A JP 2009098017 A JP2009098017 A JP 2009098017A
Authority
JP
Japan
Prior art keywords
light
reflected
inspection
blood vessel
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007270347A
Other languages
English (en)
Inventor
Kenji Taira
健二 平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2007270347A priority Critical patent/JP2009098017A/ja
Publication of JP2009098017A publication Critical patent/JP2009098017A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】光源からの距離が遠い血管壁、血栓やプラーク等からの反射光や散乱光の検出を容易にし、血液中で可視化可能な距離を延長することができ、簡便性の高い血管内可視化方法および血管内可視化装置を提供する。
【解決手段】波長を時間的に変化させながら光を射出する光射出工程と、光を検査光と参照光とに分波し、それぞれ検査光学系60と参照光学系40とに伝送する光分波工程と、検査光学系60から血管BV内へ射出して反射・散乱させた検査光を反射検査光として検査光学系60により受光して伝送する検査光反射工程と、参照光学系40から参照光反射部へ伝送して反射・散乱させた参照光を反射参照光として参照光学系40により伝送する参照光反射工程と、反射検査光と反射参照光とを合波して干渉光を得る反射光合波工程と、干渉光を電気信号に変換して処理する信号処理工程と、を有することを特徴とする。
【選択図】図1

Description

本発明は、血管内可視化方法および血管内可視化装置に関するものである。
従来から、血管内に内視鏡等の検査光学系を挿入して直接血管内の撮像を行う技術が知られている。この技術は、赤外光を照明光として利用し、血流を止めずに血管内を撮像するものである(例えば、特許文献1参照)。
また、超音波や熱を用いて血管内の血管壁、血栓もしくはプラーク等を可視化する装置も知られているが、解像度や簡便性、実用性等の観点から、特許文献1のように光を用いることが望ましい。しかし、光を用いて血管内を可視化する場合には、血液による光吸収と光散乱の影響により、血管の奥行方向に視野を確保することが困難である。
特許文献1には、このような血液による散乱の影響を受け難くするため、直進光を利用することが記載されている。具体的には、光散乱効果の影響を受け難い長波長光で、特に血液による光吸収が極小となる波長(1.4μm〜1.8μm、2.1μm〜2.4μm、3.7μm〜4.3μm、4.6μm〜5.4μm、7μm〜14μm)の光を照明光として用いている。
米国特許第6178346号明細書
しかしながら、上記従来の技術では、1.8μm以下の波長帯においては、光が血液中を6mmも伝播しないうちに殆ど散乱されてしまうという課題がある。このため、上記の波長帯において、光源からの距離が光軸方向に6mm以上となる範囲では、血管壁、血栓やプラーク等による反射光よりも、血液による後方散乱光が圧倒的に多く検出されてしまう。
これにより、光源からの距離が近い血液による反射光や散乱光の強度と比較して、光源からの距離が遠い血管壁、血栓やプラーク等からの反射光や散乱光の強度は極端に弱くなる。したがって、上述の特許文献1に記載されているように直接検出を行った場合、血管壁、血栓、プラーク等の情報を検出することは非常に困難になるという課題がある。
また、2.1μm〜14μmの波長帯域においては、光学部品の入手が困難であり、装置の簡便性を大きく犠牲にしてしまうという課題がある。
そこで、本発明は、光源からの距離が遠い血管壁、血栓やプラーク等からの反射光や散乱光の検出を容易にし、血液中で可視化可能な距離を延長することができ、簡便性の高い血管内可視化方法および血管内可視化装置を提供するものである。
上記の課題を解決するために、本発明の血管内可視化方法は、血管内に光を照射し、前記血管内の画像を外部に表示する血管内可視化方法であって、前記光の波長を時間的に変化させながら射出する光射出工程と、前記光を検査光と参照光とに分波し、それぞれ前記検査光学系と参照光学系とに伝送する光分波工程と、前記検査光学系から前記血管内へ射出して反射・散乱させた前記検査光を、反射検査光として前記検査光学系により受光して伝送する検査光反射工程と、前記参照光学系から参照光反射部へ伝送して反射・散乱させた前記参照光を、反射参照光として前記参照光学系により伝送する参照光反射工程と、前記反射検査光と前記反射参照光とを合波して干渉光を得る反射光合波工程と、前記干渉光を電気信号に変換して処理する信号処理工程と、を有することを特徴とする。
このように可視化することで、様々な波長で連続的に射出された光が検査光と参照光に分岐され、検査光は検査光学系を介して血管内に射出され、参照光は参照光反射部に伝送される。そして、検査光は、血管内の血液、血管壁、血栓、プラーク等により反射され、参照光は参照光反射部により反射される。血管内で反射され検査光学系に受光された反射検査光と、参照反射部で反射された反射参照光は、合波されて干渉する。そして、その干渉光を電気信号に変換して処理することで、波長毎の光の干渉の強度を検出し、その情報を位置情報に変換して血管内の画像を得ることができる。
このように、位置情報の取得に参照光と検査光との干渉を利用することで、検査光の光軸方向に反射・散乱位置が分解でき、高感度でダイナミックレンジの広い信号を得ることができる。
また、本発明の血管内可視化方法は、前記信号処理工程において、前記電気信号を周波数毎の強度へ変換する第一処理と、前記周波数を距離へ変換する第二処理と、前記強度の時間微分値を算出する第三処理と、を有することを特徴とする。
このように可視化することで、血管内の血液による後方散乱による信号が、血管壁、血栓やプラーク等の可視化したい対象からの反射・散乱信号よりも格段に大きい場合であっても、可視化したい対象からの反射・散乱信号の検出精度を向上させることができる。
また、本発明の血管内可視化方法は、前記光射出工程において、650nm以上1350nm以下の範囲の波長の前記光を射出することを特徴とする。
このように可視化することで、従来よりも血液に対する光吸収率を低下させることができる。これにより、検査光が血液による散乱の影響により、光が射出されてから受光されるまでの光路が長くなった場合でも、検査光が血液によって吸収されることを防止できる。このため、検査光の光軸方向の視野を拡大することができる。
また、光学部品の入手性を向上させ、装置の簡便性を向上させることができる。
また、本発明の血管内可視化方法は、前記光射出工程において、1000nm以上1350nm以下の範囲の波長の前記光を射出することを特徴とする。
このように可視化することで、血液に対する光吸収率をより低下させ、検査光が血液によって吸収されることをより効果的に防止できる。これにより、検査光の光軸方向の視野をより拡大することができる
また、本発明の血管内可視化装置は、血管内に光を照射し、前記血管内の画像を外部に表示する血管内可視化装置であって、前記光の波長を制御可能な波長可変光源部と、前記光の一部を検査光として伝送して前記血管内で射出し、反射・散乱された前記検査光を反射検査光として受光して伝送する検査光学系と、前記光の一部を参照光として参照光反射部へ伝送し、反射・散乱された前記参照光を反射参照光として伝送する参照光学系と、前記波長可変光源部から射出された前記光を前記検査光と前記参照光とに分波すると共に、前記反射検査光と前記反射参照光とを合波して干渉光を得る光合分波部と、前記干渉光を電気信号に変換して処理する信号処理部と、前記信号処理部により処理された信号を画像として表示する表示部と、を備え、前記信号処理部は、前記電気信号を周波数毎の強度へ変換する第一処理と、前記周波数を距離へ変換する第二処理と、前記強度の時間微分値を算出する第三処理と、が記憶された記憶部と、前記記憶部に記憶された前記第一処理ないし前記第三処理を実行する演算部と、により構成されていることを特徴とする。
このように構成することで、波長可変光源部によって様々な波長で連続的に射出された光が、光合分波部によって検査光および参照光として分岐される。そして、検査光は検査光学系を介して血管内に射出され、血管内の血液、血管壁、血栓やプラーク等により反射される。血管内で反射された検査光は検査光学系に受光される。一方、参照光は参照光学系により参照光反射部に伝送されて反射される。
反射検査光と反射参照光は、それぞれ検査光学系および参照光学系によって光合分波部へ伝送され、光合分波部で合波されて干渉する。そして、その干渉光を信号処理部により電気信号に変換し、記憶部に記憶された第一処理〜第三処理を演算部により実行することで、波長毎の光の干渉の強度を検出し、その情報を位置情報に変換し、血管内の画像を表示部に表示することができる。
このように、位置情報の取得に参照光と検査光との干渉を利用することで、検査光の光軸方向に反射・散乱位置が分解でき、高感度でダイナミックレンジの広い信号を得ることができる。
本発明によれば、従来よりも光源からの距離が遠い血管壁、血栓やプラーク等からの反射光や散乱光の検出を容易にし、血液中で可視化可能な距離を延長することができ、かつ簡便性の高い可視化方法および可視化装置を提供することができる。
<第一実施形態>
次に、本発明の第一実施形態を図面に基づいて説明する。
(血管内可視化装置)
図1に示す血管内可視化装置1は、血管BV内に検査光学系60の一部である血管内視鏡70を挿入し、血管BV内の画像を外部に表示するための装置である。
血管内可視化装置1は、射出する光の波長を制御可能な波長可変光源部20を備えている。波長可変光源部20は、分布帰還型半導体レーザにより構成されている。半導体レーザは単一モードで発振し、その発振波長は約1300nmである。波長可変光源部20は、半導体レーザの発振波長を制御する波長制御部10に接続されている。
波長制御部10は、例えば、半導体レーザの温度を制御することで約1300±3nmの間で波長可変光源部20の発振波長を変化させるように構成されている。また、波長制御部10は、後述するパーソナルコンピュータ100に接続され、波長設定を指定する信号を入力可能に構成されている。
波長可変光源部20には、射出された光を伝送可能に光源用光ファイバ31の一端側が接続されている。光源用光ファイバ31の他端側は、光合分波部32の一端側に接続されている。ここで、光源用光ファイバ31としては、例えば、単一モード光ファイバが用いられる。また、光合分波部32としては、例えば、50:50単一モード光ファイバカップラが用いられる。
光合分波部32の他端側には、参照光用光ファイバ33および検査光用光ファイバ34の一端側がそれぞれ接続されている。光合分波部32は、光源用光ファイバ31を介して一端側に入射した光を、他端側の参照光用光ファイバ33および検査光用光ファイバ34に、それぞれ参照光、検査光として分岐して伝送可能に構成されている。
また、光合分波部32の一端側には、干渉光用光ファイバ35が接続されている。光合分波部32は、参照光用光ファイバ33および検査光用光ファイバ34を介してそれぞれ他端側に入射した二つの光を合波させて、一端側に接続された干渉光用光ファイバ35に伝送可能に構成されている。
ここで、参照光用光ファイバ33、検査光用光ファイバ34、および干渉光用光ファイバ35としては、例えば、光源用光ファイバ31と同様の単一モード光ファイバが用いられる。
検査光用光ファイバ34の他端側には、血管内視鏡70が設けられている。血管内視鏡70は、血管BV内に挿入可能な筒状の内視鏡本体71と、内視鏡本体71の内部に挿通された検査光用光ファイバ34の先端部に設けられたファラデー回転子72とを備えている。また、血管内視鏡70の先端部には、例えば、レンズ73等の光学部品が設けられている。
ファラデー回転子72は、入射した光の偏光の向きを回転させるように構成されている。また、血管内視鏡70の先端部は、光を射出および受光する検査光射出部兼受光部として機能するように構成されている。
本実施形態では、上述の光合分波部32、検査光用光ファイバ34、および血管内視鏡70により、検査光学系60が構成されている。検査光学系60は、後述するように、波長可変光源部20から射出された光の一部を検査光として血管内視鏡70へ伝送し、血管内視鏡70の先端部から射出されて血管BV内で反射・散乱された検査光を反射検査光として受光して光合分波部32へ伝送可能に構成されている。
一方、参照光用光ファイバ33の他端側には、例えば、反射鏡51、ファラデー回転子52および可変光減衰素子53等により、参照光反射部50が設けられている。ここで、可変光減衰素子53は、例えば、0dBから30dBの範囲で損失を変化させることができるように構成されている。また、反射鏡51、ファラデー回転子52、可変光減衰素子53は、いずれの素子も、波長1300nm前後で動作するものが用いられている。
本実施形態では、上述の光合分波部32、参照光用光ファイバ33、および参照光反射部50により、参照光学系40が構成されている。参照光学系40は、後述するように、波長可変光源部20から射出された光の一部を参照光として参照光反射部50へ伝送し、参照光反射部50により反射・散乱された参照光を反射参照光として光合分波部32へ伝送可能に構成されている。
光合分波部32に一端側が接続された干渉光用光ファイバ35の他端側には、フォトダイオード81が接続されている。フォトダイオード81は、干渉光用光ファイバ35を介して入射した光を電気信号に変換する光電変換部80を構成している。光電変換部80は、フォトダイオード81により変換された電気信号を増幅する増幅器82を備えている。ここで、フォトダイオード81および増幅器82は、例えば、いずれも約125MHzの動作帯域を有している。
光電変換部80には、アナログ信号をディジタル信号に変換するA/D変換部90が接続されている。A/D変換部90としては、例えば、14bit、400Ms/sのアナログ−ディジタル変換装置が用いられる。
A/D変換部90は、パーソナルコンピュータ100に接続されている。パーソナルコンピュータ100は、演算部101と記憶部102を備え、記憶部102に保存された情報に基づいて、演算部101により演算を実行可能に構成されている。記憶部102には、電気信号を周波数毎の強度へ変換する第一処理と、周波数を距離へ変換する第二処理と、信号の平滑化、閾値以下の信号の除外等を行う前処理と、強度の時間微分値を算出する第三処理等が記憶されている。
パーソナルコンピュータ100には、パーソナルコンピュータ100が伝送する信号を画像として表示するモニタ110(表示部)が接続されている。また、パーソナルコンピュータ100は、上述の波長制御部10と接続され、波長制御部10へ波長設定を指定する信号を伝送可能に構成されている。
(血管内可視化方法)
次に、本実施形態の血管内可視化装置1を用いた血管内可視化方法について説明する。
図1に示すように、血管内視鏡70を血管BV内に挿入した状態で、血管内可視化装置1のパーソナルコンピュータ100から、波長制御部10へ設定波長を指定する信号を入力する。波長制御部10は入力された信号に従い、波長可変光源部20の半導体レーザの発振波長を制御して、例えば、図1のグラフ(A)に示すように、発振波長を時間的に変化させながら連続的に光を射出させる(光射出工程)。
波長可変光源部20から射出された光は、光源用光ファイバ31によって伝送され、光合分波部32へ到達する。光合分波部32に到達した光は、光合分波部32によって二分岐される。二分岐された光のうち、一方は検査光用光ファイバ34へ検査光として伝送され、他方は参照光用光ファイバ33へ参照光として伝送される(光分波工程)。
光合分波部32により分岐されて検査光用光ファイバ34へ伝送された検査光は、血管BV内に挿入された血管内視鏡70に到達する。血管内視鏡70に到達した検査光はファラデー回転子72を透過して、血管内視鏡70の先端部から血管BV内に射出される。血管BV内に射出された検査光は、血液BL、血管壁VW、血栓(不図示)、プラークPL等の生体試料により反射・散乱されて血管内視鏡70の先端部に到達する。血管内視鏡70の先端部に到達した検査光は、反射検査光として受光され、血管内視鏡70の先端部で光結合される。光結合された反射検査光は、検査光とは逆向方向に検査光用光ファイバ34によって伝送されて光合分波部32に到達する(検査光反射工程)。
一方、光合分波部32により分岐されて参照光用光ファイバ33へ伝送された参照光は、参照光用光ファイバ33によって導かれ、参照光反射部50に到達する。参照光反射部50へ到達した参照光は、可変光減衰素子53、ファラデー回転子52等の光学部品を透過した後、反射鏡51により反射される。反射鏡51により反射された参照光は、反射参照光として参照光反射部50から参照光とは逆方向に参照光用光ファイバ33によって伝送され、光合分波部32に到達する(参照光反射工程)。
検査光用光ファイバ34および参照光用光ファイバ33によって伝送され、光合分波部32に到達した反射検査光と反射参照光は、光合分波部32において合波される。これにより、反射検査光と反射参照光が干渉して干渉光が得られる(反射光合波工程)。この際、干渉光の光強度には、反射検査光と反射参照光との干渉により、図1のグラフ(B)に示すような干渉縞が現れる。
干渉光は、干渉光用光ファイバ35により光合分波部32から光電変換部80へと伝送される。そして、干渉光はフォトダイオード81により電気信号に変換され、増幅器82により増幅された後、A/D変換部90によりディジタル信号に変換される。これにより、横軸を時間とし、縦軸を振幅(強度)としたときに、図2に示すような波形の信号が得られる。
A/D変換部90によりディジタル信号に変換された電気信号は、パーソナルコンピュータ100に入力され、記憶部102に記憶された処理を実行する演算部101によって処理される。演算部101は、まず、記憶部102に記憶された第一処理に基づいて、ディジタル信号に変換された電気信号にフーリエ変換を施して振幅を周波数毎の強度へ変換すると共に、縦軸を対数軸に変換する(第一処理)。
これにより、電気信号は、縦軸(対数)を強度とし、横軸を周波数とした場合に、図3に示すような波形を示す信号に変換される。
演算部101は、第一処理を実行した後、記憶部102に記憶された第二処理に基づいて、図3に示す波形の信号の周波数を距離へ変換する処理を行う(第二処理)。演算部101は、第二処理を実行した後、記憶部102に記憶された前処理に基づいて、信号の平滑化、閾値以下の信号の除外等を実行する(前処理)。これにより、横軸を距離、縦軸(対数)を強度とした場合に、図4に示すような波形の信号が得られる。
演算部101は、上述の前処理を実行した後、記憶部102に記憶された第三処理に基づいて、図4に示す波形の信号の強度の時間微分値を算出する(第三処理)。これにより、図5に示すような波形の信号が得られる。図5に示す波形の信号から得られた距離と微分値のデータは、演算部101により画像データに変換されてモニタ110に伝送される。これにより、血管BV内の画像が外部のモニタ110に表示され可視化される。
本実施形態によれば、上述の第二処理を実行することで、図4に示すように、周波数と強度のデータを血管内視鏡70の先端部からの距離と強度のデータに変換し、検査光の光軸方向に反射・散乱位置を分解することができる。
しかし、図4に示す波形においては、血管壁VW、血栓、プラークPL等、可視化したい対象からの反射信号・散乱信号は、血液BLからの後方散乱よりも非常に小さくなっている。したがって、可視化したい対象からの反射信号・散乱信号を検出するにはさらに信号処理することが好ましい。
血管BV内に射出された検査光は、距離が増加するほど血液BLにより多く吸収される。このことから、距離の増加に伴って強度が一定の傾きで減少している領域D1では、可視化対象が存在せず、血液BLの後方散乱による反射検査光のデータであることを示している。
一方、距離が増加しているにも係わらず、信号の強度が増加している領域D2は、血管BV内に存在する血管壁VW、血栓、プラークPL等により、血液BLのみによる反射・散乱よりも強い反射検査光が観測されていることを示している。
本実施形態では、第三処理を実行することで、図5に示す波形が得られ、図4に示す波形において、距離が増加しているにも係わらず強度が増加している領域D2は、図5に示す波形において微分値が正である領域D3となる。このため、微分値が正である領域D3を演算部101により識別することで、血栓、プラークPL等までの距離の情報を得ることができる。
したがって、本実施形態によれば、可視化したい対象からの反射信号・散乱信号が、血液BLからの後方散乱よりも非常に小さくなっている場合であっても、可視化したい対象までの距離を確実に検出して可視化することが可能となる。
また、図5に示すように、信号のダイナミックレンジを拡大することができ、血管壁、血栓、プラークPL等からの反射・散乱信号の識別を容易かつ確実に行うことができる。
また、我々の検討によって、光の血液に対する透過性は、650nm以上1350nm以下の範囲の波長において良好であり、700nm以上800nm以下及び1000nm以上1300nm以下の範囲の波長においてさらに良好であることがわかっている。
本実施形態においては、この結果に基づいて約1300±3nmの間波長の光を射出する波長可変光源部20を用いている。
したがって、本実施形態によれば、従来よりも血液BLに対する光吸収率を低下させることができる。これにより、検査光が血液BLによる散乱の影響を受け、光が射出されてから受光されるまでの光路が長くなった場合でも、検査光が血液BLによって吸収されることを防止できる。このため、検査光の光軸方向の視野を拡大することができる。
また、光学部品の入手性のよい2.1μm以下の波長の光を採用することで、血管内可視化装置1の簡便性を向上させることができる。
また、図6に示すように、血管内視鏡70は、内視鏡本体71の周囲にバルーン74を設ける構成としてもよい。バルーン74は、図示しないインフレータを介して生理食塩液や空気等を送り込んで膨張可能に構成されている。バルーン74は、膨張した時の形状が略管状になるように形成されており、バルーン74が膨張することによって血管内視鏡70の先端部が血管壁VWの近傍に固定される。また、バルーン74には、膨張時にバルーン74を延在方向に貫通する貫通孔75が形成されている。
このように、血管内視鏡70の先端部にバルーン74を設けることで、血管内視鏡74を血管壁BVに固定した状態で血管BV内を可視化することができる。これにより、従来よりも分解能が高い分、振動に敏感な血管内視鏡70を血管BV内に安定的に固定することができ、血管BV内の可視化を安定して行うことができる。また、血管壁BV付近の比較的小さい肥厚やプラークPL等もより容易に検出することができる。
加えて、バルーン74の貫通孔75内を矢印BFで示すように血液BLが流れることによって、血流を停止せずに血管BV内の情報を得ることができる。これにより、患者の負担を軽減することができる。なお、矢印BFは血流の方向の一例を示すものであって、先端部4が挿入される血管を限定するものではない。
以上説明したように、本実施形態によれば、位置情報の取得に参照光と検査光との干渉を利用することで、従来よりも血栓、プラークPL等からの反射・散乱信号の感度を向上させることができる。また、検査光の光軸方向に反射・散乱位置が分解でき、高感度でダイナミックレンジの広い信号を得ることができる。
したがって、本実施形態の血管内可視化装置1および血管内可視化方法を、例えば、心臓カテーテルの誘導等に適用することで、血流を止めることなく血管BV内の鮮明かつ奥行方向の視野の広い映像を得ることができ、作業の効率を著しく向上させ、患者の負担を軽減することができる。
<第二実施形態>
次に、本発明の第二実施形態について、図2〜図5を援用し、図6を用いて説明する。本実施形態の血管内可視化装置1Aでは検査光学系60Aと参照光学系40Aがそれぞれ反射検査光用光ファイバ34Aおよび反射参照光用光ファイバ33Aを備えている点で上述の第一実施形態と異なっている。その他の点は第一実施形態と同様であるので、同一の部分には同一の符号を付して説明は省略する。
(血管内可視化装置)
図6に示すように、第一の光合分波部32の一端側には、光源用光ファイバ31が接続され、他端側には、検査光用光ファイバ34および参照光用光ファイバ33の一端側がそれぞれ接続されている。また、第二の光合分波部32Aの一端側には、干渉光用光ファイバ35が接続され、他端側には、反射検査光用光ファイバ34Aおよび反射参照光用光ファイバ33Aの一端側がそれぞれ接続されている。
検査光用光ファイバ34および反射検査光用光ファイバ34Aの他端側には、血管内視鏡70Aが設けられている。血管内視鏡70Aは、第一実施形態の血管内視鏡70と同様に構成されている。
本実施形態では、上述の第一の光合分波部32、検査光用光ファイバ34、血管内視鏡70A、反射検査光用光ファイバ34Aおよび第二の光合分波部32Aにより、検査光学系60Aが構成されている。
一方、参照光用光ファイバ33および反射参照光用光ファイバ33Aの他端側には、例えば、ファラデー回転子、可変光減衰素子(図示省略)およびプリズム54により、参照光反射部50Aが設けられている。
本実施形態では、上述の第一の光合分波部32、参照光用光ファイバ33、参照光反射部50A、反射参照光用光ファイバ33A、および第二の光合分波部32Aにより、参照光学系40Aが構成されている。
(血管内可視化方法)
次に、本実施形態の血管内可視化装置1Aを用いた血管内可視化方法について説明する。
図6に示すように、第一実施形態と同様に、光射出工程および光分波工程を経て、第一の光合分波部32によって二分岐された光のうち、検査光用光ファイバ34へ伝送された検査光は、血管BV内に挿入された血管内視鏡70Aに到達する。血管内視鏡70Aに到達した検査光は、血管内視鏡70Aの先端部の検査光用光ファイバ34の先端部から血管BV内に射出され、血液BL、血管壁VW、血栓、プラークPL等の生体試料により反射・散乱されて、反射検査光用光ファイバ34Aの先端部に到達する。
反射検査光用光ファイバ34Aの先端部に到達した検査光は、反射検査光として受光され、反射検査光用光ファイバ34Aの先端部で光結合される。光結合された反射検査光は、反射検査光用光ファイバ34Aによって伝送されて第二の光合分波部32Aに到達する(検査光反射工程)。
一方、第一の光合分波部32により分岐されて参照光用光ファイバ33へ伝送された参照光は、参照光反射部50Aへ到達してプリズム54により反射される。プリズム54により反射された参照光は、反射参照光として参照光反射部50Aから反射参照光用光ファイバ33Aに伝送され、第二の光合分波部32Aに到達する(参照光反射工程)。
反射検査光用光ファイバ34Aおよび反射参照光用光ファイバ33Aによって伝送され、第二の光合分波部32Aに到達した反射検査光と反射参照光は、第二の光合分波部32Aにおいて合波される。これにより、第一実施形態と同様に反射検査光と反射参照光が干渉して干渉光が得られる(反射光合波工程)。
本実施形態によれば、第一実施形態と同様の効果が得られるだけでなく、射出された検査光の光軸と異なる軸上に反射・散乱される反射検査光を受光することができる。
また、検査光と反射検査光、および参照光と反射参照光の光ファイバを別に設けたことで、より連続的で鮮明な画像を得ることができる。
<第三実施形態>
次に、本発明の第三実施形態について、図2〜図5を援用し、図7を用いて説明する。本実施形態の血管内可視化装置1Bでは光電変換部80Aにデュアルバランスドディテクター(Dual Balanced Detector:DBD)が用いられている点で上述の第一実施形態と異なっている。その他の点は第一実施形態と同様であるので、同一の部分には同一の符号を付して説明は省略する。
(血管内可視化装置)
図7に示すように、光源用光ファイバ31の途中には、サーキュレータ36が設けられている。サーキュレータ36は、波長可変光源部20からの光を、光源分岐用光ファイバ31Bに分岐可能に設けられている。光源分岐用光ファイバ31Bは、DBD82の第一の光電変換部81Aに接続されている。また、干渉光用光ファイバ35は、DBD82の第二の光電変換部81Bに接続されている。
(血管内可視化方法)
第一の実施形態と同様に、光射出工程、光分波工程、検査光反射工程、参照光反射工程、反射光合波工程を経て得られた干渉光は、干渉光用光ファイバ35により光合分波部からDBD82の第二の光電変換部81Bへと伝送され、電気信号に変換される。一方、DBDの第一の光電変換部81Aには、サーキュレータ36により分岐された波長可変光源部20からの光が光源分岐用光ファイバ31Aを介して伝送され、電気信号に変換される。
本実施形態によれば、第一実施形態と同様の効果が得られるだけでなく、第一実施形態と比較して、ダイナミックレンジをさらに拡大することが可能となる。
尚、この発明は上述した実施の形態に限られるものではなく、例えば、波長可変光源部から射出される光の波長は、1000nm以上1350nm以下の範囲、または1000nm以上1350nm以下の範囲であればよい。また、各種光学部品は、波長可変光源部から射出される光の波長の範囲に応じて適宜選択される。
また、光ファイバは単一モード光ファイバに限定されず、多モード光ファイバを用いてもよい。
また、光源としては特に制限はなく、例えばレーザーダイオード等を採用することができる。射出する光としては、血液に対して透過性の高い波長のものが用いられるのが好ましい。
本発明の第一実施形態における血管内可視化装置の全体構成を示す模式図である。 本発明の第一実施形態において縦軸を振幅とし、横軸を時間としたときの干渉光の電気信号の波形を示すグラフである。 本発明の第一実施形態において縦軸を強度(対数)とし、横軸を周波数としたときの第一処理後の電気信号の波形を示すグラフである。 本発明の第一実施形態において縦軸を強度(対数)とし、横軸を距離としたときの第二処理後の電気信号の波形を示すグラフである。 本発明の第一実施形態において縦軸を微分値とし、横軸を距離としたときの第二処理後の電気信号の波形を示すグラフである。 本発明の第一実施形態における血管内視鏡の先端部の構成の一例を示す模式図である。 本発明の第二実施形態における血管内可視化装置の全体構成を示す模式図である。 本発明の第三実施形態における血管内可視化装置の全体構成を示す模式図である。
符号の説明
1,1A,1B 血管内可視化装置、10 波長制御部20 波長可変光源部、32,32A 光合分波部、40,40A 参照光学系、50,50A 参照光反射部、60,60A 検査光学系、80,80A 光電変換部(信号処理部)、90 A/D変換部(信号処理部)、100 パーソナルコンピュータ(信号処理部)、101 演算部、102 記憶部、BV 血管

Claims (5)

  1. 血管内に光を照射して、前記血管内の画像を外部に表示する血管内可視化方法であって、
    前記光の波長を時間的に変化させながら射出する光射出工程と、
    前記光を検査光と参照光とに分波し、それぞれ検査光学系と参照光学系とに伝送する光分波工程と、
    前記検査光学系から前記血管内へ射出して反射・散乱させた前記検査光を、反射検査光として前記検査光学系により受光して伝送する検査光反射工程と、
    前記参照光学系から参照光反射部へ伝送して反射・散乱させた前記参照光を、反射参照光として前記参照光学系により伝送する参照光反射工程と、
    前記反射検査光と前記反射参照光とを合波して干渉光を得る反射光合波工程と、
    前記干渉光を電気信号に変換して処理する信号処理工程と、
    を有することを特徴とする血管内可視化方法。
  2. 前記信号処理工程において、
    前記電気信号を周波数毎の強度へ変換する第一処理と、
    前記周波数を距離へ変換する第二処理と、
    前記強度の時間微分値を算出する第三処理と、
    を有することを特徴とする請求項1記載の血管内可視化方法。
  3. 前記光射出工程において、650nm以上1350nm以下の範囲の波長の前記光を射出することを特徴とする請求項1または請求項2記載の血管内可視化方法。
  4. 前記光射出工程において、1000nm以上1350nm以下の範囲の波長の前記光を射出することを特徴とする請求項1または請求項2記載の血管内可視化方法。
  5. 血管内に光を照射して、前記血管内の画像を外部に表示する血管内可視化装置であって、
    前記光の波長を制御可能な波長可変光源部と、
    前記光の一部を検査光として伝送して前記血管内で射出し、反射・散乱された前記検査光を、反射検査光として受光して伝送する検査光学系と、
    前記光の一部を参照光として参照光反射部へ伝送し、反射・散乱された前記参照光を、反射参照光として伝送する参照光学系と、
    前記波長可変光源部から射出された前記光を前記検査光と前記参照光とに分波すると共に、前記反射検査光と前記反射参照光とを合波して干渉光を得る光合分波部と、
    前記干渉光を電気信号に変換して処理する信号処理部と、
    前記信号処理部により処理された信号を画像として表示する表示部と、
    を備え、
    前記信号処理部は、前記電気信号を周波数毎の強度へ変換する第一処理と、前記周波数を距離へ変換する第二処理と、前記強度の時間微分値を算出する第三処理と、が記憶された記憶部と、
    前記記憶部に記憶された前記第一処理ないし前記第三処理を実行する演算部と、
    により構成されていることを特徴とする血管内可視化装置。
JP2007270347A 2007-10-17 2007-10-17 血管内可視化方法および血管内可視化装置 Withdrawn JP2009098017A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007270347A JP2009098017A (ja) 2007-10-17 2007-10-17 血管内可視化方法および血管内可視化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007270347A JP2009098017A (ja) 2007-10-17 2007-10-17 血管内可視化方法および血管内可視化装置

Publications (1)

Publication Number Publication Date
JP2009098017A true JP2009098017A (ja) 2009-05-07

Family

ID=40701159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007270347A Withdrawn JP2009098017A (ja) 2007-10-17 2007-10-17 血管内可視化方法および血管内可視化装置

Country Status (1)

Country Link
JP (1) JP2009098017A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011206375A (ja) * 2010-03-30 2011-10-20 Terumo Corp 光画像診断装置及びその表示制御方法
JP2013506136A (ja) * 2009-09-23 2013-02-21 ライトラブ イメージング, インコーポレイテッド 管腔中のインビボ血液除去の装置、システムおよび方法
CN111970971A (zh) * 2018-05-30 2020-11-20 松下知识产权经营株式会社 识别装置及识别方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013506136A (ja) * 2009-09-23 2013-02-21 ライトラブ イメージング, インコーポレイテッド 管腔中のインビボ血液除去の装置、システムおよび方法
JP2011206375A (ja) * 2010-03-30 2011-10-20 Terumo Corp 光画像診断装置及びその表示制御方法
CN111970971A (zh) * 2018-05-30 2020-11-20 松下知识产权经营株式会社 识别装置及识别方法

Similar Documents

Publication Publication Date Title
US7620445B2 (en) Apparatus for acquiring tomographic image formed by ultrasound-modulated fluorescence
JP6335909B2 (ja) ハイブリッドカテーテルシステム
JP3628026B2 (ja) 光ファイバ撮像ガイドワイヤ、カテーテルまたは内視鏡を用いて光学測定を行う方法および装置
US9364167B2 (en) Tissue imaging and image guidance in luminal anatomic structures and body cavities
US20190021598A1 (en) Integrated catheter device for cardiovascular diagnosis and image processing system
KR20090129378A (ko) 생체 관측 장치 및 방법
US7324211B2 (en) Optical tomographic image obtaining apparatus
US8262576B2 (en) Imaging probe
JP4799109B2 (ja) 電子内視鏡装置
US20050075574A1 (en) Devices for vulnerable plaque detection
JP2009128074A (ja) 光干渉断層画像診断装置
JP2011516865A (ja) 化学分析モダリティーを補正する血管内構造分析のためのシステムおよび方法
JPH1156752A (ja) 被検体内断層イメージング装置
US20180140199A1 (en) Photoacoustic wave detecting device and photoacoustic imaging device
JP2006162485A (ja) 光断層映像装置
JP2017529131A (ja) 冠状の閉塞を横断するための光干渉断層撮影プローブ
KR20160048256A (ko) 초음파와 광음향 신호 검출용 카테터 및 이를 이용한 초음파 영상과 광음향 영상 획득 시스템
JP4783190B2 (ja) 光干渉断層計
KR101737440B1 (ko) 광음향/초음파 융합 카테터와 이를 이용한 통합 영상 획득 시스템 및 방법
JP2009098017A (ja) 血管内可視化方法および血管内可視化装置
JP2009153654A (ja) 生体観察装置および生体観察方法
JP2006192059A (ja) 断層測定装置
JP5407896B2 (ja) 診断補助装置及び光プローブ
JP2008259743A (ja) 孔体内検査装置
JP2006204429A (ja) 断層画像取得装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110104