JP2006330518A - 高調波発生装置 - Google Patents

高調波発生装置 Download PDF

Info

Publication number
JP2006330518A
JP2006330518A JP2005156397A JP2005156397A JP2006330518A JP 2006330518 A JP2006330518 A JP 2006330518A JP 2005156397 A JP2005156397 A JP 2005156397A JP 2005156397 A JP2005156397 A JP 2005156397A JP 2006330518 A JP2006330518 A JP 2006330518A
Authority
JP
Japan
Prior art keywords
harmonic
laser beam
nonlinear
temperature
nonlinear medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005156397A
Other languages
English (en)
Inventor
Katsuharu Mukohara
克治 向原
Tsuyoshi Nagano
強 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Laserfront Technologies Inc
Original Assignee
Laserfront Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laserfront Technologies Inc filed Critical Laserfront Technologies Inc
Priority to JP2005156397A priority Critical patent/JP2006330518A/ja
Publication of JP2006330518A publication Critical patent/JP2006330518A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】 アッテネータ及び吸収フィルタ等のレーザ光を減衰させるための光学部品を使用せずにレーザ光の出力を調節することができる高調波発生装置を提供する。
【解決手段】 光検出器17によりガラスプレート23で反射された第2高調波レーザ光15を常時モニタすると共に、光検出器18によりガラスプレート25で反射された第3高調波レーザ光16を常時モニタする。そして、これらの測定結果に基づき、第2高調波レーザ光15及び第3高調波レーザ光16の出力が所定の値になるように、非線形媒質7に取り付けられたペルチェ素子9及び/又は非線形媒質8に取り付けられたペルチェ素子10の温度を調節する。
【選択図】 図1

Description

本発明は、非線形光学効果を利用して高調波レーザ光を発生させる高調波発生装置に関し、特に、複数個の非線形媒質を使用する高調波発生装置に関する。
近時、レーザ技術の進歩により、レーザ光が高出力化されており、更に非線形効果を利用して多様な波長が得られるようになっている。一方、基本波レーザ光を周波数変換して高調波レーザ光を発生させる非線形媒質(非線形結晶)は、温度依存性が極めて高く、高出力の高調波レーザ光を安定して出力するためには、非線形媒質の温度を一定に保持する必要がある。そこで、従来の高調波発生装置においては、非線形媒質に温度センサ及び電子冷却器等を取り付け、高調波レーザ光の出力が最大となるように非線形媒質の温度を調節している(例えば、特許文献1乃至3参照)。
図7は特許文献3に記載の高調波発生装置の構成を示すブロック図である。図7に示すように、特許文献3に記載の従来の高調波発生装置100は、ペルチェ素子等の温度調節素子101上に、半導体レーザからなり励起光102aを発生する励起用光源102と、第2高調波レーザ光103aを発生する固体レーザユニット103とが配置されている。この固体レーザユニット103内には、励起用光源102側から順に、ネオジウム(Nd)がドーピングされたYAG結晶等からなり励起光102aにより励起されて基本波レーザ光を発生する固体レーザ媒質104、MgO−LN結晶等からなり基本波レーザ光を第2高調波レーザ光に変換する非線形媒質105、及び基本波レーザ光を反射すると共に第2高調波レーザ光を透過する共振器ミラー106が配置されている。従って、この固体レーザユニット103は、励起光102aが入射され、第2高調波レーザ光103aが出射される。更に、固体レーザ媒質104と共振器ミラー106とで構成される共振器内の温度を検出する温度センサ107が取り付けられている。温度センサ107は、温度センサ107から出力された検出温度信号107a及び設定目標とする温度信号114aに基づき、温度調節素子101に温度制御電力108aを供給する温度制御回路108に接続されている。
一方、第2高調波レーザ光103aの進行方向側の光軸上には、高調波レーザ光103aの一部を光検出器110に向けて分岐するハーフミラー109が配置されている。この光検出器110は、高調波レーザ光103aを検出して光検出信号110aを出力するものであり、光検出信号110aに基づき励起用光源102への注入エネルギーを増減するためのフィードバック信号111aを出力する光出力制御回路111に接続されている。また、光出力制御回路111は、フィードバック信号111aに基づき励起用光源102に励起用エネルギー(電流)を供給する駆動回路112に接続されており、この駆動回路112は電流検出器113を介して励起用光源102に接続されている。更に、電流検出器113は、マイクロコンピュータからなる動作温度設定ユニット114にも接続されている。この動作温度設定ユニット114は、電流検出器113から入力された半導体レーザ駆動電流を示す信号113aに基づき、温度制御回路108に対して設定目標となる温度を示す前述の温度信号114aを出力するものであり、これにより、温度制御回路108が制御する温度を昇降させると共に、最適動作温度を求めて、その温度を新たな制御温度として温度性制御回路108に指示する。
特開平5−11300号公報 特開平7−182681号公報 特開2001−168439号公報
しかしながら、前述の従来の技術には以下に示す問題点がある。前述したレーザ技術の進歩に伴い、レーザ加工の対象物も金属及び樹脂等の様々な材料に拡大し、市場の加工ニーズに応えるためには、レーザ光の出力、波長及びパルス幅等の加工条件の最適化が必要となっているが、特許文献1乃至3に記載されているような従来の高調波発生装置は、変換された高調波レーザ光の出力が最大となるように設定されており、樹脂等の低出力での加工が必要な材料には適用することができないという問題点がある。
このため、従来のレーザ加工装置においては、光軸上にアッテネータ及び吸収フィルタ等の光学部品を配置すると共に、これらを駆動させるための駆動装置を設け、非線形媒質により波長変換されたレーザ光を所望の出力まで減衰させているが、薄膜ポラライザーを使用したアッテネータは部品単価が高価であり、また吸収フィルタは高出力レーザ光によりダメージを受けることがある。
本発明はかかる問題点に鑑みてなされたものであって、アッテネータ及び吸収フィルタ等のレーザ光を減衰させるための光学部品を使用せずにレーザ光の出力を調節することができる高調波発生装置を提供することを目的とする。
本願第1発明に係る高調波発生装置は、入射レーザ光に対して、複数個の非線形媒質により波長が異なる複数種の高調波レーザ光を発生させ、これらを合成して出射する高調波発生装置において、前記複数個の非線形媒質の温度を個別に調節可能な温度調節部を有し、各高調波レーザ光の強度が所定の値になるように、対応する非線形媒質の温度が調節されることを特徴とする。
本発明においては、複数個の非線形媒質の温度を個別に調節可能な温度調節部を設けているため、アッテネータ及び吸収フィルタ等のレーザ光を減衰させるための光学部品を使用しなくても、非線形媒質毎に発生する高調波レーザ光の出力を調節することができる。その結果、出射されるレーザ光の全体の出力、及び出射されるレーザ光中の各高調波レーザ光の割合を、容易に調節することができる。
本願第2発明に係る高調波発生装置は、入射レーザ光に対して、複数個の非線形媒質により波長が異なる複数種の高調波レーザ光を発生させ、これらを合成して出射する高調波発生装置において、前記複数個の非線形媒質で発生した高調波レーザ光の強度を夫々測定する複数個の光検知器と、前記複数個の非線形媒質の温度を個別に調節可能な温度調節部と、を有し、前記光検出器の測定結果に基づき、各高調波レーザ光の強度が所定の値になるように、対応する非線形媒質の温度が調節されることを特徴とする。
本発明においては、非線形媒質で発生した高調波レーザ光の強度を夫々測定する複数個の光検知器と、これらの非線形媒質の温度を個別に調節可能な温度調節部とが設けられ、各光検出器の測定結果に基づき、非線形媒質から出射する高調波レーザ光が所定の出力になるように、対応する非線形媒質の温度が調節されるため、レーザ光を減衰させるための光学部品を使用しなくても、非線形媒質毎に発生する高調波レーザ光の出力を調節することができる。その結果、出射されるレーザ光の全体の出力、及び出射されるレーザ光中の各高調波レーザ光の割合を、容易に調節することができる。
本願第3発明に係る高調波発生装置は、入射レーザ光に対して、複数個の非線形媒質により波長が異なる複数種の高調波レーザ光を発生させ、これらを合成して出射する高調波発生装置において、前記複数個の非線形媒質で発生した高調波レーザ光の強度を夫々測定する複数個の光検知器と、前記複数個の非線形媒質の温度を個別に調節可能な温度調節部と、前記複数の非線形媒質の回転角及びあおり角を個別に調節可能な角度調節部と、を有し、前記光検出器の測定結果に基づき、各高調波レーザ光の強度が所定の値になるように、対応する非線形媒質の温度、回転角及びあおり角のうち少なくとも1種の条件が調節されることを特徴とする。
本発明においては、非線形媒質の温度を個別に調節可能な温度調節部、回転角及びあおり角を個別に調節可能な角度調節部を設けているため、アッテネータ及び吸収フィルタ等のレーザ光を減衰させるための光学部品を使用しなくても、各非線形媒質で発生する高調波レーザ光の出力を容易に且つ広範囲に調節することができる。その結果、出射されるレーザ光の全体の出力、及び出射されるレーザ光中の各高調波レーザ光の割合及び基本波レーザ光の割合を、容易に調節することができる。
前記温度調節部は、前記複数個の非線形媒質に夫々取り付けられ前記非線形媒質を加熱又は冷却する複数個のペルチェ素子と、前記光検出器の測定結果に基づき対応する非線形媒質に取り付けられたペルチェ素子を制御する素子制御部と、を有していてもよい。これにより、各非線形媒質の温度を容易に調節することができる。
前記複数個の非線形媒質は、一定の間隔をあけて1列に配置されていてもよい。その場合、一の非線形媒質と、この一の非線形媒質と隣り合う他の非線形媒質との間に、レーザ光の偏光方向を回転させる波長板を配置することもできる。これにより、発生する高調波の偏光方向が直角になるように設計された非線形媒質同士を組み合わせて使用する場合でも、出射されるレーザ光の全体の出力、並びに出射されるレーザ光中の各高調波レーザ光及び基本波レーザ光の割合を、容易に調節することができる。
また、前記非線形媒質に向けて基本波レーザ光を出射するレーザ発振器を有していてもよく、その場合、更に、前記非線形媒質を透過した基本波レーザ光の強度を測定する他の光検知器が設けられ、この光検出器の測定結果に基づき前記レーザ発振器から出射される基本波レーザ光の出力を調節してもよい。
本発明によれば、入射レーザ光に対して、複数個の非線形媒質により波長が異なる複数種の高調波レーザ光を発生させ、これらを合成して出射する高調波発生装置に、複数個の非線形媒質の温度を個別に調節可能な温度調節部を設けているため、レーザ光を減衰させるための光学部品を使用しなくても、非線形媒質毎に発生する高調波レーザ光の出力を調節することができ、出射されるレーザ光における全体の出力及び各高調波レーザ光の割合を容易に調節することができる。
以下、本発明の実施の形態に係る高調波発生装置について、添付の図面を参照して具体的に説明する。先ず、本発明の第1の実施形態に係る高調波発生装置について説明する。図1は本実施形態の高調波発生装置の構成を示すブロック図である。図1に示すように、本実施形態の高調波発生装置30には、ネオジウム(Nd)がドーピングされたYAG結晶(Nd:YAG)及びNdがドーピングされたYLF結晶(Nd:YLF)等からなる固体レーザ媒質1と、その両側に夫々配置された全反射ミラー2及び基本波レーザ光5のみを透過する部分透過ミラー3とにより構成されるレーザ発振器4が設けられている。また、レーザ発振器4の部分透過ミラー3側には、集光レンズ6、第2高調波を発生する非線形媒質7、第3高調波を発生する非線形媒質8、第2高調波レーザ光15のみを反射して他のレーザ光と分離する部分透過ミラー20、第3高調波レーザ光16のみ反射して基本波レーザ光5と分離する部分透過ミラー21、基本波レーザ光5の一部を透過する部分透過ミラー22及び光検出器19がこの順に間隔をあけて1列に配置されている。
部分透過ミラー20は、非線形媒質8から出射した各レーザ光が45゜の角度で入射するように配置されており、各レーザ光の入射方向に対して90゜の方向には、部分透過20により分離された第2高調波レーザ光16の一部を光検出器17に向けて反射するガラスプレート23及び全反射ミラー24がこの順に1列に配置されている。同様に、部分透過ミラー21は、部分透過ミラー20を透過した各レーザ光が45゜の角度で入射するように配置されており、各レーザ光の入射方向に対して90゜の方向には、部分透過ミラー21により分離された第3高調波レーザ光17の一部を光検出器18に向けて反射するガラスプレート25、基本波レーザ光5のみを反射する部分透過ミラー26及び第2高調波レーザ光16のみ反射する部分透過ミラー27がこの順に1列に配置されている。更に、部分透過ミラー22は、部分透過ミラー21を透過した基本波レーザ光5が45゜の角度で入射するように配置されており、基本波レーザ光5の入射方向に対して90゜の方向には、部分透過ミラー22で反射された基本波レーザ光15を、部分透過ミラー26に向けて反射する全反射ミラー28が配置されている。そして、部分透過ミラー27の下方に被加工物29が配置され、各レーザ光はこの加工物に向けて照射される。
また、非線形媒質7及び8には、夫々ペルチェ素子9及び10が取り付けられている。そして、ペルチェ素子9及び10には、夫々、温度コントローラ11及び12が接続されており、これら温度コントローラ11及び12は、夫々光検出器17及び18で測定された結果に基づき、ペルチェ素子9及び10の温度を設定する温度設定部13及び14に接続されている。
次に、上述の如く構成された高調波発生装置1の動作、即ち、高調波発生装置1を使用した高調波発生方法について説明する。先ず、レーザ発振器4に励起光を入射させてレーザ媒質1を励起させて、基本波レーザ光5を発生させる。レーザ発振器4から出射した基本波レーザ光5は、集光レンズ6で集光され非線形媒質7に入射する。そして、非線形媒質7において第2高調波レーザ光15が発生し、基本波レーザ光5及びその第2高調波レーザ光15の2種類のレーザ光が非線形媒質8に入射する。そして、非線形媒質8において第3高調波レーザ光16が発生し、非線形媒質8からは基本波レーザ光5、その第2高調波レーザ光15及び第3高調波レーザ光16が出射する。
非線形媒質8から出射した各レーザ光は、先ず、部分透過ミラー20により第2高調波レーザ光15のみが分離される。そして、分離された第2高調波レーザ光15は、ガラスプレート23によりその一部が光検出器17に向けて反射され、ガラスプレート23を透過した第2高調波レーザ光15は、全反射ミラー24及び部分透過ミラー27で反射されて、被加工物29に照射される。
また、部分透過ミラー20を透過した第3高調波レーザ光16及び基本波レーザ光5のうち、第3高調波レーザ光16のみが部分透過ミラー21により反射される。即ち、部分透過ミラー21により、第3高調波レーザ光16と基本波レーザ光5とが分離される。そして、分離された第3高調波レーザ光16は、ガラスプレート25によりその一部が光検出器18に向けて反射され、一方、ガラスプレート25を透過した第3高調波レーザ光16は、部分透過ミラー26及び部分透過ミラー27を透過して、被加工物29に照射される。更に、部分透過ミラー21を透過した基本波レーザ光5は、その一部が部分透過ミラー22を透過して光検出器19に入射する。そして、部分透過ミラー22で反射された基本波レーザ光5は、全反射ミラー28及び部分透過ミラー26で反射され、更に部分透過ミラー27を透過して、被加工物29に照射される。
このとき、ペルチェ素子9及び10により非線形媒質7及び8を加熱又は冷却することにより、非線形媒質7及び8から発生する高調波レーザ光の出力が調節されている。具体的には、光検出器17によりガラスプレート23で反射された第2高調波レーザ光15を常時モニタすると共に、光検出器18によりガラスプレート25で反射された第3高調波レーザ光16を常時モニタする。そして、これらの測定結果に基づき、第2高調波レーザ光15及び第3高調波レーザ光16の出力が所定の値になるように、各ペルチェ素子の温度を調節し、第2高調波レーザ光15及び第3高調波レーザ光16の出力が所定の値になった時点で、温度設定部13においてこれらのレーザ光の出力が常に一定になるように各ペルチェ素子の温度を設定し、温度コントローラ11及び12によりペルチェ素子9及び10の温度が例えば±0.1℃以内の精度で一定に保たれるようにその温度を調節する。
更に、レーザ加工において、各レーザ光の出力の割合を変えたい場合は、非線形媒質7及び8の温度、即ち、ペルチェ素子9及び10の設定温度を変えるか、又は光検出器19の測定結果に基づき、基本波レーザ光5の出力を調節する。図2は、横軸にペルチェ素子の設定温度をとり、縦軸に非線形媒質で発生する高調波レーザ光の出力をとって、非線形媒質7及び8の温度依存性を示すグラフ図である。例えば、非線形媒質7及び8が図2に示すような温度特性をもっている場合、ペルチェ素子9及び10の温度を25℃としたときに第2高調波レーザ光15及び第3高調波レーザ光16共に最大出力が得られる。また、25℃においては、第3高調波レーザ光16の出力よりも第2高調波レーザ光15の出力の方が大きいため、被加工物29に照射されるレーザ光における各レーザ光成分の割合は、第3高調波レーザ光16よりも第2高調波レーザ光15の方が多くなる。一方、ペルチェ素子9及び10の温度を30℃にすると、各レーザ光の出力を減少させることができると共に、第2高調波レーザ光15の出力が第3高調波レーザ光16の出力よりも小さくなるため、被加工物29に照射されるレーザ光における第3高調波レーザ光16の割合を、第2高調波レーザ光15よりも多くすることができる。
本実施形態の高調波発生装置1においては、光検出器17及び18により、夫々第2高調波レーザ光15及び第3高調波レーザ光16の強度をモニタし、その結果に基づき非線形媒質7及び8の温度を調節しているため、従来の高調波発生装置のように、アッテネータ及び吸収フィルタ等の光学部品を使用しなくても、被加工物29に照射されるレーザ光の出力を容易に調節することができると共に、被加工物29に照射されるレーザ光における各高調波レーザ光成分の割合を調節することができる。このように、本実施形態の高調波発生装置1は、レーザ光の出力及び各高調波成分の割合を容易に調整することができるため、種々の材質及び幅広い分野に適用することができる。
なお、本実施形態においては、ペルチェ素子9及び10の温度を同じにしているが、本発明はこれに限定されるものではなく、ペルチェ素子9の温度とペルチェ素子10の温度は夫々個別に調節することができる。例えば、ペルチェ素子9の温度を25℃とし、ペルチェ素子10の温度を30℃とした場合、第2高調波レーザ光15の出力を下げずに第3高調波レーザ光16の出力のみを下げることができる。このように本実施形態の高調波発生装置1においては、被加工物29に照射させるレーザ光における高調波成分の割合を任意に変化させることができる。
次に、本発明の第2の実施形態の高調波発生装置について説明する。図3は本実施形態の高調波発生装置の構成を示すブロック図である。なお、図3においては、図1に示す第1の実施形態の高調波発生装置30の構成要素と同じものには同じ符号を付し、その詳細な説明は省略する。図3に示すように、本実施形態の高調波発生装40は、図1に示す高調波発生装置30に、更に、基本波レーザ光5の入射方向に対する非線形媒質7及び8のあおり角を調節するためのあおり角調節機構31及び32、並びに回転角を調節するための回転調節機構33及び34を設けたものである。
非線形媒質は一般に常温(25℃程度)で最大出力が得られるように、入射レーザ光波長に対する切り出し角(位相整合角)が設定されており、装置内に配置される際にも、発生する高調波の出力が最大になるように、その回転角及びあおり角が調整されている。この場合、レーザ発振器4から出射された基本波レーザ光5の大部分は、非線形媒質7における第2高調波レーザ光15の発生に使用されるため、非線形媒質7を通過する基本波レーザ光5の出力はレーザ発振器4からの出射量に比べて大幅に減少している。
そこで、あおり角調節機構31及び回転調節機構33により、非線形媒質7のあおり角及び回転角を調節し、基本波レーザ光5の透過量を多くすることにより、被加工物29に照射されるレーザ光における第2高調波レーザ光15の割合を減少させ、第3高調波レーザ光16の割合及び/又は基本波レーザ光5の割合を増加させることができる。また、あおり角調節機構32及び回転調節機構34により、非線形媒質8のあおり角及び回転角を調節することにより、被加工物29に照射されるレーザ光における第3高調波レーザ光16の割合を減少させ、基本波レーザ光5及び第2高調波レーザ光15の割合を増加させることもできる。
上述の如く、本実施形態の高調波発生装置40においては、非線形媒質7及び8の回転角及びあおり角を調節することができるため、非線形媒質7及び8における高調波レーザ光への変換率を容易に変化させることができ、第2高調波レーザ光15及び第3高調波レーザ光16に加えて、被加工物29に照射されるレーザ光における基本波レーザ光5の割合も変化させることができる。更に、非線形媒質7及び8の回転角及びあおり角を調節すると共に、ペルチェ素子9及び10により非線形媒質7及び8の温度を調節することにより、基本波レーザ光5、第2高調波レーザ光15及び第3高調波レーザ光16の出力、及び被加工物29に照射されるレーザ光におけるこれらの成分の割合を容易に調節することができる。
なお、本実施形態の高調波発生装置40においては、あおり角調節機構31及び32並びに回転調節機構33及び34に自動マイクロメータを設け、光検出器17、18及び19と、あおり角調節機構31及び32並びに回転調節機構33及び34とを連動させ、光検出器17、18及び19で測定された各レーザ光の強度に基づき、非線形媒質7及び8の回転角及びあおり角を自動で調節してもよい。また、本実施形態の高調波発生装置40における上記以外の構成、動作及び効果は前述の第1の実施形態の高調波発生装置30と同じである。
次に、本発明の第3の実施形態に係る高調波発生装置について説明する。図4は本実施形態の高調波発生装置の構成を示すブロック図であり、図5は図4に示す波長板51の動作を示す図である。なお、図4においては、図3に示す第2の実施形態の高調波発生装置40の構成要素と同じものには同じ符号を付し、その詳細な説明は省略する。図4に示すように、本実施形態の高調波発生装置50は、図3に示す第2の実施形態の高調波発生装置40の非線形媒質7と非線形媒質8との間に、更に、波長板51を配置したものである。
この波長板51は、出し入れ機構52に固定されており、出し入れ機構52を操作することにより光軸上に挿脱可能となっている。また、波長板51としては、例えばλ/2波長板を使用することができる。図5に示すように、波長板51は、入射面を通る結晶軸57に対して任意の角度θで入射されたレーザ光58の偏光方向59を、例えば楕円偏光及び円偏光等のように結晶軸57に対して任意の偏光方向60に回転するものである。このため、本実施形態の高調波発生装置50のように、波長板51を非線形媒質7と非線形媒質8との間に配置することにより、発生する高調波の偏光方向が直角になるように設計された非線形媒質同士を組み合わせて使用する場合でも、非線形媒質8から出射される基本波レーザ光5、第2高調波レーザ光15及び第3高調波レーザ光16の出力を調節することができる。なお、本実施形態の高調波発生装置50における上記以外の構成は、前述の第2の実施形態の高調波発生装置40と同様である。
次に、上述の如く構成された高調波発生装置50の動作、即ち、高調波発生装置50を使用した高調波発生方法について説明する。図6(a)及び(b)は本実施形態の高調波発生装置50の動作を示す図である。例えば、非線形媒質7としてLBO(リチウム・トリボレート;LiB)のタイプ1の結晶を使用し、非線形媒質8としてLBOのタイプ2の結晶を使用し、レーザ発振器4から非線形媒質7に、偏光方向が紙面に対して水平である基本波レーザ光5を入射した場合、非線形媒質7からは偏光方向54が紙面に対して垂直である第2高調波レーザ光15が出射する。また、非線形媒質7を透過した基本波レーザ光5の偏光方向53は紙面に対して水平であるため、基本波レーザ光5及び第2高調波レーザ光15は、その偏光方向53及び54が相互に直交した状態で波長板51に入射する。
そして、波長板51において、図6(a)に示すように、基本波レーザ光8の偏光方向が、紙面に対して水平方向から垂直方向に回転されるか、又は、図6(b)に示すように、第2高調波レーザ光15の偏光方向が、紙面に対して垂直方向から水平方向に回転される。これにより、基本波レーザ光5の偏光方向55及び第2高調波レーザ光15の偏光方向54が共に紙面に対して垂直方向になるか、又は、基本波レーザ光5の偏光方向53及び第2高調波レーザ光15の偏光方向56が共に紙面に対して水平方向になるため、非線形媒質8には、偏光方向が同じである基本波レーザ光5及び第2高調波レーザ光15が入射する。その結果、非線形媒質8においてこれらのレーザ光が合成されて発生する第3高調波レーザ光16の出力が減少し、基本波レーザ光5及び第2高調波レーザ光15の出力を増加させることができる。
これに対して、前述の第2の実施形態の高調波発生装置40においては、波長板が設けられておらず、非線形媒質7を透過した基本波レーザ光5及び第2高調波レーザ光15は、偏光方向が相互に直交した状態で非線形媒質8に入射するため、第3高調波レーザ光16の出力が最大になるように非線形媒質8の回転角及びあおり角を調整すると、基本波レーザ光5及び第2高調波レーザ光15の出力が減少する。なお、本実施形態の高調波発生装置50における上記以外の動作及び効果は前述の第2の実施形態の高調波発生装置40と同様である。
また、本実施形態の高調波発生装置50においては、更に、波長板51を光軸に対して回転させる回転機構を設けることもできる。これにより、波長板51に対するレーザ光の入射角θを偏光することができるため、基本波レーザ光5、第2高調波レーザ光15及び第3高調波レーザ光16の出力を調節することができる。この回転機構を、図3に示す光検出器17乃至19と連動させることにより、各レーザ光の出力調節を自動化することも可能である。
更に、図3に示す高調波発生装置50では、波長板51を1枚のみ配置しているが、本発明はこれに限定されるものではなく、波長板51を2枚以上配置してもよく、例えば、基本波レーザ光5の偏光方向を回転させる波長板と、第2高調波レーザ光15の偏光方向を回転させる波長板とを同時に配置することもできる。その場合も、光検出器17乃至19と連動させることにより、各レーザ光の出力調節を自動で行うことが可能である。
更にまた、本実施形態の高調波発生装置50においては、図3に示す第2の実施形態の高調波発生装置40に更に波長板51を設けたものであるが、本発明はこれに限定されるものではなく、図1に示す第1の実施形態の高調波発生装置30の非線形媒質7と非線形媒質8との間に波長板51を配置してもよい。
なお、前述の第1乃至第3の実施形態の高調波発生装置においては、2種類の非線形媒質を使用して、第2高調波レーザ光及び第3高調波レーザ光を発生させているが、本発明はこれに限定されるものではなく、種々の非線形媒質を使用することができ、また、第5高調波及び第6高調波等より短波長のレーザ光を得るため、3以上の非線形媒質を配置することもできる。その場合でも、レーザ光を減衰させるための光学部品を使用せずに各高調波の出力を調節することができる。
また、前述の第1乃至第3の実施形態の高調波発生装置においては、複数個の非線形媒質を直列に配置しているが、本発明はこれに限定されるものではなく、複数個の非線形媒質を並列に配置し、各非線形媒質に対して夫々異なる波長の基本波レーザ光を入射してもよい。
本発明の第1の実施形態に係る高調波発生装置の構成を示すブロック図である。 横軸にペルチェ素子の設定温度をとり、縦軸に非線形媒質で発生する高調波レーザ光の出力をとって、非線形媒質7及び8の温度依存性を示すグラフ図である。 本発明の第2の実施形態に係る高調波発生装置の構成を示すブロック図である。 本発明の第3の実施形態に係る高調波発生装置の構成を示すブロック図である。 図4に示す波長板51の動作を示す図である。 (a)及び(b)は本発明の第3の実施形態に係る高調波発生装置の動作を示す図である。 特許文献3に記載の高調波発生装置の構成を示すブロック図である。
符号の説明
1、104;固体レーザ媒質
2、24、28;全反射ミラー
3、20〜22、26、27;部分透過ミラー
4;レーザ発振器
5;基本波レーザ光
6;集光レンズ
7、8、105;非線形媒質
9、10;ペルチェ素子
11、12;温度コントローラ
13、14;温度設定部
15、16;高調波レーザ光
17〜19、110;光検出器
23、25;ガラスプレート
29;被加工物
30、40、50、100;高調波発生装置
31、32;あおり角調節機構
33、34;回転調節機構
51;波長板
52;出し入れ機構
53〜5、59、60;偏光方向
57;結晶軸
58;レーザ光
101;温度調節素子
102;励起用光源
102a;励起光
103;固体レーザユニット
103a;第2高調波レーザ光
106;共振器ミラー
107;温度センサ
107a;検出温度信号
108;温度制御回路
108a;温度制御電力
109;ハーフミラー
110a;光検出信号
111;光出力制御回路
111a;フィードバック信号
112;駆動回路
113;電力検出器
113a;半導体レーザ駆動電流信号
114;動作温度設定ユニット
114a;温度信号

Claims (8)

  1. 入射レーザ光に対して、複数個の非線形媒質により波長が異なる複数種の高調波レーザ光を発生させ、これらを合成して出射する高調波発生装置において、前記複数個の非線形媒質の温度を個別に調節可能な温度調節部を有し、各高調波レーザ光の強度が所定の値になるように、対応する非線形媒質の温度が調節されることを特徴とする高調波発生装置。
  2. 入射レーザ光に対して、複数個の非線形媒質により波長が異なる複数種の高調波レーザ光を発生させ、これらを合成して出射する高調波発生装置において、前記複数個の非線形媒質で発生した高調波レーザ光の強度を夫々測定する複数個の光検知器と、前記複数個の非線形媒質の温度を個別に調節可能な温度調節部と、を有し、前記光検出器の測定結果に基づき、各高調波レーザ光の強度が所定の値になるように、対応する非線形媒質の温度が調節されることを特徴とする高調波発生装置。
  3. 入射レーザ光に対して、複数個の非線形媒質により波長が異なる複数種の高調波レーザ光を発生させ、これらを合成して出射する高調波発生装置において、前記複数個の非線形媒質で発生した高調波レーザ光の強度を夫々測定する複数個の光検知器と、前記複数個の非線形媒質の温度を個別に調節可能な温度調節部と、前記複数の非線形媒質の回転角及びあおり角を個別に調節可能な角度調節部と、を有し、前記光検出器の測定結果に基づき、各高調波レーザ光の強度が所定の値になるように、対応する非線形媒質の温度、回転角及びあおり角のうち少なくとも1種の条件が調節されることを特徴とする高調波発生装置。
  4. 前記温度調節部は、前記複数個の非線形媒質に夫々取り付けられ前記非線形媒質を加熱又は冷却する複数個のペルチェ素子と、前記光検出器の測定結果に基づき対応する非線形媒質に取り付けられたペルチェ素子の温度を制御する素子制御部と、を有することを特徴とする請求項1乃至3のいずれか1項に記載の高調波発生装置。
  5. 前記複数個の非線形媒質は、一定の間隔をあけて1列に配置されていることを特徴とする請求項1乃至4のいずれか1項に記載の高調波発生装置。
  6. 一の非線形媒質と、この一の非線形媒質と隣り合う他の非線形媒質との間に、レーザ光の偏光方向を回転させる波長板が配置されていることを特徴とする請求項5に記載の高調波発生装置。
  7. 前記非線形媒質に向けて基本波レーザ光を出射するレーザ発振器を有することを特徴とする請求項1乃至6のいずれか1項に記載の高調波発生装置。
  8. 更に、前記非線形媒質を透過した基本波レーザ光の強度を測定する他の光検知器を有し、この光検出器の測定結果に基づき前記レーザ発振器から出射される基本波レーザ光の出力を調節されることを特徴とする請求項7に記載の高調波発生装置。
JP2005156397A 2005-05-27 2005-05-27 高調波発生装置 Pending JP2006330518A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005156397A JP2006330518A (ja) 2005-05-27 2005-05-27 高調波発生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005156397A JP2006330518A (ja) 2005-05-27 2005-05-27 高調波発生装置

Publications (1)

Publication Number Publication Date
JP2006330518A true JP2006330518A (ja) 2006-12-07

Family

ID=37552247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005156397A Pending JP2006330518A (ja) 2005-05-27 2005-05-27 高調波発生装置

Country Status (1)

Country Link
JP (1) JP2006330518A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212975A (ja) * 2007-03-05 2008-09-18 Mitsubishi Electric Corp レーザ加工方法およびレーザ加工装置
JP2010085316A (ja) * 2008-10-01 2010-04-15 Topcon Corp レーザ装置および距離測定装置
WO2011132385A1 (ja) * 2010-04-20 2011-10-27 パナソニック株式会社 レーザ光源及びレーザ加工機
JP2013065753A (ja) * 2011-09-20 2013-04-11 Shimadzu Corp 固体レーザ装置
JP2013205426A (ja) * 2012-03-27 2013-10-07 Shimadzu Corp 固体レーザ装置
JP2014173966A (ja) * 2013-03-08 2014-09-22 Nec Corp レーザ測距装置およびレーザ測距方法
JP2015035469A (ja) * 2013-08-08 2015-02-19 株式会社島津製作所 固体レーザ装置
JP2016200618A (ja) * 2015-04-07 2016-12-01 富士電機株式会社 光源装置
WO2017060967A1 (ja) * 2015-10-06 2017-04-13 株式会社島津製作所 波長変換装置
WO2023105722A1 (ja) * 2021-12-09 2023-06-15 日本電信電話株式会社 波長変換装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001021931A (ja) * 1999-07-09 2001-01-26 Ushio Sogo Gijutsu Kenkyusho:Kk Type1の非線形結晶を用いた加工用レーザ装置
JP2001168439A (ja) * 1999-12-09 2001-06-22 Fuji Photo Film Co Ltd 発光装置
JP2002164616A (ja) * 1997-05-07 2002-06-07 Matsushita Electric Ind Co Ltd Shgレーザの安定化制御装置及び光ディスク記録再生装置
JP2003075877A (ja) * 2001-09-06 2003-03-12 Sumitomo Heavy Ind Ltd レーザ光源及び非線型光学素子の温度制御方法
JP2003094191A (ja) * 2001-09-20 2003-04-02 Yaskawa Electric Corp レーザ加工装置
JP2003124553A (ja) * 2001-10-12 2003-04-25 Topcon Corp レーザ発振装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164616A (ja) * 1997-05-07 2002-06-07 Matsushita Electric Ind Co Ltd Shgレーザの安定化制御装置及び光ディスク記録再生装置
JP2001021931A (ja) * 1999-07-09 2001-01-26 Ushio Sogo Gijutsu Kenkyusho:Kk Type1の非線形結晶を用いた加工用レーザ装置
JP2001168439A (ja) * 1999-12-09 2001-06-22 Fuji Photo Film Co Ltd 発光装置
JP2003075877A (ja) * 2001-09-06 2003-03-12 Sumitomo Heavy Ind Ltd レーザ光源及び非線型光学素子の温度制御方法
JP2003094191A (ja) * 2001-09-20 2003-04-02 Yaskawa Electric Corp レーザ加工装置
JP2003124553A (ja) * 2001-10-12 2003-04-25 Topcon Corp レーザ発振装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008212975A (ja) * 2007-03-05 2008-09-18 Mitsubishi Electric Corp レーザ加工方法およびレーザ加工装置
JP2010085316A (ja) * 2008-10-01 2010-04-15 Topcon Corp レーザ装置および距離測定装置
US8993919B2 (en) 2010-04-20 2015-03-31 Panasonic Intellectual Property Management Co., Ltd. Laser source and laser beam machine
WO2011132385A1 (ja) * 2010-04-20 2011-10-27 パナソニック株式会社 レーザ光源及びレーザ加工機
JP2013065753A (ja) * 2011-09-20 2013-04-11 Shimadzu Corp 固体レーザ装置
JP2013205426A (ja) * 2012-03-27 2013-10-07 Shimadzu Corp 固体レーザ装置
JP2014173966A (ja) * 2013-03-08 2014-09-22 Nec Corp レーザ測距装置およびレーザ測距方法
JP2015035469A (ja) * 2013-08-08 2015-02-19 株式会社島津製作所 固体レーザ装置
JP2016200618A (ja) * 2015-04-07 2016-12-01 富士電機株式会社 光源装置
WO2017060967A1 (ja) * 2015-10-06 2017-04-13 株式会社島津製作所 波長変換装置
JPWO2017060967A1 (ja) * 2015-10-06 2018-07-26 株式会社島津製作所 波長変換装置
US10139702B2 (en) 2015-10-06 2018-11-27 Shimadzu Corporation Wavelength conversion device
WO2023105722A1 (ja) * 2021-12-09 2023-06-15 日本電信電話株式会社 波長変換装置

Similar Documents

Publication Publication Date Title
JP2006330518A (ja) 高調波発生装置
KR102220081B1 (ko) 레이저의 대역폭 감소를 위한 시스템 및 방법과 레이저를 이용한 검사 시스템 및 방법
US6614584B1 (en) Laser frequency converter with automatic phase matching adjustment
US7242700B2 (en) Stabilized frequency-converted laser system
EP2756342B1 (en) Controllable multi-wavelength fiber laser source
JP2007019361A (ja) 周波数安定化レーザ
CN110352538B (zh) 183nm cw激光器及检验系统
JP5042781B2 (ja) 周波数安定化レーザ装置及びレーザ周波数安定化方法
JP2009218488A (ja) レーザ周波数安定化装置、方法、及びプログラム
JP2016508627A (ja) 193nmレーザー及び検査システム
JP2010054547A (ja) 紫外レーザ装置
JP2010256784A (ja) 波長変換装置及び波長変換方法並びに半導体装置の製造方法
JP6836848B2 (ja) レーザ光調整方法、及びレーザ光源装置
JP2003046173A (ja) レーザ装置、波長変換素子、レーザ発振器、波長変換装置およびレーザ加工方法
TWI761081B (zh) 波長變換雷射裝置及波長變換雷射加工機
US7103075B2 (en) Solid laser apparatus
US5025449A (en) Optical pumping-type solid-state laser apparatus with a semiconductor laser device
JPWO2007055110A1 (ja) レーザ光源のスタンバイ方法
JP2008130848A (ja) レーザ周波数安定化装置、及びレーザ周波数安定化方法
JP4071806B2 (ja) 波長変換装置
JP2011249400A (ja) レーザ光源の調整システム、及びレーザ光源の調整方法
JP5213368B2 (ja) レーザ光第2高調波発生装置
US20110164635A1 (en) Laser device
JP2000252570A (ja) 波長変換固体レーザ装置
KR100633626B1 (ko) 파장 변환 방법 및 파장 변환 레이저와 레이저빔 가공 방법

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070115

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100406